Learning And Reproduction Of Therapist’s Semi-Periodic Motions During Robotic Rehabilitation

The demand for rehabilitation services has increased in recent years due to population aging. Due to the limitations of therapists’ time and healthcare resources, robot-assisted rehabilitation is becoming an appealing, powerful and economical solution. In this paper, we propose a solution that combines Learning from Demonstration (LfD) and robotic rehabilitation to save the therapist’s time and reduce the therapy costs when the therapy involves periodic or semi-periodic motions. We begin by modeling the therapist’s behavior (a periodic or semi-periodic motion) using a Fourier Series (FS). Later, when the therapist is no longer involved, the system reproduces the learned behavior modeled by the FS using a robot. A second goal is to combine the above with Gaussian Mixture Model (GMM) and Gaussian Mixture Regression (GMR) to obtain a more flexible and generalizable reproduction of the therapist’s behavior. This algorithm allows learning and imitating repetitive movement tasks. Our experimental results show the application of these algorithms to repetitive motion task.