
1

Common Corruption Robustness of Point Cloud
Detectors: Benchmark and Enhancement

Shuangzhi Li, Zhijie Wang, Felix Juefei-Xu, Qing Guo*, Xingyu Li, and Lei Ma

Abstract—Object detection through LiDAR-based point cloud
has recently been important in autonomous driving. Although
achieving high accuracy on public benchmarks, the state-of-the-
art detectors may still go wrong and cause a heavy loss due
to the widespread corruptions in the real world like rain, snow,
sensor noise, etc. Nevertheless, there is a lack of a large-scale
dataset covering diverse scenes and realistic corruption types
with different severities to develop practical and robust point
cloud detectors, which is challenging due to the heavy collection
costs. To alleviate the challenge and start the first step for robust
point cloud detection, we propose the physical-aware simulation
methods to generate degraded point clouds under different real-
world common corruptions. Then, for the first attempt, we
construct a benchmark based on the physical-aware common
corruptions for point cloud detectors, which contains a total of
1,122,150 examples covering 7,481 scenes, 25 common corruption
types, and 6 severities. With such a novel benchmark, we conduct
extensive empirical studies on 8 state-of-the-art detectors that
contain 6 different detection frameworks. Thus we get several
insight observations revealing the vulnerabilities of the detectors
and indicating the enhancement directions. Moreover, we fur-
ther study the effectiveness of existing robustness enhancement
methods based on data augmentation and data denoising. The
benchmark can potentially be a new platform for evaluating point
cloud detectors, opening a door for developing novel robustness
enhancement methods.

Index Terms—Point cloud, Object Detection, Benchmark, Ro-
bustness

I. INTRODUCTION

OBject detection via LiDAR-based point cloud [1], [2], as
a crucial task in 3D computer vision, has been widely

used in applications like autonomous driving [3]. Recently,
the data-driven methods (i.e., deep neural networks) have
significantly improved the performance of 3D point cloud
detectors [4], [5], [2] on various public benchmarks, e.g., KITTI
[6], NuScenes [7], and Waymo [8]. However, the scenarios
covered by these public benchmarks are usually limited. For
instance, there is a lack of natural fog effects in these datasets,
while fog could affect the reflection of laser beams and
corrupt point cloud data with false reflections by droplets [9],
[10]. Apart from the external scenarios, the internal noise of
sensors can also increase the deviation and variance of ranging

*Qing Guo is the corresponding author.
Shuangzhi Li, Zhijie Wang, Xingyu Li, and Lei Ma are with the University

of Alberta, AB, Canada. Zhijie Wang and Lei Ma are also with the Alberta
Machine Intelligence Institute, AB, Canada. Lei Ma is also with Kyushu
University, Japan. (e-mail: {shuangzh, zhijie.wang, xingyu}@ualberta.ca,
ma.lei@acm.org)

Qing Guo is with the Nanyang Technological University, Singapore. (e-mail:
tsingqguo@ieee.org)

Felix Juefei-Xu is with New York University, New York, NY 10012, USA.
(e-mail: juefei.xu@nyu.edu)

measurements [11] and result in corrupted data and detector
performance degradation. Given that LiDAR-based point cloud
detection is usually used in safety-critical applications (e.g.,
autonomous driving) and these external and internal corruptions
could potentially affect detectors’ robustness [12], [13], [11],
it is critical to comprehensively evaluate an object detector
under those corruptions before deploying it in real-world
environments.

There are some works constructing datasets while consider-
ing extreme weather like CADC [14], Boreas [15], SeeThrough-
Fog (STF) [10]. Nevertheless, the constructed datasets only
consider limited situations in the real world due to the heavy
collection costs, which are far from a comprehensive evaluation.
For instance, Boreas only covers 4 rainy scenes and 5 snowy
scenes. STF only contains foggy point clouds at severity levels
of “dense” and “light”. Hence, there is an increasing demand
for extending existing benchmarks to conduct a comprehensive
evaluation through covering diverse corruptions in the real
world. A straightforward way is to synthesize the corrupted
point clouds given the success of similar solutions in the image-
based tasks [16], [17] and 3D object recognition [11], [18].
However, there is no accessible dataset for the robustness
evaluation of point cloud detectors. Note that, the robustness
datasets (e.g., Modelnet40-C [11]) for 3D object recognition
cannot be used to evaluate the point cloud detectors, directly:
(1) the example in the recognition dataset only contains the
points of an object and cannot be adopted for object detection
task that aims to localize and classify objects in 3D scene.
(2) The latest Modelnet-C [18] and Modelnet40-C [11]) only
consider 7 corruptions and 15 corruptions, respectively, which
is still limited for a comprehensive evaluation in safety-critical
environments such as autonomous driving.

The main challenge for building a dataset for the robustness
evaluation of point cloud detection stems from the huge amount
of diverse corruption types with different physical imaging
principles. For example, flawed sensors and different object
characteristics could lead to noise-like corruptions and affect
spherical and Cartesian coordinates of points, respectively.
Different weathers like rain and fog might lead to false
reflections. These corruptions have different imaging principles
and need careful designs of the respective simulation methods.

In this work, for the first attempt, we construct a benchmark
to evaluate the robustness of point cloud object detectors based
on LiDAR under diverse common corruptions and discuss
the effectiveness of existing robustness enhancement methods.
Regarding the benchmark construction, we first design physical-
aware simulation methods for 25 corruptions according to
their physical models, respectively. Then, we borrow 7,481

ar
X

iv
:2

21
0.

05
89

6v
1

 [
cs

.C
V

]
 1

2
O

ct
 2

02
2

2

TABLE I: Summary of datasets used for LiDAR-based point cloud object detection

Dataset Year Real/Simulated Frames BBoxes Classes Corruptions Corruption
Severities

Robustness
Metric

KITTI [6] 2012 real 15K 200K 8 cutout, noise 2 -

NuScenes [7] 2019 real 400K 1.4M 23 rain, sun, clouds, cutout, various vehicle types, noise 2 -

Waymo [8] 2019 real 200K 12M 4 rain, fog, cutout, dust, various vehicle types, noise 2 -

Boreas [15] 2022 real 7.1K 320K 4 snow, rain, sun, clouds, cutout, noise 2 -

STF [10] 2020 real 13.5K 100K 4 fog, rain, snow, cutout, noise 3 -

CADC [14] 2020 real 7K 334K 10 snow, bright light, cutout, noise 5 -

ModelNet40-C [11] 2022 real+simulated 185K - 40
occlusion, LiDAR, local_density_inc/dec, cutout,
uniform, Gaussian, impulse, upsampling, background,
rotation, shear, FFD, RBF, inv_RBF

6 X

ModelNet-C [18] 2022 real+simulated 185K - 40 scale, rotate, jitter, drop_global/local, add_global/local 6 X

Argoverse [19] 2019 real 468K 993K 15 rain, cutout, dust, noise 2 -

Lyft Level 5 [20] 2020 real 30K 1.3M 9 rain, cutout, noise 2 -

Ours 2022 real+simulated 1.1M 15M 8

Scene: rain, snow, fog, uniform_rad, gaussian_rad,
impulse_rad, upsample, background, cutout, beam_del,
local_dec/inc, layer_del; Object: uniform, gaussian,
impulse, upsample, cutout, local_dec/inc, shear, scale,
rotation, FFD, translation

6 X

raw 3D scenes (i.e., clean point clouds) from [6] and build
large-scale corrupted datasets by adding 25 corruptions with 6
different severity levels to each clean point cloud. Finally, we
obtain a total of 1,122,150 examples covering 7,481 scenes,
25 common corruption types, and 6 severity levels. Compared
with real-world data benchmark (see Table I), the proposed
benchmark synthesized more examples for benchmarking
robustness. Compared with other synthesized benchmark (see
Table I), our benchmark provides more types of corruption
patterns to specifically support benchmarking object detection.
Note that, we conduct extensive experiments to quantitatively
validate the effectiveness of simulation methods by evaluating
the naturalness of synthesized data.

With such a novel benchmark, we investigate the robustness
of current point cloud detectors by conducting extensive
empirical studies on 8 existing detectors, covering 3 different
representations and 2 different proposal architectures. In
particular, we study the following four research questions to
identify the challenges and potential opportunities for building
robust point cloud detectors:

• How do the common corruption patterns affect the point
cloud detector’s performance? Given overall common
corruptions, an accuracy drop of 11.01% (on average) on all
detectors anticipates a noticeable accuracy drop of detectors
against diverse corruption patterns.

• How does the design of a point cloud detector affect its
robustness against corruption patterns? Compared with
two-stage detectors, one-stage detectors perform more robust
against a majority of corruptions. Compared with point-based
detectors, voxel-involving detectors perform more robust
against the most of corruptions.

• What kind of detection bugs exist in point cloud detec-
tors against common corruption patterns? Followed by
the decrease in the rate of true detection, common corruptions
widely trigger a number of false detections on all point cloud
detectors.

• How do the robustness enhancement techniques im-

prove point cloud detectors against common corruption
patterns? Even with the help of data augmentation and
denoising, common corruptions still cause a severe accuracy
drop of over 10% on detection.
In summary, this work makes the following contributions:

• We design physical-aware simulation methods covering
25 common corruptions related to natural weather, noise
disturbance, density change, and object transformations at
the object and scene level.

• We create the first robustness benchmark of point cloud
detection against common corruptions.

• Based on the benchmark, we conduct extensive empirical
studies to evaluate the robustness of 8 existing detectors
to reveal the vulnerabilities of the detectors under common
corruptions.

• We study the existing data augmentation (DA) method and
denoising method’s performance on robustness enhancement
for point cloud detection and further discuss their limitations.

II. RELATED WORK

A. LiDAR Perception

LiDAR perception is sensitive to both internal and external
factors that could result in different corruptions. Adversarial
weather [9] (e.g., snow, rain, and fog) can dim or even block
transmissions of lasers by dense liquid or solid droplets. Regard-
ing noise characteristics of point clouds, strong illumination
[22] affects the signal transmission by lowering Signal-to-Noise
Ratio (SNR), increasing the noise level of LiDAR ranging [23].
Besides, the intrinsically inaccurately ranging and the sensor
vibration [24], [25] potentially trigger noisy observations during
LiDAR scanning. Environmental floating particles (e.g., dust
[26]) could perturb point cloud with the background noise.
Density distribution of LiDAR-based point clouds can also
easily affect autonomous driving. For instance, common object-
object occlusions block LiDAR scanning on objects in the
scene [13]. Besides, the dark-color cover and rough surface

3

TABLE II: Taxonomy of collected common corruption patterns

Scene-level Object-level

Corruption
Category Corruption Potential Reasons Corruption

Category Corruption Potential Reasons

Weather
rain

Environment: natural weather [9]; Noise

uniform
Object surface: coarse surface [21]
and dark-color cover [21];snow gaussian

fog impulse

Noise

uniform_rad Environment: strong illumination [22];
Sensor: low ranging accuracy [23] and
sensor vibration [24], [25];

upsample

gaussian_rad
Density

cutout Object surface: object or self-
occlusions [13], dark-color cover [21]
and transparent components;impulse_rad local_dec

upsample local_inc

background Environment: floating particles [26];

Transformation

translation Object: different locations and
heading directions [27];

Density

cutout
Sensor: different scanning layers, object
occlusion [13], and randomly laser beam
[13] or layer (rotary laser) malfunction;

rotation

local_dec shear Object deformation: bending or
moving pedestrians [28], different
styles of vehicles [29].local_inc FFD

beam_del scale

layer_del

[21] could affect LiDAR’s reflection and thus reduce local point
density when sensing such objects. Moreover, the malfunction
of (fixed or rotary) lasers [13] globally loses points or layers
of points in point clouds. For 3D tasks, various shapes [28],
[29], locations and poses [27] of objects can also influence the
context perception in the scene.

Apart from these natural corruptions, LiDAR perception is
also sensitive to adversarial attack. Adversarial attacks [30] pose
significant security issues and vulnerability on 3D point cloud
tasks (e.g., classification [31], detection [32], and segmentation
[33]).

B. Point Cloud Detectors

Based on the different representations acquired from point
clouds, point cloud detectors can be categorized into 2D-view-
based detectors (e.g., VeloFCN [34] and PIXOR [35]), voxel-
based detectors (e.g., SECOND [36] and VoTr [37]), point-
based detectors (e.g., PointRCNN [38] and 3D-SSD [39]),
and point-voxel-based detectors (e.g., PVRCNN [40] and SA-
SSD [41]). On the other hand, based on the different proposal
architectures, point cloud detectors can also be divided into
one-stage detectors (e.g., 3D-SSD [39] and SA-SSD [41]) and
two-stage detectors (e.g., PointRCNN [38] and PVRCNN [40]).
In this paper, we select 8 representative methods covering all
these categories.

C. Robustness Benchmarks against Common Corruptions

Several attempts have been made to benchmark robustness
for different data domains. Based on ImageNet [42], ImageNet-
C simulates real-world corruptions to test image classifiers’
robustness. ObjectNet [17] illustrates the performance degrada-
tion of 2D recognition models considering object backgrounds,
rotations, and imaging viewpoints. Inspired by 2D works,
several benchmarks were built for 3D tasks. Modelnet40-C

[11] corrupts ModelNet40 [43] with 15 simulated common
corruptions affecting point clouds’ noise, density, and transfor-
mations, to evaluate the robustness of point cloud recognition.
Targeting 7 fundamental corruptions (i.e., “Jitter”, “Drop
Global/Local”, “Add Global/Local”, “Scale”, and “Rotate”),
ModelNet-C reveals the vulnerability of different components
of 9 existing point cloud classifiers. Regarding point cloud
detection, NuScenes, Waymo, and STF collect LiDAR scans
under adversarial rainy, snowy, and foggy conditions, where
the accuracy of 3D detectors is tested [7], [10], [8]. However,
to the best of our knowledge, a lack of benchmark of point
cloud detection’s robustness comprehensively against various
common corruptions is still remaining.

D. Robustness Enhancement for Point Cloud Detection

Recently, improving the robustness of point cloud detection
has also received significant concerns. Zhang et al. propose
PointCutMix [44] as a single way to generate new training
data by replacing the points in one sample with their optimal
assigned pairs in another sample. Lee et al. [45] propose a rigid
subset mix (RSMix) augmentation to get a virtual mixed sample
by replacing part of the sample with shape-preserved subsets
from another sample. Specifically for 3D object detection, there
are several ways to improve detectors’ robustness. Choi et al.
[46] propose a part-aware data augmentation that stochastically
augments the partitions of objects by 5 basic augmentation
methods. LiDAR-Aug [47] presents a rendering-based LiDAR
augmentation framework to improve the robustness of 3D
object detectors. LiDAR light scattering augmentation [12] and
LiDAR fog stimulation [48] utilize physics-based simulators
to generate data corrupted by fog/snow/rain and then augment
object detectors. Self-supervised pre-training [49], [50] can
also endow the model with resistance to augmentation-related
transformations. Besides, denoising methods [51], [52], [53]
can remove the outliers in point clouds and thus potentially

4

improve detectors’ robustness. Regarding module design, there
are also some detectors specialized for resisting corruptions,
e.g. BtcDet [13] with the occupancy estimator for estimating
occluded regions and Centerpoint [54] with key-point detector
for a flexible orientation regression. In this paper, we evaluate
part-aware data augmentation and K-nearest-neighbors-based
filtering methods for improving point cloud detectors against
diverse common corruption patterns.

III. BACKGROUND

A. Point Cloud Detection

Point clouds detectors aim to detect objects of interest
in point clouds in the format of bounding boxes (BBoxes).
Suppose a frame of point cloud data P is a set of point
p = [xp, yp, zp, rp], where (xp, yp, zp) denotes its 3D location
and rp denotes reflective intensity. Thus we can formulate the
point cloud detection as:

Det(P) = {bi}N

bi = [xi, yi, zi, wi, hi, li, θi, ci, si]
(1)

where Det(·) represents the detector; N is the number of
detected BBoxes in P; bi denotes ith detected BBox in P, where
i = 1, 2, · · · , N ; (xi, yi, zi) is the Cartesian coordinate of the
center of bi, (wi, hi, li) is its dimensions, θi is its heading
angle, ci is its classification label, and si is its prediction
confidence score.
Point cloud feature representation. Representation for fea-
tures used in point cloud detection includes 2D-view images,
voxels, and raw points. By projecting point clouds into a 2D
bird’s eye view or front view, 2D-view-based 3D detectors can
intuitively fit into a 2D image detection pipeline [34], [35].
However, 2D-view images could lose depth information [2],
where the localization accuracy of the detector is affected.
To efficiently acquire 3D spatial knowledge in large-scale
point clouds, the “voxelization” operation is leveraged to
partition unordered points into spatially and evenly distributed
voxels [36], [55]. After pooling interior features, those voxels
are fed into a sparse 3D convolution backbone [36] for
feature abstraction. Given an appropriate voxelization scale,
voxel-based representation is computationally efficient, but the
quantization loss by voxelization is also inevitable [2]. Different
from the above methods, PointNet [56] and PointNet++ [57]
directly extract abstract features from raw points, which keeps
the integrity of spatial context in point clouds. However, the
point-based detectors are not cost-efficient for large-scale data
[2]. As a trade-off between the voxel-based and point-based
methods, Point-voxel-based representations [40], [41] possess
the potential of fusing the high-efficient voxels and accurate-
abstract points in feature abstraction.
Proposal architecture. One-stage detectors [36], [50] directly
generate candidate BBoxes from the abstracted features. To
improve candidate BBoxes’ precision, two-stage detectors [40],
[13] refine those BBoxes by region proposal network (RPN) and
tailor them into unified size by region of interest (RoI) pooling
before predicting output BBoxes. Compared with one-stage
detectors, two-stage ones [2] usually present more accurate

localization but intuitively, are more computationally time-
consuming.

B. Robustness Enhancement Solutions

Several attempts have been made to enhance the robustness of
point cloud detectors. In this paper, we select data augmentation
and denoising methods to study their effects on improving point
cloud detectors’ robustness against common corruptions. Data
augmentation [58] is an effective way of increasing the amount
of relevant data by slightly modifying existing data or newly
creating synthetic data from existing data. Data augmentation
on the point cloud [46], [59] provides detectors with a way to
be trained with a larger dataset and thus potentially obtain more
robust detectors. Different from data augmentation, denoising
[51], [52] serves as a pre-process to detect and remove spatial
outliers in point clouds, which can reduce the effects of noisy
point cloud data.

IV. PHYSICAL-AWARE ROBUSTNESS BENCHMARK FOR
POINT CLOUD DETECTION

We propose the first robustness benchmark of point cloud de-
tectors against common corruption patterns. We first introduce
different corruption patterns collected for this benchmark and
dataset in Section IV-A. Then we propose the evaluation metrics
used in our benchmark in Section IV-B. Finally, we introduce
the subject-object detection methods and robustness enhance-
ment methods selected for this benchmark in Section IV-C.

A. Physical-aware Corrupted Dataset Construction

After the literature investigation in Section II-A, we summa-
rize 25 corruption patterns in Table II and categorize them into
4 categories based on presentations of common corruptions:
weather, noise, density, and transformation. On the other hand,
we also divide common corruption patterns into the scene-
level and the object-level. As an initial effort, the dataset
covers representative but not all corruptions, and we encourage
continuous work with more diverse corruptions considered in
the future.

The simulation of corruptions implemented in the paper
mainly operates on the spatial locations and the reflection
intensity of points in the point cloud. Those point-targeting
operations are equivalent to the perturbations of the real-world
corruptions on the LiDAR point cloud and have been widely
utilized in the simulation-related studies, as in noise-related
[24], [23], [18], [11], [46], density-related [18], [11], [46],
[60], [13], and transformation-related [18], [11], [29], [27],
[60]. Next, We briefly introduce each corruption pattern in the
following (refer to Appendix C for detailed implementations
and visualizations).
Weather corruptions: LiDAR is sensitive to adversarial
weather conditions, such as rainy, snowy, and foggy [9]. Dense
droplets of liquid or solid water dim the reflection intensity
and reduce the signal-to-noise ratio (SNR) of received lights.
Floating droplets can also reflect and fool sensors with false
alarms. Both effects, in some cases, can significantly affect
the detectors. To simulate three weather corruptions: {rain,

5

TABLE III: Classification on real and simulated data

Corruption Training Testing

dataset size val accuracy dataset size test accuracy

snow Boreas 24292 99.11% KITTI 14962 97.13%
fog STF 1787 80.00% KITTI 14962 92.60%

TABLE IV: MMD distances among clean, real corrupted, and simulated
corrupted 2D features transformed by T-SNE

Real vs Simulated Simulated vs Clean Real vs Clean

snow 0.0549 0.1446 0.1445
fog 0.0302 0.1212 0.1295

snow, fog}, we adopt LiDAR light scattering augmentation
(LISA) [12] as a simulator for rain and snow and LiDAR fog
stimulation (LFS) [48] as a fog simulator.

To verify the naturalness of weather simulation, we train
weather-oriented PointNet-based classifiers with datasets col-
lected in real snowy and foggy weather. Then, we leverage the
classification accuracy of those trained classifiers testing on
simulated data to measure the similarity of simulated data to
real data. As shown in Table III, the testing accuracy 97.13%
and 92.60% of trained weather classifiers on simulated snow
data and fog data show that the simulated snow data and fog
data are highly similar to the real data (refer to Appendix B-A
for detailed experiment settings).

We further analyze the similarity of distribution of real and
simulated corrupted data. Specifically, we extract the high-
level features from the trained classifier. Then, we utilize T-
SNE [61] to reduce the dimensionality of acquired features
to 2 and visualize these 2D features. As shown in Figure 1
and 2, the distributions of the real and simulated corruptions
are significantly similar. We further quantitatively measure
the distance between the feature distribution of clean data,
simulated snow/fog, and real snow/fog, as shown in Table
IV. The maximum mean discrepancy (MMD) [62] results
reveal that the simulated snow/fog is close to the real snow/fog,
respectively, while not close to the clean data.

Fig. 1: Feature visualization of the snow classification by T-SNE

Fig. 2: Feature visualization of the fog classification by T-SNE

Regarding rain corruption, we find the effects of rain droplets
on point clouds are too subtle to be caught by classifiers, as
shown in Figure 3. Alternatively, we visualize simulated and
real point clouds and qualitatively verify the high similarity
between simulated and real point clouds (see more comparisons
in Appendix B-A).
Noise corruptions: Noise commonly exists in point cloud
signals [53], [51]. Scene-level factors (e.g., strong illumination
[22], limited ranging accuracy of sensors, and sensor vibration
[24], [25]) could increase the variance of ranging or extend
the positioning bias. Floating particles, e.g., dust [26], could
cause the background noise in point clouds. Hence, we collect
5 scene-level noise corruptions: {uniform_rad, gaussian_rad,
impulse_rad} add uniform, Gaussian, impulse noise on the
spherical coordinates of points in point clouds; {upsample} ran-
domly upsamples points nearby original points in point clouds;
{background} uniformly randomly samples points within the
spatial range of point clouds. Besides scene-level effects, object-
related factors could cause noise in LiDAR points, e.g., dark
color [21] and coarse surface. Thus, we formulate 4 object-
level corruptions: {uniform, gaussian, impulse} add uniform,
Gaussian, impulse noise on the Cartesian coordinates of points
of objects; {upsample} upsamples points nearby original points
of objects.
Density corruptions: The density-related corruptions refer
to the corruption patterns that change the global or local
density distribution of LiDAR point clouds. For instance, the
global static density of points in LiDAR varies due to different
amounts of scanning layer (e.g., 32 or 64). Besides, inter-object
occlusion and random signal loss [13] could remove points
randomly. We hence propose 5 corruptions: {cutout} cuts out
the sets of locally gathering points; {local_dec, local_inc}
locally decrease or increase the density of points; beam_del,
layer_del randomly delete points or layers of points in point
clouds. In terms of object-level factors, dark-color cover [21]
and transparent materials (e.g., glasses and plastics) of objects
can affect the point density of objects. Hence, at the object
level, we also propose a set of corruptions: {cutout, local_dec,
local_inc}, affecting the point density of objects.

6

Fig. 3: Comparison between real rain and simulated rain (red and yellow boxes contain the false points in the simulated and real rain, respectively; the data of
real clean and real rain from Boreas were sampled at the same location; the simulated rain data was augmented on the basis of the real clean data)

Transformation corruptions: In the scenario of autonomous
driving, shapes of objects within one class could be various
(e.g., flat sports cars and round vintage cars [29], bending and
walking pedestrians [28]). Those long-tail data could potentially
be recognized wrong. Besides, dynamic changes in heading
directions and locations of objects [27] could potentially affect
the positioning accuracy of detectors. Hence, we formulate
5 corruptions: {translation, rotation} change locations and
heading directions of objects to a milder degree, i.e., < 1m
and < 10◦; {shear} [63] and {scale}, as linear deformations,
slant and scale points of objects; {FFD} adopts free-form
deformation (FFD) [64] to distort the point shape of an object
in a nonlinear manner.
Dataset selection. As one of the most popular benchmarks in
autonomous driving, KITTI [6] contains 7481 training samples
covering 8 object classes. Unlike other datasets in Table I, the
data in KITTI are mostly collected under clean conditions and
also have a relatively simple annotation format, which makes
it a good option for conducting comparative experiments. We
also encourage the future extension to other real or synthesized
datasets. To simulate various levels of severity in the real world,
we set 6 severity levels for each corruption (considering “clean”
as level 0).

B. Evaluation Metrics

To quantify the robustness performance of detectors, we
design the following evaluation metrics from two perspectives:
(1) detection accuracy and (2) number of bugs triggered.
Overall accuracy. For each test, we use the overall accuracy
(OA), by taking the average of APs (average precision) at three
difficulty levels (i.e., “Easy”, “Moderate”, and “Hard”). And
we follow the common settings of IoU thresholds {Car: 0.7,
Pedestrian: 0.5, Cyclist: 0.5} to search for the true positive
detections in AP and recall calculation.

For every corruption, we calculate corruption error (CE) to
measure performance degradation according to OA by:

CEm
c,s = OAm

clean − OAm
c,s (2)

where OAm
c,s is the overall accuracy of detector m under

corruption c of severity level s (exclude “clean”, i.e., severity

level 0) and clean represent the clean data. For detection m,
we can calculate the mean CE (mCE) for each detector by:

mCEm =

∑5
s=1

∑25
c=1 CE

m
c,s

5C
(3)

Detection bug. There are various bugs existing in the pipeline
of point cloud detection, such as annotation errors, run-time
errors, detection bugs. In this paper, we focus on the bugs in
detection results. Specifically, we’re interested in false detection,
false classification, and missed detection:
• False detection (FD) on detection BBoxes: maximum IoU >

0 with correct classification w.r.t. ground-truth BBoxes;
• False classification (FC) on detection BBoxes: maximum

IoU > 0 with false classification w.r.t. ground-truth BBoxes;
• Missed detection (MD) on detection BBoxes: maximum IoU

= 0 w.r.t. ground-truth BBoxes.
Correspondingly, the bug rates (BRs) are calculated by:

BR∗ =
N∗

Ndet
(4)

where ∗ stands for FD, FC, and MD; N∗ is the number of
objects of ∗; Ndet is the number of detected objects.

To measure the increase of BR after being affected by
common corruptions, we calculate corruption risk (CR) and
the mean CR (mCR) for detector m by

CRm
∗,c,s = BRm

∗,c,s − BRm
∗,clean (5)

mCRm
∗ =

∑5
s=1

∑C
c=1 CR

m
∗,c,s

5C
(6)

where BRm
∗,c,s is the BR∗ of detector m under corruption c

of severity level s.

C. Benchmark Subjects

Point cloud detectors. For benchmarking point cloud detection,
we select 8 representative detectors: SECOND [36], PointR-
CNN [38], PVRCNN [40], BtcDet [13], VoTr-SSD, VoTr-TSD
[37], Centerpoint [54], and SE-SSD [65] to cover different
kinds of feature representations and proposal architectures. We
show the detailed taxonomy in Table VII.
Data augmentation and denoising methods. In this paper,
we study the effectiveness of data augmentation and denoising

7

TABLE V: AP(%) of all detectors under clean observations (at the severity level of 0)

PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SESSD Centerpoint

Car 86.77 82.82 83.67 87.32 81.04 86.39 86.44 82.14
Pedestrian 60.61 52.34 52.15 - - - - 49.32

Cyclist 76.42 77.60 68.51 - - - - 68.58

TABLE VI: CEAP (%) of different detectors under different corruptions on Car detection (the green cell stands for the lowest CEAP among detectors

given a certain corruption and the yellow cell for the average mCEAP)

Corruption Point-voxel Point Voxel Average
PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint

Scene-level

Weather
rain 25.11 23.31 21.81 31.07 28.17 26.77 29.51 25.83 26.45
snow 44.23 37.74 34.84 54.07 54.10 52.18 49.19 38.74 45.64
fog 1.59 3.52 1.60 1.81 1.77 2.02 1.59 1.11 1.88

Noise

uniform_rad 10.19 8.32 9.51 9.13 3.79 4.11 9.34 8.15 7.82
gaussian_rad 13.02 9.98 12.13 10.83 4.84 5.18 11.02 10.17 9.65
impulse_rad 2.20 3.86 2.23 2.50 2.25 3.57 1.18 1.86 2.46
background 2.93 6.49 2.41 1.82 4.59 3.68 2.14 1.86 2.46
upsample 0.81 1.84 0.31 0.95 0.37 0.71 0.55 0.46 0.75

Density

cutout 3.75 3.97 4.27 3.99 4.51 3.59 4.26 4.11 4.06
local_dec 14.04 - 13.88 14.55 14.44 12.50 17.04 14.64 14.44
local_inc 1.40 3.34 1.33 2.20 1.66 1.69 0.90 0.95 1.68
beam_del 0.58 0.79 0.73 0.88 0.80 0.53 1.07 0.47 0.73
layer_del 2.94 3.46 3.10 3.39 3.29 3.16 3.37 2.67 3.17

Object-level

Noise

uniform 15.44 12.95 9.48 12.60 2.76 4.81 6.99 6.51 8.94
gaussian 20.48 17.62 12.98 17.05 4.72 7.46 9.56 9.49 12.42
impulse 3.30 4.70 2.53 4.07 2.88 4.29 2.20 2.11 3.26

upsample 1.12 1.95 0.67 1.33 0.08 0.40 0.22 0.16 0.74

Density
cutout 15.81 15.62 14.99 15.62 15.07 16.09 16.51 14.06 15.47

local_dec 14.38 14.16 13.23 14.26 12.66 14.41 15.08 12.52 13.84
local_inc 13.93 14.19 13.74 13.56 11.34 13.05 11.03 11.64 12.81

Transformation

shear 37.27 40.96 40.35 41.37 39.52 37.85 40.35 40.00 39.71
FFD 32.42 38.88 33.15 36.77 33.14 34.26 37.96 32.86 34.93

rotation 0.60 0.47 0.31 0.97 0.39 0.75 0.27 0.38 0.52
scale 5.78 8.13 6.96 5.81 8.53 6.50 6.53 7.50 6.97

translation 3.82 3.03 3.24 4.58 4.88 5.34 1.37 3.91 3.77

mCE 11.49 11.64 10.39 12.21 10.42 10.60 11.17 10.09 11.01

TABLE VII: Subject point cloud detectors.

Detectors Representations Proposal Architectures

point voxel point-voxel one-stage two-stage

SECOND X X
PointRCNN X X
PVRCNN X X
BtcDet X X
VoTr-SSD X X
VoTr-TSD X X
SE-SSD X X
Centerpoint X X

methods for improving detectors’ robustness against corrup-
tion. For data augmentation, we choose the part-aware data
augmentation (PA-DA) method [46]. For denoising, we adopt
K-nearest-neighbors-based outlier removing (KNN-OR) [53]
to remove the outliers out with 3 times the standard deviation
of distance distribution within the cluster of 50 points.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Set-ups

For a fair comparison, each detector in Table VII is trained
with the clean training set of KITTI, following the training
strategy in each paper, and evaluated with corrupted validation
sets of KITTI. All detectors are executed based on the open-
source codes released on GitHub, as shown in Table XIV

in the Appendix A. The configuration files and pre-trained
checkpoints can be found in Table XIV.

The training and evaluation are all executed on the NVIDIA
RTX A6000 GPU with a memory of 48GB. The batch size of
each detector is optimized to reach the limit of GPU memory. In
the experiments of robustness enhancement, data augmentation
is adopted to augment the clean train dataset before training and
the denoising directly processes the val data during the testing
stage. Note that, since only detection of "Car" is available for
all detectors, as shown in Table V, the following evaluation
will mainly focus on detected results in the "Car" category.
We encourage readers refer to the Appendix A for complete
evaluation results, e.g., about "Pedestrian".

B. Effects of Common Corruptions to Point Cloud Detectors

How do different corruptions affect detectors’ overall
accuracy? As shown in the yellow cell in Table VI, the average
mCEAP of 11.01% anticipates a noticeable accuracy drop of
detectors against diverse corruption patterns. These results
suggest that there is an urgent need of addressing the point
cloud detector’s robustness issue.

Specifically, {rain, snow} and {shear, FFD} corruptions
have the AP loss of more than 20% (last column in Table VI),
which presents a serious degradation of detection accuracy.
By contrast, some corruption patterns (e.g. scene-level and

8

TABLE VIII: CErecall(%) of different detectors under different corruptions on Car detection (the green cell with CE of over 15%)

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint Average

Scene-level

Weather
rain 24.50 23.67 20.92 29.69 23.46 24.98 27.10 24.84 24.90
snow 36.23 32.72 29.19 43.32 37.11 40.26 38.32 32.80 36.24
fog 4.22 5.30 3.14 2.36 2.45 2.43 2.28 3.47 3.21

Noise

uniform_rad 14.23 12.91 13.67 9.20 3.70 5.12 9.33 11.31 9.93
gaussian_rad 17.74 15.67 17.46 11.30 4.81 6.39 11.29 14.35 12.38
impulse_rad 4.17 4.47 4.32 3.93 3.86 5.02 2.11 4.05 3.99
background 3.26 8.66 2.84 2.21 4.64 4.73 2.59 2.42 3.92
upsample 0.94 2.58 1.20 0.93 0.94 0.68 0.80 0.76 1.10

Density

cutout 4.87 4.61 5.55 4.05 4.37 3.55 4.45 5.55 4.62
local_dec 15.56 - 14.76 13.04 11.78 11.10 14.06 16.19 13.78
local_inc 1.58 2.62 1.59 1.66 1.70 1.48 1.21 1.56 1.68
beam_del 0.92 0.77 1.13 0.95 0.94 0.63 1.34 1.11 0.97
layer_del 3.48 3.37 3.59 3.12 3.13 2.74 3.37 3.78 3.32

Object-level

Noise

uniform 9.60 10.19 6.74 9.22 2.65 3.67 7.05 5.82 6.87
gaussian 12.69 13.02 9.16 12.05 3.84 5.18 9.06 7.78 9.10
impulse 2.11 3.14 1.88 2.03 1.99 1.94 1.95 1.86 2.11

upsample 0.77 1.71 0.96 1.00 0.44 0.26 0.44 0.57 0.77

Density
cutout 22.21 20.90 21.61 17.61 16.27 17.44 17.67 21.21 19.36

local_dec 19.99 18.73 19.04 15.97 14.11 15.52 16.26 18.96 17.32
local_inc 10.58 10.95 10.78 9.30 7.63 8.11 7.89 9.33 9.32

Transformation

shear 22.13 25.19 25.06 23.26 22.14 20.61 21.70 23.95 23.00
FFD 17.53 21.51 18.41 19.43 16.74 17.26 18.70 18.43 18.50

rotation 0.49 0.42 0.4 0.63 0.4 0.42 0.53 0.26 0.44
scaling 5.1 5.95 5.95 4.56 6.09 4.77 4.82 5.86 5.39

translation 3.79 3.42 3.78 4.69 5.32 4.66 2.39 4.26 4.04

mCE 10.35 10.52 9.73 9.82 8.02 8.36 9.07 9.62 9.45

TABLE IX: CEAP (%) under different severity levels of different common
corruptions on Car detection (yellow cells for the CEAP under rain)

Corruption 1 2 3 4 5 Average

Sc
en

e-
le

ve
l

Weather
rain 27.11 26.80 25.44 25.80 27.08 26.45
snow 26.86 30.93 45.82 57.09 67.48 45.64
fog 0.05 0.49 1.22 2.68 4.94 1.88

Noise

uniform_rad 0.46 2.48 6.27 11.64 18.22 7.81
gaussian_rad 1.65 4.36 8.81 13.67 19.74 9.65
impulse_rad 1.05 1.53 1.98 2.74 4.97 2.45
background 2.13 2.49 2.90 3.28 5.48 3.26
upsample 0.30 0.31 0.53 0.75 1.85 0.75

Density

cutout 1.86 2.31 3.90 5.04 7.17 4.06
local_dec 5.20 6.71 9.44 15.05 35.82 14.44
local_inc 0.82 1.05 1.53 2.10 2.92 1.68
beam_del 0.05 0.10 0.41 0.93 2.15 0.73
layer_del 0.39 2.23 2.82 4.53 5.89 3.17

O
bj

ec
t-

le
ve

l

Noise

uniform 0.62 2.04 5.78 12.57 23.71 8.94
gaussian 1.54 4.26 9.09 17.54 29.66 12.42
impulse 1.86 2.42 3.08 3.64 5.31 3.26

upsample 0.37 0.54 0.57 0.79 1.45 0.74

Density
cutout 5.97 11.45 16.08 20.29 23.56 15.47

local_dec 2.10 10.35 15.00 19.02 22.70 13.83
local_inc 8.04 11.87 13.82 14.85 15.46 12.81

Transformation

shear 3.99 15.49 37.54 63.85 77.67 39.71
FFD 2.39 14.04 34.85 55.59 67.78 34.93

rotation 0.05 0.19 0.26 0.84 1.25 0.52
scale 0.46 2.34 5.23 9.65 17.16 6.97

translation 0.98 3.85 5.06 4.22 4.75 3.77

Average 3.85 6.43 10.30 14.73 19.77 11.01

object-level upsample, scene-level beam_del, and object-level
rotation) show less effects on detectors (CEAP less than 1%).
It demonstrates that upsampling noise, sparse beam loss, and
slight rotation don’t affect detectors’ accuracy.

Besides, as shown in Table VIII, the recall metric performs
similarly to AP, as the serious recall loss of over 20%
happens to {rain, snow, shear}. In addition, object-level {cutout,
local_dec, FFD} present an unignorable drop of recall within
[15%, 20%].
How do corruption severity levels affect detectors’ overall
accuracy? We find almost all common corruptions have a
predictable trend, i.e., each corruption’s CEAP increases as

its severity level increases (see Table IX for detailed results).
The only exception is rain, CEAP of which remain around
26% regardless of the severity level. There are two plausible
explanations: (1) noise points reflected by rain droplets are too
sparse to affect detection (see Figure 3), and (2) a vast amount
of points with zero-value reflection intensity in KITTI are not
affected by rain corruptions at 1-5 severity levels, which cause
a fixed accuracy drop on point cloud detection.

Fig. 4: mCEAP of detectors with different representations on Car detection
({red, green, blue} for {voxel-based, point-based, voxel-point-based} detectors
and {circle, triangle} for {two-stage, one-stage} ones)

C. Reacts of Detector Designing to Common Corruptions

How do different representations affect detectors? As
shown in Figure 4, voxel-based Centerpoint and BtcDet record
the lowest and highest CEAP . For voxel-involving detection
(i.e., except for PointRCNN), mCEAP approximately increases
as AP increases. It indicates a potential trend that more

9

TABLE X: CEAP (%) of detectors with different proposal architectures on
Car detection(green cell for the lower mean CE between one-stage and
two-stage detector under a certain corruption)

Corruption one-stage two-stage

Sc
en

e-
le

ve
l

Weather
rain 26.50 26.42
snow 46.04 45.39
fog 2.01

Noise

uniform_rad 7.55 7.98
gaussian_rad 9.33 9.84
impulse_rad 1.89 2.80
background 3.05 3.38
upsample 0.41 0.95

Density

cutout 4.35 3.88
local_dec 15.12 13.93
local_inc 1.30 1.92
beam_del 0.87 0.65
layer_del 3.25 3.12

O
bj

ec
t-

le
ve

l

Noise

uniform 6.41 10.46
gaussian 9.09 14.42
impulse 2.54 3.69

upsample 0.32 0.99

Density
cutout 15.52 15.44

local_dec 13.66 13.95
local_inc 12.04 13.27

Transformation

shear 40.07 39.49
FFD 34.75 35.04

rotation 0.32 0.63
scale 7.34 6.74

translation 3.16 4.14

mCE 10.66 11.21

accurate models trend to become less robust against common
corruptions.

We also find that, for the most of corruptions (except
{shear, FFD, scale}), voxel-based methods are generally more
robust against corruption patterns (as shown in Table VI).
One plausible explanation is that the spatial quantization of
a group of neighbor points by voxelization mitigates the
local randomness and the absence of points caused by Noise
and Density corruptions. Specifically, for severe corruptions
(e.g., shear, FFD in the Transformation), the point-voxel-
based method PVRCNN is more robust. The point-based
PointRCNN doesn’t have the most robust performance against
any corruption, suggesting potential limitations.
How do different proposal architectures affect detectors?
As shown in Figure 4, two-stage detectors perform less robust
against common corruptions compared to one-stage detectors,
showing a lower mCEAP . One possible cause is that corrupted
data could affect the proposal generation of stage 1 (for
two-stage detectors and one-stage ones), and the low-quality
proposals significantly affect the BBox regression of stage 2
(only for two-stage detectors).

As shown in Table X, two-stage detectors present more
accurate detection under the scene-level {cutout, local_dec,
beam_del, layer_del} and object-level {cutout, shear, scale},
displaying a lower average CEAP , while one-stage detectors
present more accurate under the rest of common corruptions.
In summary, one-stage detectors perform more robust against
corruptions of scene-level Noise and object-level Noise and
Density, while two-stage detectors are mainly more robust

TABLE XI: Bug rates (%) of true detection, false classification, false detection,
and missing detection of detectors under different corruptions

Corruption TD FC FD MD

Clean 43.81 0.37 9.81 46.01

Sc
en

e-
le

ve
l

Weather
rain 42.93 1.12 17.43 38.52
snow 35.11 1.34 19.96 43.58
fog 41.99 0.46 9.91 47.64

Noise

uniform_rad 42.86 0.95 13.79 42.40
gaussian_rad 42.35 1.16 14.52 41.97
impulse_rad 43.37 0.46 11.70 44.48
background 36.99 0.30 9.22 53.49
upsample 42.46 0.35 10.00 47.19

Density

cutout 41.79 0.50 10.75 46.97
local_dec 39.63 0.74 13.00 46.63
local_inc 42.94 0.40 10.30 46.36
beam_del 43.90 0.41 10.24 45.44
layer_del 42.64 0.47 10.77 46.13

O
bj

ec
t-

le
ve

l

Noise

uniform 41.15 0.55 12.13 46.16
gaussian 40.08 0.61 12.97 46.33
impulse 42.75 0.38 10.89 45.98

upsample 43.59 0.40 10.20 45.81

Density
cutout 36.82 0.66 11.16 51.36

local_dec 37.70 0.58 10.69 51.02
local_inc 39.09 0.45 14.01 46.45

Transformation

shear 29.11 0.47 24.44 45.99
FFD 31.77 0.44 21.64 46.15

rotation 43.61 0.37 10.05 45.96
scaling 40.44 0.38 13.09 46.08

translation 42.08 0.47 11.45 46.00

TABLE XII: Bug rates (%) of true detection, false classification, false
detection, and missing detection of different detectors under corruptions (testing
results on clean data are in parentheses)

Detector TD FC FD MD

PVRCNN 32.63 (36.27) 1.16 (0.72) 11.1 (8.28) 55.11 (54.73)
PointRCNN 47.11 (50.20) 0.68 (0.40) 16.04 (12.47) 36.17 (36.93)
SECOND 20.61 (23.57) 0.81 (0.49) 8.42 (6.51) 70.16 (69.43)

BtcDet 65.24 (68.19) 0.03 (0.01) 15.19 (11.13) 19.54 (20.67)
VoTr-SSD 27.95 (32.17) 0.62 (0.55) 13.52 (10.43) 57.91 (56.85)
VoTr-TSD 42.75 (47.20) 0.28 (0.20) 14.67 (10.72) 42.3 (41.88)

SE-SSD 64.56 (68.18) 0.05 (0.03) 15.72 (11.45) 19.67 (20.34)
Centerpoint 21.74 (24.70) 0.98 (0.54) 9.26 (7.53) 68.02 (67.23)

against Weather and scene-level Density. As for Transformation
corruptions, one-stage detectors present better robustness on
{FFD, rotation, translation} and two-stage detectors work better
under corruptions of {shear, scale}.

D. Detection Bugs in Detectors under Common Corruptions

How do different corrupted inputs trigger bugs in detec-
tors? We find that the rate of false classification (FC) against
common corruption patterns is relatively small, where the
largest CRFC is only 0.97% (refer to Table XV in Appendix
A-C). By contrast, the increase of false detection (FD) rate is
relatively obvious, by the average CRFD of 3.17% and the
largest CRFD of 14.61% (refer to Table XVI in Appendix
A-C). Regarding missed detection (MD) (refer to Table XVII
in Appendix A-C), scene-level {background} and object-level
{cutout, local_dec} result in an increase of MD rate of more
than 5%.

Surprisingly, according to Table XI, {rain} and scene-level
{uniform_rad, gaussian_rad} even reduce the rate of missing
objects. One plausible explanation for this observation is that

10

TABLE XIII: Average CEAP (%) of detectors given different common corruptions on Car detection with DA and/or denoising (the differences between
enhancement methods and Origin are in parentheses)

Corruption Origin PA-DA KNN-RO PA-DA + KNN-RO

Scene-level

Weather
rain 26.45 27.51 (+1.06) 32.03 (+5.58) 32.79 (+6.34)
snow 45.64 45.68 (+0.04) 47.76 (+2.12) 47.83 (+2.19)
fog 1.88 2.0 (+0.12) 5.18 (+3.3) 5.09 (+3.21)

Noise

uniform_rad 7.82 7.85 (+0.03) 10.79 (+2.97) 10.79 (+2.97)
gaussian_rad 9.65 9.59 (-0.06) 12.65 (+3.0) 12.47 (+2.82)
impulse_rad 2.46 2.01 (-0.45) 4.99 (+2.53) 4.53 (+2.07)
background 3.25 3.08 (-0.17) 2.36 (-0.89) 2.13 (-1.12)
upsample 0.75 0.65 (-0.1) 3.61 (+2.86) 3.4 (+2.65)

Density

cutout 4.06 3.97 (-0.09) 6.71 (+2.65) 6.52 (+2.46)
local_dec 14.44 14.83 (+0.39) 16.73 (+2.29) 17.0 (+2.56)
local_inc 1.68 1.49 (-0.19) 4.39 (+2.71) 4.21 (+2.53)
beam_del 0.73 0.77 (+0.04) 3.45 (+2.72) 3.39 (+2.66)
layer_del 3.17 3.19 (+0.02) 6.23 (+3.06) 6.2 (+3.03)

Object-level

Noise

uniform 8.94 7.95 (-0.99) 11.55 (+2.61) 10.66 (+1.72)
gaussian 12.42 11.46 (-0.96) 14.99 (+2.57) 14.05 (+1.63)
impulse 3.26 2.96 (-0.3) 6.07 (+2.81) 5.76 (+2.5)

upsample 0.74 0.57 (-0.17) 2.77 (+2.03) 2.4 (+1.66)

Density
cutout 15.47 15.1 (-0.37) 17.15 (+1.68) 16.8 (+1.33)

local_dec 13.84 13.62 (-0.22) 16.18 (+2.34) 15.92 (+2.08)
local_inc 12.81 11.8 (-1.01) 15.01 (+2.2) 14.14 (+1.33)

Transformation

shear 39.71 39.72 (+0.01) 40.06 (+0.35) 39.97 (+0.26)
FFD 34.93 34.34 (-0.59) 40.55 (+5.62) 40.02 (+5.09)

rotation 0.52 0.52 (+0.0) 3.19 (+2.67) 3.19 (+2.67)
scaling 6.97 7.01 (+0.04) 9.4 (+2.43) 9.42 (+2.45)

translation 3.77 3.48 (-0.29) 6.22 (+2.45) 5.76 (+1.99)

Average 11.01 10.85 (-0.16) 13.6 (+2.59) 13.38 (+2.37)

milder noise points offer a better knowledge of the shape of
some objects to detectors, but positioning on those objects is
not accurate since the rate of false detection increases (more
details in Table XVI and XVII in Appendix A-C).

Also, we find that, as shown in Figure 5, compared to clean
observations, TD rates under corrupted observations are always
lower at any distance of objects to LiDAR.
How do corrupted inputs trigger bugs in different detec-
tors? In general, as shown in Table XII, most of the detectors
perform relatively stable in terms of false classification rates
and missed detection rates against common corruptions. In
contrast, affected by corruptions, all detectors have increasing
false detection rates (refer to Table XII), revealing a serious
bias in BBox localization of point cloud detection. Among all
detectors, BtcDet and SE-SSD records a serious FD increase

Fig. 5: Box-plot of TD rate of all frames w.r.t. different distances of objects
to the LiDAR sensor (green dotted lines for the median and green triangles
for the mean)

of over 4%.

E. Robustness Enhancement by Data Augmentation and De-
noising

How do PA-DA and KNN-based outlier-removing affect
detectors’ robustness against different corruptions? Shown
by Table XIII, the average CEAP with PA-DA slightly
decreased to 10.85% compared to the average CEAP without
PA-DA, which still poses serious robustness issues for point
cloud detectors.

Regarding denoising strategy, the average CEAP after
adopting KNN-RO increases to 13.60% without PA-DA and
13.38% with PA-DA (refer to Table XIII). These results indicate
that KNN-RO might not be capable of enhancing point cloud
detectors’ robustness against most of the corruptions in Car
detection. However, we find that KNN-RO slightly improves the
robustness of Pedestrian detection by decreasing the CEAP by
0.14% without PA-DA and 1.19% with PA-DA (Table XVIII
in Appendix A-D).
How do PA-DA and KNN-based outlier-removing affect
different detectors’ robustness against corruptions? Except
for PVRCNN, SE-SSD, and Centerpoint, all the other detectors
perform more robust against corruption patterns after adopting
PA-DA (refer to Figure 6). Moreover, PointRCNN and VoTr-
SSD increase their AP by 1.16% and 2.46% after adopting
PA-DA, respectively.

According to Figure 6, KNN-RO degrade AP metric for
all detectors, presenting no improvement on the robustness
of any detector on Car detection. However, adopting KNN-
RO slightly improves the AP by 0.14% without PA-DA and
1.19% with PA-DA on Pedestrian detection, respectively (refer
to Table XIX in Appendix A-D). It illustrates that compared
with effects on Car objects, KNN-RO are more effective in

11

Fig. 6: Average CEAP (%) of different detectors on Car detection given common corruptions

removing perturbations caused by corruptions for Pedestrian
objects.

VI. CONCLUSION

In this paper, we propose the first physical-aware robustness
benchmark of point cloud detection against common corruption
patterns, which contains a total of 1,122,150 examples covering
25 common corruption types and 6 severity levels. Based on
the benchmark, we conduct extensive empirical studies on
8 detectors covering 6 different detection frameworks and
reveal the vulnerabilities of the detectors. Moreover, we further
study the effectiveness of existing data augmentation and
denoising methods and find them limited, calling for more
research on robustness enhancement. We hope this benchmark
and empirical study results can guide future research toward
building more robust and reliable point cloud detectors.

REFERENCES

[1] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 12, pp. 4338–4364, 2020.

[2] R. Qian, X. Lai, and X. Li, “3d object detection for autonomous driving:
a survey,” arXiv preprint arXiv:2106.10823, 2021.

[3] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz et al., “Self-
driving cars: A survey,” Expert Systems with Applications, vol. 165, p.
113816, 2021.

[4] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and
A. Mouzakitis, “A survey on 3d object detection methods for autonomous
driving applications,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[5] D. Fernandes, A. Silva, R. Névoa, C. Simoes, D. Gonzalez, M. Guevara,
P. Novais, J. Monteiro, and P. Melo-Pinto, “Point-cloud based 3d object
detection and classification methods for self-driving applications: A
survey and taxonomy,” Information Fusion, vol. 68, pp. 161–191, 2021.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[7] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[8] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446–2454.

[9] R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather
phenomena on automotive laser radar systems,” Advances in radio science,
vol. 9, no. B. 2, pp. 49–60, 2011.

[10] M. Bijelic, T. Gruber, F. Mannan, F. Kraus, W. Ritter, K. Dietmayer,
and F. Heide, “Seeing through fog without seeing fog: Deep multimodal
sensor fusion in unseen adverse weather,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[11] J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and Z. M. Mao,
“Benchmarking robustness of 3d point cloud recognition against common
corruptions,” arXiv preprint arXiv:2201.12296, 2022.

[12] V. Kilic, D. Hegde, V. Sindagi, A. B. Cooper, M. A. Foster, and
V. M. Patel, “Lidar light scattering augmentation (lisa): Physics-based
simulation of adverse weather conditions for 3d object detection,” arXiv
preprint arXiv:2107.07004, 2021.

[13] Q. Xu, Y. Zhong, and U. Neumann, “Behind the curtain: Learning oc-
cluded shapes for 3d object detection,” arXiv preprint arXiv:2112.02205,
2021.

[14] M. Pitropov, D. E. Garcia, J. Rebello, M. Smart, C. Wang, K. Czarnecki,
and S. Waslander, “Canadian adverse driving conditions dataset,” The
International Journal of Robotics Research, vol. 40, no. 4-5, pp. 681–690,
2021.

[15] K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian,
W.-K. Tseng, A. Lambert, K. Y. Leung et al., “Boreas: A multi-season
autonomous driving dataset,” arXiv preprint arXiv:2203.10168, 2022.

[16] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[17] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund,
J. Tenenbaum, and B. Katz, “Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models,” Advances
in neural information processing systems, vol. 32, 2019.

[18] J. Ren, L. Pan, and Z. Liu, “Benchmarking and analyzing point cloud
classification under corruptions,” arXiv preprint arXiv:2202.03377, 2022.

[19] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8748–8757.

[20] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira,
M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni,
A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet, “Level 5
perception dataset 2020,” https://level-5.global/level5/data/, 2019.

[21] D. Bolkas and A. Martinez, “Effect of target color and scanning geometry
on terrestrial lidar point-cloud noise and plane fitting,” Journal of applied
geodesy, vol. 12, no. 1, pp. 109–127, 2018.

[22] F. Villa, F. Severini, F. Madonini, and F. Zappa, “Spads and sipms arrays
for long-range high-speed light detection and ranging (lidar),” Sensors,
vol. 21, no. 11, p. 3839, 2021.

[23] T. Instruments, “Lidar pulsed time of flight reference design,” 2016.
[24] H. Ma and J. Wu, “Analysis of positioning errors caused by platform

vibration of airborne lidar system,” in 2012 8th IEEE International Sym-
posium on Instrumentation and Control Technology (ISICT) Proceedings.
IEEE, 2012, pp. 257–261.

[25] R. Wang, B. Wang, M. Xiang, C. Li, S. Wang, and C. Song, “Simultane-
ous time-varying vibration and nonlinearity compensation for one-period

https://level-5.global/level5/data/

12

triangular-fmcw lidar signal,” Remote Sensing, vol. 13, no. 9, p. 1731,
2021.

[26] L. Mona, Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo,
N. Sugimoto, and M. Vaughan, “Lidar measurements for desert dust
characterization: an overview,” Advances in Meteorology, vol. 2012, 2012.

[27] X. Morin-Duchesne and M. S. Langer, “Simulated lidar reposition-
ing: a novel point cloud data augmentation method,” arXiv preprint
arXiv:2111.10650, 2021.

[28] C.-C. Wong and C.-M. Vong, “Efficient outdoor 3d point cloud semantic
segmentation for critical road objects and distributed contexts,” in
European Conference on Computer Vision. Springer, 2020, pp. 499–514.

[29] Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M. Campbell,
K. Q. Weinberger, and W.-L. Chao, “Train in germany, test in the usa:
Making 3d object detectors generalize,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
11 713–11 723.

[30] C. Xiang, C. R. Qi, and B. Li, “Generating 3d adversarial point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9136–9144.

[31] D. Liu, R. Yu, and H. Su, “Extending adversarial attacks and defenses to
deep 3d point cloud classifiers,” in 2019 IEEE International Conference
on Image Processing (ICIP). IEEE, 2019, pp. 2279–2283.

[32] M. Abdelfattah, K. Yuan, Z. J. Wang, and R. Ward, “Adversarial attacks on
camera-lidar models for 3d car detection,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
2189–2194.

[33] Y. Zhu, C. Miao, F. Hajiaghajani, M. Huai, L. Su, and C. Qiao,
“Adversarial attacks against lidar semantic segmentation in autonomous
driving,” in Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, 2021, pp. 329–342.

[34] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using fully
convolutional network,” arXiv preprint arXiv:1608.07916, 2016.

[35] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2018, pp. 7652–7660.

[36] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[37] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and
C. Xu, “Voxel transformer for 3d object detection,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 3164–3173.

[38] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and
detection from point cloud,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 770–779.

[39] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage
object detector,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 040–11 048.

[40] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
rcnn: Point-voxel feature set abstraction for 3d object detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 529–10 538.

[41] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 873–11 882.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[43] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912–1920.

[44] J. Zhang, L. Chen, B. Ouyang, B. Liu, J. Zhu, Y. Chen, Y. Meng,
and D. Wu, “Pointcutmix: Regularization strategy for point cloud
classification,” arXiv preprint arXiv:2101.01461, 2021.

[45] D. Lee, J. Lee, J. Lee, H. Lee, M. Lee, S. Woo, and S. Lee,
“Regularization strategy for point cloud via rigidly mixed sample,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 15 900–15 909.

[46] J. Choi, Y. Song, and N. Kwak, “Part-aware data augmentation for
3d object detection in point cloud,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
3391–3397.

[47] J. Fang, X. Zuo, D. Zhou, S. Jin, S. Wang, and L. Zhang, “Lidar-aug: A
general rendering-based augmentation framework for 3d object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 4710–4720.

[48] M. Hahner, C. Sakaridis, D. Dai, and L. Van Gool, “Fog simulation on
real lidar point clouds for 3d object detection in adverse weather,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 15 283–15 292.

[49] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-bert:
Pre-training 3d point cloud transformers with masked point modeling,”
arXiv preprint arXiv:2111.14819, 2021.

[50] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra, “Self-supervised pretraining
of 3d features on any point-cloud,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 10 252–10 263.

[51] Y. Duan, C. Yang, H. Chen, W. Yan, and H. Li, “Low-complexity point
cloud denoising for lidar by pca-based dimension reduction,” Optics
Communications, vol. 482, p. 126567, 2021.

[52] X. Ning, F. Li, G. Tian, and Y. Wang, “An efficient outlier removal
method for scattered point cloud data,” PloS one, vol. 13, no. 8, p.
e0201280, 2018.

[53] A. Carrilho, M. Galo, and R. Santos, “Statistical outlier detection method
for airborne lidar data.” International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences, 2018.

[54] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 11 784–11 793.

[55] M. Ye, S. Xu, and T. Cao, “Hvnet: Hybrid voxel network for lidar based
3d object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 1631–1640.

[56] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[57] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[58] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal
of Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50,
2001.

[59] Y. Chen, V. T. Hu, E. Gavves, T. Mensink, P. Mettes, P. Yang, and
C. G. Snoek, “Pointmixup: Augmentation for point clouds,” in European
Conference on Computer Vision. Springer, 2020, pp. 330–345.

[60] S. Cheng, Z. Leng, E. D. Cubuk, B. Zoph, C. Bai, J. Ngiam, Y. Song,
B. Caine, V. Vasudevan, C. Li et al., “Improving 3d object detection
through progressive population based augmentation,” in European
Conference on Computer Vision. Springer, 2020, pp. 279–294.

[61] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[62] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola,
“A kernel method for the two-sample-problem,” Advances in neural
information processing systems, vol. 19, 2006.

[63] B. Chen and A. Kaufman, “3d volume rotation using shear transforma-
tions,” Graphical Models, vol. 62, no. 4, pp. 308–322, 2000.

[64] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” in Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, 1986, pp. 151–160.

[65] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “Se-ssd: Self-ensembling
single-stage object detector from point cloud,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 494–14 503.

[66] O. D. Team, “Openpcdet: An open-source toolbox for 3d object detection
from point clouds,” https://github.com/open-mmlab/OpenPCDet, 2020.

[67] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping
and sampling for point cloud 3d object detection,” arXiv preprint
arXiv:1908.09492, 2019.

[68] Wikipedia contributors, “Rain — Wikipedia, the free encyclope-
dia,” https://en.wikipedia.org/w/index.php?title=Rain&oldid=1102188829,
2022, [Online; accessed 5-August-2022].

https://github.com/open-mmlab/OpenPCDet
https://en.wikipedia.org/w/index.php?title=Rain&oldid=1102188829

13

APPENDIX A
DETAILS OF EMPIRICAL STUDY

Due to the page limit of supplementary materials, we
present some tables and figures on our supplementary website
https://sites.google.com/ualberta.ca/robustness1pc2detector/.
We also encourage readers to refer to this supplementary
website for additional details.

TABLE XIV: Code sources of detectors

Detector Platform URL(http://)

SECOND Openpcdet [66] github.com/open-mmlab/OpenPCDet
PointRCNN Openpcdet github.com/open-mmlab/OpenPCDet
PVRCNN Openpcdet github.com/open-mmlab/OpenPCDet

BtcDet Openpcdet github.com/xharlie/btcdet
VoTr-SSD Openpcdet github.com/PointsCoder/VOTR
VoTr-TSD Openpcdet github.com/PointsCoder/VOTR
SE-SSD Det3D [67] github.com/Vegeta2020/SE-SSD

Centerpoint Openpcdet github.com/tianweiy/CenterPoint-KITTI

A. Effects of Common Corruptions to Point Cloud Detectors

As shown in Table S1 in the supplementary, the average
mCEAP of 8.18% still anticipates a noticeable accuracy
drop of Pedestrian detectors against diverse corruption pat-
terns. Specifically, scene-level {uniform_rad, gaussian_rad,
local_dec} and object-level {cutout} corruptions have the AP
loss of more than 20%, which presents a serious degradation of
detection accuracy. By contrast, some corruption patterns (e.g.
scene-level {background, beam_del}, object-level {upsample,
rotation, translation}) show less effects on detectors (absolute
value of CEAP less than 1.25%), demonstrating that back-
ground and locally upsampling noise, sparse beam loss, and
slight rotation and translation don’t affect Pedestrian detectors’
accuracy. Surprisingly, compared to Car detection, Pedestrian
detection are much less affected by rain and snow, presented by
the average CEAP of 2.42% and 2.58%. After the investigation
of point clouds, we found it is because the proportion (58.94%)

of points with zero-value reflection intensity on Car objects is
much higher than that (10.01%) of pedestrians, and those points
with zero-value reflection intensity are easy to be blocked by
dense rain and snow droplets.

Table S2 in the supplementary shows the CEAP under
different severity levels of corruptions on Pedestrian detection.
According to Table S2, albeit with some minor exceptions,
CEAP of each corruption increases as the severity level
increases, which especially rigorously applies to those relatively
severe corruptions with the average CEAP of more than 5%.

B. Reacts of Detector Designing to Common Corruptions

Figure S1 in the supplementary depicts the relationship
between of AP and mCEAP of Pedestrian detectors. As
shown in Figure S1, similar to Car detection, the mCEAP of
Pedestrian detection increases as its AP increases.

C. Detection Bugs in Detectors under Common Corruptions

More details of the increase of bug rates (i.e., CR) of
different detectors under different corruptions are recorded
in Table XV, Table XVI, and Table XVII.

According to Figure 5, the TD rate of Car detection under
clean and corrupted (at the severity level of 3) observations
w.r.t. the distance range of [0, 30]m remains approximately still.
However, beyond this distance range (i.e., distance > 30m),
the TD rate decreases as the distance increases. On the other
hand, compared to the clean observation, the TD rates under
corrupted observations are always lower at any distance. More
details of each corruption are shown in Figure S2 and S3 in
the supplementary.

D. Robustness Enhancement by Data Augmentation and De-
noising

More details of CEAP of different detectors on Car detection
with PA-DA (data augmentation) and/or KNN-RO (denoising)

TABLE XV: CRFC(%) of detectors on Car detection under common corruptions

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint Average

Scene-level

Weather
rain 1.90 1.27 0.61 -0.01 -0.09 0.06 -0.01 2.29 0.75
snow 2.17 2.01 0.71 0.03 0.17 0.12 -0.01 2.59 0.97
fog 0.03 0.02 0.10 0.02 0.21 0.16 0.04 0.16 0.09

Noise

uniform_rad 1.35 0.82 1.27 0.00 -0.06 0.00 -0.01 1.29 0.58
gaussian_rad 1.83 1.25 1.67 0.00 -0.06 0.01 0.00 1.62 0.79
impulse_rad 0.12 0.01 0.14 0.02 0.07 0.06 0.04 0.25 0.09
background -0.18 0.20 -0.19 0.01 -0.22 -0.01 0.04 -0.20 -0.07
upsample -0.01 0.03 0.03 0.01 -0.15 -0.02 0.01 -0.01 -0.01

Density

cutout 0.21 0.13 0.16 0.03 0.18 0.15 0.04 0.12 0.13
local_dec 0.70 -0.40 0.47 0.05 0.37 0.29 0.03 0.70 0.28
local_inc 0.04 0.02 0.05 0.01 0.00 0.05 0.05 0.04 0.03
beam_del 0.08 0.04 0.04 0.01 0.08 0.05 0.01 0.05 0.04
layer_del 0.13 0.07 0.09 0.03 0.17 0.17 0.04 0.09 0.10

Object-level

Noise

uniform 0.53 0.24 0.39 0.01 -0.01 0.00 0.00 0.32 0.19
gaussian 0.71 0.32 0.50 0.01 -0.01 0.00 0.01 0.41 0.24
impulse 0.03 0.00 0.04 -0.01 0.00 0.02 0.00 0.00 0.01

upsample 0.06 0.00 0.12 0.00 0.01 0.02 0.03 0.04 0.03

Density
cutout 0.38 0.03 0.51 0.08 0.49 0.41 0.04 0.40 0.29

local_dec 0.26 -0.03 0.40 0.07 0.37 0.31 0.04 0.32 0.22
local_inc 0.23 0.12 0.29 0.00 -0.13 -0.02 0.01 0.17 0.08

Transformation

shear 0.16 -0.01 0.25 0.01 0.17 0.06 0.01 0.16 0.10
FFD 0.08 0.02 0.18 0.01 0.08 0.06 0.03 0.11 0.07

rotation -0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.01
scaling 0.02 0.00 0.03 0.01 0.02 0.01 0.03 0.00 0.01

translation 0.14 0.09 0.14 0.03 0.10 0.09 0.05 0.15 0.10

mCR 0.44 0.25 0.32 0.02 0.07 0.08 0.02 0.44 0.20

https://sites.google.com/ualberta.ca/robustness1pc2detector/

14

TABLE XVI: CRFD(%) of detectors on Car detection under common corruptions

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint Average

Scene-level

Weather
rain 8.25 4.23 5.70 7.90 13.39 11.46 4.78 5.24 7.62
snow 8.54 7.45 5.93 14.51 12.90 16.34 10.11 5.39 10.15
fog 0.82 0.11 0.62 -0.30 -0.84 -0.49 0.10 0.71 0.09

Noise

uniform_rad 4.08 5.94 3.30 3.81 2.61 4.01 5.52 2.50 3.97
gaussian_rad 4.88 6.83 3.87 4.31 3.34 4.94 6.44 3.02 4.70
impulse_rad 1.54 2.30 0.99 1.81 2.55 3.72 1.22 0.92 1.88
background -0.34 2.25 -2.25 0.34 -3.22 -0.14 0.78 -2.14 -0.59
upsample -0.04 0.82 -0.34 0.34 0.29 0.14 0.69 -0.44 0.18

Density

cutout 0.73 0.57 0.58 1.11 1.05 1.17 1.87 0.41 0.94
local_dec 3.79 - 2.77 3.40 3.44 4.29 4.43 2.83 3.56
local_inc 0.39 0.95 0.23 0.43 0.53 0.55 0.48 0.30 0.48
beam_del 0.39 0.06 0.39 0.54 0.52 0.48 0.75 0.30 0.43
layer_del 0.98 0.54 0.79 1.25 0.98 1.01 1.36 0.73 0.95

Object-level

Noise

uniform 2.30 4.51 1.25 2.85 1.37 2.13 3.01 1.10 2.31
gaussian 3.11 6.00 1.70 3.99 1.98 3.11 3.91 1.47 3.16
impulse 0.89 1.47 0.53 1.40 1.06 1.32 1.43 0.53 1.08

upsample 0.28 0.79 0.22 0.33 0.24 0.13 0.95 0.16 0.39

Density
cutout 2.29 -0.92 1.64 0.39 2.75 3.27 0.54 0.77 1.34

local_dec 1.83 -1.15 1.27 0.10 2.02 2.57 -0.13 0.48 0.87
local_inc 3.54 5.44 2.54 4.81 3.43 4.74 6.77 2.31 4.20

Transformation

shear 10.08 17.48 7.56 23.27 11.70 14.84 24.29 7.74 14.62
FFD 8.06 14.85 5.59 18.56 8.82 12.28 20.52 5.95 11.83

rotation 0.22 0.13 0.12 0.04 0.25 0.29 0.41 0.07 0.24
scaling 2.31 3.82 1.81 4.40 3.24 3.38 5.37 1.90 3.28

translation 1.58 1.09 0.87 1.55 2.78 3.24 1.09 0.88 1.63

mCR 2.82 3.56 1.91 4.06 3.09 3.95 4.27 1.73 3.17

under different corruptions are shown in Table S3, Table S4,
and Table S5 in the supplementary.

Table XVIII gives the details of average AP loss (i.e., CEAP)
given different corruptions on Pedestrian detection with PA-DA
(data augmentation) and/or KNN-RO (denoising). According
to Table XVIII, PA-DA presents an AP increase of over
3% on Pedestrian detection under scene-level {uniform_rad,
gaussian_rad} and object-level {local_inc, shear}, and PA-DA
+ KNN-RO presents an AP increase of over 3% under scene-
level {uniform_rad, gaussian_rad} and object-level {local_inc,
shear}.

Table XIX shows CEAP of different detectors on Pedestrian
detection with PA-DA (data augmentation) and/or KNN-RO
(denoising). According to Table XIX, with only PA-DA,

an increase of average precision (AP) falls on PointRCNN,
SECOND, and Centerpoint; with only KNN-RO, an increase
of AP falls on PVRCNN and PointRCNN; with PA-DA +
KNN-RO, an AP increase falls on PointRCNN, SECOND, and
Centerpoint.

APPENDIX B
CORRUPTION SIMULATION NATURALNESS VALIDATION

A. Naturalness Validation of Weather Corruption Simulation

1) Snow and Fog Validation: To verify the naturalness of
snow and fog simulation, we train weather-oriented PointNet-
based classifiers via data collected in real snowy and foggy
weather (from public datasets as in Table III).

TABLE XVII: CRMD(%) of detectors on Car detection under common corruptions

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint Average

Scene-level

Weather
rain -9.33 -4.63 -3.42 -12.61 -8.37 -5.64 -11.01 -4.89 -7.49
snow -0.71 -3.47 0.62 -8.96 4.14 -0.61 -9.99 -0.40 -2.42
fog -0.60 -0.43 0.25 -0.54 6.77 6.53 2.70 -1.59 1.64

Noise

uniform_rad -2.10 -5.78 -2.98 -4.51 -2.79 -3.62 -4.63 -2.45 -3.61
gaussian_rad -2.32 -6.42 -3.03 -5.00 -3.37 -4.28 -5.17 -2.68 -4.03
impulse_rad 0.26 -5.51 0.85 -2.23 -2.45 -2.89 -1.51 1.24 -1.53
background 7.43 -7.01 13.13 -1.12 19.16 10.67 5.10 12.48 7.48
upsample 2.07 -0.73 2.88 -0.62 0.79 1.20 1.07 2.80 1.18

Density

cutout 1.74 1.83 1.59 -1.01 1.77 0.53 -1.03 2.26 0.96
local_dec -0.08 - -0.09 -3.24 2.18 -0.38 -3.44 0.34 -0.67
local_inc 0.39 -1.11 0.59 -0.37 1.05 1.16 0.81 0.29 0.35
beam_del -0.37 0.14 -0.48 -1.02 -0.37 -0.92 -1.27 -0.22 -0.56
layer_del 0.13 1.32 -0.27 -1.00 1.02 0.55 -0.99 0.20 0.12

Object-level

Noise

uniform 0.90 -0.93 0.32 0.86 -0.15 -0.31 0.06 0.50 0.16
gaussian 1.23 -1.00 0.49 1.33 -0.11 -0.32 0.27 0.69 0.32
impulse 0.13 -0.74 0.10 0.06 0.01 -0.16 0.15 0.22 -0.03

upsample -0.02 -1.15 0.01 -0.22 -0.07 -0.11 -0.09 0.05 -0.20

Density
cutout 5.05 10.70 3.62 5.00 3.76 4.81 5.15 4.74 5.35

local_dec 4.76 9.90 3.36 4.70 3.57 4.52 4.89 4.43 5.02
local_inc 0.52 0.05 0.30 0.86 0.24 0.23 0.85 0.45 0.44

Transformation

shear 0.01 -0.60 0.05 0.40 -0.09 -0.18 0.05 0.22 -0.02
FFD 0.08 -1.11 0.04 0.72 0.02 0.05 1.08 0.24 0.14

rotation 0.03 -0.28 0.00 0.01 -0.06 -0.05 -0.02 0.03 -0.04
scaling 0.08 0.08 0.01 0.10 -0.03 -0.04 0.31 0.09 0.07

translation 0.29 -1.29 0.45 0.27 -0.07 -0.23 -0.02 0.60 0.00

mCR 0.38 -0.76 0.74 -1.13 1.06 0.42 -0.67 0.79 0.11

15

TABLE XVIII: Average CEAP (%) of detectors given different common
corruptions on Pedestrian detection with DA and/or denoising

Corruption Origin PA-DA KNN-RO PA-DA +
KNN-RO

Sc
en

e-
le

ve
l

Weather
rain 2.42 1.67(-0.75) 1.6(-0.82) 1.39(-1.03)
snow 2.58 3.99(+1.41) 2.0(-0.58) 3.24(+0.66)
fog 6.27 4.82(-1.45) 6.17(-0.1) 4.22(-2.05)

Noise

uniform_rad 30.14 25.13(-5.01) 29.79(-0.35) 24.93(-5.21)
gaussian_rad 36.99 32.22(-4.77) 36.8(-0.19) 32.32(-4.67)
impulse_rad 2.09 5.1(+3.01) 2.21(+0.12) 5.1(+3.01)
background 0.62 0.09(-0.53) -0.22(-0.84) -0.29(-0.91)
upsample 1.38 1.77(+0.39) 1.24(-0.14) 1.71(+0.33)

Density

cutout 7.43 6.02(-1.41) 7.3(-0.13) 5.73(-1.7)
local_dec 12.6 12.25(-0.35) 12.62(+0.02) 12.21(-0.39)
local_inc 1.36 1.42(+0.06) 1.49(+0.13) 1.23(-0.13)
beam_del -0.02 0.23(+0.25) -0.15(-0.13) -0.13(-0.11)
layer_del 3.81 2.97(-0.84) 3.64(-0.17) 2.66(-1.15)

O
bj

ec
t-

le
ve

l

Noise

uniform 4.21 3.07(-1.14) 4.25(+0.04) 2.98(-1.23)
gaussian 5.47 4.09(-1.38) 5.59(+0.12) 4.04(-1.43)
impulse 1.85 1.74(-0.11) 2.05(+0.2) 1.79(-0.06)

upsample 0.08 -0.21(-0.29) -0.14(-0.22) -0.37(-0.45)

Density
cutout 20.34 18.15(-2.19) 20.07(-0.27) 18.04(-2.3)

local_dec 17.05 15.71(-1.34) 17.09(+0.04) 15.71(-1.34)
local_inc 8.21 5.09(-3.12) 8.03(-0.18) 5.09(-3.12)

Transformation

shear 16.91 13.22(-3.69) 16.85(-0.06) 12.87(-4.04)
FFD 11.74 9.5(-2.24) 11.7(-0.04) 9.34(-2.4)

rotation -0.03 0.23(+0.26) -0.09(-0.06) 0.05(+0.08)
scaling 3.73 3.98(+0.25) 3.65(-0.08) 3.67(-0.06)

translation -1.22 -1.42(-0.2) -1.08(+0.14) -1.34(-0.12)

Average 7.84 6.83(-1.01) 7.7(-0.14) 6.65(-1.19)

TABLE XIX: Average CEAP (%) of different detectors on Pedestrian
detection with DA and/or denoising

Detector Origin PA-DA KNN-RO PA-DA + KNN-RO

PVRCNN 8.71 10.6(+1.89) 8.2(-0.51) 10.05(+1.34)
PointRCNN 7.08 3.73(-3.35) 7.05(-0.03) 3.57(-3.51)
SECOND 8.38 7.63(-0.75) 8.46(+0.08) 7.76(-0.62)

Centerpoint 7.19 5.37(-1.82) 7.91(+0.72) 5.21(-1.98)

Average 7.84 6.83(-1.01) 7.7(-0.14) 6.65(-1.19)

Dataset Split: As for snow or fog, we randomly divide
collected real corrupted and clean data into training set Dtrain

and validation set Dval at the size ratio of 9:1, and gather the
original clean and simulated corrupted KITTI data as testing set
Dtest. Note that, Dtrain, Dval, and Dtest all contain roughly
50% corrupted data and 50% clean data.
Training and Testing: We first train the PointNet model with
Dtrain to learn the model to classify the clean or corrupted
condition of point clouds. By means of Dval, we validate the
model across all epochs and settle its best checkpoint. The
settled model is utilized to classify the clean or corrupted
condition of point clouds in Dtest.
Experiment Setting: As for the experiment setting, we set the
epoch number to 80 and the batch size to 32 for the model
training and validation. The training and testing are all executed
on the NVIDIA RTX A6000 GPU with a memory of 48GB. We
choose PointNet as the classification model due to its efficiency
and effectiveness in recognizing the global point feature in
point clouds [56], which fits into the global effects of weather
corruptions on LiDAR scanning.
Analysis: According to the snow classification in III, the
validation accuracy of 99.11% illustrates the snow classifier’s
precise snow recognition on point clouds collected in the real
world. Hence, the classifier’s testing accuracy of 97.13% on
simulated data demonstrates the high naturalness of the snow
simulation. Likewise, even though the fog classifier’s validation

accuracy is reduced by the small data size, the testing accuracy
of 92.60% on simulated data still presents a high similarity of
data corrupted by simulated fog to data affected by real fog.

2) Rain Validation: In Figure 3, data of real clean and real
rain from Boreas were sampled at the same location but at
different time-stamps; the data of simulated rain was augmented
on the basis of the data of real clean. According to Figure 3,
compared with the data of real clean, the point cloud under
simulated rain has sparse “false points” (as in red boxes)
surrounding the LiDAR sensor nearby and wipes out some
points on the road. Both are similar to the effects of real-world
rain, shown by the yellow boxes and missing points on the
road. More comparisons between real rainy data and simulated
rainy data are shown in Figure S4 in the supplementary.

APPENDIX C
IMPLEMENTATION OF CORRUPTION SIMULATION

Figures S5 to S30 in the supplementary display the
point cloud examples under “clean” and simulated common
corruptions (at severity level of 3). Those examples are based
on the KITTI LiDAR example with ID = “000008”. Besides, we
provide the ground-truth annotations of objects and detection
results obtained by PVRCNN. Taking Figures S6 to S30 for
examples, we next detail on the simulation implementation.

A. Scene-level Corruption

Rain and Snow. We adopt the rain and snow simulators of
LISA [12] to simulate rain and snow corruption. For LISA,
the parameters rainfall rate and snow rate can be regulated
to simulate corruptions at different severity levels. After the
investigation of the real-world rainfall rates [68], we set rainfall
rate and snow rate to {0, 5.0, 15.0, 50.0, 150.0, 500.0} mm/hr
and {0, 0.5, 1.5, 5.0, 15.0, 50.0} mm/hr as 6 severity levels (i.e.,
0 to 5) for rain and snow corruption, respectively. Figures S6
and S7 display point cloud examples under rain and snow.
Note that, the severity level 0 stands for the original clean
data, which also applies to the rest of the corruptions.
Fog. We adopt the fog simulator of LFS [48] to simulate
fog corruption in point clouds. For LFS, the parameter α
is set to regulate the corruption severity levels. Following
the recommended setting in [48] (with slight modifications
for the relatively wide range of severity), we set α to
{0, 0.005, 0.01, 0.02, 0.05, 0.1}. Figure S8 displays the point
cloud example under fog.
Uniform_rad and Gaussian_rad. To fit into the mechanism
of LiDAR scanning, we first convert the coordinates of points
at from the Cartesian system into the spherical system (i.e.,
[x, y, z] to [r, θ, φ]). Then, we add the uniform or Gaussian
noise into r of every point. The upper and lower bounds of
the range of uniform_rad are set to +/- {0, 0.04, 0.08, 0.12,
0.16, 0.2}m and the standard deviation of gaussian_rad to {0,
0.04, 0.06, 0.08, 0.10, 0.12}m. Figures S9 and S10 display the
examples under uniform_rad and gaussian_rad.
Impulse_rad. Likewise, we first convert coordinates of points
at from the Cartesian system to the spherical system, and
then, we add deterministic perturbations of +/ − 0.2m to
r of a certain portion of points. The portion is set to

16

{0, N/30, N/25, N/20, N/15, N/10} for 6 severity levels,
where N represents the number of points. Figure S11 displays
the point cloud example under impulse_rad.
Background. For background, within the spatial range of the
scene, background points are randomly sampled uniformly and
concatenated to the original points. The number of background
points is set to {0, N/45, N/40, N/35, N/30, N/20} where N
represents the number of original points. Figure S12 displays
the point cloud example under background.
Upsample. For upsample, we spatially upsample points
(with the random bias within [-0.1, 0.1]) nearby a cer-
tain portion of original points. The portion is set to
{0, N/10, N/8, N/6, N/4, N/2} for 6 severity levels, where
N represents the number of original points. Figure S13 displays
the point cloud example under upsample.
Cutout. For cutout, we first randomly select a certain portion of
points as centers. By KNN, we erase the distance-related neigh-
borhood of every centers. The portion of selected points and
the number of neighbor points are set to {(0,0), (N/2000,100),
(N/1500,100), (N/1000,100), (N/800,100), (N/600,100)}. Figure
S14 displays the point cloud example under cutout.
Local_dec and local_inc. For local_dec, we randomly select
a certain portion of points as center, and delete the 75%
points of the spatial neighborhood of every center. For
local_inc, within the neighborhood of every center, we utilize
quadratic-polynomial fitting to upsample points as many as
the neighbor points and concatenate them into the original
points. The portion of selected points and the number of
neighbor points are set to {(0, 0), (N/300,100), (N/250,100),
(N/200,100), (N/150,100), (N/100,100)} for local_dec and {(0,
0), (N/2000,100), (N/1500,100), (N/1000,100), (N/800,100),
(N/600,100)} for local_inc. Figures S15 and S16 display the
point cloud examples under local_dec and local_inc.
Beam_del. For beam_del, we randomly delete a certain
portion of points in the point cloud. The portion is set
to {0, N/100, N/30, N/10, N/5, N/3} for 6 severity levels.
Figure S17 displays the point cloud example under beam_del.
Layer_del. First, we convert the coordinates of points from
the Cartesian system into the spherical system and obtain the
range of the polar angle θ of all points in the point cloud.
Then, based on the layer number of LiDAR scanning (e.g., 64
for KITTI [6]), we divide the range of θ into 32 or 64 bins.
Finally, we randomly select a certain number of θ bins and
delete the corresponding points. For KITTI, the number of
deleted bins is set to {0, 3, 7, 11, 15, 19}. Figure S18 displays
the point cloud example under layer_del.

B. Object-level Corruption
Uniform_obj, Gaussian_obj, and Impulse_obj. For every
annotated object (e.g., Car or Cyclist), we add the noise
into the Cartesian coordinates of its points. The upper and
lower bounds of the range of uniform_obj are set to +/ −
{0, 0.02, 0.04, 0.06, 0.08, 0.10}m. The the standard deviation
of gaussian_objis set to {0, 0.02, 0.03, 0.04, 0.05, 0.06}m. The
number of points affected by impulse_obj with the bias of
+/ − 0.1m is set to {0, N/30, N/25, N/20, N/15, N/10}.
Figures S19, S20, and S21 display the point cloud examples
under uniform_obj, gaussian_obj, and impulse_obj.

Upsample_obj. We upsampled points (with the spatial
bias within [-0.05, 0.05]) nearby a certain portion of
points of annotated objects. The portion is set to
{0, N/5, N/4, N/3, N/2, N}, where N represents the number
of original points of objects. Figure S22 displays the point
cloud example under upsample_obj.
Cutout_obj. For cutout_obj, we erase the distance-related
neighborhoods of selected points from every annotated object
in the point cloud. For the individual object, the number of
selected points and the number of neighbor points are set
to {(0, 0), (1, 20), (2, 20), (3, 20), (4, 20), (5, 20)}. Figure S23
displays the point cloud example under cutout_obj.
Local_dec_obj and Local_inc_obj. For local_dec_obj, we
randomly select a certain number of points of every annotated
object as centers, and delete the 75% points of the spatial
neighborhood of every center. For local_inc_obj, within the
neighborhood of every centers on objects, we utilize linearly
fitting to upsample points as many as the neighbor points. The
number of selected points and the number of neighbor points are
set to {(0, 0), (1, 30), (2, 30), (3, 30), (4, 30), (5, 30)} for lo-
cal_dec_obj and local_inc_obj. Figures S24 and S25 display the
point cloud examples under local_dec_obj and local_inc_obj.
Shear. For shear, we slant points of objects on X and Y-
axis by a transformation matrix A = [[1, a, b], [c, 1, d], [0, 0, 1]]
where a, b, c, d are +/− 1 × a float sampled on the uniform
distribution. The upper and lower boundaries of the uniform
distribution are set to {(0, 0), (0, 0.10), (0.05, 0.15), (0.10,
0.20), (0.15, 0.25), (0.20, 0.30)}. Figure S26 displays the point
cloud example under shear.
FFD. We use the FFD tool of pygem to distort points of
objects. With the prior setting of 5× 5× 5 control points, the
distortion ratio is sampled on the uniform distribution. The
upper and lower boundaries of the uniform distribution are
set to +/− {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Figure S27 displays the
point cloud example under FFD.
Scale. Along the randomly selected axis (height, length,
or width), we scale up or down points of objects by a
transformation matrix A = [[xs, 0, 0], [0, ys, 0], [0, 0, zs]]. The
scaling parameter randomly selected among xs, ys, zs are set
to 1+/−{0, 0.04, 0.08, 0.12, 0.16, 0.20}. Note that for scaling
on Z-axis, we correspondingly move the object to the ground.
Also, the ground-truth labels of objects (specifically, dimensions
and locations of BBoxes) are modified accordingly. Figure S28
displays the point cloud example under scale.
Rotation and Translation. We rotate or translate annotated
objects to a milder degree. Specifically, objects are 1) moved
forward or backward on the X and Y-axis at a distance sampled
on the uniform distribution Udistance, and are 2)rotated in a
clockwise or anticlockwise direction to a degree sampled on the
uniform distribution Udegree. The lower and upper boundaries
of Udegree are set to {(0, 0), (0, 2), (3, 4), (5, 6), (7, 8), (9,
10)}degree and those of Udistance to {(0, 0), (0.0, 0.2), (0.3,
0.4), (0.5, 0.6), (0.7, 0.8), (0.9, 0.1)}m. Note that the ground-
truth labels of objects are modified accordingly. Figures S29
and S30 display the examples under rotation and translation.

