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Abstract—In this study, we present a novel machine learning-1

based technique to help surgical mentors assess surgical motion2

trajectories and corresponding surgical skills levels in surgi-3

cal training programs. The proposed method is a variation of4

sparse coding and dictionary learning that is straightforward to5

optimize and produces approximate trajectory decomposition for6

structured tasks. Our approach is superior to existing stochas-7

tic or deep learning-based methods in terms of transparency8

of the model and interpretability of the results. We introduce9

a dual-sparse coding algorithm which encourages the elimina-10

tion of redundant and unnecessary atoms and targets to reach11

the most informative dictionary, representing the most impor-12

tant temporal variations within a given surgical trajectory. Since13

surgical tool trajectories are time series signals, we further incor-14

porate the idea of floating atoms along the temporal axis in15

trajectory analysis, which improves the model’s accuracy and16

prevents information loss in downstream tasks. Using JIGSAWS17

data set, we present preliminary results showing the feasibility18

of the proposed method for clustering and interpreting surgical19

trajectories in terms of user’s skills-related behaviors.20

Index Terms—Machine learning, dictionary learning, sparse21

coding, surgical trajectory decomposition, surgical skills22

assessment.23

I. INTRODUCTION24

MODERN surgical robots are capable of measuring25

and recording surgical activities (e.g., kinematics data,26

video recordings, eye-gaze data), which makes them a perfect27

platform for incorporating data-driven solutions for proce-28

dural understanding and user skills assessment applications.29

There are several work that perform the autonomous robotic30

surgical skills evaluation using deep learning (DL) [1]–[5].31

Even though these studies have reported relatively low mis-32

classification rates, they are black-box models in which the33
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decision-making procedure is not transparent or understand- 34

able in human terms. As a result, there is neither intuitive 35

nor explainable feedback to the user about his/her surgical 36

performance and contributing factors to the predicted model 37

outcome (in this paper, explainability and intuitiveness are 38

referred to as the extent to which the internal mechanism 39

or outcome of a model can be explained and are intuitive 40

in human terms, respectively). Moreover, the high capacity 41

of the mentioned models (i.e., the ability of the model for 42

accommodating input data variations which mainly depends 43

on the number of learnable parameters), especially DL mod- 44

els, demands large training sets to avoid overfitting. Since in 45

the field of robotic surgery, clean and reliable data sets are 46

very small in size, such models usually tend to overfit and fail 47

to generate reliable models that perform well in novel situa- 48

tions (e.g., aborting and restarting a task, unwanted mistakes 49

caused by poor depth estimation, etc.) [6]. 50

To provide users with more elaborated targeted feedback 51

about their skills level and surgical performance (e.g., in 52

which part of the task the surgeon should improve his/her 53

skills), one can break up surgical trajectories into pre-defined 54

segments called surgemes [7] and apply surgical skills assess- 55

ment methods at the sub-task level. In this paradigm, rather 56

than having a global performance score, we will analyze 57

the surgical workflow that results in high-resolution feedback 58

regarding different aspects and parts of the whole executive 59

task. There is a rich body of literature trying to perform fine- 60

grained analysis of surgical activities in an automatic way 61

using DL [8]–[13], reinforcement learning (RL) [14], and 62

Hidden Markov Models (HMMs) [15]. These approaches not 63

only have the same problems raised from being a black-box 64

model but also suffer from over-segmentation (i.e., predicting 65

numerous insignificant action boundaries) and low accuracy 66

rate that prevents them to make certain predictions, especially 67

for rare or unseen events (e.g., mid-task failures) [7]. We 68

infer that the over-segmentation problem arises from the fact 69

that these models pay too much attention to the data local 70

variations (i.e., microscale details), rather than global con- 71

text. Moreover, to evaluate the segmentation accuracy of these 72

methods, they heavily rely on manually made gesture anno- 73

tations, which would be very laborious, time consuming, and 74

prone to inter-annotator variation. More importantly, the men- 75

tioned approaches break up trajectories into segments without 76

offering any explicit interpretation about the behaviors and the 77

dexterity of the user in the sub-task level. 78

Statistical machine learning (ML) techniques, on the other 79

hand, usually perform better than DL models on small training 80
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Fig. 1. Approximate trajectory decomposition in structured tasks.

data sets. An intuitive and human-inspired ML approach can81

provide us with a more transparent and explainable solution for82

data-scarcity surgical decomposition task [16]. One intuition83

about structured tasks such as suturing trials, human walking84

cycles, parallel parking, etc., is that their main variations can85

be decomposed into finite components namely general trends86

and seasonal patterns. This concept is illustrated in Fig. 1 in87

which d1 is the average general trend and other components88

are the averaged dominant seasonal patterns for all 6 trials89

within the training data set. In this kind of decomposition, each90

component contains specific and important intra-trial temporal91

variations. Moreover, taking Fig. 1 as an example, each trial in92

training or test data sets can be individually reconstructed via93

a linear combination of components, i.e., Trialk =∑3
i=1 ckidi94

where cki ∈ R is the weight indicating the contribution strength95

of component di in the reconstruction of kth trial. If di are96

trained on expert trajectories, gains cki for a given test trial97

can be used to determine the fidelity of the participant to the98

averaged ideal trend and seasonal patterns and convey impor-99

tant information regarding the execution quality and dexterity100

of the user. That is, each trajectory can be characterized by its101

coefficient vector ck = [ck1, ck2, ck3]� in the embedding space102

in which hidden behaviors of the user will be revealed.103

Inspired by these intuitions, dictionary learning and sparse104

coding [17] can be modified to be applied on structured105

time series for meaningful, interpretable, and human-inspired106

trajectory decomposition task. Generated components (i.e.,107

dictionary atoms) and their contribution in reconstruction of108

each individual trajectory (i.e., generated code matrix) disclose109

important information for several downstream tasks such as110

skills assessment, skills transfer, and anomaly detection.111

In this research, we will introduce dual-sparse dictionary112

learning approach for the approximate trajectory decomposi-113

tion of structured tasks in retrospective studies. We will also114

introduce our dual-sparse dictionary learning algorithm with115

a novel absolute mutual incoherence metric μ+. The idea116

of floating atoms will be incorporated in the proposed algo-117

rithm to accommodate trajectory structures with temporal shift.118

This preserves the relative temporal structure of the underly-119

ing events and prevents information loss while mapping the120

data to lower dimensional space (or embedding space, e.g.,121

three dimensional space which is perceptible for humans and122

suitable for data visualization purposes) and makes our embed-123

ding representation more meaningful and realistic. Finally, we124

will evaluate our method on basic structured robotic surgery125

trajectories in JIGSAWS data set for surgical skills assess-126

ment and anomaly detection tasks. We believe that our novel127

approach has a potentially high impact in robotic surgery, 128

where demands for enhanced safety and explainability are 129

extremely strong. 130

The paper is organized as follows: In Section II, basic con- 131

cepts and motivations that lead us to our contributions will 132

be discussed. In Section III, algorithm implementation and 133

the idea of floating atoms will be presented. In Section IV, 134

fundamental features of our approach and its application on 135

JIGSAWS data set will be investigated. In Section V, several 136

discussions about the advantages and practical details of the 137

proposed method will be presented. Concluding remarks are 138

provided in Section VI. 139

II. PROBLEM STATEMENT 140

A. Preliminaries 141

Sparse coding is a method of representing data vectors as 142

sparse linear combinations of a set of basis elements called 143

atoms. It is assumed that all atoms together which make dic- 144

tionary matrix, capture main directions in the input space 145

and have enough information for reconstructing input data. 146

Dictionary learning algorithms try to develop a dictionary 147

matrix that efficiently reconstructs each input data by a lin- 148

ear combination of the generated atoms. In this context, all 149

generated coefficients of linear combinations are referred to 150

as code. 151

A traditional dictionary learning framework for sparse 152

representation optimizes the empirical loss function 153

L(D, C) = min
D,{ci}ni=1

n∑

i=1

[
1

2
‖xi − Dci‖22 + α‖ci‖0

]

(1) 154

for the finite set of n data vectors X := [x1, . . . , xn] ∈ R
d×n, 155

aiming to find an optimal dictionary D := [d1, . . . , dp] ∈ R
d×p

156

such that each data vector xi can be well-approximated by a 157

linear combination of dictionary atoms {dj}pj=1. The term ‖ci‖0 158

in (1) which is the number of non-zero elements in vector ci, 159

encourages to minimize the number of non-zero element in 160

code vectors ci ∈ R
p of the code matrix C := [c1, . . . , cn] ∈ 161

R
p×n. The sparsity-promoting loss ‖ci‖0 encourages the cod- 162

ing algorithm to rely on a minimum number of the generated 163

dictionary atoms for reconstruction which has the advantage of 164

being simple and easy to decode, either by machine or human. 165

The loss function (1) simply tries to make a balance between 166

data reconstruction loss ‖xi − Dci‖22 and sparsity-promoting 167

loss ‖ci‖0 with a regularization parameter α. 168

The l0 sparsity loss ‖ci‖0 in (1) makes the optimization an 169

NP-hard problem with sub-optimal solution [18]. Replacing 170

‖ci‖0 with its l1 convex relaxation ‖ci‖1 yields optimal and 171

sparse solutions for codes ci [19]. To prove why l1 regular- 172

ization term ‖ci‖1 enforces elements of vector ci to be zero 173

(i.e., to be sparse rather than small), we encourage the reader 174

to see [20]. 175

Due to the bi-linearity between the dictionary D and codes 176

ci, (1) is still non-convex and cannot be jointly optimized with 177

respect to dictionary D and code matrix C [21]. Since (1) is 178

convex with respect to variables D or C when the other one is 179

fixed, a solution to this problem is to alternate the optimization 180

procedure between the two variables, i.e., minimizing the loss 181
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function with respect to one parameter while keeping the other182

one fixed. To prevent dictionary atoms to get arbitrary large183

in the optimization process, we should normalize each atom184

(i.e., di ← di/‖di‖2, ∀i) after each dictionary update.185

Conventional dictionary learning approach usually gener-186

ates more atoms than the number of data samples and creates187

over-complete dictionaries (e.g., p ≈ 4n in [22]) for the sake188

of reconstruction accuracy. Besides the high computational189

cost and memory demand of the over-complete dictionary190

approaches, the redundancy of the generated dictionary does191

not necessarily enhance the optimality and performance of the192

final solution. One major problem with over-complete dictio-193

naries is the high correlation between generated atoms, which194

degrades the mutual incoherence metric defined as195

μ(D) = max
i 	=j

∣
∣d�i dj

∣
∣

‖di‖2
∥
∥dj
∥
∥

2

. (2)196

It is empirically observed that highly correlated atoms in over-197

complete dictionaries or in general, high values for μ(D) (in198

Section III-A we will calculate an upper bound for μ) make199

the sparse coding stage slow, computationally demanding, and200

non-optimal [23]. Tackling this problem, [24] proposes orthog-201

onal dictionary learning method (we name it Lorth(D, C)) that202

is the constrained version of (1) subject to D�D = Ip×p203

where I indicates identity matrix. Reference [24] argues that204

this approach yields μ(D) = 0, faster convergence, and com-205

parable results relative to other sophisticated over-complete206

dictionary learning methods such as K-SVD [25].207

B. Motivation208

Prior work in surgical skills evaluation has shown that a lay209

observer is able to discover and rate the skillful behavior of210

a surgeon just by looking at his/her pre-recorded translational211

and/or rotational hand movement patterns with accuracy com-212

parable to an expert surgeon [26]. A possible explanation about213

this interesting result is that the lay observer does not care214

about extreme details and microscale translations/rotations215

within the surgical trajectory. He/she just pays attention to216

the most informative temporal features within the executive217

task, i.e., (1) general trend, (2) seasonal patterns, and (3)218

unwanted random actions. Although the cognitive procedure219

of decision making based on these three factors is unknown,220

we are inspired to investigate how much the fidelity to the221

general trend, correct execution of each seasonal pattern, and222

minimum occurrence of incidental motions play a crucial role223

in rating the performance of the user in surgical tasks.224

The central idea of this work is to generate an intu-225

itive and universally understandable representation of surgical226

trajectories based on building blocks of surgery that mean-227

ingfully describes the procedural flow and highlights hidden228

information of a surgical task. The core intuition is aligned229

with the motivation of representing data as a sparse linear230

combination of specific atoms in sparse coding problems. In231

this context, each dictionary atom can be a representative of232

the task general trend or a seasonal pattern (i.e., surgeme) that233

encapsulates one important local variation of the trajectory.234

Unlike prior dictionary learning algorithms that rely on gen- 235

erating a lot of atoms to take care of details and microscale 236

variations of data, in this work, we develop an algorithm 237

that selectively removes unnecessary atoms and focuses on 238

preserving important variations within the input data to achieve 239

an understandable and interpretable trajectory decomposition. 240

Apart from neglecting unnecessary details and the small num- 241

ber of atoms, another feature that makes our representation 242

meaningful and easy to interpret is the minimum amount 243

of overlap between two arbitrary atoms. This is meaningful 244

because we aim to assign each non-overlapping seasonal pat- 245

tern of the structured trajectory to one dictionary atom (e.g., 246

2nd and 3rd components in Fig. 1). Moreover, a small overlap 247

between dictionary atoms indicates that the action executed in 248

a particular timestamp can be purely attributed to one dom- 249

inant atom and it simplifies interpretations about the quality 250

of the task done in that timestamp. Factorizing minimally- 251

overlapping atoms can be thought of performing approximate 252

decomposition for a particular structured task. 253

Although enforcing atoms to have zero overlap with each 254

other during the learning process makes them more explain- 255

able, it degrades the signal reconstruction quality with poor 256

non-smooth results and the interpretability of generated codes. 257

Moreover, as we will show later, intensively reducing the total 258

number of active atoms increases their overlap. This is because 259

the algorithm tries to allocate all variations of the trajectory 260

among currently existing atoms to minimize the reconstruc- 261

tion loss. There is a inter-dependency between the number 262

of atoms, their overlap, and reconstruction loss to generate 263

informative codes for a given set of trajectories. We call the 264

smallest number of minimally-overlapping atoms that gives us 265

a relatively good reconstruction the intrinsic dimensionality of 266

embedding space (δ). 267

C. Data Set 268

All analysis in this work are done based on the stan- 269

dard JIGSAWS data set [27] collected from surgical activities 270

of eight surgeons in three different levels of expertise (i.e., 271

novice, intermediate, and expert) performing suturing (SU), 272

knot-tying (KT), and needle-passing(NP) tasks on the da Vinci 273

Surgical System. JIGSAWS contains three Cartesian motions 274

along x, y, and z axes as well as 9 elements of rotational matrix 275

R ∈ R
3×3 for both hands of the user and also for both patient- 276

side robotic arms. Note that, all 9 elements of rotational matrix 277

R can be expressed as 3 angles roll (�), pitch (�), and yaw 278

(�) as follows 279

� = atan2

(
r21

r11

)

, � = atan2

⎛

⎝ −r31
√

r2
32 + r2

33

⎞

⎠, � = atan2

(
r32

r33

)

280

where rij is the element in the ith row and jth column of R. 281

III. METHODOLOGY 282

A. Dictionary Factorization 283

We will show that having the minimum overlap between 284

two atoms is a much stricter condition compared to the 285

orthogonality condition (i.e., minimum correlation between 286
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atoms or small value for μ(D)) presented in [24]. To have a287

measure of overlap between two arbitrary atoms, we introduce288

the absolute mutual incoherence metric defined as289

μ+(D) = max
i 	=j

|di|�
∣
∣dj
∣
∣

‖di‖2
∥
∥dj
∥
∥

2

(3)290

where |di| denotes the element-wise absolute value of the vec-291

tor di. Since |di|�|dj| ≥ |d�i dj| holds for ∀di, dj ∈ R
d, from (2)292

and (3) it can be concluded that μ+(D) is an upper bound for293

μ(D) (i.e., μ(D) ≤ μ+(D)) and minimizing μ+(D) shrinks294

μ(D). However, minimizing μ(D) does not necessarily yield295

reduced μ+(D).296

Property 1: 0 ≤ μ(D) ≤ μ+(D) ≤ 1.297

Proof: See Appendix A.298

We argue that minimizing the total overlap between atoms299

promotes the reduction of μ+(D). To formulate overlapping300

between atoms, we rewrite the dictionary matrix based on its301

rows, D := [d̂
�
1 , . . . , d̂

�
d ]� where d̂k = [d1(k), . . . , dp(k)] is302

the kth row of the matrix D and di(k) is the kth element of303

atom di. Note, applying l1 regularization on d̂k (i.e., minimiz-304

ing ‖d̂k‖1 = ∑p
i=1 |di(k)|) in a quadratic objective function305

(e.g., 1
2‖xi − Dci‖22) enforces elements of d̂k (i.e., di(k)) to306

be zero which eventually reduces the total overlap between307

all atoms at timestamp k. This means setting |di(k)‖dj(k)| to308

zero for as many as possible 1 ≤ i, j ≤ p, i 	= j, which ulti-309

mately minimizes μ+(D). Note that since μ+(D) normalizes310

each atom, reducing |di(k)‖dj(k)| is not enough; it is ideal311

for it to be zero. It means we have to have di(k) equal to312

zeros for a lot of all possible i for a given k (i.e., a sparse d̂k313

for all 1 ≤ k ≤ d), which conceptually reduces the over-314

lap between atoms at timestamp k. As a result, μ+(D) is315

a good measure of overlap between dictionary atoms which316

μ+(D) = 1 for a fully-overlapped dictionary and μ+(D) = 0317

for non-overlapping dictionary. Later, we will investigate the318

relationship between μ+(D) and the total overlap between319

active dictionary atoms.320

1) Objective Function Definition: Now, we define a new321

cost function L+(D, C) that tries to jointly generate sparse322

codes and dictionaries with minimally-overlapping atoms to323

reconstruct the input data X324

L+(D, C) = min
D,{ci}ni=1

{
n∑

i=1

[
1

2
‖xi − Dci‖22 + α‖ci‖1

]

325

+
d∑

k=1

β

∥
∥
∥d̂k

∥
∥
∥

1

}

(4)326

where β is the regularization factor that determines the rela-327

tive importance of total overlap compared to the sparsity of328

generated codes and lumped reconstruction error for all data329

vectors in X.330

2) Algorithm Implementation: As explained in331

Section II-A, for the sake of convexity we need to alternatively332

optimize loss function (4) with respect to one parameter D or333

C while keeping the other one fixed. As a result, we have two334

steps for minimizing our cost function: C-step and D-step.335

In C-step we fix matrix D (coming from initialization or the336

previous D-step) and do 337

L+C (D, C) = min
{ci}ni=1

n∑

i=1

[
1

2
‖xi − Dci‖22 + α‖ci‖1

]

. (5) 338

This optimization is equivalent to the lasso problem [28] 339

for which many fast algorithms exist. We assume that the 340

function sparseCode(X,D,α) gets the dictionary D, data 341

vectors X, and regularization parameter α and returns code 342

matrix C. 343

In D-step, we fix matrix C and do 344

L+D(D, C) = min
D

n∑

i=1

1

2
‖xi − Dci‖22 +

d∑

k=1

β

∥
∥
∥d̂k

∥
∥
∥

1
. (6) 345

Due to our l1 condition on the rows of dictionary matrix 346

D, (6) is no longer a conventional dictionary update problem 347

with closed-form solution via coordinate descent approach. 348

Moreover, we have two summations that make the solution 349

formulation hard and long. 350

We define the reconstruction error vector for each data sam- 351

ple xi as εi := xi − Dci ∈ R
d and reconstruction error matrix 352

as E := [ε1, . . . , εn] = X − DC ∈ R
d×n. According to the 353

norm-2 definition, ‖xi − Dci‖22 = ‖εi‖22 =
∑d

j=1 e2
ji where eji 354

is the element in the jth row and ith column of matrix E. As 355

a result 356

n∑

i=1

‖xi − Dci‖22 =
n∑

i=1

⎛

⎝
d∑

j=1

e2
ji

⎞

⎠ =
d∑

k=1

n∑

r=1

ê2
rk (7) 357

where êrt is the element in the rth row and kth column of 358

matrix E�. (7) shows the trivial fact that the sum of squares 359

of all elements in matrix E is equal to that of E�. Due to the 360

fact that E� = (X − DC)� = X� − C�D� we have 361

d∑

k=1

(
n∑

r=1

ê2
rk

)

=
d∑

k=1

∥
∥
∥x̂k − C�d̂k

∥
∥
∥

2

2
(8) 362

where d̂k is the kth column of D� (or as previously men- 363

tioned the kth row of D) and x̂k is the kth column of X�. 364

Combining (7) and (8) results 365

n∑

i=1

‖xi − Dci‖22 =
d∑

k=1

∥
∥
∥x̂k − C�d̂k

∥
∥
∥

2

2
. (9) 366

Substituting (9) into (6) yields a more tractable cost function 367

for our specific dictionary update procedure 368

L+
D�
(

C�, D�
)
= min

D�

d∑

k=1

[
1

2

∥
∥
∥x̂k − C�d̂k

∥
∥
∥

2

2
+ β

∥
∥
∥d̂k

∥
∥
∥

1

]

. (10) 369

Interesting point about (10) is that it tries to minimize exactly 370

the same problem described in (5). In fact, our specialized 371

dictionary learning problem for a given code matrix C and data 372

set X became an sparse coding problem for the dictionary C� 373

and data set X� with regulation parameter β. The algorithm 374

for solving the dual-sparse coding problem is described in 375

Algorithm 1. 376

The first point regarding Algorithm 1 is that unlike the tra- 377

ditional dictionary learning methods, in our method norms of 378
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Fig. 2. The effect of temporal fine-tuning of floating atoms of a given structured task on the reconstruction and information losses, maximum possible
temporal shifts (τi), and optimal temporal shifts (ϕi). (a) and (d) show dictionary atoms that blue lines are general trend and green and black lines are two
floating atoms for that specific trajectory. (b) and (e) show bad reconstruction and information losses due to the ill temporal positioning of the floating atoms.
(c) and (f) illustrate the optimal positioning of floating atoms with regards to a given trajectory.

Algorithm 1: Dual-Sparse Coding Algorithm
Input: X, α, and β

Result: Dictionary D with minimally-overlapping atoms
and code matrix C

Call function sparseCode(.,.,.)
Initialize dictionary D
while not converged do

C← sparseCode(X,D,α)
D← [

sparseCode(X�, C�, β)
]�

end
#normalizing atoms of dictionary D
for i← 1 to p do

if ‖di‖2 	= 0 then
di ← di/‖di‖2

else
#removing nullified atoms
Remove di from D

end
end
C← sparseCode(X,D,α)
return D and C

atoms do not arbitrary get large during the optimization pro-379

cess since the size of each atom is penalized by minimizing380 ∑d
k=1 ‖d̂k‖1 in (4). As a result, we do not need to normalize381

dictionary atoms di after each update. Second, we start the382

algorithm with initialized dictionary matrix with the number383

of atoms higher than the intrinsic dimensionality of embedding384

space of that particular task to give the algorithm the chance385

of deleting unnecessary atoms in its own way. In the end, the386

final code matrix C will be generated based on the normalized387

final D.388

3) Algorithm Convergence: In each iteration, Algorithm 1389

aims to reduce the total reconstruction loss, code sparsity loss,390

and dictionary atoms overlapping loss by minimizing convex 391

cost functions (5) and (10) in C and D steps, respectively. 392

According to [29], [30], if C∗ and D∗ are optimal solutions 393

for the loss function (4) and the Algorithm 1 starts from C0 394

and D0, for each iteration k ≥ 0 we have 395

E
[L+(Dk+1, Ck+1)

]− L+(D∗, C∗
)

396

≤ ξ
(L+(Dk, Ck)− L+(D∗, C∗

))
(11) 397

where 0 ≤ ξ < 1 is a constant derived from the properties of 398

loss function (4) (see Appendix B) and E[L+(Dk+1, Ck+1)] is 399

the expected value of loss L+(D, C) in (k+1)th iteration. (11) 400

implies that in each iteration, statistically, it is guaranteed that 401

the expected value of the loss function (4) approaches to its 402

minimum value L+(D∗, C∗) through the coordinate descent 403

Algorithm 1. 404

B. Dictionary Temporal Fine-Tuning 405

Some atoms that are generated by Algorithm 1 are similar 406

to islands with sharp onsets, short duration, and no overlap 407

with each other (e.g., green and black atoms in the left col- 408

umn of Fig. 2). These atoms are the result of averaging a 409

significant variation (i.e., surgeme) within trajectories of the 410

training set that the algorithm perceived they are important in 411

reconstructing the original trajectory. 412

An issue that may arise with these specific atoms is that 413

they can be arbitrarily aligned with respect to the structure of 414

a given trajectory within the test set (i.e., they can appear at 415

different temporal positions with some phase shifts within a 416

given executive task). In other words, although these atoms are 417

presented in the optimal place with regards to the trajectories 418

of the training set, their temporal position might not be optimal 419

for a particular trajectory (either from the training set or test 420

set). This phenomenon can neglect important variations within 421

the original trajectory during the reconstruction and coding 422

stage and as a result, distorts the values of the generated codes 423
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for those atoms. When the high-dimensional data (e.g., trajec-424

tory data vector) is mapped to lower-dimensional embedding425

space, unwanted changes in code vectors can be treated as426

information loss. Since the hidden behaviors of each user are427

mapped to the embedding space, any sort of information loss428

deteriorates the accuracy of any interpretation and evaluation429

of that trajectory.430

One possible solution to this problem is to perform a post-431

processing step in the training stage and shift the atoms432

slightly to the left and right and investigate where this atom433

fits best (this is why we call these atoms floating atoms).434

This type of modeling due to the extra degree-of-freedom435

on generating atoms benefits from the advantages of over-436

complete dictionaries in terms of having lower reconstruction437

and information losses and at the same time, due to the small438

number of minimally-overlapping atoms avoids disadvantages439

of over-complete dictionary learning methods such as the high440

correlation between atoms discussed earlier in Section II-A.441

The bounded shifting to left and right is meant to secure the442

floating atom for intended variation within the trajectory, and443

to prevent it from mixing with other nearby atoms. Later we444

will explain one heuristic for calculating the maximum amount445

of shifting (i.e., ϕmax).446

Without loss of generality, assume that first f atoms of p447

atoms meet all conditions of floating atoms (i.e., island-shaped,448

sharp onset, low duration, and no overlap with other atoms449

except general trend atom). A good metric to find the optimal450

temporal shift for a floating atom (i.e., ϕi for floating atom di451

where 1 ≤ i ≤ f ) is cross-correlation. Higher cross-correlation452

between trajectory xj and floating atom di with specific time453

shift ϕi (we define it di,ϕi ) means that the trajectory needs454

the atom to be presented in that shifted position for the bet-455

ter reconstruction and less information loss. If the amount456

of cross-correlation is the same for several shifts within the457

domain of ϕi (i.e., [ − ϕmax, ϕmax]), low reconstruction loss458

for xj based on new dictionary Dϕi (i.e., dictionary D with459

di ← di,ϕi modification) and new generated sparse code ci,ϕi460

will finalize the optimal value for shifting. The optimal shift461

ϕi for floating atoms di given trajectory xj will be calculated462

by solving this optimization problem463

ϕi = arg max
ϕ

(
xj � di,ϕ − γ

∥
∥xj − Dϕci,ϕ

∥
∥

2

)
(12)464

where � is cross-correlation operand, γ is the regulariza-465

tion factor, and ϕ ∈ [ − ϕmax, ϕmax]. The meta-algorithm for466

calculating the optimal shifting for floating atoms that can467

be applied to all floating atoms of a learned dictionary is468

presented in Algorithm 2. After applying Algorithm 2 on all469

floating atoms di with respect to the test trajectory xj and470

finding ϕi for all possible 1 ≤ i ≤ f , we will update dic-471

tionary D to D†. From now on, the generated code matrix472

C†
j =sparseCode(xj,D†,α) will be used in downstream473

applications discussed in the future sections.474

Each row of Fig. 2 shows one example of how floating475

atoms can be incorporated to reduce the information loss and476

enhance the accuracy of the time series mapping for a given477

structured task. Dictionary atoms are plotted in the left col-478

umn of Fig. 2 in which d f
1 is the general trend and green and479

black diagrams are two atoms capturing seasonal patterns of480

Algorithm 2: Meta-Algorithm for Calculating Optimal
Shift ϕi for Floating Atoms di

Input: xj, D, ϕmax, and γ

Result: ϕi

Call function sparseCode
ϕi ←−ϕmax #initializing optimal shift
Cmax ←−∞ #initializing optimal cost
for ϕ←−ϕmax to ϕmax do

ci,ϕ =sparseCode(xj,Dϕ,α)
C = xj � di,ϕ − γ ‖xj − Dϕci,ϕ‖2
if C > Cmax then

Cmax ← C
ϕi ← ϕ

end
end
return ϕi

the trajectory that satisfy three conditions of being floating 481

atoms. Fig. 2(b) and Fig. 2(e) show the reconstruction quality 482

and relative temporal positioning of each floating atom with 483

respect to the original trajectories. As it is clear in Fig. 2(b), it 484

is better if d f
2 and d f

3 slightly shift to the right to better capture 485

the temporal variation that they have to represent. As shown in 486

Fig. 2(c), optimal shift values are ϕ2 = ϕ3 = 2 samples. This 487

change will result in 18.7% improvement of reconstruction 488

loss and higher value for the codes assigned to these float- 489

ing atoms (i.e., c2 and c3) that make them more accurate and 490

meaningful in terms of reflecting skills and hidden behaviors 491

of the user. The effect of floating atoms on Fig. 2(f) is even 492

more noticeable. By shifting d f
2 for ϕ2 = 36 to the left and d f

4 493

for ϕ4 = 19 to the right (see Fig. 2(f)), we will achieve 27.4% 494

improvement in reconstruction loss and considerable changes 495

in the value of codes c2 and c4. For instance, the temporal 496

position of d f
2 with respect to the given trajectory in Fig. 2(e) 497

was too bad that the sparse coding algorithm decided to neglect 498

this atom in reconstruction and set c2 to zero. After fine-tuning 499

d f
2 in 2(f), the generated code for d f

2 became c2 = 1.11 which 500

sounds more accurate and realistic in human terms. 501

An important objective during shifting floating atoms is to 502

avoid merging these atoms (i.e., they should not overlap after 503

being placed in their optimal temporal positions). For instance, 504

in Fig. 2(a), we should have ϕmax ≤ τ1/2 to avoid merging 505

two floating atoms in their extreme shifted states. In Fig. 2(d), 506

d f
2 and d f

4 should not move to right and left, respectively to 507

avoid increasing their overlap with d f
3 . These objectives not 508

only preserve the isolated nature of floating atoms but also 509

reduce the computational cost of finding optimal values for 510

all possible shifts. If we maintain the non-overlapping property 511

of floating atoms while shifting them to find optimal ϕi, they 512

will remain decoupled. As a result, we can independently find 513

ϕi for each valid di instead of jointly optimizing (12) for all 514

possible floating atoms. 515

Another upper bound for ϕmax is the maximum amount of 516

sliding for each floating atom until they reach left or right 517

boundaries of the time-series (e.g., τ2 and τ3 for the black and 518

green atoms respectively in the left column of Fig. 2). A pos- 519

sible heuristic for finding a good upper bound for ϕmax based 520
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Fig. 3. The effect of different initialization of dictionary matrix D in Algorithm 1 convergence. Each column shows the initialized atoms at the top and
their converged final atoms with δ = 3 at the bottom. Different initializations converged to almost identical results (especially in the main variations) which
indicates the consistency of the dual-sparse algorithm in finding meaningful atoms.

on explanations above and examples shown in Fig. 2(a) and521

Fig. 2(d) are ϕmax ≤ min{τ1/2, τ2, τ3} and ϕmax ≤ min{τ2, τ3},522

respectively.523

Finding an appropriate value for ϕmax is case-dependent524

and needs human investigations for getting acceptable results.525

Since ϕmax should be calculated for each floating atom of each526

component within all trajectories (e.g., x, y, z, �, �, and � of527

left and right hands), the complexity of the dictionary temporal528

fine-tuning is proportional to the complexity of the task (i.e.,529

having numerous sub-tasks) and the number of components in530

each trajectory.531

IV. APPLICATION TO JIGSAWS DATA SET532

Inspired by the fact that decomposing surgical trajectories533

into their main variations (i.e., surgemes) reflects skills better534

than methods based on execution time or total path length [31],535

we resampled all surgical trials within the JIGSAWS data set536

to 300 samples and rescaled them between 0 and 1. According537

to our investigations, no data variation is removed during the538

resampling/rescaling since we have no sudden motion in sur-539

gical tasks. We can investigate task execution time and total540

path length as other two factors for our further investigations.541

A. Model Training542

Results presented here and in the next section are based on543

atoms trained over surgical data of an expert user out of 8544

subjects in the JIGSAWS data set. Using expert data for train-545

ing is due to the fact that global trends and seasonal patterns546

with minimum random movements within a particular task can547

be found in expert trajectories. Such a model can be used as548

a benchmark for other users to discover their hidden abnor-549

mal behaviors. It is worth mentioning that the processing time550

for different initializations and different trajectory components551

ranges from about 15 to 25 seconds.552

B. Convergence Consistency553

In a conventional dictionary learning approach the algorithm554

converges to very different dictionaries (i.e., non-similar local555

optima) for differently initialized atoms. Proper, robust, and556

informative initial point as an important factor for the success 557

of the dictionary learning algorithm is an intensive field of 558

research [32]. Due to our motivation, which is to meaningfully 559

interpret an atom as a representative of a surgeme or sub- 560

task of a surgical trajectory, randomly generated atoms are 561

practically unusable even if they give us a good reconstruction. 562

In our setting, due to the dual-confined loss function 563

described in (4), the small number of final atoms, and the 564

structured nature of input time-series (that are coming from 565

basic structured surgical tasks), Algorithm 1 tends to generate 566

very similar atoms for different initial points for the dictionary. 567

As it is clear in Fig. 3, different initializations with the different 568

number of atoms p and different temporal lengths converged 569

to almost identical atoms (especially in the main variations) 570

with negligible difference in low amplitude parts. As we dis- 571

cussed in Appendix B, since (4) is directional component-wise 572

Lipschitz continuous gradient, D∗ and C∗ in (11) are not neces- 573

sarily global optima and hence, the convergence towards local 574

optima is guaranteed in Algorithm 1. According to Fig. 3, the 575

consistency of Algorithm 1 in converging to almost identi- 576

cal results for completely different initializations indicates that 577

local optimum solutions are very close to the global optimum 578

solution of (4). 579

The reasoning behind this consistency is that the cost func- 580

tion (4) nullifies unnecessary atoms (i.e., setting them to 581

a vector of zeros) while forming residual ones to capture 582

main variations within the training trajectories that represent 583

surgemes and basic actions in a particular task. It is observed 584

that Algorithm 1 tries to leave important variations of the cur- 585

rently nullified atom as inheritances to its neighboring active 586

atoms to satisfy the reconstruction loss function. We argue 587

that this behavior is the key element that makes our approach 588

robust against the effect of dictionary initialization. 589

C. Reconstruction Quality 590

Perfect reconstruction (i.e., capturing almost all microscale 591

details of input) is a major objective in the classic dictionary 592

learning problem and also one of motivations for incorporating 593
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Fig. 4. Reconstruction quality of the proposed method for rotational angles of the suturing task in JIGSAWS data set. We aim to preserve main variations
of trajectories while neglecting unnecessary microscale details to create explainable atoms for the decomposition task.

Fig. 5. The effect of fault and lack of expertise on reconstruction quality of
two sample trajectories in suturing task in JIGSAWS.

over-complete dictionaries. In our setting, perfect reconstruc-594

tion requires extra atoms to represent unwanted random actions595

within structured trajectories which increases the risk of over-596

fitting the training set and makes it hard to interpret the cause597

and effect of generated codes and explain them to a human.598

Inspired by this fact, the motivation of our approach is to599

sacrifice perfect reconstruction to achieve a small number of600

minimally-overlapping atoms that represent prevailed ongo-601

ing surgemes within the trajectory. Following interpretations602

about the model reconstruction behavior in Fig. 5 indicate that603

this sacrifice is not in vain and helps to create an explainable604

approach for trajectory assessment.605

Both trajectories in Fig. 5 and trajectory shown in Fig. 4(a)606

are reconstructed according to the atoms shown in Fig. 3(d)607

with hyperparameters α = 1, β = 1.5, and γ = 0.5. The608

upper plot of Fig. 5 belongs to an intermediate user performing609

suturing trial with the code matrix of cIn = [7.33, 4.89, 3.13]�610

which is the same task performed by the expert user shown in611

Fig. 4(a) with the code matrix of cEx = [5.89,−0.57, 7.26]�.612

One notable source of difference is the unusual behavior at613

the middle part of the intermediate trajectory that is the sign614

of happening mid-task failures and restarting while inserting615

the suture needle inside the phantom tissue. This common616

anomaly in surgical tasks is noticeable via bad reconstruction617

and will leave its trace in embedding space by distorting the618

code values of its neighboring atoms. In this particular case,619

c2 for instance, should be a low value for normal task execu-620

tion (e.g., c2 = −0.57 in cEx), but because of the anomaly, c2621

becomes higher than usual in cIn. This example indicates that622

although the effect of random actions is not explicitly a part of623

problem formulation, they implicitly leave their interpretable624

tracks in code space.625

The lower plot of Fig. 5 belongs to a novice user with the 626

code matrix of cNo = [1.92, 0.59, 2.49]� which is significantly 627

dissimilar to the expert trial shown in Fig. 4(a) with the code 628

matrix of cEx. For instance, one important source of the dis- 629

similarity is the low values of roll rotation at the beginning 630

of the trial that results in low value for code c1 correspond- 631

ing to d f
1 in Fig. 3(d). The low value of c1 is the sign of a 632

fundamental mistake is suturing task that will be elaborated in 633

Section IV-D. For the sake of further clarification, a supple- 634

mentary video is provided that explains the descriptions above 635

along with the endoscopic videos of the trials plotted in Fig. 5. 636

D. Embedding Space Analysis 637

In a broader sense, the proposed dual-sparse dictionary 638

learning approach maps the input trajectory into a lower- 639

dimensional space (i.e., code or embedding space) that reveals 640

the latent temporal structure of data that can be used for skills 641

assessment, anomaly detection, and educational purposes. For 642

the sake of clarification, embedding space of � angle for all 643

suturing trials based on atoms in Fig. 3(d) trained over sam- 644

ple trajectories of the first expert Ex1 is shown in Fig. 6(a) 645

and Fig. 6(d). Similarly, embedding space of � angle for all 646

suturing trials based on atoms in Fig. 2(d) trained over sample 647

trajectories of Ex1 is shown in Fig. 6(b) and Fig. 6(e). Finally, 648

embedding space of � angle for all suturing trials based on 649

dictionaries trained over sample trajectories of Ex1 is shown 650

in Fig. 6(c) and Fig. 6(f). As it is illustrated in Fig. 6, rep- 651

resentations of different trials of each subject cluster near to 652

each other in the embedding space. This behavior reflects their 653

surgical style in the low dimensional space. Moreover, subjects 654

with similar skills levels usually cluster near each other. This 655

can be useful for investigating the learning curve of a trainee 656

while his/her latent representation approaches towards expert 657

clusters after few sessions of training. 658

Another interesting point about plots in Fig. 6 is that, most 659

non-expert subjects are pretty similar in deviating from the 660

general trend d f
1 (i.e., c1 ≈ 0). This behavior results in com- 661

pact near clusters along the c1 axis for less-experienced users. 662

However, since each non-expert user has his/her own way of 663

deviating from the general trend this coherency does not imply 664

consistency in performing the task. On the other hand, expert 665

users have higher fidelity to the general trend by having large 666

codes (e.g., 4 < c1 < 8 in Fig. 6(d)). However, this varia- 667

tion in c1 cannot be attributed to the lack of consistency in 668

performing the task. This is because d f
1 is normalized to one 669

and has a relatively small maximum value compared to that 670
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Fig. 6. Embedding space representation of three different angular rotations (from the left column to right: �, �, and �) of the suturing task for two expert
users Exi, two intermediate users Ini, and three novice users Noi trained over Ex1 trajectories in JIGSAWS data set. For better visualization, the second row
shows 2D angle of the 3D plot of the same column.

of trajectories. As a result, slight shifts or scales in trajectories671

may considerably change the value of c1.672

The mentioned interpretations can provide surgical mentors673

with good clues about the regular mistakes between beginners674

and help them to develop their lectures and training flowcharts675

accordingly. For instance, almost all novice and intermediate676

trainees can be confidently separated from expert ones accord-677

ing to their low value of c1 in their embedding space shown in678

all plots of Fig. 6. In general, the low values of c1 in the rota-679

tional data of the suturing task demonstrates the low angular680

dancing of the user while inserting the needle inside the tissue.681

This means the user mistakenly inserts the needle with transla-682

tions rather than properly orienting the tool. This is mainly due683

to the bad needle positioning upon the surgical incision during684

the suture needle insertion. This is a common mistake in sutur-685

ing tasks and this clue can be used as an important topic in686

training courses. To have a better understanding, please watch687

the supplementary video.688

Moreover, bad needle positioning at the beginning of the689

task will propagate and lead to an extra � twist at the end.690

High values of c3 in Fig. 6(e) demonstrates high pitch rotation691

at the end of suturing when the needle should come out of the692

tissue. It is the sign of inconvenient task completion due to693

the bad start that can harm the tissue and wrist of the surgeon.694

Additionally, since d f
1 in Fig. 2(d) is corresponding to the695

general trend in the trajectory, low values of c1 in Fig. 6(e) can696

also demonstrate that less-experienced surgeons do not follow697

the general trend of the operation and the trajectory is mostly698

based on unordered motions.699

E. Trajectory Bi-Clustering700

Trajectory bi-clustering is another investigation that simul-701

taneously reveals the type of the executive trajectory (e.g.,702

x, y, z, �, �, and � of suturing, knot tying, and needle703

passing tasks) and the skills level of the user. To do so, we 704

concatenate different input matrices and their dictionaries to 705

create X = [X1, . . . , Xt] and D = [D1, . . . , Dt] for t different 706

input types where Di is trained over data set Xi. Then we let 707

the sparse coding algorithm to generate code matrix C for X 708

given the combined dictionary D. Ideally, different trajecto- 709

ries lie in non-overlapping subspaces and C generates codes 710

for a given trajectory xi based on its specifically designed 711

trajectory and assigns zero to other non-related atoms. In 712

other words, codes generated for a particular data type Xi is 713

Ci = [0�1 , . . . , 0�i−1, D�i , 0�i+1, . . . , 0�t ]� where 0l is a zero 714

matrix with the same size as Dl for all 1 ≤ l ≤ t, l 	= i. In 715

this ideal case, the code matrix C is block-diagonal. Fig. 7 716

demonstrates the same concept for two types of inputs: x and 717

z trajectories of knot tying task, in which the code matrix C is 718

visualized by the colormap (i.e., warmer colors indicate higher 719

code values.) The sparse coding algorithm tends to generate 720

non-zero codes for a trajectory based on its specifically gen- 721

erated atoms which results in a block-diagonal code matrix 722

C (dashed green rectangles in Fig. 7). When the first dashed 723

green block ends and the second one begins, we have a deci- 724

sion boundary between two clusters of input types (i.e., column 725

clustering). 726

Moreover, expert users’ trajectories have higher fidelity to 727

their specific atoms. In other words, they purely belong to the 728

subspace of their task with minimum overlap with the sub- 729

space of other tasks and almost do not generate codes for 730

irrelevant atoms (i.e., their coefficients are zero). As a result, 731

investigating the rows of the code matrix C (i.e., row clus- 732

tering) can give us informative clues about the skills level of 733

the user (e.g., solid red rectangles in Fig. 7 which indicate 734

trials done by expert users). In addition to the lack of exper- 735

tise, abnormality is another cause of generating codes based 736

on other irrelevant atoms which can be considered as random 737
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Fig. 7. Bi-clustering of x and z trajectories of knot tying task in JIGSAWS data set according to the combined dictionary D = [D1, D2] where Di is trained
over Xi. The generated code matrix C = [C1, C2] for X = [X1, X2] given D is roughly block-diagonal (dashed green rectangles). We can approximately
assign each code vector into four main clusters according to the task (column clustering indicated by vertical black solid line) and user skills level (row
clustering indicated by red rectangles). Red solid rectangles correspond to expert trials.

Fig. 8. Dictionary atoms generated for a given task with p = 10 initialized atoms based on (a) standard dictionary learning loss L in (1), (b) orthogonal
dictionary learning loss Lorth [24], and (c) our proposed L+ loss described in (4) (the algorithm nullified 7 atoms and preserved the most informative 3
atoms). (d) convergence properties of L+ loss (each y label is associated with the plot with the same color).

atoms for that specific trajectory. As it is shown in Fig. 7, 6th
738

and 58th trials (i.e., c:,6 and c:,58) have small codes for their739

own atoms and large codes for other non-relevant atoms. It740

means for both trials, something wrong is happening during741

the execution of that trajectory that causes these trajectories742

to lose fidelity to their specifically generated atoms. Further743

explanations and the endoscopic videos of these two trials are744

provided in the supplementary video.745

V. DISCUSSIONS746

A. Advantages of L+ Loss747

In this section, we will compare final atoms generated by748

our method with L+ loss described in (4) with atoms gener-749

ated by conventional methods with L and Lorth losses to have a750

better understanding about the concepts behind these methods.751

As shown in Fig. 8(c), L+ generates optimal atoms com-752

pared to L and Lorth in terms of minimum overlap, reduced753

μ(D) and μ+(D) metrics, and good trajectory reconstruc-754

tion. A result of the conventional dictionary learning problem755

is provided in Fig. 8(a). In general, conventional dictionary756

learning method with loss L produces atoms with large over-757

laps and increased μ+(D) compared to our approach since758

it does not have any penalization term for atoms’ overlaps.759

Fig. 8(b) demonstrates atoms resulting from minimizing Lorth
760

loss in which any pair of ten atoms have zero correlation (i.e.,761

μ(D) = 0 or D�D = 0), but they have considerable overlap762

with each other (i.e., large value for μ+(D)). It means orthog-763

onal atoms generated by Lorth shown in Fig. 8(b), despite their764

low reconstruction loss and zero correlation cannot be used for765

approximate trajectory decomposition for structured tasks.766

Moreover, the final converged atoms based on L and Lorth
767

losses highly depend on the random state for the initializa- 768

tion. As illustrated in Section IV, our method is robust against 769

initialization and delivers quite consistent results. 770

The effect of optimizing (4) on μ+(D) is also illustrated in 771

Fig. 8(d). The value of μ+(D) drops when the sparsity pro- 772

moting cost for dictionary atoms (i.e.,
∑d

k=1 ‖d̂k‖1) decreases 773

until the algorithm nullifies one or several atoms. When a 774

reduction happens in the total number of active atoms, there 775

is a mild and temporary increase in μ+(D). This is because 776

the algorithm is forced to assign data variations to fewer active 777

atoms which increases the total overlap. 778

B. Hyperparameter Tuning 779

Another important feature of our method is that sparsity- 780

promoting terms for both codes ci and dictionary rows d̂k 781

in L+ loss nullifies unimportant atoms and returns the fewer 782

number of atoms after the optimization procedure. This fact 783

is illustrated in Fig. 8(d) by showing the total number of 784

active atoms in each iteration which is reducing when the 785

optimization proceeds. As explained before, this feature ben- 786

efits the ease of interpretability of generated atoms. By 787

changing hyperparameters α and β, the number of final atoms 788

and the value of their overlap will change. Ablation study 789

results for right hand’s � angle (�R) in suturing task in Table I, 790

indicate that relaxing the sparsity regularization parameters α 791

and/or β yields an increased number of final atoms and an 792

improvement in the reconstruction loss. However, arbitrarily 793

increasing the number of atoms by reducing α and β does not 794

guarantee a considerable reduction in reconstruction loss for 795
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TABLE I
ABLATION STUDY ON HYPERPARAMETERS α AND β IN (4) FOR �R

unseen data and may lead the algorithm to become overfitted796

on the training set. As another perspective, trimming factors797

α and β iteratively reduce the degree-of-freedom of the algo-798

rithm and prevent the model from making redundant atoms. α799

and β can be empirically fine-tuned to reach the ideal number800

of minimally-overlapping atoms which is equal to the intrinsic801

dimensionality of embedding space (δ). Although the normal802

range of hyperparameters α and β heavily depends on the803

application, for the examples of this work the empirical range804

is 0.1 ≤ α, β ≤ 2.5.805

The hyperparameter γ regulates the relative importance of806

cross-correlation versus reconstruction loss in dictionary tem-807

poral fine-tuning post-training stage. Since capturing exact808

temporal position of each floating atom for each test sam-809

ple has higher priority than reconstruction loss, empirically810

observed that γ = 0.5 is an acceptable choice for our811

experiments.812

C. Final Number of Active Atoms813

Determining the value of intrinsic dimensionality of embed-814

ding space (δ) needs field knowledge and depends on the task,815

the target variable for the investigation (e.g., translational data816

of the suturing task along x axis), and the number of indepen-817

dent sub-tasks within the given structured task (e.g., number818

of gestures in surgical trial). A good heuristic for finding this819

number is to plot the manifold of reconstruction error and μ+820

versus the number of active atoms and wherever the recon-821

struction error and/or μ+ do not reduce with increasing the822

number of active atoms (i.e., the elbow of the manifold) we823

assign that number of atoms to δ. For instance, in Table I824

δ = 3 is an ideal final number of atom since δ ≥ 4 suffers825

from large overlap between atoms (i.e., high value of μ+) and826

δ = 2 suffers from both poor reconstruction loss and large827

overlap between atoms. This result also makes intuitive sense;828

�R trajectory in suturing task is composed of three main ges-829

tures: passing the needle inside the tissue, pulling the needle830

from the tissue, and passing the needle from one hand to the831

other one.832

D. Rotational Data vs. Translational Data833

Our observations suggest that, rotational data offer more834

interpretation and insight about the quality of executive tasks835

with sharper distinction between data clusters in the embed-836

ding space. One possible reason that rotational data are more837

expressive than translational data is that rotational patterns are838

more closely related to the skills level of the user. This is839

based on the intuition that humans according to their advanced840

motor-control capabilities, can accomplish a lot of compli- 841

cated tasks by performing a succession of several motions, but 842

the quality, dexterity, and efficiency will be determined based 843

on how well they perform rotations while executing transla- 844

tions. As an example, bipedal robots exhibit the same problem. 845

Although they follow human joint trajectories in walking task, 846

the overall behavior of their walking is different from that of 847

humankind. 848

Another important reason is the curse of extra details in 849

translational data, which masks general patterns with unnec- 850

essary microscale motions and prevents meaningful atom 851

generation. The reason might be due to minor mistakes users 852

unconsciously correct with simple motions rather than sophis- 853

ticated rotations. This makes the subject’s behavior more 854

streamlined in the rotation space and noisier in translation 855

space. Finally, compared to other types of surgery, such as 856

eye surgery, minimally invasive surgery offers many transla- 857

tions, which can increase the effects of random motions as 858

well. 859

E. Applications in Bi-Manual Tasks 860

In the proposed method, each trajectory component was 861

investigated independently to analyze the performance of the 862

executive task. However, in bimanual tasks (i.e., a class of 863

tasks in which the brain must simultaneously plan and control 864

the movements of both hands such as tying shoelaces or basic 865

surgical tasks) what defines a person as an expert surgeon is 866

not just simply what he/she performs by each individual hand 867

but what he/she plans for the next step by executing a complex 868

sequence of coordinated actions between his/her hands [33]. 869

This concept is equivalent to the notion of hands coordination 870

which measures the synchronicity and relationship between 871

different trajectory components of one hand or between two 872

hands. Incorporating coordination data together with the gen- 873

erated codes of the proposed method may benefit the quality 874

of the final representation for downstream tasks such as skills 875

classifier network. 876

VI. CONCLUSION 877

A new technique for visualizing surgical trajectories in 878

the lowest possible dimensional space was presented in this 879

paper. Representing trajectories based on a small number of 880

minimally-overlapping atoms allowed us to meaningfully and 881

intuitively decompose and investigate each trajectory. Each 882

minimally-overlapping atom can be considered as a building 883

block of the whole executive task that meaningfully reflects 884

the style, skills, faults, and hidden behaviors of the user during 885

performing the task. Incorporating floating atoms to capture 886

important variations appearing at different temporal positions 887

within the trajectory, improves model’s accuracy and pre- 888

vents information loss during the mapping procedure. All of 889

these important features are objectivity expressed in terms of 890

numerical gains in embedding (or code) space as an informa- 891

tive feature map for educational and examination purposes. 892

According to our experiments on the JIGSAWS data set, our 893

method is effective, reliable, and accurate for skills assessment 894

and fault detection. 895
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APPENDIX A896

PROOF OF PROPERTY 1897

According to Hölder’s inequality, for any κ, υ ∈ (1,∞)898

with 1
κ
+ 1

υ
= 1, we have899

N∑

k=1

|xkyk| ≤
(

N∑

k=1

|xk|κ
) 1

κ
(

N∑

k=1

|yk|υ
) 1

υ

(A.1)900

for all x� = (x1, . . . , xN), y� = (y1, . . . , yN) ∈ R
N .901

Considering the special case κ = υ = 2 in Hölder’s902

inequality, (A.1) for non-zero vectors x and y becomes903

0 ≤ |x|�|y| ≤ ‖x‖2‖y‖2 x 	=0==⇒
y	=0

0 ≤ |x|�|y|
‖x‖2‖y‖2

≤ 1. (A.2)904

Applying (A.2) into (3) and considering the fact that μ(D) ≤905

μ+(D) yields 0 ≤ μ(D) ≤ μ+(D) ≤ 1 for any possible906

dictionary D.907

APPENDIX B908

CONVERGENCE OF ALGORITHM 1909

Consider the convex optimization problem910

min
x∈RN

f (x).911

Definition 1 (η-Strongly Convex Function): The following912

statements are all equivalent to the condition that a differen-913

tiable function f is strongly convex with constant η > 0914

1) f (δx+ (1− δ)y) ≤ δf (x)+ (1− δ)f (y)− δ(1−δ)η
2 ‖x− y‖22915

for δ ∈ [0, 1].916

2) The function f̃ (x) = f (x)− η
2‖x‖22 is convex, ∀x.917

Definition 2: The convex optimization objective function f918

has component-wise L-Lipschitz continuous gradient if919

|∇if (x+ hei)− ∇if (x)| ≤ L|h| (A.3)920

where x ∈ R
N , h ∈ R, i = 1, . . . , N, and ei is the standard921

basis vector of ith component in x.922

Lemma 1: The criterion L = ∑n
i=1 ‖xi − ∑p

j=1 djcij‖22923

equals the quadratic function (D−D∗)�C�C(D−D∗) plus a924

constant where D∗ is the optimal solution of D in minimiz-925

ing L.926

Proof: See [28].927

Lemma 2: The matrix Q = C�C defined in Lemma 1 is928

positive definite.929

Proof: At first, we will prove that Q is a positive semidef-930

inite matrix. According to the definition, the matrix Q is931

positive semidefinite matrix if z�Qz ≥ 0, ∀z ∈ R
N . We have932

z�
(

C�C
)

z = (Cz)�(Cz) = ‖Cz‖22 ≥ 0.933

Now, to prove that Q is positive definite, we just need to prove934

that z�Qz 	= 0, ∀z 	= 0. Consider that z�Qz = 0 for some935

z 	= 0. It yields that (D−D∗)�C�C(D−D∗) can be equal to936

zero for some D 	= D∗. It means, quadratic objective function937

L has more that one optimal solution. Contradiction. As a938

result, Q = C�C is positive definite and λmin(Q) > 0 where939

λmin(Q) is the smallest eigenvalue of Q.940

Lemma 3: The criterion L defined in Lemma 1 is η-strongly941

convex function with η = 2λmin(C�C) > 0.942

Proof: According to Definition 1(ii), f̃ (x) = f (x)− η
2‖x‖22 is 943

convex if ∇2 f̃ (x) = ∇2f (x)−ηI � 0 where A � 0 means that 944

matrix A is positive semidefinite. As a result, a twice continu- 945

ously differentiable f is η-strongly convex if ∇2f (x) � ηI, ∀x 946

or equivalently, the smallest eigenvalue of ∇2f (x) satisfies 947

λmin(∇2f (x)) ≥ η, ∀x. According to the quadratic form of the 948

criterion L, ∇2f (x) = ∇2L = 2Q. As a result, L is η-strongly 949

convex function with η = 2λmin(C�C) which according to 950

Lemma 2, η > 0. 951

Lemma 4: Let F = f + g where f is η-strongly convex 952

function and g is a convex function (not necessarily strongly 953

convex), then F is η-strongly convex function. 954

Proof: According to Definition 1(i) 955

F(δx+ (1− δ)y) = f (δx+ (1− δ)y)+ g(δx+ (1− δ)y) 956

∗ ≤ δf (x)+ (1− δ)f (y)− δ(1− δ)η

2
‖x− y‖22 957

+ g(δx+ (1− δ)y) 958

∗∗ ≤ δF(x)+ (1− δ)F(y)− δ(1− δ)η

2
‖x− y‖22 959

where inequality ∗ follows from the fact that f is strongly 960

convex and inequality ∗∗ holds since g is convex. 961

Now, we want to prove the convergence of Algorithm 1 962

that tries to minimize (4). Both (5) and (10) are composed of 963

a reconstruction error that according to Lemma 1 equals to a 964

strongly convex quadratic function plus a convex l1 normal- 965

ization part. As a result, according to Lemma 4, (5) and (10) 966

are strongly convex functions. In C-step, we minimize (5) 967

which according Lemma 3 is strongly convex with η1 = 968

2λmin(C�C) > 0. In D-step we minimize (10) which accord- 969

ing Lemma 3 is strongly convex with η2 = 2λmin(DD�) > 0. 970

As a result, (4) is strongly convex with η = min{η1, η2} > 0. 971

Lemma 5: The cost function (5) is directional component- 972

wise Lipschitz continuous gradient with L1 = maxi{‖di‖22} in 973

C-step domain. 974

Proof: The gradient of (5) with respect to a parameter cij 975

(i.e., the jth component of a code vector ci) is 976

∇cijL+C = d�j (Dci − xi)+ α sign
(
cij
)
. (A.4) 977

Equation (A.4) is also used as a part of update rule in 978

sparseCode algorithm to calculate the optimal value of 979

code matrix C. Due to the limitations rising from the learning 980

rate and approximation nature of sparseCode algorithm, in 981

cases that cij ≡ 0 the algorithm fails to land on cij = 0 and we 982

have a fluctuation around the origin since sign(cij) fluctuates 983

between −1 and 1. A common heuristic applied in this situa- 984

tion is to clamp cij to zero (i.e., manually setting cij to zero) 985

to prevent such fluctuations. Under these circumstances, we 986

can assume that sign(cij) does not change and is the same for 987

∇if (x+hei) and ∇if (x) in Definition 2. This assumption leads 988

us to the directional component-wise L-Lipschitz continuous 989

gradient in C-step domain. According to (A.3) we should have 990

∣
∣
∣d�j djheij

∣
∣
∣ =

∣
∣
∣d�j dj

∣
∣
∣|h| = ∥∥dj

∥
∥2

2 |h| ≤ L|h|. (A.5) 991

We can reach to (A.5) for all components of code matrix C. 992

As a result, a good choice for L is the length of largest code 993

vector dj in the dictionary matrix D, or equivalently, L1 = 994

maxi{‖di‖22}. 995
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Corollary 1: According to Lemma 5, the cost function (10)996

is directional component-wise Lipschitz continuous gradient997

with L2 = maxj{‖cj‖22} in D-step domain.998

Corollary 2: According to Lemma 5 and Corollary 1, the999

cost function (4) is directional component-wise Lipschitz con-1000

tinuous gradient with L = max{L1, L2} in the dual-sparse1001

coding algorithm domain.1002

According to [29], [30] and the values of η and L calculated1003

above, for each iteration k ≥ 0 for Algorithm 1 starting from1004

C0 and D0, we have1005

E
[L+(Dk+1, Ck+1)

]− L+(D∗, C∗
)

1006

≤
(

1− η

2Ldp2n

)
[L+(Dk, Ck)− L+(D∗, C∗

)]
(A.6)1007

where D∗ and C∗ are local optima of (4) and d, p, and n1008

are dimensions of matrices D and C defined in (1). Note1009

that, if in Lemma 5, our cost function was component-wise1010

Lipschitz continuous gradient, not directional component-wise1011

Lipschitz continuous gradient, D∗ and C∗ are global optimum1012

solutions. 2dp2n is the total number of components in D and1013

C which is the total number of parameters for the optimization1014

problem (4). Although the values of η and L depend on the1015

matrices D and C in the previous step, the convergence of1016

expected error to zero (i.e., reaching to local or global optima)1017

in each iteration is guaranteed in (A.6) since the value of1018

1− η/(2Ldp2n) is always less than 1.1019
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