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Abstract—In digital pathology, to address color variation
and histological component colocalization in pathology
images, stain decomposition is usually performed pre-
ceding spectral normalization and tissue component
segmentation. This paper examines the problem of stain
decomposition, which is a naturally nonnegative matrix
factorization (NMF) problem in algebra, and introduces a
systematical and analytical solution consisting of a circular
color analysis module and an NMF-based computation
module. Unlike the paradigm of existing stain decomposi-
tion algorithms where stain proportions are computed from
estimated stain spectra using a matrix inverse operation
directly, the introduced solution estimates stain spectra and
stain depths via probabilistic reasoning individually. Since
the proposed method pays extra attentions to achromatic
pixels in color analysis and stain co-occurrence in pixel
clustering, it achieves consistent and reliable stain decom-
position with minimum decomposition residue. Particularly,
aware of the periodic and angular nature of hue, we propose
the use of a circular von Mises mixture model to analyze the
hue distribution, and provide a complete color-based pixel
soft-clustering solution to address color mixing introduced
by stain overlap. This innovation combined with saturation-
weighted computation makes our study effective for weak
stains and broad-spectrum stains. Extensive experimen-
tation on multiple public pathology datasets suggests that
our approach outperforms state-of-the-art blind stain sep-
aration methods in terms of decomposition effectiveness.

Index Terms—Circular mixture model, color analy-
sis, pathology image, stain decomposition, von Mises
distribution.

|. INTRODUCTION

ATHOLOGY serves as the gold standard for cancer di-
P agnosis nowadays. To facilitate pathologists’ examination,
chemical staining, which highlights histological objects of in-
terest, is usually performed in tissue preparation routine. Con-
sequently, color in a pathology image becomes a good indicator
of histological substance distribution.

With advances of technology, digital pathology diagnosis is
attracting more interests for better medical service. Essentially,
a digital pathology diagnosis system is a pattern recognition
system whose schematic framework is shown in Fig. 1. By
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comparing numerical features of a pathology image against the
stored feature sets in the database, a diagnosis system generates
a positive/negative result. Aware that pathology images may ap-
pear in different colors, noise levels, and storage formats due to
the inconsistency in image preparation, preprocessing an image
is necessary to mitigate effects of those inconsistent factors on
subsequent diagnosis. Particularly, to take advantage of color in-
formation in digital pathology, stain separation/decomposition,
a signal analysis process that estimates stain spectra and cor-
responding stain proportions/depths in a pathology image, is
frequently performed in the preprocessing block in Fig. 1. The
resulting single-stained images facilitate descriptive feature ex-
tractions, eventually improving the overall performance of a
diagnosis system. Specifically, in a diagnosis pipeline, stain de-
composition is usually performed for two major purposes. First,
stain separation is an important building block of color normal-
ization for pathology images [1]-[5]. Due to differences of stain
manufactures, stain concentrations, storage conditions, or stain-
ing duration, chemical dyes in the same type may have different
light-absorption spectra, resulting in color variation in images
[6]. The so-called spectral variation in stains, or simply stain
variation, distorts quantitative features extracted from pathology
images, leading to inaccurate image analysis. To limit the impact
of color variation on pathology image analysis, stain separation
is usually performed to obtain spectra of stains in a pathology
image, followed by spectral normalization. Second, stain de-
composition is capable of addressing colocalization of tissue
substances for histological component detection/segmentation
[7]-[10]. Identification of certain histological structures is sig-
nificant for cancer diagnosis [11]. However, applying grayscale-
based segmentation techniques directly to pathology images is
prone to error due to histological substance overlap. One solu-
tion to address this colocalization issue in tissue component
segmentation is to apply classical algorithms to single-stain
images (each containing one type of stain) obtained by stain
decomposition.

Existing stain separation solutions proposed for pathology
images have their own limitations, which are discussed in
Section II-C and Table II in Section VI-D. In this paper,
we propose an effective and robust blind stain separation ap-
proach based on an imaging model of transmission light mi-
croscopy introduced in our previous study [5]. Compared to
[5] which introduces a general and complete color normal-
ization framework for pathology images, this paper focuses
on stain decomposition particularly, and presents a system-
atic and analytic solution based on the observation that a stain
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Fig. 1.

Schematic framework of a pathology diagnostic system, where the pre-processing block may include operations of color space conversion,

stain separation, color normalization, etc. By comparing features of a query image to the stored feature sets, a classifier makes a diagnosis decision.

decomposition problem with its physical constraints is naturally
an NMF problem [12] in algebra. Due to the close relation be-
tween image color and stains, the introduced solution obtains
color-based pixel clustering via a circular mixture model, and
passes resulting color cues to the NMF-based computation. Ex-
perimentation on public image sets suggests that our method is
superior to existing blind stain decomposition approaches.

The major contributions of this study are summarized in both
the application and theoretical aspects as follows:

Contribution to Stain Decomposition: 1) This work exam-
ines the stain decomposition problem and possible challenges
systematically, and provides a holistic and adaptive solution. In
particular, the proposed solution mitigates effects of achromatic
pixels on subsequent image analysis by saturation-weighted
mechanism, addresses stain co-occurrence by a circular mix-
ture model and pixel soft clustering, and adopts NMF computa-
tion to adaptively obtain an optimized solution which conforms
to the physical constraints on stain separation. Compared to
previous works addressing challenges in stain decomposition
partially (discussed in Section VI-D), the proposed solution
is more robust and effective. 2) Unlike previous stain separa-
tion solutions that obtain stain proportions simply by a matrix
inverse operation on an estimated stain spectrum matrix, this
study introduces a method to estimate stain depths via proba-
bility reasoning, which provides insightful information on stain
decomposition.

Contribution to Color Processing: The circular color process-
ing module proposed in this study focuses on the analysis of hue
signals, which is one of the most informative sources in human
color perception. Taking advantage of the close relation be-
tween saturation and hue, the distribution of reliable hue signals
are summarized. As hue signals are periodic on the unit circle,
we innovate to model a hue distribution using a circular mixture
distribution, and provide a complete solution to pixel clustering
based on it. To the best of our knowledge, this study with our
preliminary study' [13] constitutes the first attempt to address
the periodicity of a hue distribution by a circular mixture model
in the color analysis literature.

The rest of this paper is organized as follows. The state of the
art in stain separation for pathology images including problem
formulation and previous works is reviewed in Section II. In
Section III, we introduce a blind stain decomposition method
for images generated by light-absorbing stains, and present its
block diagram. Section IV and Section V specify the two mod-
ules of the proposed method, which are circular analysis of

lCompared to [13], this study considers the circumstance where noise exists,
and adds a noise term in the mixture model for model robustness.

image color distribution, and NMF-based stain decomposition.
Experimental results and discussions are presented in Section
VI, followed by conclusions in Section VII.

Il. STATE OF THE ART
A. Formulation of Stain Decomposition

Stain separation or stain decomposition, is a process that es-
timates stains’ absorption spectra and their proportions at each
pixel in a pathology image. To formulate the stain decomposi-
tion problem, we follow the image model of transmission light
microscopy in [5], and have

I(p, %) = Ib()»i)e’zjll mij(e1)d;(p) 1)

where I(p,A;) and I°(X;) represent image values in the ith
color channel at pixel p and background where no stains ex-
ists, respectively. N is the number of chemical dyes used at
staining, m;; (1) represents the spectral mass absorptivity of the
Jjth stain to an incident light in wavelength A;, and d; (p) is so-
called stain depth, describing amount of the jth stain at location
p. (1) connects a digital quantity, image intensity, to stain ab-
sorption spectra, and can be viewed as a digital version of the
Beer—Lambert law [14]. By moving I°(;) to the left in (1) and
taking logarithm on both sides, the optical density (OD) domain
equivalent expression is as follows:

N
log(I" (x;)) —log(I(p, 1)) = Zmu (e1)d;(p). (2

For a biopsy sample stained by N types of stains and im-
aged via K sensors, we have K equations in the form of (2)
for its pathology image. Hence, we form a K-by-N spectrum
matrix M using m;; as a matrix element in the ith row, jth col-
umn. Then, spectrum of the jth stain, M. ;, can be characterized
by the jth column of M. For instance, an RGB-format H&E
stained image has a 3 x 2 spectrum matrix, whose columns
correspond to spectrum vectors of hematoxylin and eosin. Let
"= [I"(), - IPG))'s I(p) = [I(p. M), - I (p, 2]
and D(p) = [d1(p),...,dn(p)], then

log(I") —log(I(p)) = M x D(p). 3)

According to (3), given a pathology image, stain decomposition
is an image analysis process to factorize log(I”) — log(I(p))
into a spectrum matrix M and stain depths D(p) which are
non-negative. Consequently, a set of single-stain images D =
[Dy,...,Dy]is generated, where D; is a density map consist-
ing of stain depth d, (p) of the ith stain over all pixels. It should
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be noted that I(p, A;) represents a pixel value in a color chan-
nel without gamma correction, i.e., 7y = 1. Correspondingly, an
RGB-format image in this paper refers to an image represented
in the linear RGB color space.

B. Challenges in Stain Decomposition

There are two major challenges in stain decomposition. First,
limited information is available for stain separation. Though
stains have their own diagnostic colors, such as hematoxylin
usually appearing in blue while eosin in pink visually, both
stain variation due to operational inconsistency in staining and
color mixing due to stain co-occurrence are usually observed.
As the profile of chemical dyes may not be available for each
pathology image, quantification of each stain from mixing color
in a pathology image is challenging.

Second, achromatic noise is a big challenge for weak stain
estimation. In pathology images, a weak stain is defined as a
chemical dye that has small intensity or weak color. The weak
stained pixels are prone to be confused with unreliable achro-
matic pixels in background where no stains exists, leading to an
inaccurate stain separation.

C. Previous Works on Stain Decomposition

Existing pathology image centered stain separation solutions
usually follow the paradigm that estimates a stain spectrum
matrix M first and then generates stain density maps D by matrix
inverse computation. They can be categorized into supervised
and unsupervised groups depending on whether control slides
are required.

Supervised approaches achieve stain separation using knowl-
edge on stain spectra obtained from training images. Early
stain decomposition works [15]-[17] quantify stain spectra at
manually-selected pixels in a controlled slide. Recently, stain de-
composition achieved by supervised learning on a set of training
pathology images was proposed in a stain normalization method
[3]. By soft-classifying color features of training images into
categories, the supervised solution computes stain spectra from
different groups. As generating well-controlled training sam-
ples for pathology images generated in different laboratories is
time consuming, or even impossible, our study focuses on the
scenario of blind stain separation.

Unsupervised stain decomposition methods usually estimate
a spectrum matrix M from a query image directly. Following
a color linear unmixing model for fluorescence images where
color is superposition of stains in the linear RGB color space,
independent component analysis or NMF is applied to an RGB-
format pathology image for stain decomposition [18], [19].
However, pathology imaging follows the Beer—Lambert law,
rather than the additive staining model of fluorescence imaging.
Later, sparseness analysis followed by relative Newton method
was proposed to achieve adaptive stain decomposition in [20].
Since this method is designed for hyperspectral images whose
channel number is much larger than the number of stains on
biopsy samples, it is inapplicable to RGB-format images. Based
on an assumption that single-stained pixels exist in a two-stain

image, the plane fitting (PF) method proposes a geometric so-
lution achieved by singular value decomposition (SVD) and
thresholding [1]. Due to its promising results, variants of the
PF method were proposed in recent publications. In [21], prior
knowledge on stains is exploited in a modified PF process for
weak stain estimation. In [4], the enhanced-PH (EPH) method
tried to address H&E stain interaction based on the PF method.
However, PF-based solutions have two major limitations. First,
the thresholds for stain spectral estimation is prefixed and can-
not be adjusted automatically to an optimal values according to
image local content, which results in unstable stain decomposi-
tion. Second, the PF method targets for images having two stains
only, hence it’s nontrivial to generalize it to the scenario of mul-
tiple stain separation. For accurate spectrum matrix estimation,
spectra of chemical dyes were detected using dedicated spec-
tral sensing hardware [22]; whereas dependence on hardware
limits its adoption. Recently, blind color decomposition (BCD)
is achieved by performing expectation-maximization (EM) on
color distributions in the Maxwell color triangle [23]. Though a
heuristic randomization function tries to select stable colors for
spectrum matrix estimation, BCD method is prone to be affected
by achromatic pixels when estimating weak stains’ spectra. In
[5] and [24], either K-mean clustering or circular threshold-
ing (CrT) is exploited for pixel clustering for subsequent stain
spectrum estimation. As these studies ignore color mixing intro-
duced by stain overlap and hard classify one pixel to one stain
cluster, resulting stain separation is less accurate.

In summary, though unsupervised stain separation algorithms
are more advanced over supervised solutions in terms of requir-
ing no control slides, they may fail to generate reasonable stain
decomposition due to various limitations (See examples and
discussion in Section VI-D). Hence, a new robust blind stain
separation approach is needed.

I1l. OVERVIEW OF PROPOSED STAIN DECOMPOSITION

Stain decomposition for a pathology image generated by
absorbing stains is an analysis process to factorize log(I”) —
log(I(p)) into a spectrum matrix M, which is composed of N
stain absorption vectors, and stain depths D(p). Geometrically,
stain vectors intersect at the origin in the OD domain and form
a pyramid, within which all image colors lie. Hence, a stain
separation problem can be phrased as searching a pyramid that
contains all image colors inside.

Unlike the PF work [1] proposing a geometric stain sepa-
ration solution?, we notice that in algebra stain decomposition
formulated in (3) with constraints of non-negative A and D(p)
forms an NMF problem naturally, and thus, make use of the
generic NMF technique to automatically search the N stain
vectors of the targeting pyramid. It should be noted that NMF is
unstable in the sense that factorization results may converge to
different stationary points due to different initializations. Hence,
our study proposes to analyze color distribution in a query image

2Targeting a simplified circumstance that a pathology image is generated by
two stains, the PF method [1] tries to find a wedge plane, instead of a pyramid,
to accommodate most color samples in the OD domain.



LI AND PLATANIOTIS: CIRCULAR MIXTURE MODELING OF COLOR DISTRIBUTION FOR BLIND STAIN SEPARATION IN PATHOLOGY IMAGES

153

0.02| ven Mises Dy i
% | mixture modeling {}
(CATRS) . .
0.01 G e —
weighted hue histogram
0 : |
0 100 200 300 in the HSV color space
T 1 A l—lﬁ—k
Pathology __ Cﬁdﬂc“"‘ f"”‘“?. S5 || NMF-based stain Single-stain
image | module for i3ge = yecomposiion module = images | von Mises modeling |l parameter estimation
of hue histogram | [via stain region devision
(a)
[ Initial stain spectrun Pix it m'.ing
d:f:osuiblbrm' ‘matrix estimation [~ NMF refinement Single-stain via the EM algorithm
parameters r in the OD domain images T
s;m?m i Color distribution
= e parameters
() )

Fig. 2.

(a) Block diagram of the proposed stain decomposition solution, which is composed of (b) circular analysis module and (c) stain separation

module. In (a), a dash arrow represents information transferred between modules, and histogram bins are filled by corresponding colors for

visualization.

first, so that resulting information leads subsequent NMF-based
computation to an optimal convergence point. The diagram of
the proposed blind stain decomposition solution, which is com-
posed of a circular analysis module and an NMF-based compu-
tation module, is presented in Fig. 2(a). In this study, to visualize
image color distribution, bins in a histogram are filled by their
corresponding colors.

Fig. 2(b) and (c) depicts the block diagrams of the circu-
lar analysis module and the NMF-based computation module,
respectively. In the first module, since pathology images may
contain many achromatic pixels, i.e., white background pixels,
reliable image colors are selected implicitly based on pixel sat-
uration to build a hue histogram. With circular modeling of
the color distribution, image pixels are clustered into groups
via maximum likelihood estimation (MLE), each cluster corre-
sponding to one stain. In the second module, based on circular
analysis clues, initial stain vectors and stain depths are com-
puted individually and then optimized by NMF. Generally, the
EM algorithm for pixel clustering in the color analysis module
and the NMF refinement in the decomposition module are com-
putationally intensive. However, as the NMF computation has
good initializations in our method, it converges quickly. Hence,
computation overhead of the method is mainly introduced by the
EM algorithm. Details of the two modules are given in Section
IV and Section V, respectively.

Since side information on stains, such as information about
stain concentration, is hardly available, our work focuses on
an operational scenario where no side information on a query
image, other than knowledge about the stain type, is available
to the system. It should be noted that to ensure reliable stain
decomposition, a query image should satisfy two constraints.
1) A query image should contain light-absorbing stains only.
Any light-scattering stains, such as Diaminobenzidine, should
be removed from images beforehand [23]. 2) A query image
should be generated/scanned under a standard illuminant, such

as CIE Dgs [25], so that image color is not biased by the
microscopic light. Otherwise, color normalization [5] is required
to compensate illuminate variation first.

IV. CIRCULAR MODELING OF COLOR DISTRIBUTION
FOR PIXEL CLUSTERING

Theoretically, chemical dyes used in pathological staining
have different absorption spectra, and color in a pathology image
is generated by transmitted light that is not absorbed by stains
[26]. As color distribution of a pathology image suggests spectra
of incident light that are not absorbed, it can be used to estimate
stains absorption spectra and corresponding stain proportions.
To this end, this section introduces a module, which is depicted
in Fig. 2(b), to analyze color distribution in an image.

A. Saturation-Weighted Hue Histogram

Though pixel values of a color image are usually represented
by vectors in a 3-D space, we propose to study color distri-
bution in the hue channel of the HSV color space for reasons
of robustness and computational efficiency. First, microscope
setup and sample preparation may cause uneven illumination
and vignetting in pathology images [27], [28]. As the HSV
color space separates chroma (hue and saturation) from luma,
color analysis in the hue component is invariant to uneven il-
lumination. Second, though hue is a 1-D angular variable on
the chromatic circle, it is a major property of color in human
vision. Compared to color analysis in high-dimensional spaces,
for example the RGB domain, analysis in hue channel is much
easier. Therefore, a pathology image in the linear-RGB color
space is first converted into the HSV domain for color analysis
in this module.

When summarizing the hue distribution of a pathology image
by a histogram, we notice that most standard hue histograms
have many spikes contributed by achromatic pixels. This
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phenomenon is attributed to singularities in the HSV color space.
That is, hue value is ill-defined for achromatic color, and un-
reliable for a pixel that has a low saturation value. As a result,
color analysis on a standard hue histogram corrupted by these
unreliable pixels is unreliable, or even meaningless. Since achro-
matic color is characterized by low saturation in the HSV space,
to mitigate their effects on hue distribution, we follow our study
in [5] and compute saturation-weighted hue histogram [29] de-
fined as follows:

HY =" s(p)d(0, h(p)) &)

p
where
1 if 6 =h(p)

0 otherwise.

6(0, h(p)) = {

6 = 3601/ L represents the Ith bin in an L-bin histogram, and
s(p) and h(p) are saturation and hue at pixel p in the HSV color
space. Consequently, less-saturated pixels have small contribu-
tions to a hue histogram, and subsequent analysis is less sensitive
to achromatic pixels in image local content.

B. Pixel Clustering via Circular Mixture Model

As demonstrated in Fig. 2(a), the resulting saturation-
weighted hue histogram is composed of multiple hue clusters,
each corresponding to one stain in an image. Hence, we try to
divide a histogram into stain regions for pixel clustering. To this
end, we have two options.

e Nonparametric thresholding methods, such as multilevel
Otsu’ method [30] and CrT [31], can be used to partition
a histogram into nonoverlapping regions. However, hard-
classifying a pixel to one stain cluster is inappropriate
for pathology images, because color at a pixel may be
contributed by more than one stains due to overlap of
tissue substances.

e To address stain co-occurrence in a pathology image, mix-
ture distributions, for instance the well-known Gaussian
mixture model (GMM) [32], can be used to model color
distribution for pixel clustering. However, due to the cir-
cular nature of hue in the HSV color space, applying a
mixture model that consists of linear distributions to a
hue histogram is inappropriate. For instance, hue values
h(p) = 360 are equivalent to h(p) = 0 on the chromatic
plane, and their average is still 0 (or 360). However, when
linear computation is applied, the wrong value 180, in-
stead of 360 (or 0), is generated.

To address stain co-occurrence and angular hue signals, this
study proposes the use of a circular mixture distribution to model
a hue histogram for soft clustering of image pixels.

1) Circular Modeling of Hue Distribution: We assume
that hue is a random variable drawn from a circular distribu-
tion whose probability density function (pdf) is given by the
resulting saturation-weighted histogram. Then for a pathology
image containing N types of stains, the color mixture distri-
bution has a pdf defined as f(z;q;,¢;) = ZZN:S a; fi(x; éi)

subject to (s.t.) 27\7;11 a; = 1. a; represents a probability that

a hue value x is drawn from the ith population f;(x; ¢;) with
a parameter set ¢;. In the model, the first NV populations corre-
spond to the IV stain clusters, and we use one more distribution
to model color distribution of achromatic pixels.

With very-limited prior knowledge on color distribution (i.e.,
stains’ typical color), a circular population, called von Mises
(vM) distribution [33], is used to model each cluster of hue for
two reasons as follows:

e The maximum entropy property of the vM distribution
[33] implies that we have minimum prior information on
the data distribution.

® The shape of a vM distribution varies with different se-
lection of parameters. The flexibility in shape enables the
vM model to approximate many circular distribution [33].
For instance, a vM distribution converges to the uniform
distribution on the unit circle when its concentration pa-
rameter is O; while when the concentration parameter goes
to infinity, it tends to an impulse.

A vM distribution has the density function defined as

1

vM(p, k) = S——=e

Kcos(z—p)
2Ty () %)

where x is a circular random variable with a unit length, 0 < p <
27 and k > 0 represent its mean direction and concentration,
and [y(k) is the zero-order modified Bessel function. Hence,
our von Mises mixture model (VMMM) with a parameter set
U = {a;, i, k; } for a hue histogram is

N+1 N+1

flz;0) = Z a; M (piy Ki), 8.1. Z o; = 1. (6)
i=1 i=1

Noted that the histogram H;" is computed from weighted
hue samples and differs from the standard hue distribution of an
image. Hence, a set of synthetic hue data X = {xy,..., 2z }is
generated following Hj"¥ for parameter estimation. Assuming
that X = {z;} are independent and identically distributed fol-
lowing (6), the joint distribution of X is

M M [N+1
g(X;0) = [[ fas o) =1 |>D. Olqui(l’j;@ﬁi)] (7
j=1 j=1 Li=1

where f;(z; ;) = vM (i, K;).-

2) Parameter Estimation via EM Algorithm: Based on
the VMMM model and hue data X, we proceed to compute
the unknown parameters W in (7) via MLE. By maximizing the
log-likelihood function log g(X; ¥) over ¥, we will get

N+1

,S.t Z 07} =1.
i=1

®)

Due to the complexity and the singularities of this MLE prob-
lem, the EM algorithm [34] is exploited to obtain ¥™* in (8).
By introducing a set of latent variables Z = {z;;} to repre-
sent the information that a sample x; is drawn from the ith
population, where z;; can be either 0 or 1 with a constraint

vajll d(zji, 1) = 1, the EM algorithm defines g. (X, Z; ¥) as

ymle —arg max Z log Z i fi(zj; i)

M [N+1
j=1 i=1
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the joint distribution of observation X and latent data Z given
a parameter set U,

M
(X, Z;9) H azfzxj,@)]. ©)

n::+

Following the conventional expression in the EM algorithm, we
denote the expectation of log g.(X, Z; ¥) based on observation
samples X and current estimation of ¥(¥)as

Q[ 0] = Byo llogg.(X, Z: )[X]. (10)
Then, ¥ is updated via maximizing Q[¥; ¥U(*)] iteratively.
Specifically, in the (k 4 1)th iteration, the EM algorithm first
computes Q[¥; ¥)] using the current ¥(¥) in the E-step,

M N+1
(k+1) k k
Q [ww®] = 3757 = og [al 1 (w01
j=1 i=1
M N+1
= 223 [iogel? - toganiy (")
J=1i=1
+ Ii,gk) cos (:cj — ugk))} , (11)
where
1
it = B [anles, 9] = 37w (sule, w)

2ji =0

N+1
= i z' l‘j7¢ / z' $]7¢£k>)(12)

Then, the parameter set ¥ = {«;, p;, x;} is chosen so that

@) = arg maxy Q[W; ¥(F)] in the M-step as follows:

1) Under the constraint that ZZN? a; = 1, we apply the

Lagrange method to (11) with respect to «; and get

M/M

2) Let partial derivative of (11) over u; equal 0, leading to
> 35'15“) sin(z;

M _(k+1) .
(k+1) _ arctan (Zjl % sm(:z:j)> (14)
Hi = M —(k+D) :

=12 cos(x;)

a§k+1) (13)

— 1) = 0. Hence,

3) Differentiating (11) with respect to k;, we obtain
Sz eos(es — ™) = I (i) /o ()] = 0.
Since the Bessel functlon has the property of I}

(Hi) =1 (lii), we let A(I‘ii) =1 (/Qi)/[() (lil) and obtain
T T A

M _(k+1)
Z]‘:l Zji

H§k+1) — A—l

(15)
where A7 (+) can be solved by numerical methods [33].

According to the convergence theory for an EM sequence
[35], as Q(¥; ¥(¥)) in (10) is continuous in both ¥ and W(*),
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Fig. 3. Examples of histogram modeling by the vM mixture distribution.
Images are shown on the left, and hue histograms and corresponding
modeling parameters are on the right.

log-likelihood value log g(X; ¥) converges monotonically to
log g(X; ¥*) for some stationary point W*, That is, starting
from a good initial parameter set W(°) (which is discussed
in Section IV-D), the EM algorithm will finally obtain W™l
via updating (11) in the E-step and (13), (14), and (15) in the
M-step iteratively. In this study, the EM algorithm is regarded
as convergence when |g(X; UF+1)) — g(X; 0| < 1076,

Examples of the proposed circular mixture modeling of
saturation-weighted hue histograms for pathology images are
presented in Fig. 3. It is noteworthy that the N + 1th cluster has
very small a4 1 and Ky 1. On one hand, the small a1 im-
plies that the saturation-weighted hue histogram contains very
small amount of achromatic pixels. On the other hand, the small
kN1 suggests that the color of achromatic pixels tends to dis-
tribute uniformly over the entire color band.

C. Soft Clustering of Pixels

Since stains may overlap on a biopsy sample, an image
pixel with hue h(p) is assigned a probability vector P"() =

{Plh(p) ]’\lf(fl sit. Z”H Ph (") = 1, where

N+1
¢mle / Z O(mle ft

representing the probability that the pixel belongs to the ¢th stain
based on the circular mixture model with W™,

P‘h( ) _ O(mlefl

2

¢mle) ( 1 6)

D. EM Initialization Through Stain Region Separation

As the log-likelihood log g(X; ¥) is not unimodal in ¥ for
the VMMM model, it may converge to log g(X; ¥*) for any
stationary point ¥* depending on the starting point ¥(?). Thus,
extra care needs to be taken in choosing ¥(*).

We notice that most achromatic pixels in a pathology image
belong to image background characterized by large intensity
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values v(p) in the HSV model. Hence, with a predetermined
threshold 7', an image is divided into stain region R, = {p:
v(p) < T'} and achromatic pixel region Ry, = {p : v(p) > T'}.
In this paper, we set T' = 240 for a 24-bit RGB-format image.
Then, the EM initial parameters are computed from saturation-
weighted hue histograms Hy" and Hy',,, which summarize
color distributions in 12 and Ry, respectively.

We first proceed to compute {u,gO) , /@EO) , 0450)} from H}" for
the IV stain clusters. As we know the typical color of each
stain in an image (for instance, eosin is pink in general), this
prior information is used to initiate #50)7 1 <4 < N.Toestimate

(0) (0)

k; ~ and o, the histogram H", is divided into N nonoverlap

regions R using cosine distance:

Rl = {H(;Ws : CoS (9 — ,ug())) < cos (9 — u§-0>) Vi # z}

(17)
where 6 is a bin in a hue histogram. It is noteworthy that rather
than a linear distance metric such as Euclidean distance, cosine
distance is more efficient to address the circular nature of hue.
For a vM distribution, s = A~!(R) in the MLE sense, where
R is the mean resultant length of circular samples. Hence, as-
suming that a stain region R in H, 5, contains all stain samples
drawn from the ith vM distribution,

(0) —1 1
K = A —_
l <29€R; Y,

2 2
X Z Hy cost | + Z Hy¥ sinf
eR! eR!
(18)
o = 3wy S ). (19)
GER'
Similarly, { ,ug\(,))ﬂ , RE\%I , aﬁ{fll of the achromatic pixel
cluster are estimated from the histogram HyY, = as follows:
HY cosO
(0) Zf) 0,ap
: = t - 20
e (B

0 _ A‘l( 1
220 Hip

2 2
X (Z H;“;p cos 9) + <Z H;“;p sin 9) >

0 0

2D

ag\(,)ll /Z H;“; + H, 6, ap) 22)

Note, since stain region division in a histogram does not ad-
dress stain overlap, resulting parameters { uZ(O) (0) 0>} may
not be very accurate. However, as long as these initial parameters
are reasonable and close to the true values, the EM algorithm
will converge to the MLE solution.

V. NMF-BASED STAIN DECOMPOSITION

In algebra, stain decomposition combined with its phys-
ical constraints that spectrum matrix and stain depths are
non-negative forms an NMF problem naturally. Hence, as
demonstrated in Fig. 2(c), based on the vMMM model of color
distribution, initial stain vectors and stain depths are generated
independently. Then, NMF computation is performed with gen-
erated initializations to obtain the optimal stain decomposition.

A. Estimation of Spectrum Matrix

The estimation of stain spectra starts from the computation of
representative color for each stain cluster. Since the vM distribu-
tion has the maximum likelihood characterization that its sample
mean direction is the MLE of the distribution mean direction,
we take the obtained ™, rather than computing a sample mean,
as the representative hue h; for the ith stain. Then, saturation-
weighted statistics of color components v(p) and s(p) [5] are
exploited to obtain stain representative color:

s = Z(S(p))%(h;,h(p))] / [Z S(p)5(h¢7h(p))] ,
- (23)
Vi = Zs(p)v(p)d(hlvh ‘|/[ZS hlvh )1

(24)

In (23) and (24), as saturation is used as filter parameters, the
color estimation is insensitivity to achromatic pixels.

A stain’s absorption spectrum characterizes the deduction
amount of light in the OD domain when light travels through
the stain [16]. Hence, for a stain whose representative color is
112> = f2([h,, s;, v;]') where fi%" (-) is the function to convert
a color vector in the HSV color space to the RGB model, its
corresponding absorption vector in the OD domain is M}"‘i =
log(1° /I;?’b) For an RGB-format image having N types of
stains, the 3 x N initial spectrum matrix M™ is formed by
using M“; as the 7th column. Hence, given a query image, one
candidate for stain decomposition is

Minl = [Ml,nlv ) M:i,nN}
D" = (M) flog(I") ~ log(D)].

It should be noted that D™ may be negative in (25) and
violates the physical constraints in stain separation. Hence,
refinement on (M™ | Din!) (Section V-C) is required.

(25)

B. Estimation of Stain Density Maps

Initial stain density maps are computed from the point of view
of probabilistic reasoning. As stain co-occurrence may exist in
an image, this study achieves pixel soft clustering by assign-
ing a probability vector P"(?) = {P P]}\l,(f%} to a pixel
with hue h(p), which prov1des 1ns1ghtfu1 mformation on rela-
tive proportions of stains at pixel p In this study, we generate
the ith density map D"’ = {P () ,Vp}. Hence, another
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candidate for stain separation is
{M“‘Q = [log(1") —log(1)](D"?)~!

o | (26)
D" = {Dp,...,Di}.

Similarly, as the resulting //™? may contain negative absorption
coefficients which is impossible in practice, parameter refine-
ment is performed later.

C. Optimal Stain Separation Generation

In algebra, image colors are non-negative combination of N
stain vectors in the OD domain. Due to the NMF-property of
stain decomposition, we exploit the NMF technique to refine the
two candidate solutions with respect to minimizing the mean-
squared decomposition error over all pixels,

{M,D} = arg M’rlr)n>n:0 MSE v« D

— arg min B, [Jlog(I"/I(p) — M x D(p)|1].
27

Consequently, two local optimal results (M?', D') and
(M?,D?) are obtained in the areas around (M™! Dnt)
and (M™2 D™2), respectively. Note, as (M, D"l) and
(M2, D"?) ysually fall in the same convergence area of (27),
(M*', D')and (M?, D?) tend to converge to the same stationary
point. In this study, the NMF iteration is terminated when the
difference of two successive MSE; «p or M is less than 1076
Then, the stain decomposition result with a smaller MSE,; « p
is taken as the final solution.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this study, five experiments are performed to evaluate the
circular analysis module and our stain separation approach. All
experiments run on Matlab, and datasets and experimental de-
sign are specified in each experiment as follows.

A. VMMM for Stain Color Estimation

Through estimating stain colors in a pathology image, this
experiment conducts a comparative evaluation on the proposed
VMMM-based pixel clustering.

Test Data: Experimental images are randomly picked from
the thyroid image atlas [36] published by Papanicolaou Society
of Cytopathology. As the lesion images are stained by different
chemical dyes, they have distinct color distributions.

Experimental Design: The vMMM-based pixel clustering is
performed on the saturation-weighted histogram of a test image.
For comparison, linear thresholding methods (Otsu’s method
and GMM model) and state-of-art CrT method [31] are also
applied to the same histogram, replacing the circular pixel clus-
tering. To better visualize the performance, for each pathol-
ogy image, stains’ representative colors are estimated following
(14), (23), and (24) afterward.

Results and Discussion: Examples of stain color estimation
are presented in Fig. 4, where the two colored bins represent stain
colors estimated from an image. Because the VMMM model

AL o
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Fig. 4. Examples of stain color estimation using different thresholding
methods for pathology images, where the colored bins represent the two
estimated stain colors in an image.

addresses both the circular nature of hue and stain co-occurrence
simultaneously, it generates most accurate stain colors. By con-
trast, Otsu’s method and the GMM model fail as they ignore
the periodicity of hue in computation. Performance of the CtT
method lays between the linear methods and the vMMM model
for two reasons. 1) As an extension of Otsu’s method for di-
rectional data, CrT is achieved by minimizing the intra-class
variance only, rather than by considering all statistics properties
behind observed samples. 2) Particularly for pathology image,
soft clustering of image pixels is preferable due to stain mixing,
whereas CrT can only achieve hard thresholding, which makes
color estimation less accurate.

B. System Robustness to Parameter Settings

In the histogram-based analysis, low resolution of a histogram
may lead to inaccuracy, while too many bins may result in a
sparse histogram and unstable analysis. In this experiment, we
change the number of bins, L, in a hue histogram and examine
whether the final stain separation is sensitive to this parameter.

Test Data: The UCSB breast cancer cell dataset [37], consist-
ing of 58 H&E stained breast cancer pathology images stored
in 24-bit nonlinear RGB format, is selected for two reasons. 1)
It is important to examine the proposed method in H&E stained
images as H&E staining is the dominant staining protocol in
pathology. 2) Evaluation on 58 images is more solid as it does
not depend on a particular image. Note, a UCSB image was
converted to the linear RGB format first to follow the imaging
model in (1).

Experimental Design: The method is said to be robust to L if
the resulting stain spectrum matrix are consistent given various
values of L. Hence, we first compute absolute matrix difference
for the ith UCSB image, AM' = |M] — M;,|, where M; is
a spectrum matrix associated with a histogram having L bins.
Then, the expected value of AM® over the UCSB set is sum-
marized. The expectation of spectral variation in H&E stains
among UCSB biopsies, AM®" = E[|M} — M3 |] fori # j, is
used as comparison baseline. Since the matrix difference (rather
than the matrix itself) matters, we set L = 360 and L’ = 90! for
Il =1,...,8 in this experiment.

Results and Discussion: The average matrix difference AM
over the UCSB set are depicted in Fig. 5, where dash lines repre-
sent the comparative baseline AM®¥. AM keeps 1/10 smaller
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Fig. 5. Matrix differences AM =

[Amyp, Amic; Amap, Amae; Amsy,  Ams.] against the pa-
rameter, histogram bin L, over the UCSB dataset. AM® =
[AmS], Amiys AmSy AmsT; Ams) , Am3Y] denotes the comparison
baseline: expectation of H&E spectral variation in the UCSB set.

than AM®Y within a large range of L, which suggests that
M} and M}, deliver consistent information on stains’ spectra.
Hence, we conclude that our system is robust against the pa-
rameter L. In this paper, a histogram with 360 bins is used in all
other experiment.

C. Stain Separation on CMU Benchmark Dataset

Recently, a public stain separation benchmark is provided
by the bimagicLab in Carnegie Mellon University [4]. We will
evaluate the proposed method on this benchmark.

Test Data: The CMU dataset contains three H&E stained
images in 48-bit linear RGB format, on which strong H&E in-
teraction is observed. Decomposition groundtruth, the H-stained
image and E-stained image, are provided in this set.

Experimental Design: We apply stain separation methods
to each CMU image and compare the decomposition result
to the groundtruth. As the dataset does not provide numeri-
cal information on either stain vectors nor registration parame-
ters between H&E images and corresponding groundtruth, the
Kullback-Leibler divergence Dxy (P||Q), which measures in-
formation lost when () is used to approximate P in informa-
tion theory, is used as a quantitative metric. Specifically, in this
experiment, () is the color histogram of a decomposition im-
age, and P is the histogram computed from the corresponding
decomposition groundtruth. Hence, Dy (P||Q) quantifies the
similarity between the decomposition results and corresponding
groundtruth from the perspective of information theory, and a
smaller Dy (P||Q) suggests a better decomposition.

Results and Discussion: Fig. 6(c) presents our stain separa-
tion on the CMU images. As other separation methods generate
similar results visually, the obtained stain spectra, instead of
their decomposition images, are depicted in Fig. 6(d) to save
space. Table I reports Dy (P||Q) for each method, where the
H(E) represents the H(E)-stained image. For one thing, aver-
age Dk (P]|Q) of the proposed method are close to the EPF
method [4] which has the smallest average Kullback-Leibler
divergence on the benchmark. For anther, we notice that the
EPF method may generate negative stain spectra [for instance,
the eosin vector for the second CMU image demonstrated in

TABLE |
Dk (P||Q) oF STAIN DECOMPOSITION METHODS ON THE UMC SET [4]

PF [1] EPF[4] BCD[23] HTN[5] proposed
Imagel E 1.3007 0.9946 1.0361 1.5472 0.8485
H 25625 2.3687 2.9449 2.8020 27777
Image2 E 1.0959 0.8297 0.9916 1.3364 0.8885
H 26274 2.3506 2.9217 2.5936 2.4855
Image3 E 1.4278 1.1563 1.1678 1.7036 1.3593
H 25523 2.3683 2.9506 2.5033 2.4559
average E 1.2748 0.9935 1.0652 1.5291 1.0324
H 25807 2.3625 2.9391 2.6330 2.5730

Fig. 6(d)], which violates the non-negative constraint on stain
separation. Taking both the metric values Dy (P||Q) and the
constraint into consideration, we conclude that in general the
proposed method generates more reliable decomposition on the
UMC image set.

D. Qualitative Comparison of Stain Separation Solutions

Test Data: This experiment performs a qualitative comparison
among blind stain separation solutions on public pathology im-
ages stained by different chemical dyes. Hence, both the UCSB
images [37] and the thyroid image [36] are used.

Experimental Design: Stain separation solution examined in
this experiment includes the original PF method [1], EPF method
[4], BCD method [23], HTN method [5], and the proposed
method. First, they are assessed on the UCSB H&E images.
Then, these methods are examined on randomly picked thyroid
images which are stained by other chemical dyes. For a fair com-
parison, we tried our best to faithfully reproduce experimental
results in corresponding original papers.

Results and Discussion: We observe that the four previous
blind stain decomposition methods fail in some pathology im-
ages, but that the proposed method always achieves satisfac-
tory results. Fig. 7 gives four typical stain separation examples,
where the first two images are from the UCSB dataset, and the
rest are from the thyroid image set.

The PF method [1] estimates stain spectra by thresholding
along the geodesic line in the SVD domain. As thresholds are
predetermined, inaccurate stain vectors may be generated. The
separation failure due to the image-independent thresholds is
more frequently observed in weak stain estimation which is
sensitive to achromatic pixels. We notice that for most examined
images, the PF method can obtain similar results to the proposed
method if the thresholds are manually selected.

The EPF method [4] tried to improve the original PF method
for images with H&E stain interaction. Hence, it inherits PF’s
limitations. Besides, as modifications in EPF is particularly for
H&E stains, they have side effects on other stains.

The BCD method [23] estimates stain vectors by applying
the GMM model to selected pixels with high optimal density in
the Maxwell color triangle. However, as less pixels associated
with weak stains are selected in the estimation process, spectra
of weak stains are biased by strong stains, and thus, less reli-
able. This explains why the decomposed E-stained images have
hematoxylin-similar color for UCSB images.
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Fig. 6. Stain separation on the CMU benchmark. (a) Benchmark images; (b) Groundtruth; (c) Stain decomposition achieved by the proposed
method; (d) Stain vectors obtained by various stain separation solutions: PF method [1], EPF method [4], BCD method [23], HTN method [5] and
the proposed solution.
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images

Thyroid

images

A e o o

i

"
-

Fig. 7. Example of stain decomposition achieved by the PF method [1], EPF method [4], BCD method [23], HTN method [5] and our solution.
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TABLE Il
BLIND STAIN DECOMPOSITION METHOD COMPARISON

Addressing: (E)PF[1], [4] BCDI[23] HTNI5] proposed
achromatic pixels in X X V4 V4
weak stain estimation
stain overlap in N/A v X v
pixel clustering
physical constraints X X 4 v
in optimization

TABLE Il

RUN TIMES OF BLIND STAIN DECOMPOSITION OVER THE UCSB SET

Methods PF [1] BCD [23] HTN [5] proposed

Run time (sec) ~ 0.3352 9.6344 0.6849 530413

The HTN method [5] uses the K-mean algorithm to divide a
hue histogram into nonoverlap stain regions for stain estimation.
Thus, it is incapable of addressing stain colocalization and hue
periodicity, and may fail in images either containing? large areas
of stain overlap (first UCSB image) or generated by stains with
broad color bands (second thyroid image).

As briefly summarized in Table II, since the proposed method
addresses issues related to achromatic pixels, stain overlap, and
the problem’s physical constraints systematically and holisti-
cally, it is able to generate a good stain separation result with
minimized decomposition error.

E. Computational Complexity

This experiment quantitatively compares the computation ef-
ficiency of the proposed method to the PF method [1], the BCD
method [23], and the HTN method [5].

Test Data: The UCSB dataset [37] is used, because contents
in the 58 images pose various difficulties for stain separation.

Experimental Design: For quantitative comparison, we run all
examined algorithms on the test data, and summarize their aver-
age run times in second (s). To clarify, convergence conditions
(of the EM method and NMF computation) in the experiment
are all set to 10~*, and all timings are calculated on a 3.4 GHz
Windows 7 computer running Matlab R2014a.

Results and Discussion: Table III reports the average run
times for various stain decomposition over the UCSB set. The
PF method [1] is fast as its two building blocks, thresholding and
SVD, are computationally efficient. As both the BCD method
[23] and the proposed method adopt the EM algorithm for pixel
clustering, they are much slower. However, compared to the 2-D
EM iteration in the BCD method, the 1-D parameter estimation
and the NMF computation in the proposed method converge
much faster because of good initializations. The computation
complexity of the HTN method [5] mainly comes from the

3The proposed method is currently implemented for validating our idea and
has not been optimized. Its computation efficiency can be much improved using
vector-based computation and parallel computing.

NMF computation. Hence, its efficiency resides between the
proposed method and the PF method.

VIl. CONCLUSION

This study introduced an effective blind stain decomposition
method for pathology images. Since challenges of achromatic
pixels in color analysis and stain estimation, stain co-occurrence
due to histological substance overlap, and non-negative con-
straints on stain decomposition were carefully addressed, the
proposed method achieved optimized result with minimal
decomposition error. Extensive experimentation on publicly
available pathology images indicates that the proposed solution
performs more consistently compared to state-of-the-art blind
stain separation methods.

The introduced circular color processing module made use
of a VMMM distribution for saturation-weighted hue histogram
modeling. Complete solution to color-based pixel cluster was
provided. Since hue is a periodic angular signal on the unit
chromatic circle, the innovation of circular modeling of hue
distribution led to more accurate analysis, which is demonstrated
in our experiment.
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