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Abstract

Pathology images are color in nature due to the use of chemical staining in biopsy examina-

tion. Aware of the high color diagnosticity in pathology images, this work introduces a com-

pact rotation-invariant texture descriptor, named quantized diagnostic counter-color pattern

(QDCP), for digital pathology image understanding. On the basis of color similarity quanti-

fied by the inner product of unit-length color vectors, local counter-color textons are indexed

first. Then the underlined distribution of QDCP indexes is estimated by an image-wise

histogram. Since QDCP is computed based on color difference directly, it is robust to small

color variation usually observed in pathology images. This study also discusses QDCP’s

extraction, parameter settings, and feature fusion techniques in a generic pathology image

analysis pipeline, and introduces two more descriptors QDCP-LBP and QDCP/LBP. Experi-

mentation on public pathology image sets suggests that the introduced color texture

descriptors, especially QDCP-LBP, outperform prior color texture features in terms of strong

descriptive power, low computational complexity, and high adaptability to different image

sets.

Introduction

Pathology is a medical sub-specialty that studies and practices the diagnosis of disease through

examining biopsy samples or surgical specimens under microscopes by pathologists. It serves

as the golden truth of cancer diagnosis. To address subjectivity in pathology examination [1,

2], digital pathology exploits image analysis techniques and pattern recognition algorithms for

histological information understanding in tissue images, and merges as a promising approach

owing to its time-efficiency, consistency, and objectivity. Essentially, a digital pathology diag-

nosis system is a pattern recognition system. Given a query pathology image, a machine under-

stands it by comparing a set of quantitative features from the image against the stored feature

sets in the database. Hence, extraction of discriminative features from color pathology images

is important.
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Texture is one of most significant information sources in pathology image analysis. As early

as 2004, a study reported that texture features could distinguish among normal tissue areas

and cancerous areas, providing a means of locating morbid regions in pathology images [3].

Later, textures described by co-occurrence matrices, steerable filters, and fractal analysis are

included for prostate cancer detection and breast cancer classification [4–6]. Image filtering

based texture descriptors together with nuclei’s morphology features are used for mitotic

detection in breast cancer images [7]. Recently, local binary patterns (LBP) [8] is demonstrated

to be discriminative in lymphoblasts classification [9, 10].

Due to the use of chemical stains for histological substance’s highlight, color information

provides insight to pathology image understanding. In [11, 12], the authors compared gray-

scale texture features to their color-version texture descriptors in pathology image classifica-

tion, and concluded that color texture descriptors improved classification performance when

limited appearance variation resulting from the disagreement of illumination conditions

existed in pathology images. In the study of breast cancer pathology image diagnosis [13], the

state-of-the-art vector processing based texture descriptor, named LCVBP [14], was adopted

to classify normal and malignant breast biopsy images, achieving 87.51% classification accu-

racy. This features is also exploited by a recent histological image classification study [15]. A

circular Hue-LBP descriptor, denoted by CHLBP, was demonstrated to obtain promising

results on pathology image texture analysis [16]. It should be noted that except the CHLBP, all

of other color texture descriptors used in pathology image analysis literature were proposed

for other applications and thus have various limitations on quantitative description of pathol-

ogy images. For instance, variation in tissue substances’ organization is informative for cancer

diagnosis. Due to multi-staining in pathology images, texture patterns composed of counter

colors are very descriptive for inter-substances’ spatial arrangement. As most color texture

descriptors are computed on the basis of color signal orders, they are sensitive to small color

variation usually observed in the same type of stained histological elements, and thus not

descriptive for counter-color textures in pathology images. To clarify, in this paper, color tex-

ture is a term to describe color content in an image, providing information on image color spa-

tial organization.

This work exploits counter-color information in pathology images and proposes a compact

rotation-invariant color descriptor, named quantized diagnostic counter-color pattern

(QDCP), for histological texture composed of different stained tissue substances in pathology

image. The motivation behind relies on the close connection between color diagnosticity [17]

and stained tissue substances in pathology images. Chemical dyes are used to highlight histo-

logical components of interest in pathology. As a result, colors’ spatial distribution is a strong

indicator of spatial organization of tissue substances in images, and descriptors based on

counter-color distribution are insightful in pathology image analysis. As small color variation

usually exists in pathology images, to address this imperfection, QDCP adopts a thresholding

method to measure whether two color vectors should be considered as counter colors. Specifi-

cally, to alleviate the influence of image brightness on QDCP, the proposed descriptor is com-

puted from color vector’s orientation. This is because color is quantified by a multi-variant

vector, each element representing the value in one color channel. The magnitude of the vector

represents the brightness of a color, and the vector’s orientation correlates well with color’s

chromaticity [18, 19]. To compute QDCP, rotation-invariant local color textons are indexed

in a texture structural analysis manner first and then the occurrence of various textons is sum-

marized in an image-wise histogram. It is noteworthy that different from most previous color

texture analysis that compute color texture patterns from channel pairs, QDCP is directly

extracted from color vectors, where color vectors’ similarity is quantified by angular differ-

ences between color vector’s orientations. We want to point out that though QDCP’s
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construction seems similar to certain texture features, its motivation and focus on counter-

color texture representation are novel and distinct.

In addition, we elaborate the computation of the QDCP descriptor in a generic pathology

image analysis framework. Parameter settings and texture feature fusion techniques are dis-

cussed. Since QDCP contains complementary information to classic grayscale texture descrip-

tors, two numerical features, QDCP-LBP and QDCP/LBP, are introduced for complete color

texture representation. Experimentation demonstrates that the proposed descriptors greatly

boost the performance of texture analysis in pathology images and always achieve top perfor-

mance in different image sets. It is noteworthy that the high adaptability of the proposed

QDCP-LBP feature to different datasets is very attractive in image description. It is true that

one can use a specially-designed analysis tool for good performance if images’ property and

content are known beforehand. However generally, such information is not well known.

Therefore, an analysis tool having such high adaptability is highly demanding in image

analysis.

To summarize, the main contribution of this work are:

1. Motivated by high color diagnosticity in pathology images, we propose the use of counter

color’s spatial arrangement to characterize histological content composed of different

stained tissue substances. To the best of our knowledge, this innovation is first explicitly

explained and presented in color texture analysis literature, and provides a new vision to

counter-color analysis in pathology images.

2. A rotation-invariant color texture descriptor, QDCP, is introduced. It is advanced in

counter-color content description for pathology image analysis. In a very compact form,

QDCP is able to achieving better, or at least comparable, classification performance to the

state-of-the-arts in different pathology image sets.

3. Two numerical color texture descriptors, QDCP-LBP and QDCP/LBP, are introduced

based on different feature fusion techniques. With smaller computation complexity, experi-

mentation indicates that the proposed texture features, especially QDCP-LBP, are capable

of always achieving top performance in different pathology image analysis tasks. Such high

adaptability enables QDCP-LBP to be a competitive descriptor in various image analysis

tasks.

The rest of this paper is organized as follows. In Section of Prior Arts, the state-of-the-art

color texture analysis methods are briefly reviewed. Section Methods specifies the construction

of the proposed QDCP descriptor, and elaborates the computation of QDCP from pathology

images in a general digital pathology pipeline. Experimental Design with applications of

pathology images and the results are presented in Section Experimental Design and Results

and Discussion, respectively. Finally, conclusions are drawn in the last section.

Prior arts

Color texture is informative in image analysis. However, compared to the well-studied gray-

scale texture analysis, research on color texture representation relatively falls behind. This may

be attributed to the multivariate nature of color signals. To address the vectorial nature of

color signals, currently, three categories of color texture quantification methods are considered

in literature.

The first paradigm applies traditional scalar texture descriptors to image channels sepa-

rately, each individual channel of a color image being considered as a monochrome image

[11, 20–23]. On one hand, independently processing color components ignores the high
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correlation that exists between color channels. Hence the obtained texture descriptors may

have abundant information redundancy, resulting in less compact descriptors. On the other

hand, this paradigm may lose information about interactions between channels, leading to

ineffective features. To obtain a compact color texture descriptor, the LBP operator is applied

to the hue channel directly [24]. The obtained feature achieves good performance on the PAS-

CAL visual object classes challenge 2007 image benchmark. To further address the circular

nature of hue in color texture representation, a circular Hue-LBP (in short, CHLBP) [16] is

proposed based on the angles between hue values. As the hue component is ill-defined for ach-

romatic colors, the proposed Hue-LBP is unreliable in image areas containing a large amount

of achromatic pixels.

The second category of algorithms considers color inter-channel dependency in texture fea-

ture extraction. In the opponent color (OC) texture description method [25], authors propose

to apply scalar texture analysis methods to each pair of color channels for color texture quanti-

fication. For example, to compute OC-LBP from an RGB-format image, 6 LBP histograms are

extracted from the red-red, green-green, blue-blue, red-green, red-blue, and green-blue chan-

nel pairs. But this method is computationally intensive. Instead of examining texture patterns

within channel pairs, an image indexing study introduces a 3-D co-occurrence matrix to sum-

marize the joint distribution of LBP in the red, green, and blue channels for an RGB image

[26]. Although the so-called joint-LBP is demonstrated outperforming OC-LBP in endoscopic

image classification [27], the disadvantage of joint-LBP is the large size of the color co-occur-

rence matrix whose elements may become sparse and unstable.

The last category of methods treats a color signal as a vector and quantifies color textures

using vector processing. Norm-LBP is extracted from color vector’s magnitude in the RGB or

CIELAB color space [27]. Shortly, the local color vector binary patterns (LCVBP), composed

of 3 angular texture patterns and the Norm-LBP, is proposed for face recognition [14]. In this

work, the color angular patterns are quantified by applying the LBP operator to the relative

phases within channel pairs in the YIQ color space. Due to high correlations between color

channels, the three angular pattern descriptors may have information redundancy. To obtain a

compact descriptor, a face expression recognition study introduces J-LCVBP, which adopts

the sin distance [28] to measure similarity between two color vectors and uses of the J-th larg-

est sin distance as a threshold to construct a LBP descriptor within a neighborhood [29].

Though J-LCVBP is good at addressing micro skin color difference associated with different

expressions on human faces, the over-emphasis on small color variation in image smooth

areas makes it less effective to describe counter-color textures in pathology images. Local color

contrast (LCC) makes the use of angular difference to quantize color contrast statistics

between a center pixel and the local mean color derived from its neighborhood [30]. LCC is an

analogy to the local intensity standard deviation in a grayscale image, and irrelevant to local

color texton description. To resist the color changes of an illuminant, local angular patterns

(LAP) are extracted from the red-green, red-blue, and green-blue channel pairs in the RGB

color space [31]. For each channel pair, angular differences between center pixels and their

local means are quantized and fed to the LBP framework to generate a LAP. Due to high corre-

lations between color channels, the 3 LAP descriptors are not compact and may have informa-

tion redundancy.

The state of the art of color texture analysis algorithms with the proposed texture descriptor

QDCP are summarized in Table 1. Note that though the vector-based color texture analysis

methods are demonstrated more effective for color image analysis, they have different limita-

tions as discussed above. Besides, as existing methods are based on color signal order statistics,

which is sensitive to small color variation, they are not stable to represent medical information

in terms of counter-color histological substances in pathology images.

Color texture descriptor in pathology image analysis
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Methods

In this section, we first introduce the novel color similarity based texture descriptor, called

quantized diagnositc counter-color patters (QDCP). It is proposed for effectively coding medi-

cal information conveyed by counter colors in pathology images. Then related issues about

applying QDCP to pathology image analysis are discussed. To clarify, vector variables in this

work are denoted in boldface.

Quantized diagnostic counter-color patterns

In brief, given a color image I, its orientation image IO is generated using color’s magnitude-

direction (MD) representation [19] (or the so-called brightness-chromaticity (CB) model in

literature). Based on predetermined neighborhood ON and threshold TO, various local

counter-color texton in IO are indexed, forming a scalar image IQDCP. Finally, the statistics of

local color texton are summarized by an image-wise histogram HQDCP, which is then used as a

color texture feature in analysis. It is noteworthy that the introduced descriptor QDCP com-

bines both structural and statistical texture analysis approaches. On one hand, a texton which

represents spatial placement of counter-color elements in a small neighborhood is analyzed

and indexed. On the other hand, the obtained histogram approximates the distribution of tex-

ton patterns in an image. Details about the introduced color texture descriptor is represented

as follows.

MD representation of color images. A color image is represented by a function

I: Z2! Z3 that maps a pixel p = (x, y) in the 2-dimensional image plane to a 3-dimensional

vector I(p) = [i1, i2, i3]T in a color space. For instance, in the RGB color model, i1, i2, and i3
correspond to the red, green, and blue components, respectively. Since color vector’s ele-

ments are highly correlated, chroma information is more closely related to the relative

values among color channels, and color vector’s orientation/direction correlates well

with color description [18, 32–34]. Hence, to describe spatial arrangement of image ele-

ments in counter colors, we propose to extract the descriptor from color vectors’

orientations.

Table 1. Comparison of the proposed versus previous color texture descriptors.

Ref. Name Treatment of color channels Basic operation for texton description Length

[12] Ind-LBP2 Independent Marginal ordering [19] of color vectors 3N
[24] Hue-LBP Independent Linear ordering of hue N
[16] CHLBP Independent Angular similarity of hue N
[25] OC-LBP Joint Marginal ordering of color vectors 6N
[26] Joint-LBP Joint Marginal ordering of color vectors N2

[27] Norm-LBP Vectorial Reduced ordering [19] of color vectors N
[14] LCVBP Vectorial Reduced ordering of color vectors 4N
[29] J-LCVBP Vectorial Reduced ordering of color vectors 2N
[30] LCC Vectorial Contrast of color angular difference 256

[31] LAP Vectorial Reduced ordering of color vectors’ similarity 3N
Proposed QDCP Vectorial Angular similarity of color vectors’ orientations N

Since all texture analysis methods in this table are variants of LBP, N in the table represents the length of a LBP histogram generated with log2 N-pixel neighborhood.

Ind-LBP is short for the method that applies LBP to each color channel separately, and it is listed in this table as an typical example in the category of independent color

texture analysis paradigm.

https://doi.org/10.1371/journal.pone.0206996.t001
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Specifically, any color vector I(p) = [i1, i2, i3]T can be uniquely described by its magnitude

IM(p) and orientation IO(p) in color magnitude-directional representation [19]:

IðpÞ ¼ IMðpÞ � IOðpÞ

where
IMðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði1Þ
2
þ ði2Þ

2
þ ði3Þ

2

q

IOðpÞ ¼
IðpÞ
IMðpÞ

; s:t:kIOðpÞk ¼ 1

:

8
>>><

>>>:

ð1Þ

In (1), different from image magnitude IM(p) which is a scalar variable, the direction of a

color vector is defined by a unit-length vector IO(p) = [i1/IM(p), i2/IM(p), i3/IM(p)]T in the vec-

tor field. Since IO(p) is a self-contained directional variable on the chromatic unit sphere, anal-

ysis of color texture based on it is also simplified and restricted on the unit sphere. Fig 1

depicts three color vectors and their orientations in the RGB color cube, where the co-linear I

(1) and I(2) have chromaticity of blue, while I(3) that points to another direction corresponds

to green.

Metric of color similarity in IO. Since IO(p) is a directional variable on the unit sphere,

adopting linear operations to IO(p) for color texture quantification is inappropriate. Hence, we

propose the use of color angular difference/similarity as the basic metric to construct the pro-

posed color texture descriptor. Mathematically, the central angle between the two chromaticity

vectors IO(p) and IO(i) in radians is

ffðIOðpÞ; IOðiÞÞ ¼ arccos ð
IOðpÞIOðiÞ

T

kIOðpÞkkIOðiÞk
Þ; ð2Þ

where IO(p)IO(i)T denotes the inner product of the two vectors. As kIO(p)k = kIO(i)k = 1, and

arccos(�) is monotonously decreasing for ff(IO(p), IO(i)) 2 [0, 180],

ffðIOðpÞ; IOðiÞÞ / IOðpÞIOðiÞ
T
: ð3Þ

Fig 1. An example of the color orientation components in the MD representation in the RGB color space. (a) An RGB color cube with three color vectors, and

(b) their orientations on the unit sphere.

https://doi.org/10.1371/journal.pone.0206996.g001
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To avoid the inverse trigonometric operation which is computational intensive, the inner

product IO(p)IO(i)T is used to measure color similarity in this work. For ease of reference, in

this work

mp;i ¼ IOðpÞIOðiÞ
T
: ð4Þ

A small mp,i indicates two different color orientations, and mp,i = 1 implies that two color vec-

tors are co-linear.

Local texton indexing based on color similarity. We first consider color spatial distribu-

tion in a small image patch. For clarification, given a color orientation image IO, a small patch

centered at a pixel p is composed by its N neighborhood pixels within a predefined area ON. In

this work, to obtain rotation-invariant descriptor, the classical circular neighborhood is taken

to define ON. For instance, given a center pixel, O8 consists of 8 equally spaced pixels on a cir-

cle of unit radius around it, under which there are 36 different rotation-invariant patterns. It

should be noted that in the circle neighborhood, there must be some neighbor points not on

integer coordinates. Color vectors for these point are computed using the bilinear interpola-

tion based on the nearest 4 pixels on image integer coordinates. The assumption behind this

operation is that image color is smooth and without abrupt change.

For each pixel p in IO whose neighbors are all within an image, a vector M(p) = {mp,i, i 2
ON} is generated to quantify local color differences between the center pixel IO(p) and its

neighbor pixels IO(i) for i 2 ON. That is, M(p) provides information on local color similarity

with respect to the center pixel.

Note that the real-value quantity mp,i is sensitive to small color variation which may be

introduced by inconsistent staining depths, imaging noise, or uneven illumination. To obtain

a robust descriptor against small color variation, a binarization bp,i 2 {0, 1} with respect to a

threshold TO is introduced to determine whether color difference mp,i is smaller enough to dis-

tinguish image colors. To be more precise, bp,i = 1 for mp,i< TO, which suggests a major color

change due to different stained substances in images. With the obtained similarity vector M(p)

and threshold TO, a value IQDCP(p) is generated to represent the rotation-invariant local

counter-color pattern around pixel p as follows:

IQDCPðpÞ ¼ min
0�n<N

X

i2ON

bp;i � 2½ðiþnÞ mod N�

( )

;

where bp;i ¼
1 if mp;i < TO

0 otherwise
;

( ð5Þ

Note the min(�) together with the mod (�) operations in (5) ensure QDCP’s rotation-invariant

property. Since a tissue slide may be placed along any orientation during imaging, the property

of rotation invariance is of paramount significance in pathology image analysis.

The binarization threshold TO can be either predetermined or adaptively set based on appli-

cations. It is noteworthy that for the same image, different TO leads to distinct color texture

descriptors. Briefly, fine textures associated with small color change can be extracted with a

large TO, and a smaller threshold on the color similarity vector results in a coarse color texture

descriptor. We discuss the parameter setting of TO particularly in pathology image analysis in

the next section.

Summary of texton statistics. From the viewpoint of texture statistics analysis

approaches, texture is considered as a probabilistic generator of texton and the underlying

probability distribution of texton can be used for image abstract representation. Following the

histogram of equivalent patterns (HEP) paradigm [35], an image-wise histogram HQDCP, the

Color texture descriptor in pathology image analysis
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approximation of color textons’s distribution, is produced from the scalar image IQDCP for

image characterization. Mathematically, the value in the jth bin in HQDCP is

HQDCPðjÞ ¼
X

p

dðIQDCPðpÞ; jÞ; ð6Þ

where δ(�) is the Dirac delta function. It is noteworthy that since QDCP is computed based on

color difference which is less sensitive to image luma components, it is robust to vignette and

inconsistent illumination in pathology images.

Pathology image analysis using QDCP

Overview of color texture based analysis pipeline. Fig 2 depicts pathology image analysis

workflow in this work. Given a color pathology image I, it is first converted to the YCbCr

color space, a linear transformation of the RGB domain in (7).

Y

Cb

Cr

0

B
B
B
@

1

C
C
C
A
¼

0:299 0:587 0:114

0:596 � 0:274 � 0:322

0:211 � 0:523 0:312

0

B
B
B
@

1

C
C
C
A

R

G

B

0

B
B
B
@

1

C
C
C
A
: ð7Þ

We select the YCbCr model to extract the QDCP descriptor for reasons as follows. First, in the

YCbCr domain, the color similarity metric in (4) is more effective to distinguish stain colors in

pathology images. For instance, in Masson’s trichrome stained pathology images, collagen and

mucus appear in green-blue colors, while muscle and cytoplasm are in red. In the RGB color

space, all colors in the green-blue plane are orthogonal to red, which implies that obtained

color similarity metric is 0 between green-blue colors and red. In contrast, after above non-

orthonormal transformation in (7), this issue is solved and the similarity metric has more dif-

ferent values, which facilitates distinguishing histological objects in pathology images using

QDCP. Second, the performance of QDCP depends on the selection of color difference thresh-

old TO. In the RGB color space, a color vectors is valid with positive vector components in a

3-D Cartesian coordinate system, as depicted in Fig 1(a). Consequently, IO(p) locates on the

positive eighth of the unit sphere, and TO has to be the in the range of [0, 1]. In contrast, in the

YCbCr color space where Cb/Cr components can be negative, the corresponding IO(p) occu-

pies most of the upper sphere. Hence for the same images, the threshold range expands to [−1,

1], which greatly alleviates QDCP’s sensitivity to the threshold setting. In experimentation, the

YCbCr space is compared to other color spaces (RGB, CIELab, and I1H2H3) that are often

used in pathology image analysis. The results indicate that YCbCr domain always reaches the

top performance in all examined image sets.

Fig 2. QDCP based pathology image color texture analysis pipeline used in this work.

https://doi.org/10.1371/journal.pone.0206996.g002
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Then the YCbCr-format image is decomposed into orientation image IO and magnitude

image IM following (1), from which QDCP and LBP are extracted to form a long color texture

feature fct using different feature fusion techniques. Note, as QDCP describes color texture pat-

terns in the orientation image only, texture patterns in the magnitude image should also be

included in analysis. Given IM(p) being a linear variable, we select LBP to characterize content

in the magnitude image due to the descriptive power of LBP. We want to point out that in the

YCbCr domain, IM/IO decomposition is superior to the Luminance/Chromaticity separation

(corresponding to Y-axis/CbCr-plane) in pathology image analysis for following reason. In the

YCbCr color space, CbCr components are ill-defined when the vector is close to an achromatic

color. Consequently, color analysis on the CbCr plane may be problematic, especially for

pathology images which usually contains achromatic background areas. The decomposition of

IM/IO can avoid this problem as an achromatic color in the YCbCr color space has a well-

defined orientation, which can be denoted by a unit vector [1, 0, 0].

Finally, a classifier is applied to the long feature vector fct to obtain image analysis result.

Note that color variation is often observed in pathology images [36] and color texture fea-

tures are reliable when examined pathology images have limited color variation [11, 12].

Hence, in this paper, we assume that such appearance variation, if it exists, has been removed

beforehand by color normalization approaches [37–40].

Selection of threshold TO for QDCP. To quantitatively represent diagnostic counter-

color patterns by QDCP, an appropriate threshold TO is vital. Generally, a small threshold

leads to a less-descriptive feature, while a very large TO makes QDCP sensitive to small color

change introduced by imaging noise or non-uniform imaging illumination. Fig 3 presents

examples of IQDCP with respect to different thresholds. In the figure, the QDCP image com-

puted with a smaller threshold, TO = 0.55, has fewer details, as most color differences are not

high enough to be considered as major color changes. However, with a larger threshold, for

instance, TO = 0.85, most color variations in the image are significant with respect to TO and

hence contributory to image description. Consequently, the obtained QDCP image shown in

Fig 3(d) is less descriptive for nuclei distribution in the image.

It should be noted that selection of the threshold for a QDCP descriptor is application

dependent. It is non-trivial to set the optimal threshold by a generic algorithm. So in this

study, we provide several strategies to select TO for QDCP’s construction in pathology image

analysis. First, if prior knowledge about chemical dyes is known, a value which is slightly larger

than the inner product of corresponding stains’ color vectors can be used as TO. By using this

threshold, QDCP is capable of extracting information about diagnostic counter-color patterns

composed of stained histological components. Otherwise, we believe TO 2 (0.75 − 0.85), which

corresponds to colors separating around 30–40 degrees, is a good start to compute QDCP

Fig 3. QDCP images generated under different thresholds TO with 8-point unit-radius circular neighborhood. Given a normal breast biopsy image (a) from the

UCSB breast cancer dataset [41], a small threshold results in a QDCP image with large black area as most color changes are considered insignificant for image

description (b); whereas with a large threshold, QDCP is sensitive to small color variations, and the major color change may be overwhelmed by small color variations

(d). Since there are 36 rotation-invariant patterns under the setting, all QDCP images are normalized with respect to 36 for visualization.

https://doi.org/10.1371/journal.pone.0206996.g003
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from the YCbCr domain. Experimentation later demonstrates that TO 2 (0.75 − 0.85) is capa-

ble of generating considerably good classification in different datasets. In addition, the various

QDCP descriptors generated under different thresholds can be combined together, so that

both coarse and fine color textures are taken into consideration for image understanding.

QDCP and LBP feature fusion. QDCP and LBP represent image textures in the orienta-

tion image and the magnitude image, respectively. To form a complete color texture feature,

we can combine QDCP and LBP by concatenation or joint manner.

• In the concatenation manner, we compute individual histograms of QDCP and LBP indexes.

Then the two histograms are concatenated together. In this work, the concatenation fusion

is represented by QDCP-LBP.

• In the joint fusion method, a joint 2-dimensional histogram is generated, where co-occur-

rence of QDCP and LBP indexes is recorded. Then the 2-dimensional histogram is vector-

ized to form a long feature vector. The joint fusion manner is represented by QDCP/LBP in

this paper.

Compared to the joint fusion method which generates a long feature vector, the concatena-

tion manner is computationally efficient with the penalty of discarding the co-occurrence

information between QDCP and LBP.

Experimental design

In this section, experimental design with applications in pathology image analysis, which

includes information about testing pathology image sets and evaluation methodology, is

specified.

Pathology image sets

This study takes two public pathology image sets, the GlomDB glomeruli dataset [12] and the

ALL-IDB2 dataset [42], as experimental data to evaluate the proposed texture descriptor.

The GlomDB glomeruli dataset [12] is published for color and texture descriptor evalua-

tion. The image set contains 1976 16-by-16 non-overlapping square patches of textures

selected by manual segmentation from 15 Masson’s trichrome stained renal biopsy samples.

Among the 1976 sub-images, half textures correspond to glomeruli while the other half are

non-glomeruli patches. Fig 4 shows a portion of one renal biopsy image in the GlomDB set,

where two glomeruli are observed. Compared to other tissue substances in the renal image

that have relatively small color variations, color texture patterns in glomerulus areas are more

complicated.

The ALL-IDB2 image set [42] is published for testing the performances of classification sys-

tems on blood pathology images. Acute Lymphoblastic Leukemia (ALL) is a serious blood can-

cer that can be fatal for children. In pathology, identification of blast cells in microscopic

images of blood samples is essential in ALL diagnosis. Though morphology characteristics of

white blood cells are considered the classical features for distinguishing normal lymphocytes

cell and lymphoblasts in ALL images, texture feature LBP is demonstrated having good perfor-

mance in this classification scenario [9, 10]. Hence, we include this image set in this study to

examine our new color texture descriptor. Specifically, the ALL-IDB2 dataset contains 260

cropped area of interest of normal and blast cells from 108 blood sample images generated by

Canon PowerShot G5 camera and stored with 24 bit color depth in the RGB format. Among

the 260 cell images, 130 images contain lymphoblasts from ALL patients and the rest images

have normal white blood cells. Fig 5 shows examples of lymphoblasts and normal lymphocytes

cell images in the ALL-IDB2 image set.
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Evaluation protocols

Evaluation of the proposed descriptors is based on pathology images classification in either the

GlomDB image set or the ALL-IDB2 dataset. Following the procedure described in previous

section, texture features (QDCP, QDCP-LBP, and QDCP/LBP) are extracted and passed to the

classifier. To obtain a solid conclusion, fisher’s linear discrinminant (FLD) classifier, the sup-

port vector machine (SVM) with a radial basis function (RBF) kernel, and K-nearest neighbors

(KNN) are exploited to evaluate features’ discriminative power. Specifically, we randomly par-

tition the image set into training and testing set following the 10-fold nested cross-validation

methodology. In the inner 5-fold validation loop of the training stage, parameters of the

proposed descriptor TO and hyper-parameters of classifiers (σ in the RBF kernal and the

box constraint for declassification penalty of SVM, and the number of neighbors k and the dis-

tance metric of KNN) are automatically selected to optimize classification accuracy. In the

outer testing evaluation loop, the obtained threshold is applied to extract QDCP features

which are then passed to the trained classifier.

The agreement between groundtruth and classification results is estimated using two met-

rics, which are classification accuracy (ACC) and the receiver operating characteristic (ROC)

curve analysis. ACC is intuition and easy to compute, representing the probability of a correct

classification for a query image. ROC analysis is a more comprehensive measurement than

ACC, as it is more statistically consistent in classification evaluation [43]. To quantitatively

compare ROC curves of various color texture descriptors, the area under the ROC curve

(AUC) is calculated. Both ACC and AUC are in the range of [0, 1], and large values indicate

better classification. The 10-fold cross-validation is repeated 10 times, and the statistics of

ACC/AUC are summarized based on the 100 performance indexes.

Based on above evaluation procedure, two comparison experiments are performed. In the

first experiment, the QDCP descriptor is extracted from the RGB domain, the YCbCr domain,

Fig 4. A renal biopsy image with two glomeruli in the GlomDB set [12]. The glomeruli in the image have rich counter-color textures that are composed of stained

histological substances.

https://doi.org/10.1371/journal.pone.0206996.g004
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the CIELab domain, and the I1H2H3 domain. The first three color spaces are the most com-

mon color spaces used in texture analysis literature, and the I1H2H3 color space is recom-

mended for the Masson’s trichrome stained images in the GLombDB set [12].

In the second experiment, QDCP-based descriptors are compared to prior arts of color tex-

ture features. In specific, the grayscale LBP is applied to image luma component only and used

as comparison baseline. The non-vector processing methods, ind-LBP and OC-LBP [25], are

included in our comparison experiment. Ind-LBP is obtained by concatenating LBP histo-

grams independently extracted from the three channels in the YCbCr color space, and the

OC-LBP computes 6 LBP histograms from channel pairs in the YCbCr domain. Finally, 4

state-of-the-art vector-processing based color texture features are examined. Norm-LBP

applies the LBP operator to color vector’s magnitude [27]. LCVBP extracts 3 color angular

patterns from inter-channel pairs and concatenates them with norm-LBP [14]. LCC-LBP com-

bines the local contrast histogram to LBP descriptor extracted from the image luma compo-

nent [30]. And LBP-LAP combines 3 angular feature patters computed from inter-channel

pairs and 3 LBP histograms from the P1P2P3 space [31]. Note in this work the circular neigh-

borhood O8 is applied to all descriptors.

Fig 5. Examples in the ALL-IDB2 image set [42]. (a)-(c) lymphoblasts images and (d)-(f) normal white blood cell images. Compared to the glomeruli image in Fig 4,

lymphoblasts images have smoother image color with fewer counter-color textures.

https://doi.org/10.1371/journal.pone.0206996.g005
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Results and discussion

Quantitative results for each image set are presented and compared to prior works. The sensi-

tivity analysis of QDCP to TO is examined. All the algorithms and evaluations in this study are

implemented in Matlab and accessible to audience.

Glomerulus texture classification on GlomDB images

Table 2 summarizes glomerulus image classification in the fist comparison experiment that

evaluates discriminative power of various color spaces. In this pathology texture analysis

image set, QDCP is most descriptive in the YCbCr domain.

Table 3 summarizes glomerulus image classification using different color texture features

over the GlomDB image set, where the top four classification results are highlighted. To visual-

ize the glomerulus classification, ROC curves associated with SVM are depicted in Fig 6(a).

Because we observe similar trends in the results associated with FLD and KNN, their ROC

curves are omitted here.

The proposed QDCP-based descriptors (QDCP, QDCP-LBP, and QDCP/LBP) achieve the

top performance. This is because QDCP is very descriptive for glomerulus textures that are

composed of different stained histological substances as shown in Fig 6(a). In contrast, as color

texture descriptors in prior arts are usually based on signal order statistics which are sensitive

to small color variation, the resulting features are not reliable in such a scenario. In addition,

as expected, QDCP-LBP and QDCP/LBP improve the classification performance compared to

QDCP.

Table 2. Statistics of glomerulus classification using QDCP extracted from various color spaces (mean±std.).

Color space FLD SVM KNN

ACC AUC ACC AUC ACC AUC

RGB 0.727±0.031 0.794±0.030 0.720±0.084 0.786±0.085 0.720±0.033 0.777±0.037

YCbCr 0.809±0.024 0.892±0.022 0.839±0.023 0.896±0.020 0.843±0.025 0.876±0.043

CIELab 0.706±0.032 0.796±0.032 0.677±0.089 0.755±0.104 0.688±0.035 0.765±0.039

I1H2H3 0.747±0.028 0.828±0.027 0.742±0.086 0.824±0.073 0.738±0.030 0.803±0.021

https://doi.org/10.1371/journal.pone.0206996.t002

Table 3. Statistics of glomerulus classification using different color texture descriptors (mean±std.).

Feature set Dimension FLD SVM KNN

ACC AUC ACC AUC ACC AUC

LBP [8] 36 0.705±0.032 0.775±0.032 0.695±0.040 0.770±0.052 0.691±0.035 0.755±0.043

ind-LBP 3×36 0.716±0.030 0.799±0.031 0.720±0.030 0.792±0.051 0.714±0.034 0.802±0.033

OC-LBP [25] 6×36 0.730±0.028 0.813±0.025 0.730±0.038 0.830±0.052 0.716±0.031 0.803±0.032

norm-LBP [27] 36 0.685±0.031 0.752±0.032 0.689±0.047 0.746±0.051 0.675±0.042 0.733±0.041

LCVBP [14] 4×36 0.758±0.031 0.844±0.026 0.785±0.033 0.853±0.052 0.792±0.031 0.866±0.028

LCC [30] 256 0.582±0.036 0.619±0.038 0.570±0.041 0.595±0.065 0.583±0.034 0.610±0.045

LCC-LBP [30] 256+36 0.665±0.029 0.726±0.029 0.626±0.040 0.709±0.054 0.641±0.040 0.702±0.048

LAP [31] 3×36 0.715±0.029 0.780±0.030 0.721±0.046 0.795±0.041 0.696±0.017 0.767±0.021

LAP-LBP [31] 6×36 0.830±0.024 0.903±0.018 0.813±0.048 0.901±0.036 0.776±0.027 0.861±0.022

QDCP 36 0.809±0.024 0.892±0.022 0.839±0.023 0.896±0.020 0.843±0.025 0.876±0.043

QDCP-LBP 2×36 0.847±0.023 0.919±0.020 0.846±0.027 0.920±0.024 0.838±0.031 0.913±0.016

QDCP/LBP 362 0.930±0.017 0.977±0.010 0.897±0.066 0.961±0.062 0.838±0.032 0.920±0.022

https://doi.org/10.1371/journal.pone.0206996.t003
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Four extra observations are obtained in the GlomDB image set. First, ind-LBP and OC-LBP

take color information into account, and thus improve classification performance compared

to LBP. Second, norm-LBP and LAP achieves no better result than the comparison baseline,

grayscale LBP. For one hand, both norm-LBP and LBP focus on numerical representation of

textures associated with color brightness; On the other hand, since LAP is obtained based on

ordering of color vectors’ similarity, counter-color texture is prone to being overwhelmed by

textures composed by small color variations. Third, LCC has the worst performance, as LCC is

an analogy to the local intensity standard deviation in a grayscale image, and less descriptive to

color textures. Fourth, both LCVBP and LAP-LBP include LBP and the angular texture pat-

terns extracted from inter-channel pairs, they boost the classification performance compared

to LBP.

Lymphoblast classification in ALL-IDB2 images

Table 4 reports lymphoblast classification in the color space comparison experiment. In the

ALL-IDB2 image set, the YCbCr color space and the I1H2H3 color space achieve similar per-

formance. The CIELAB color domain is in the middle, and the RGB color space lags behind.

Lymphoblast classification in the ALL-IDB2 image set is reported in Table 5 and Fig 6(b).

Again, the top four classification results are highlighted in Table 5. In the ALL-IDB2 dataset,

QDCP, QDCP-LBP and LCVBP obtain the top performance for all three classifiers, but the

proposed descriptors are more compact than LCVBP, with less than 1/2 size of LCVBP. We

also notice that performance of the joint QDCP/LBP is about 8% worse than QDCP-LBP. The-

oretically, QDCP/LBP should outperform QDCP-LBP, since QDCP/LBP also maintains the

co-occurrence information between QDCP and LBP indexes. However, it should be noted that

the information gain of QDCP/LBP is with a penalty of relatively large feature dimension. If

the experimental image is not big enough, the resulted QDCP/LBP histogram may be sparse

and sensitive to noise and image artifact, which degrades the performance of QDCP/LBP. We

Fig 6. ROC curves for (a)glomerulus classification and (b) lymphoblast classification using various color texture

descriptors.

https://doi.org/10.1371/journal.pone.0206996.g006

Table 4. Statistics of lymphoblasts classification using QDCP extracted from various color spaces (mean±std.).

Color space FLD SVM KNN

ACC AUC ACC AUC ACC AUC

RGB 0.7658±0.083 0.846±0.082 0.827±0.069 0.888±0.070 0.820±0.071 0.860±0.078

YCbCr 0.869±0.068 0.939±0.045 0.855±0.073 0.927±0.082 0.858±0.080 0.938±0.051

CIELab 0.838±0.065 0.920±0.058 0.811±0.067 0.914±0.082 0.825±0.075 0.916±0.056

I1H2H3 0.860±0.076 0.930±0.051 0.845±0.077 0.911±0.084 0.856±0.079 0.936±0.053

https://doi.org/10.1371/journal.pone.0206996.t004
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believe this is the major reason for the contradictory observation on performance of QDCP/

LBP and QDCP-LBP in the glomerulus texture classification and the lymphoblast classifica-

tion. It should be noted that it is not also the case in practice that the properties of targeting

images are known. Hence, we suggest to try both QDCP-LBP and QDCP/LBP for better

results.

Different from observations in the GlomDB image set, LBP obtains comparable classifica-

tion results to other textures. This may be because lymphoblast image color in ALL-IDB2 data-

set is much smoother and has less color texture patterns. Another interesting observation is

about OC-LBP’s classification results. There is a big performance gap between FLD and the

other two classifiers. We believe the reason is that OC-LBP features associated with normal

and lymphoblast images are not linearly separable and both SVM and KNN are capable of bet-

ter handling this nonlinear situation.

Sensitivity analysis of QDCP against parameter setting

The effectiveness of the proposed QDCP descriptor depends on the selection of threshold TO

in (5). To examine the sensitivity of QDCP against TO, after representing a query image in the

YCbCr domain, we manually vary the value of the parameter when calculating QDCP and

feed the obtained QDCP descriptor to a classifier. The average performances in the two testing

data sets are report in Fig 7.

Table 5. Statistics of lymphoblasts classification using different color texture descriptors (mean±std.).

Feature set Dimension FLD SVM KNN

ACC AUC ACC AUC ACC AUC

LBP [8] 36 0.797±0.071 0.860±0.067 0.783±0.072 0.826±0.064 0.770±0.068 0.816±0.109

ind-LBP 3×36 0.846±0.077 0.910±0.066 0.837±0.078 0.929±0.054 0.839±0.079 0.904±0.063

OC-LBP [25] 6×36 0.702±0.084 0.757±0.105 0.863±0.89 0.925±0.067 0.880±0.079 0.908±0.082

norm-LBP [27] 36 0.797±0.067 0.886±0.058 0.783±0.073 0.887±0.095 0.777±0.074 0.851±0.075

LCVBP [14] 4×36 0.906±0.054 0.959±0.040 0.914±0.057 0.960±0.034 0.894±0.070 0.953±0.052

LCC [30] 256 0.774±0.082 0.768±0.086 0.767±0.069 0.773±0.076 0.774±0.082 0.771±0.075

LCC-LBP [30] 256+36 0.763±0.086 0.829±0.092 0.752±0.067 0.809±0.092 0.753±0.062 0.806±0.091

LAP [31] 3×36 0.852±0.067 0.934±0.047 0.839±0.081 0.925±0.097 0.858±0.053 0.873±0.065

LAP-LBP [31] 6×36 0.654±0.101 0.689±0.110 0.854±0.096 0.922±0.107 0.889±0.065 0.912±0.065

QDCP 36 0.869±0.068 0.939±0.045 0.855±0.073 0.927±0.082 0.858±0.080 0.938±0.051

QDCP-LBP 2×36 0.895±0.054 0.963±0.032 0.898±0.074 0.951±0.068 0.893±0.055 0.924±0.060

QDCP/LBP 362 0.808±0.113 0.897±0.111 0.782±0.103 0.886±0.101 0.765±0.075 0.843±0.072

https://doi.org/10.1371/journal.pone.0206996.t005

Fig 7. (a) GlomDB image classification and (b) lymphoblast classification based on QDCP with different

thresholds.

https://doi.org/10.1371/journal.pone.0206996.g007
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Specifically, in Fig 7(a) which corresponds to GlomDB color texture classification, QDCP is

most descriptive when threshold TO is set around 0.85 (which is about 30 degree of color dif-

ference). Fig 7(b) depicts the effects of TO on lymphoblast classification. QDCP obtains strong

discriminative power with TO = 1 and TO = 0.8, which corresponds to 0 degree and 36 degree

of color difference in the orientation domain. An interesting observation is that in lymph cell

image classification, TO = 1 leads to the best performance. This may be because image color in

the ALL-IDB2 set is very smooth, and all color change in images are very informative for

down-streaming classification.

It is noteworthy that the golmerulus images contains many counter-color content, whereas

lymph cell images, in contrast, are relatively dull. On one hand, though the two image sets

have distinct image properties, generally, QDCP is descriptive when TO 2 [0.8, 0.9]. We believe

this observation is applicable to other images. On the other hand, through all experiments in

this study, we notice that QDCP-based descriptor, especially QDCP-LBP, have high adaptabil-

ity to different image sets. We believe that the flexibility of TO contributes to such adaptability.

In other words, different TO makes the proposed features capable of describing different tex-

tures in images. This adaptability is very attractive in image analysis, because usually image

properties are not well known beforehand.

Conclusion

Color texture patterns in pathology images provide insightful information for disease diagno-

sis. Motivated by the close relation between color diagnosticity and counter-color histological

structures in pathology images, this paper introduced a novel compact numerical descriptor,

QDCP, for image counter-color texture representation. After projecting image colors to a

unit-radius sphere, angular difference between center pixels and their neighbor pixels were

summarized in an image-wise histogram. On the basis of QDCP, two new color descriptors,

QDCP-LBP and QDCP/LBP, were introduced. Experimentation on publicly available pathol-

ogy image sets suggested that the proposed descriptors, especially QDCP-LBP, were very

descriptive and outperformed state-of-the-art color texture descriptors in terms of discrimina-

tive power, computational efficiency and adaptability to different image sets.

Due to the promising performance of the proposed descriptors, our work can be extended

in two directions in future. First, observing the high adaptability to different pathology image

sets, we want to apply these descriptors to nature texture images, examining their performance

in terms of description and adaptability. Second, many algorithms proposed to improve LBP

can be adopted by the QDCP-based descriptors. For instance, we may increase the neighbor-

hood dimensionality, introduce multi-thresholding and fuzzy-thresholding descriptors, and

examine the uniform patterns on the basis of QDCP.
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