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to Histopathology Images Using Color Cues
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Abstract— Goal: In digital histopathology, tasks of segmenta-
tion and disease diagnosis are achieved by quantitative analy-
sis of image content. However, color variation in image samples
makes it challenging to produce reliable results. This paper in-
troduces a complete normalization scheme to address the prob-
lem of color variation in histopathology images jointly caused by
inconsistent biopsy staining and nonstandard imaging condition.
Method: Different from existing normalization methods that either
address partial cause of color variation or lump them together, our
method identifies causes of color variation based on a microscopic
imaging model and addresses inconsistency in biopsy imaging and
staining by an illuminant normalization module and a spectral
normalization module, respectively. In evaluation, we use two pub-
lic datasets that are representative of histopathology images com-
monly received in clinics to examine the proposed method from the
aspects of robustness to system settings, performance consistency
against achromatic pixels, and normalization effectiveness in terms
of histological information preservation. Results: As the saturation-
weighted statistics proposed in this study generates stable and re-
liable color cues for stain normalization, our scheme is robust to
system parameters and insensitive to image content and achro-
matic colors. Conclusion: Extensive experimentation suggests that
our approach outperforms state-of-the-art normalization methods
as the proposed method is the only approach that succeeds to pre-
serve histological information after normalization. Significance:
The proposed color normalization solution would be useful to mit-
igate effects of color variation in pathology images on subsequent
quantitative analysis.

Index Terms—Color variation, histological information
preservation, histopathology image, illuminant normalization,
saturation-weighted statistics, spectral estimation.

I. INTRODUCTION

D IGITAL histopathology is a research field where color
image processing algorithms and pattern recognition

methods are exploited to enable computers to understand
histopathology images and to make diagnosis decisions. As
quantitative analysis on histopathology images is usually
achieved through comparing numerical descriptors of a query
image to prior knowledge obtained from training data or physi-
cians, deviation of numerical descriptors of a query image from
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prior knowledge should only reveal the true differences between
histological information conveyed by images. However, due to
operational inconsistency in histopathology image preparation,
images of biopsy samples stained by the same types of chemical
dyes usually appear in different colors. Consequently, numerical
features extracted directly from images may be distorted by such
color variation and deviate from true values, finally resulting in
inaccurate segmentation and diagnosis.

To reduce effects of color variation among histopathology
images on numerical features and subsequent analysis, some
works extracted numerical features from a grayscale version of
a query image [1], [2]. However, a large amount of information
mainly carried by color is ignored in these approaches. Recent
research in digital histopathology has confirmed significance
of color information in quantitative analysis on histopathol-
ogy images with few color variation generated under tightly
controlled laboratory conditions [3], [4]. To take advantage
of color information for accurate quantitative analysis within
large datasets, color variation caused by operational inconsis-
tency in histopathology image preparation should be removed
beforehand, so that extracted features represent the real his-
tological characteristics only. In this sense, normalization al-
gorithms to remove color variation in images are crucial in
histopathology.

In this paper, we propose an effective normalization scheme
to address color variation in histopathology images generated
by light-absorbing stains only. Compared to previous works,
our method is significant as it addresses three challenges of
histopathology image normalization holistically as follows.

1) A histopathology image is a final output of a biopsy
processing pipeline including sectioning, staining, and
imaging. Any operational inconsistency in this pipeline
may cause color variation [5]. Hence, the first challenge
of color normalization for histopathology images is to
blindly identify different sources of color variation. To
this end, this paper introduces a complete color normal-
ization solution based on a microscopic imaging model.
Although similar models are exploited in other methods to
normalize spectral variation in stains, it should be stressed
that our solution solves a more complicated problem usu-
ally occurring in clinics, where color variation in images is
jointly caused by inconsistent staining and imaging condi-
tions. By identifying the two causes of color variation, an
illuminant normalization module and a spectral normal-
ization module are proposed and concatenated to form our
complete normalization pipeline.
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2) The second challenge arises from the use of multiple
chemical dyes on a single tissue sample. Despite counter
colors visually, stains may mix due to colocated histologi-
cal components, and thus image colors are determined by
various combinations of stains. To identify contribution
of each stain to color variation, a nonnegative matrix fac-
torization (NMF)-based stain decomposition algorithm is
developed. Compared to existing adaptive stain decom-
positions whose performance are prone to be affected by
achromatic pixels, a key characteristic of our algorithm
is its noise-resistant property contributed by the proposed
saturation-weighted (SW) statistical method. The innova-
tion of SW statistics is advantageous to limit impacts of
achromatic pixels on color estimation, and thus to produce
consistent stain estimation. This noise-resistance is ben-
eficial especially for stain estimation on images having
more blank areas.

3) A third challenge is to avoid histological information loss
after image normalization. The capability of preserving
histological information (including tissue texture details,
spatial structures, and morphology features of histological
objects) is a very important criterion to evaluate normal-
ization algorithms in digital histopathology. However, this
challenge is never explicitly examined in previous works.
In this study, we pay close attention to maintaining histo-
logical information when developing algorithms. In eval-
uation, we particularly design an experiment to examine
this capability of the proposed normalization method and
existing color normalization algorithms. Our results show
that only the proposed method succeeds to maintain tissue
features after normalization.

The rest of this paper is organized as follows. The state of
the art in histopathology image normalization including prob-
lem formulation and previous works is reviewed in Section II.
In Section III, we introduce a complete normalization scheme
for histopathology images generated by light-absorbing mech-
anism. By identifying different causes of color variation, we
develop an illuminant normalization module and a spectral nor-
malization module. Experimental results and discussions are
presented in Section IV, followed by conclusions in Section V.

II. STATE OF THE ART

A. Color Variation in Histopathology Images

In histopathology, to enhance visibility of spatial structures
of histological components, chemical staining that uses counter-
color chemical dyes such as hematoxylin and eosin (H&E) to
stain different histological components is usually performed in
histopathology routine. Then a digital version of a specimen
is generated by microscopic imaging, where a camera captures
transmitted light that is not absorbed by stains in different color
channels. Accordingly, the ith color component of a histopathol-
ogy image is formulated by

I(p, λi) =
∫ λi +δ

λi −δ

fi(λ)E(λ)e−Mi (λ)D (p)dλ (1)

where fi(λ) > 0 for λ ∈ (λi − δ, λi + δ) represents a sen-
sor response in the ith color channel, E(λ) denotes spec-
tral power distribution (SPD) of imaging light, Mi(λ) =
[mi1(λ), . . . ,miN (λ)] represents the absorption spectra of
N types of stains around wavelength λi , and D(p) =
[d1(p), . . . , dN (p)]′ is so-called stain depths, or stain propor-
tions, describing amount of stains bounded at location p =
(x, y). For completeness, the derivation of the imaging model
is specified in the Appendix. It should be noted that I(p, λi) in
(1) represents a pixel value in a color channel without gamma
correction, i.e., γ = 1. Corresponding, an RGB-format image
in this paper refers to an image represented in the linear RGB
color space where γ = 1.

In histopathology images prepared in different pathology lab-
oratories using different equipment, color variation is usually
observed due to operational inconsistency in image preparation
routine, consisting of biopsy sectioning, staining, and imaging
[5]. Correspondingly in the histopathology imaging model for-
mulated in (1):

1) D(p) is directly related to biopsy sectioning. It conveys
histological information contained in an image, and thus
should not be modified (more details in Section III-B).

2) Mi(λ) quantifies stains’ spectra. Inconsistency in biopsy
staining, such as different stain manufacturers, may lead
to variation in Mi(λ) for the same types of stains, finally
causing color variation [6], [7].

3) A biopsy digitization condition is characterized by
fi(λ)E(λ), the product of a camera sensor response and
SPD of an imaging illuminant. Variation in biopsy imag-
ing condition, including differences in either fi(λ) or
E(λ) may produce color variation in images [5], [6].
In this study, instead of a specific f ′

i(λ) which may be
device-dependent and thus unknown, we assume a com-
mon fi(λ), then variation in biopsy digitization condi-
tion can be quantified as f ′

i(λ)E′(λ) = fi(λ)E(λ), where
E′(λ) is the actually PSD of incident light, and E(λ)
is the PSD of the resulting illuminant associated with
the common fi(λ). Hence, variation in biopsy imaging is
transferred to variation in the resulting illuminant E(λ).

Therefore, image color I(p, λi) may vary with respect to
variation in biopsy staining and imaging conditions, which are
quantified by variation in Mi(λ) and E(λ), respectively. For
clarification, illuminant variation in this paper refers to non-
standard E(λ), which corresponds to inconsistency in biopsy
imaging, and spectral variation in stains, or simply stain vari-
ation, refers to inconsistent Mi(λ) of the same type of stains,
corresponding to disagreement in biopsy staining.

B. Previous Works on Histopathology Color Normalization

We categorize histopathology image centered color normal-
ization solutions in the literature into three distinct groups.

1) Histogram Matching: The first group of normalization
algorithms are based on histogram matching in the RGB color
space. In [8], after image background removal, histogram match-
ing is performed in the red, green, and blue channels, re-
spectively. In [9], color map quantile matching, a variation of
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histogram matching, was proposed for stable color normaliza-
tion. Since histogram matching on entire images ignores local
differences of image content, color associated with one stain
may be matched to irrelevant colors. Recently, tissue component
segmentation followed by histogram landmark matching was
proposed to remove stain variation [14]. As histogram matching-
based methods do not distinguish causes of color variation, his-
tological information is hardly preserved after normalization,
consequently introducing unwanted bias into subsequent image
analysis.

2) Color Transfer: The second group of color normaliza-
tion solutions relies on the so-called color transfer technique
discussed in [15]. After converted to the lαβ color space [16],
the mean and variance in each color channel of a query image
are matched to the statistics of a reference image [10]. Since im-
ages stained by multiple chemical dyes may have different color
distributions, colors associated with different histological com-
ponents may smear each other after color transfer. To address
this problem, before color transfer, an image is divided into re-
gions by segmentation manually [17] or automatically through
pixel classification [11], so that each region contains one type of
histological objects only. For one thing, manual segmentation of
images in large datasets is infeasible. For another, segmentation
achieved by hard pixel classification is not reliable because one
pixel in a histopathology image may belong to multiple objects
due to histological component overlap. Hence, soft pixel classi-
fication by stain decomposition was proposed to precede color
transfer [11], [18]. An improved normalization method based
on study [11] was proposed in [12]. In this method, mean and
ranking statistics in each decomposition channel of a test image
are mapped to the statistics of a reference image nonlinearly.
However, applying color transfer on decomposition results has
two limitations. First, sources of color variation in histopathol-
ogy images are lumped together and not addressed separately.
Second, statistics in decomposition channels, which is closely
related to histological information in images, is modified and
thus tissue features may not be preserved after normalization.

3) Spectral Matching: This class of color normalization so-
lutions aims to remove stain variation only. To that end, algo-
rithms belonging to this group first estimate stain spectra either
using adaptive estimators [7], [19] or via dedicated hardware
[13], [20], and then match the estimated quantity to a reference
stain spectra. Approaches in this category have an advantage
over other groups in the sense that if stain variation is the only
source of color disagreements in images, with good estimation,
spectral matching approaches can preserve histological features.
However, if other causes also contribute, as algorithms in this
category do not identify their effects, histological features may
be modified after normalization.

Since success of spectral matching approaches heavily relies
on the accuracy of stain spectral estimation, a very brief review
on it is presented here. Spectral estimation, or stain decomposi-
tion, is a process that estimates stain spectra and corresponding
stain proportions at each pixel in a histopathology image. Early
works of stain decomposition can be traced back to [21], where
stain spectra are predetermined by experiments. To address spec-
tral variation in stains, spectra were estimated at regions of

interest by manual selection [22]. However, such manual oper-
ation is time-consuming for large datasets. For adaptive stain
decomposition, sparseness analysis followed by relative newton
method was proposed to achieve blind source separation [23].
Since this method is designed for hyperspectral images whose
channel number is much larger than the number of stain types
on biopsies, it is not applicable to RGB images. Based on an
imaging model where image colors were linear combinations
of stain spectra in the OD domain, a plane fitting method was
achieved by singular value decomposition and thresholding for
images containing two stains only [7]. For accurate estimation
of weak stains, prior knowledge on stains is used in the plane
fitting process [19]. However, their performance vary as the
prefixed thresholds for stain estimation may be inappropriate
for a testing image. For accurate estimation, spectra of chem-
ical stains were detected using dedicated hardware [13], [20];
whereas dependence on devices limited their adoption. Later,
NMF was used for spectral estimation [18], [24]. Since both
studies do not address an inconsistent convergence issue, stain
decomposition may converge to any local minima, leading to
wrong estimation. Blind color decomposition (BCD) is achieved
by performing expectation-maximization on color distributions
in the Maxwell color triangle [25]. Though a heuristic random-
ization function tries to select stable colors for estimation, BCD
method is prone to be affected by achromatic pixels when es-
timating weak stains’ spectra. Recently, spectral estimation via
supervised learning on a training set of histopathology images
was proposed in [12]. As the learning model relies on statis-
tics of images in the training set, stain estimation may not be
accurate, or even fail, when spectral variation in stains occurs
between a query image and training images.

Table I provides an overview of color normalization algo-
rithms currently used to process histopathology images. In this
summery, spectral matching algorithms, which rely on predeter-
mined spectrum values, or a reduced set of a reference image,
offer greater flexibility compared to solutions following the his-
togram matching or color transfer paradigm. However, it should
be noted that none of the existing solution addresses holistically
the three challenges of color normalization in histopathology
images and thus a new and complete color normalization ap-
proach is needed.

III. PROPOSED COLOR NORMALIZATION SCHEME

The block diagram of the proposed normalization approach
consisting of two processes is shown in Fig. 1:

1) The offline process defines a standard histopathology im-
age preparation condition including information on Es(λ)
and Ms(λ), where the subscript s labels a standard condi-
tion. For operational flexibility, information on the stan-
dard condition can be defined via either predetermined
quantities explicitly (for instance, the normalization ex-
ample in Fig. 5), or a reference image1 as a reduced set
implicitly (Experiment 3 in Fig. 9, for example). In the
diagram, a reference image Is is used, where a standard

1Use of multiple references may improve the scheme performance. Such
studies will be the subject of a future work.
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TABLE I
SUMMARY OF COLOR NORMALIZATION METHODS

Causes of color variation addressed

Category illuminant variation stain variation Histological information preservation Reference image requirement Representative reference

histogram matching no no no yes [8], [9]
color transfer no no no yes [10]–[12]
spectral matching no yes maybe no [7], [13]

Fig. 1. Diagram of the proposed normalization pipeline, where the online normalization processing includes an illuminant normalization module and a stain
spectral normalization module. The subscript s labels a standard condition for histopathology image preparation.

imaging illuminant and stain spectra are obtained by il-
luminant estimation and spectral estimation, respectively.
Note, to qualify an image to be a reference, it must a) con-
tain the same types of stains occurring in a query image,
and b) have image background and histological compo-
nents stained by different chemical dyes clearly presented.
Otherwise, inaccurate, or even irrelevant, quantities are
estimated in this offline process, finally affecting overall
normalization performance.

2) The online process normalizes colors in a query image I .
For each query image, the imaging illuminant and stain
spectra are estimated and matched to reference quantities
generated by the offline process. Since side information
on query images’ preparation, such as information about
imaging device, is hardly guaranteed for large image sets,
our study focuses on an operational scenario where no
side information on a query image, other than knowledge
about the stain type, is available to the system.

As shown in Fig. 1, the complicated normalization pipeline
is formed by two modules, one to normalize imaging illuminant
and the other to remove spectral variation in stains. It should be
noted that following our analysis in Sections III-A and B, PSD
of imaging light E(λ) affects image color I(p, λi) linearly in
the linear RGB color space, while I(p, λi) varies following an
exponential function with respect to stain spectra M(λ). Thus, it
is necessary to identify the two independent factors, and propose
linear and nonlinear algorithms to normalize color variation due
to the two factors individually. Besides, as illuminant varia-
tion and stain variation are independent and can be addressed
separately, if color variation is known to be introduced by one
cause, an image can be processed by the corresponding module
only.

A. Illuminant Normalization Module

Illuminant variation, corresponding to inconsistency in
biopsy imaging in this study, introduces color bias in images.
To remove the color bias, E(λ) of a query image should be
estimated and matched to a standard Es(λ), which is either es-
timated from a reference image or defined by a predetermined
quantity such as the CIE illuminant D65 [26]. However, estima-
tion of E(λ) directly from an image is relatively difficult due to
the integral effect of a camera. Based on the theory of metamer
[27], we deduce an equivalent intensity matching algorithm to
achieve illuminant normalization.

1) Illuminant Matching: Following (1), intensities of an im-
age generated under illuminant with standard SPD are

Is(p, λi) =
∫ λi +δ

λi −δ

fi(λ)Es(λ)e−Mi (λ)D (p)dλ. (2)

Applying the first mean value theorem for integration [28] to
(1) and (2), we get

I(p, λi) = E(ε1)
∫ λi +δ

λi −δ

fi(λ)e−Mi (λ)D (p)dλ (3)

Is(p, λi) = Es(ε2)
∫ λi +δ

λi −δ

fi(λ)e−Mi (λ)D (p)dλ (4)

where εj ∈ (λi − δ, λi + δ) for j = 1, 2. Therefore

I(p, λi)/Is(p, λi) = E(ε1)/Es(ε2). (5)

That is, we need to estimate a ratio of SPDs, E(ε1)/Es(ε2),
to normalize image intensity I(p, λi) to Is(p, λi). Since back-
grounds, or blank areas, of histopathology images correspond
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to tissues that are not bound by any stains, D(p) = 0. Hence

Ib(λi) = E(ε1)
∫ λi +δ

λi −δ

fi(λ)dλ (6)

Ib
s (λi) = Es(ε2)

∫ λi +δ

λi −δ

fi(λ)dλ (7)

where Ib denotes background intensities in images. Thus,
Ib(λi)/Ib

s (λi) = E(ε1)/Es(ε2) leads to

Is(p, λi)/I(p, λi) = Ib
s (λi)/Ib(λi). (8)

(8) is a formula to remove color disagreement caused by illumi-
nant variation in histopathology images. Although it is simple,
intuitively appealing and probably easy to infer, to the best of our
knowledge, this study constitutes the first attempt to rigorously
derive it using an imaging model.

2) Illuminant Estimation: According to (8), image in-
tensities in blank areas need to be estimated for illuminant
normalization. As D(p) = 0 in image blank areas, Ib(λi) =∫ λi +δ

λi −δ fi(λ)E(λ)dλ ≥
∫ λi +δ

λi −δ fi(λ)E(λ)e−Mi (λ)D (p)dλ = I(p,

λi). That is, Ib(λi) is no smaller than any pixel values in the
ith channel. Therefore, after removing image noise (e.g., shot
noise) by a N -by-N square-shaped median filter hN , the largest
pixel value in the ith color channel is picked to estimate Ib(λi).
We formulate this illuminant estimation approach as

Ib(λi) = max
p

[I(p, λi) ⊗ hN ] (9)

where ⊗ denotes a convolution operation.
Though most histopathology images have blank areas, to en-

sure system robustness, we propose the use of a threshold thb

(e.g., thb = 200 for eight bit data) to identify images without
blank areas. In specific, if Ib(λi) in (9) is smaller than thb , it is
likely that the image does not contain any blank area. For such
a case, our algorithm will return the image with a notification to
operators/pathologists for further analysis.

Combining the proposed intensity estimation in (9) and inten-
sity matching formula in (8), the whole illuminant normalization
module is described in Algorithm 1.

B. Spectral Normalization Module

If a set of biopsy samples stained by the same types of chemi-
cal dyes are imaged using one scanner, color variation in images
are mainly caused by disagreement in biopsy staining. Though

stains have their own diagnostic colors, such as hematoxylin
usually appearing in blue while eosin in pink visually, due to in-
consistency in stain manufacture, stain concentration, or storage
condition, absorption spectra of stains, denoted as Mi(λ) in (1),
may differ, resulting color variation in images. Therefore, be-
fore quantitative analysis, color variation caused by inconsistent
stain spectra Mi(λ) should be removed.

When normalizing spectral variation in stains, care should be
taken to preserve histological information. Though color vari-
ation among images is caused by different factors, within one
image, these factors are constant and histological information is
conveyed by colors. As various colors in an image are generated
by different combinations of stains, histological information is
actually conveyed by stain depths at each pixel, which is denoted
by D(p) in (1). To normalize inconsistent stain spectra Mi(λ)
while to maintain stain proportion D(p) unchanged, we concate-
nate a NMF-based spectral estimation and spectral matching.

To simplify the problem, in this section, we assume images
are generated under standard imaging condition. Otherwise, the
proposed illuminant normalization will be applied first.

1) Spectral Matching: We apply the first mean value theo-
rem for integration to (1) and factor out e−Mi (λ)D (p)

I(p, λi) = e−Mi (ε3 )D (p)
∫ λi +δ

λi −δ

fi(λ)E(λ)dλ (10)

where ε3 ∈ [λi − δ, λi + δ]. Observing that the integral part of
(10) corresponds to background intensities in images

I(p, λi) = Ib(λi)e−Mi (ε3 )D (p) . (11)

(11) has the exact same form as the Beer–Lambert law [29],
whereas has different physical meaning. The Beer–Lambert law
describes an optical phenomenon that light is absorbed by mate-
rials when it travels through; while (11) relates a digital quantity,
image intensity, to stain absorption spectra. For a biopsy stained
by chemical dyes that have standard spectra Msi(λ), its corre-
sponding image has intensity

Is(p, λi) = Ib(λi)e−Ms i (ε4 )D (p) (12)

for ε4 ∈ [λi − δ, λi + δ]. For histological information preserva-
tion, (11) and (12) share the same D(p). Hence

Is(p, λi) = Ib(λi) ×
[
I(p, λi)
Ib(λi)

]M s i ( ε 4 )
M i ( ε 3 )

. (13)

(13) formulates a spectral matching method to remove stain
variation in histopathology images, meanwhile preserving his-
tological information conveyed by stain proportions. Then the
left problem is to estimate stain spectra from images.

2) NMF-Based Spectral Estimation: Let us reexamine (11).
By moving Ib(λi) to the left in (11) and taking logarithm on both
sides, the optical density (OD) domain equivalent expression is
as follows:

log(Ib(λi)) − log(I(p, λi)) = Mi(ε3) × D(p). (14)

For a biopsy sample stained by N types of stains and imaged
via K sensors, we have K equations in the form of (14) for its
corresponding histopathology image. Then a K-by-N spectrum
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Fig. 2. (a) H&E stained breast cancer image. (b)–(e) NMF decompositions
with random initializations. The first row of the decomposition results corre-
sponds to hematoxylin images, while the second row to eosin images.

matrix M is formed by using Mi(λ) as the ith row. Hence,
an element mij in a spectrum matrix M represents the jth
stain’s absorption spectrum around particular wavelength λi

and spectrum of the jth stain, Mij can be characterized by the
jth column of M . For instance, an RGB-format H&E stained
image has a three-by-two spectrum matrix, whose first column
corresponds to spectrum vector of hematoxylin and the second
column to eosin. Let Ib = [Ib(λ1), . . . , Ib(λK )]′ and I(p) =
[I(p, λ1), . . . , I(p, λK )]′, then

log(Ib) − log(I(p)) = M × D(p). (15)

Following (15), given a query image, we need to factorize
log(Ib) − log(I(p)) into spectrum matrix M and stain depth
D(p). The fact that both spectrum matrix M and stain propor-
tion D(p) at any location should be nonnegative motivates us to
exploit NMF [30] to achieve an optimal spectral estimation in
terms of minimizing the mean-squared error

arg min
M,D>=0

Dist2
[
log(Ib) − log(I(p))‖M × D(p)

]
(16)

where Dist2(Y ‖AX) = ‖Y − AX‖2 . As the quadratic function
in (16) is a nonconvex function of both M and D(p) simultane-
ously, depending on initial matrix Min , solutions of NMF may
converge to any local minima, resulting in incorrect solutions
[31]. For example, Fig. 2 shows two spectral estimation results
computed by NMF using two randomly generated spectrum ma-
trices. The first row of decomposition results are supposed to
be images of histological components stained by hematoxylin,
and the second row to eosin-stained images. However, the two
decompositions differ a lot. Therefore, a good initial spectrum
matrix for NMF iteration is significant.

To reduce the probability of converging to local optimum
instead of a global optimal solution for NMF computation, the
initial spectrum matrix should be image dependent and close
enough to the true stain spectra. For this end, we propose a
novel SW statistical method in the HSV color space to identify
reliable colors in an image implicitly for stable estimation of
stain spectra Min . The reason behind our innovation is that
achromatic pixels in histopathology images are usually noise or

Fig. 3. (a) Standard hue histogram of the reference image in Fig. 1. (b) SW-
hue histogram of the same image. The SW-hue histogram is much smoother due
to its strong resistance to achromatic colors.

locations bounded by few stains, and spectral estimation using
these less-saturated colors is unreliable, or even meaningless.
However, at pixels where spectra of imaging light are absorbed
by stains, colors are usually highly saturated and more reliable
for estimation.

In specific, colors in histopathology images are generated by
transmitted light that is not absorbed by stains [11]. Hence, a
hue histogram of an image actually shows what spectra of light
are not absorbed, and thus can be used to estimate matrix Min .
To limit impacts of achromatic colors on spectral estimation,
rather than using standard histogram, we propose the use of an
SW hue histogram [32] defined as follows:

Histsw
θ =

∑
p

spδ(θ, hp) (17)

where δ(θ, hp) =

{
1, if θ = hp

0, otherwise

θ ∈ [0◦, . . . , 360◦) represents a bin in histogram, sp and hp

are the saturation and hue at pixel p in the HSV color space.
Fig. 3 shows histograms computed using standard statistics and
the SW method in (17) for the reference image in Fig. 1. The
standard hue histogram in Fig. 3(a) has more spikes contributed
by achromatic pixels; while the SW-hue histogram in Fig. 3(b)
depicts smooth dominant colors which are more coherent to
human’s color perception.

With the SW-histogram Histsw showing the light spectra not
absorbed by any stains, we proceed to estimate the typical color
for each stain. As clusters in the SW-color histogram bias highly-
saturated colors associated with different chemical dyes, k-mean
clustering is applied to Histsw to estimate the N representative
hues hsw

1 , . . . , hsw
N . Aware that k-mean clustering has an incon-

sistent convergence problem due to poor starters, we use prior
knowledge of stain spectra as its initialization. For instance, hue
values of purple-to-blue and pink can be used as cluster centers
of H&E initially for an H&E stained image. Then for each hue
hsw

i , we propose SW means of value vsw
i and saturation ssw

i in
the HSV domain, defined as

vsw
i =

[ ∑
p

spvpδ(hsw
i , hp)

]
/
[ ∑

p

spδ(hsw
i , hp)

]
(18)

ssw
i =

[ ∑
p

(sp)2δ(hm
i , hp)

]
/
[ ∑

p

spδ(hsw
i , hp)

]
(19)
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Fig. 4. Stain decomposition results merely rely on the initial spectrum matrix
M in = [0.6322 0.3023; 0.7354 0.9045; 0.2438 0.3008] estimated through
SW-statistics for the reference H&E stained images in Fig. 1.

to fully determine the representative stain colors. In (18) and
(19), saturation values are used as filter parameters and resulting
representative colors bias saturated image colors. Finally, we
convert representative colors [hsw

i , ssw
i , vsw

i ] of stains from the
HSV color space to the OD domain and form an initial spectrum
matrix Min for NMF. The whole initialization algorithm is
outlined in Algorithm 2.

We use the reference image in Fig. 1 as an example to
demonstrate the performance of the proposed initialization al-
gorithm. The resulted three-by-two H&E spectrum matrix is
Min = [0.6322 0.3023; 0.7354 0.9045; 0.2438 0.3008], where
the first column corresponds to a spectrum vector of hema-
toxylin, and the second to eosin spectrum vector. To visual-
ize this result, the corresponding stain decomposition result is
shown in Fig. 4. Though the resulting Min is just an initial-
ization for subsequent NMF computation, the original image
is well separated into two stain channels which correspond to
H&E, respectively.

The overall spectral normalization module on the basis of
NMF-based spectral estimation is descried in Algorithm 3.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We design three experiments to evaluate the proposed nor-
malization approach. First, we assess the robustness of our nor-
malization method to system settings, and demonstrate that our
method is stable under various parameter settings. In the sec-
ond experiment, since spectral estimation plays a significant
role in spectral normalization, effectiveness and consistency of
the proposed stain decomposition is examined and compared
to state-of-the-art adaptive stain estimation algorithms. In the
last experiment, performance of the proposed normalization

Algorithm 3: Spectral Normalization

Input data : Linear RGB-format query image I ′, reference
image Is , stain type N

Output data: Normalized query image In

Min
s ,Min ← Apply Algorithm 2 to Is and I ′;

Ms ← NMF on Is with initial Min
s [see (16)];

M ← NMF on I ′ with initial Min [see (16)];
In ← Apply spectral matching to I ′ [see (13)].

approach, especially the capability of histological information
preservation, is evaluated. This experiment is also performed on
four representative normalization approaches for comparison.

Two public histopathology image sets are used as experimen-
tal data in this study. They are selected in different experiments
depending on experimental objectives.

1) The NIA malignant lymphoma dataset can be accessed
from the IICBU Biological Image Repository [33]. It
contains 20x magnified H&E stained images with resolu-
tion of 1388 × 1040, including 113 chronic lymphocytic
leukemia images, 140 follicular lymphoma cases, and 122
mantle cell lymphoma slides. Because biopsies in this
dataset were prepared by different pathology laboratories,
significant variations in image colors are observed. This
dataset is believed more representative of histopathology
images commonly received in clinics [34].

2) The UCSB breast cancer cell dataset [35] was published
for an objective of cell segmentation in both benign and
malignant cell images. The dataset consists of 26 cancer-
ous cell images and 32 normal cases cut from ten H&E
stained breast cancer biopsies. All images are scanned in
the same laboratory, with resolution of 896 × 768.

As the NIA dataset and UCSB dataset store images in 24-b
nonlinear RGB format, all images are converted to the linear
RGB domain first [27]. All algorithms in this paper are imple-
mented in Matlab.

A. Experiment 1: System Robustness to Parameter Settings

There are two sets of parameters predetermined in our nor-
malization method: median filter dimension in the illuminant
normalization module, and NMF convergence condition in the
spectral estimation algorithm. Usually, performance of an algo-
rithm varies with parameter selection. In medical-related appli-
cations, we want this performance variation small. Hence, we
perform two tests in this experiment and assess sensitivity of the
proposed approach to the two sets of parameters.

Dataset: Both the NIA image set and the UCSB dataset are
used as testing sets in Experiment 1.

1) Test 1: Dimension of Median Filter: The objective is to
assess sensitivity of the illuminant normalization module to
the median filter with neighbor-supporting in N -by-N square
area. Following common evaluation procedure, filter dimen-
sion N is changed while the square-shape of the filter is
maintained.

Experimental Design: In the illuminant normalization mod-
ule, a median filter is applied to an image to remove potential
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Fig. 5. Example of illuminant normalization with median filters in various sizes, where reference imaging illumiant is defined explicitly by CIE D65 . (a) Query
image randomly selected from the NIA lymphoma dataset. (b)–(d) Illuminant-normalized images generated using median filters with N = 3, 5, 7.

Fig. 6. RMSDs statistics of both datasets. Bars and crosses represent ranges
and means (with variances) of RMSD between normalized image. RMSDbs

characterizes expected difference between distinct images within a dataset.

noise, while image local statistics should be maintained. To this
end, N = 3, 5, 7 are selected as candidates of filter size. To
quantify sensitivity of the proposed illuminant normalization
to N , we compute the root mean square difference (RMSD)

for each image, RMSDc
i,j =

√
E[(I ′ci − I ′cj )2 ], where I ′ci rep-

resents color component in the c channel of an illuminant-
normalized image I ′ generated using filter parameter N = i.
For example, RMSDr

i,j = 0 indicates two normalized images
having identical red image components. Then statistics of
RMSDi,j = [RMSDr

i,j ,RMSDg
i,j , RMSDb

i,j ] over a dataset are
summarized and compared to the baseline RMSDbs , which is
defined as RMSDs of distinct normalized images generated by
the same filter in a dataset. In this test, reference imaging light
is defined explicitly by CIE illuminant D65 [26].

Results and Discussion: Fig. 5 shows an example of
illuminant-normalized images generated using median filters
with N = 3, 5, 7, where RMSD3,5 = [5.090, 3.013, 1.982] and
RMSD7,5 = [4.873, 3.201, 1.379]. For an RGB-formant image
with 8-b per channel, the image difference is very small. Fig. 6
summarizes RMSD statistics in both testing image sets. Com-
pared to RMSDbs which quantifies typical difference between
two 24-b normalized images generated by a filter with N = 5,
small RMSD3,5 and RMSD7,5 imply that the illuminant nor-
malization module is insensitivity to the filter size, and we use
N = 5 in all of our experiments.

2) Test 2: Convergence Conditions of NMF Iterations: In the
proposed spectral estimation algorithm, NMF iteration termi-
nates when either the root mean square residue of factorization√

E(Dist2(Y ‖AX)) is smaller than a predetermined value Ty ,
or the relative changes of factors A or X in NMF computation
is small enough to achieve a prefixed tolerance Tx . In this test,

Fig. 7. Stain spectral estimations using different NMF convergence conditions
for the reference image in Fig. 1. M i represents spectra estimated under Ty =
Tx = 10−i , and blue and pink correspond to H&E.

effect of different NMF convergence conditions (Ty , Tx) on our
spectral estimation is examined.

Experimental Design: Convergence conditions (Ty = Tx =
10−i) for i = 2, 4, 6 are applied to the NMF computation of
stain spectrum matrices Mi on testing image sets. Specifically,
for the kth testing image Ik in a dataset, absolute differences be-
tween resulting spectrum matrices, difk,k (i, j) = |Mi

k − Mj
k |

for i, j = 2, 4, 6, are computed. Then statistics of difk,k (i, j)
over a testing set are summarized and compared to baseline
difk,l(i, i) = |Mi

k − Mi
l | for k 
= l, which quantifies stain vari-

ation estimated from distinct biopsies in a dataset.
Results and Discussion: Fig. 7 depicts spectrum vectors esti-

mated under different NMF termination conditions for the ref-
erence image in Fig. 1. Vectors colored in blue and pink, which
represent spectra of H&E, respectively, form two very tight
clusters. We observe similar results for other testing images.
Table II summaries the statistics of difk,k (i, j) for i, j = 2,
4, 6 in the UCSB dataset and the NIA dataset, where a 3×2
H&E spectrum matrix is formed by three row vectors grouped
by “;”. Compared to difk,l(4, 4), the typical spectral difference
between distinct H&E stained biopsies in the order of 10−2 , ex-
pectations of both difk,k (2, 4) and difk,k (6, 4) in the order of
10−3 are much smaller, indicating that Mi

k for i = 2, 4, 6 convey
the same information on stains’ spectra in an image. Therefore,
we conclude that the proposed spectral estimation is insensitive
to NMF convergence conditions, and Ty = Tx = 10−4 are used
in all experiments.

B. Experiment 2: Consistency of Spectral Estimation

To identify contribution of each stain to color variation, ac-
curate spectral estimation is crucial. As histopathology images
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TABLE II
STATISTICS OF SPECTRUM MATRIX DIFFERENCES DUE TO VARIOUS NMF CONVERGENCE CONDITIONS IN THE UCSB DATASET AND THE NIA DATASET

UCSB dataset

Statistics difk , l (4, 4) difk , k (2, 4) difk , k (6, 4)

mean (×10−2 ) [6.92 11.47; 5.65 3.58; 2.04 3.17] [0.10 0.34; 0.09 0.49; 0.02 0.51] [0.99 2.00; 0.80 0.74; 0.26 0.44]
std (×10−2 ) [5.19 8.87; 4.09 3.12; 1.52 3.37] [0.23 1.11; 0.23 3.16; 0.04 3.78] [0.47 0.66; 0.40 0.75; 0.12 1.70]
min (×10−2 ) [0.02 0.01; 0.05 0.02; 0.00 0.01] [0.02 0.05; 0.02; 0.01; 0.00 0.00] [0.42 0.92; 0.42 0.12; 0.09 0.01]
max (×10−2 ) [24.34 55.51; 19.48 26.12; 6.67 29.78] [1.77 8.59; 1.79 24.15; 0.31 28.83] [3.50 3.68; 3.50; 5.87; 0.77 13.04]

NIA Lymphoma dataset

Statistics difk , l (4, 4) difk , k (2, 4) difk , k (6, 4)

mean (×10−2 ) [4.04 6.76; 2.75 2.51; 2.53 4.26] [0.20 0.75; 0.10 0.24; 0.10 0.22] [0.83 2.06; 0.39 0.54; 0.51 0.83]
std (×10−2 ) [4.3 7.31; 2.11 2.06; 7.31 4.86] [0.17 0.73; 0.07 0.24; 0.09 0.13] [0.28 0.94; 0.14 0.28; 0.23 0.44]
min (×10−2 ) [0.00 0.01; 0.01 0.01; 0.00 0.00] [0.03 0.02; 0.02 0.04; 0.01 0.00] [0.10 0.02; 0.03 0.01; 0.02 0.00]
max (×10−2 ) [27.58 43.59; 17.14 15.38; 19.36 30.25] [1.96 6.75; 0.78 2.13; 1.08 0.91] [2.86 8.39; 0.93 2.94; 2.43 3.62]

Fig. 8. Stain spectrum vectors of six H&E stained images estimated by the
plane fitting algorithm [7], the BCD approach [25], and the proposed method.
Since the six images were cut from a biopsy labeled as ytma10-010704 in the
UCSB dataset, estimated stain spectra should be very close.

may contain different contents, we want the spectral estimation
is not affected by content difference. Therefore, this experiment
evaluates consistency of our spectral estimation against different
image contents.

1) Dataset: The UCSB dataset is selected as an evaluation
set for reasons as follows. The UCSB images were cut from ten
biopsies. For images from the same biopsy, a spectral estimation
algorithm should generate consistent, or at least similar, spec-
trum matrices. Thus, we use consistency of spectrum matrices
estimated from images cut from the same biopsy as a metric to
measure performance of a stain estimation algorithm.

2) Experimental Design: We form ten sets of images in
the UCSB dataset, each containing all images from the same
biopsy. Then standard deviation σ of estimated matrices in each
set is computed. A smaller σ indicates more consistent esti-
mation. This experiment is also performed on state-of-the-art
blind stain estimation algorithms: the plane fitting approach
[7] and BCD approach [25]. For a fair comparison, we set pa-
rameters α = 0.05 and β = 0.15 in the plane fitting approach
and σ∞

k =
√

1/12 and N = 10 in BCD method following the
original papers, and tried our best to faithfully reproduce the
experimental results in both papers.

3) Results and Discussion: Spectral estimation results of the
first image set are shown in Fig. 8. Since similar results were ob-
tained, estimation results of other nine sets were omitted here.
As the first set contains six H&E stained images cut from a
biopsy labeled as ytma10-010704, each approach generates six

pairs of spectrum vectors, among which spectra of hematoxylin
are depicted in the left panel and eosin spectra are in the right
panel. In the figure, both H&E spectrum vectors estimated by
the proposed method form tight clusters, while estimations com-
puted by the plane fitting approach show the largest diversity.
Table III summarizes standard deviations of spectral estimation
over the ten image sets, where the smallest σ of each matrix
element is marked black. The data illustrate that our spectral
estimation method generates more consistent results than the
other two methods.

The relatively inconsistent performance of the plane fitting
method [7] is attributed to the thresholding mechanism in stain
estimation, where only image pixels whose colors are close
to predetermined thresholds contribute to spectral estimation.
However, for images containing different contents, the prede-
termined values may be inappropriate, resulting inaccurate and
inconsistent spectral estimation. The estimation consistency of
the BCD algorithm [25] lies between the plane fitting method
and our method. In the BCD approach, a heuristic randomiza-
tion function assigns large weights to colors in high OD values.
Then colors with large weights are selected for stain estimation.
Compared to colors associated with hematoxylin that are usu-
ally in larger OD values, eosin-stained tissues often have weak
stains, and thus colors mainly associated with eosin usually
have smaller weights. For images containing large blank areas,
significance of eosin-stained pixels may be overwhelmed by
achromatic colors. This explains the less consistency in eosin
spectrum vectors estimated by the BCD algorithm. The con-
sistent performance of our estimation method is attributed to
the proposed saturation-weight statistical method. Since SW-
statistics identifies saturated colors implicitly, impacts of achro-
matic pixels and noise on spectral estimation are alleviated. The
strong noise-resistant capability of the proposed algorithm in-
herited from the SW-statistics ensures consistency of spectral
estimation, and will benefit effectiveness and reliability of the
proposed normalization method.

C. Experiment 3: Color Normalization Performance

One unique issue of histopathology image normalization is
to preserve histological information. This experiment examines
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TABLE III
STANDARD DEVIATIONS OF SPECTRAL ESTIMATIONS ON THE TEN IMAGE SETS OF THE UCSB DATASET

Biospy id Plane fitting algorithm [7] BCD approach [25] Proposed method

ytma10-010704 [3.04 2.72; 2.23 2.01; 2.67 5.79] [2.54 7.64; 1.41 1.84; 0.97 2.66 ] 2.67 3.25; 1.68 0.97; 1.14 2.43
ytma12-010804 [1.99 3.79; 2.16 2.82; 1.72 6.81] [2.14 7.02; 1.58 3.03; 0.67 1.66 ] 1.37 5.79; 1.07 1.82; 0.55 1.30
ytma23-022103 [1.77 3.43; 1.95 0.46; 1.31 3.34] [1.47 8.08; 1.33 3.78; 0.89 2.26 ] 2.39 5.36; 2.25 1.59; 0.70 1.57
ytma49-042003 [3.11 2.11; 2.98 2.02; 1.09 3.67] [5.08 7.35; 3.38 3.00; 0.95 1.60 ] 3.17 1.86; 2.35 0.45; 0.55 0.98
ytma49-042203 [2.29 2.18; 2.95 1.40; 1.88 3.72] [3.64 5.69; 2.94 2.33; 0.79 1.97 ] 4.04 3.13; 3.81 0.92; 1.15 2.12
ytma49-042403 [3.08 3.13; 3.16 3.18; 1.04 5.38] [3.82 6.77; 2.70 2.89; 0.61 1.37 ] 3.42 3.67; 2.55 0.96; 0.63 0.47
ytma49-072303 [2.09 2.63; 2.48 1.22; 0.57 1.43] [2.95 2.19; 2.84 1.25; 0.42 0.64 ] 2.49 2.82; 0.95; 0.38 0.80
ytma49-0111003 [1.90 13.17; 2.60 11.29; 3.62 10.73] [1.97 6.96; 2.03 4.80; 0.57 1.96 ] 1.64 6.94 1.61 3.49; 1.23 2.79
ytma49-0111303 [2.15 6.12; 2.52 1.75; 1.50 4.30] [1.28 6.24; 1.32 3.64; 0.26 1.60 ] 1.20 6.71; 1.30 2.46; 0.24 2.34
ytma55-030603 [2.18 7.85; 3.39 3.90; 2.73 8.20] [1.52 3.59; 1.36 2.46; 0.72 1.15 ] 1.88 16.56; 1.81 2.09; 0.67 8.32

All data are in the scale of 10−2 , and the smallest σ of each matrix element is marked black.

performance of the proposed normalization method, particularly
the capability of histological information preservation.

Dataset: All images in the UCSB dataset and the NIA dataset
are selected as testing images in this experiment.

1) Experimental Design: We first select a slide in the UCSB
dataset as a reference image, from which standard imaging light
and absorption spectra of stains are estimated. Then the pro-
posed normalization pipeline is tested in three scenarios.

1) In the first test, query images are those slides cut from the
same biopsy as the reference in the UCSB dataset. Thus,
they should not be modified after normalization.

2) Then, UCSB breast cancer images other than those used in
the first test are used as query images. After normalization,
spectral variation in H&E stains should be removed, while
histological features should be maintained.

3) The last test is performed on the NIA images, which are
more representative of histopathology images received
in clinics. Color variation jointly caused by inconsis-
tency in biopsy staining and imaging is expected to be
removed.

The three tests are also performed on histogram matching
method [8], color map quantile matching method [9], color
transfer method [11], and spectral matching method [7].

2) Results and Discussion: Fig. 9 shows color normalization
results of the three tests. As similar observations are obtained
in each test, one example in each test is presented here. In the
figure, normalized images in test 1 are shown in the first column.
Images in the middle column correspond to the normalized
results in test 2, and images in the last column give examples
of color normalization in the third test. Our observations are
summarized as follows.

1) In test 1, normalized images should be the same as the
query images. However, this is achieved by the proposed
method only. Other normalization methods modify the
query image in various degrees.

2) The example query image in test 2 has its eosin-stained
components mainly located in the low half image, and
nuclei distributed in the upper left area. Due to stain
variation, colors associated with eosin are more magenta
and nuclei appear more blue compared to the reference.
After normalization, histological components stained by
eosin and hemotoxylin should appear in pink and purple,

respectively. Among normalized images in the middle col-
umn, only our method succeeds in color normalization.

3) Test 3 is a more complicated normalization problem.
Again, the first four methods fail to preserve histologi-
cal information in the query image, and only the proposed
normalization solution provides a good normalized result.

We examine these normalized methods and investigate rea-
sons for our observations. In normalized images generated by
histogram matching approach [8], a large amount of cytoplasm
stained by eosin in query images is normalized to pure white and
disappears. This phenomenon is due to an implicit assumption
behind histogram matching that all images have the same color
distribution. However, since colors in histopathology images
are dependent on tissue contents, this assumption does not hold.
For example, the reference image contains more blank areas
than query images. Therefore, the histogram matching method
modifies query images such that the normalized images have a
similar number of pure white pixels. In the sense of histological
information preservation, histogram matching-based methods
have poor performance.

Color map quantile matching method discards information on
color frequency in images and adjusts the color map of a query
image according to the color map of a reference [9]. However,
as a variation of histogram matching, this method has a similar
limitation as the histogram matching approach. The nuclei in the
resulting normalized images either appearing in pink or fading
into background demonstrates its weak capability of histological
information preservation.

Color transfer method in [11] matches the mean and variance
in every decomposition channel of a query image to the statis-
tics of a reference image. Since images have different content,
stain depths in each decomposition channel are modified after
color transfer, consequently introducing color distortions in nor-
malized images. Color of nuclei normalized to cyan rather than
purple in the first two tests, and some cytoplasm disappearing
in test 3 are such examples.

The spectral matching method in [7] adopts the plane
fitting method to estimate stain spectra. As less accurate spec-
tral estimation may be caused by inappropriate predetermined
thresholds in the plane fitting method, small color distortion in
normalized images may occur. For example, compared to the
reference image, normalized images of test 1 and test 2 shown in
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Fig. 9. Comparison of color normalization methods. The reference image is selected from the UCSB dataset. Images in the first column give examples of the
normalization results in test 1. The normalized images in the second column correspond to the second test, and so on so forth.

Fig. 9 have darker nuclei. In addition, as shown in the third test,
blank areas in the normalized image generated by the spectral
matching approach have a bias to pink. This is because spectral
matching method cannot appropriately address color variation
caused by nonstandard imaging condition.

Based on discussions, we conclude that the proposed nor-
malization method is effective to remove color variation in
histopathology images. It outperforms other methods in terms
of histological information preservation, and would be useful
for histopathology image analysis tasks such as color-based his-
tological component detection and segmentation.

V. CONCLUSION

This study introduced a robust and complete color nor-
malization approach capable of addressing color variation in
histopathology images. Based on an imaging model, the intro-
duced solution was able to identify the source of color variation,
and addressed effectively both illuminant variation and stain
variation using an intensity matching algorithm and a spectral
normalization module, respectively. Extensive experimentation
on publicly available datasets indicates that the proposed solu-
tion outperforms state-of-the-art color normalization solutions,
while preserving histological information.
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The SW stain estimation method introduced by this study
limited impacts of achromatic spectra on stain estimation and
robustified the estimation process. The experimental results of
stain estimation indicate that the proposed method delivers su-
perior consistent performance compared to state-of-the-art blind
stain decomposition solutions.

APPENDIX

IMAGING MODEL OF HISTOPATHOLOGY IMAGES

In histopathology imaging, a camera captures incident light
that is not absorbed by stains and forms an image. The trans-
mitted light arriving at each location p = (x, y) on the sensor
can be specified by its SPD E ′(p, λ). Assuming a sensing de-
vice consisting of a lens whose sensor spectral sensitivity is
fi(λ) > 0 for λ ∈ (λi − δ, λi + δ), then image value at pixel p
is formulated as follows [36]:

I(p, λi) =
∫ λi +δ

λi −δ

fi(λ)E′(p, λ)dλ. (20)

Let E(λ) denote SPD of imaging illuminant. When chemi-
cal dyes used at staining absorb light only, according to the
Beer–Lambert law, E′(p, λ) = E(λ)T (p, λ), where T (p, λ) =
e−mi (λ)d(p) denotes the absorption of light by a stain and
mi(λ) is the spectral mass absorptivity of a stain to the in-
cident light in wavelength λi . If N types of such stains

are used in chemical staining, T (p, λ) = e−
∑ N

j = 1 mi j (λ)dj (p) .
Let Mi(λ) = [mi1(λ), . . . ,miN (λ)] represent the absorbing
spectra of N types of stains at wavelength λi and D(p) =
[d1(p), . . . , dN (p)]′ correspond to the stain depths at location
p, T (p, λ) = e−Mi (λ)D (p) . Substituting this to (20), we get a
microscopic imaging formula

I(p, λi) =
∫ λi +δ

λi −δ

fi(λ)E(λ)e−Mi (λ)D (p)dλ. (21)
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