
Digital Object Identifier 10.1109/ACCESS.2019.2904245

Discriminative Pattern Mining for Breast
Cancer Histopathology Image
Classification via Fully Convolutional
Autoencoder
XINGYU LI1 (Member, IEEE), MARKO RADULOVIC2, KSENIJA KANJER2, AND
KONSTANTINOS N. PLATANIOTIS1(Fellow, IEEE)
1The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada. (e-mail:
xingyu.li@mail.utoronto.ca, kostas@ece.utoronto.ca)
2The National Cancer Research Centre, Department of Experimental Oncology, Institute for Oncology and Radiology, Belgrade, Serbia.

Corresponding author: Xingyu Li (e-mail: xingyu.li@mail.utoronto.ca).

ABSTRACT
Accurate diagnosis of breast cancer in histopathology images is challenging due to the heterogeneity of
cancer cell growth as well as of a variety of benign breast tissue proliferative lesions. In this paper, we
propose a practical and self-interpretable invasive cancer diagnosis solution. With minimum annotation
information, the proposed method mines contrast patterns between normal and malignant images in weak-
supervised manner and generates a probability map of abnormalities to verify its reasoning. Particularly,
a fully convolutional autoencoder is used to learn the dominant structural patterns among normal image
patches. Patches that do not share the characteristics of this normal population are detected and analyzed
by one-class support vector machine and 1-layer neural network. We apply the proposed method to a public
breast cancer image set. Our results, in consultation with a senior pathologist, demonstrate that the proposed
method outperforms existing methods. The obtained probability map could benefit the pathology practice by
providing visualized verification data and potentially leads to a better understanding of data-driven diagnosis
solutions.

INDEX TERMS Breast cancer diagnosis, abnormality detection, convolutional autoencoder, discriminative
pattern learning, histopathology image analysis

I. INTRODUCTION

Breast cancer is the most common cancer in women. In-
vasive, malignant properties of breast cancer cell growth
contribute to poor patient prognosis [1], and dictate precise
early diagnosis and treatment, with an aim to reduce breast
cancer morbidity rate. In this study, we particularly focus on
the qualification of risky, aggressive characteristics of breast
histomorphological patterns, as one of the basic features of
invasiveness of breast carcinoma.

With the advance of imaging device and machine learning
technology, digital histopathology image analysis becomes
a promising approach to consistent and cost-efficient cancer
diagnosis. Particularly for invasive breast cancer, based on
the common knowledge that cancerous cells break through
the basement membrane of ductulo-lobular structures and
infiltrate into surrounding tissues - the feature of invasiveness

[2] (as shown in Fig. 1), many algorithms were proposed
to classify breast histopathology images using nuclei’s mor-
phology and spatial-distribution features [3]. In literature,
the most common solution to breast cancer image diagno-
sis is to train a classifier in a supervised learning manner.
Then handcrafted features of a query image are passed to
the trained algorithm for a yes/no label [4]–[10]. With the
success of deep learning, data-driven methods, especially
the end-to-end training of convolutional neural network, are
adopted more often in recent breast cancer histopathology
image classification studies [11]–[13]. Though breast can-
cer image diagnosis has achieved impressive progress, the
issue of self-interpretability in existing diagnosis approaches
is less addressed. Self-interpretability refers to the capa-
bility of an approach to explain and verify its reasoning
and results. Without self-interpretability, attempts to improve

VOLUME 7, 2019 1



FIGURE 1. Examples of hemotoxylin and eosin stained images for (a) normal
breast tissue and (b) invasive carcinoma with a magnification of 40× [14]. The
left image corresponds to a normal tissue where normal epithelial cells lie on
the membrane of ductulo-lobular structures; while in the right image malignant
cells invade and spread into surrounding tissue.

histopathology image diagnosis is prone to be limited to trial-
and-error.

To address the self-interpretability issue in breast cancer
pathology image diagnosis, one solution is to generate labels
for image pixels or small image patches in order to infer
locations of suspected abnormalities in a query image. To
this end, several studies made efforts to classify small image
patches or pixels via supervised/semi-supervised learning
[15]–[19]. It should be noted that these solutions require
a large amount of images manually-annotated at the image
pixel level. Due to the complexity and time-intensive prop-
erties of pathological annotations and privacy concerns in
clinical practice, sufficient amount of well-labeled patches
are difficult to collect.

This study attempts to tackle the self-interpretability issue
in breast cancer diagnosis and presents a novel convolutional
autoencoder-based contrast pattern mining approach to detect
the invasive component of malignant breast epithelial growth
in routine hematoxylin and eosin (H&E) stained histopathol-
ogy images. As opposed to prior studies that require image
sets with pixel annotation, our method requires only image
labels as the minimal prior knowledge in training. By min-
ing dominant patterns in images of normal breast tissues,
the method generates a probability map to infer locations
of abnormalities in an image. As a pathology image may
contain both normal and cancerous tissues, the proposed
method divides an image into small patches to facilitate local
characteristics learning. It should be noted that due to the lack
of pixel annotation indicating the locations of abnormal cell
growth patterns in images, this problem is very challenging
in two folds.

1) The algorithm is expected to learn contrast patterns
between normal and malignant/invasive growth based
on the knowledge of image labels. Effective differenti-
ation between normal and abnormal histomorphology
via weak-supervised learning is the key issue for the
correct identification of cancerous growth.

2) As a histopathology image may contain both normal
and cancerous tissue, labels of local patches may be
inconsistent with the known image label. The method
needs to learn a mapping function between local

patches and image labels.
Note that though we do not know whether patches

from images labeled as malignant really contain malignant
cells/structures, patches from normal images do not contain
cancerous cells certainly. So, we name a patch from a normal
image "true-normal" in this paper. Our original approach
learns patterns in true-normal patches first and then assigns a
normal/malignant label to a patch which resembles/deviates
from those true normal ones. Intuition behind this original-
ity is that in pathology, malignant cells and their growth
patterns are diagnosed and graded by how different these
cells are to normal cells. Specifically, to address the first
challenge, we exploit the data-specific property of autoen-
coder (AE) networks [20], [21] and innovate to train an
under-complete deep fully convolutional AE using small
patches from pathology images annotated as normal. Since
the network learns local patterns in true-normal patches only,
its performance degrades when the input instance is different
from training patches. Hence, autoencoder’s reconstruction
residue suggests the similarity between the query instance
and normal cases. It is noteworthy that different from stan-
dard autoencoders targeting to minimize mean square error
(MSE) between input and output training instances, the pro-
posed method trains the deep net by optimizing the structural
similarity (SSIM) index [22], which enforces the network
to learn the contrast and structural patterns in true-normal
patches. In this study, the trained AE network is treated as a
pattern mining and representation method and then combined
with downstream classifiers to identify whether an image
patch contains malignant cells.

To tackle the second challenge which is to infer whether a
local patch contains morphological abnormalities derived by
malignant cell growth, we cast the problem into the anomaly
detection scenario, and introduce a novel malignant patch
detector to distinguish patches containing cancerous cells
from the normal ones. Particularly, the proposed detector
makes the use of one class support vector machine (SVM)
[23] to identify regions occupied by true-normal patches in
the feature space and assigns abnormal labels to patches
whose numerical features are located outside of the detected
normal regions. Taking into account the obtained patch la-
bels, the problem of breast cancer image classification with
localization of abnormality areas is simplified to a patch-
based supervised learning problem. Finally, a 1 layer neural
network (NN) is trained to infer the existence of malignant
tumor in a patch, followed by the generation of a probability
map of abnormality in the query image.

In summary, this study proposes a practical, generalizable,
and self-interpretable solution to pathology image based can-
cer diagnosis. With the minimal prior knowledge on whose-
slide-imaging (WSI) labels which can be easily acquired in
clinic practice, the proposed method learns discriminative
patterns in weak-supervised manner from histopathology
images and explains its diagnosis results via inferring loca-
tions of abnormalities in an image. It is noteworthy that the
proposed method is very user-friendly to pathologists, as the
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TABLE 1. Table of Notations.

Notations Explanations
A, B Trainable parameters of 1-layer NN
D() Decorder of AE
E() Encoder of AE
F() Patch labeling function
G() Decision function of one-class SVM
I Histopathology image
L Loss function of AE
M Number of normal images
N Number of malignant images
T Number of training patches
c, ν Hyper-parameter of one-class SVM
k() Gaussian kernel
wi, vi Trainable parameteres of AE
x Input of AE (i.e. greay-scale true-normal patches)
x̃ Output of AE
x̃ residue of AE’s reconstruction
y Patch labels
z Input of one-class SVM
† Histopathology image Label
α, β, γ Hyper-parameters of SSIM
δ() Dirac delta function
λ Lagrangian multiplier of one-class SVM

obtained abnormality map helps pathologists to understand
and verify how machines make decisions. To the best of our
knowledge, our work constitutes the first attempt in literature
to tackle the self-interpretability issue in histopathology im-
age classification.

The rest of this paper is organized as follows. Section II
provides brief introduction of machine learning techniques
exploited in the proposed method and the public breast
cancer biopsy image set used in this study. The problem’s
formal statement with notations and implementation details
are presented in Section III and Section IV, respectively.
Experimental results and discussions are presented in Section
V, followed by conclusions in Section VI.

II. BACKGROUND
In this section, we will first introduce notations used in this
study in Table 1. Then brief description of fully convolu-
tional autoencoder and one-class support vector machine is
presented, followed by information on the public image set
used to evaluate the proposed method in this study.

A. FULLY CONVOLUTIONAL AE NETWORKS
Fully convolutional network is defined as the neural net-
work composed of convolutional layers without any fully-
connected layers [24]. It learns representations and makes
decisions based on local spatial knowledge only. Because of
its efficient learning, fully convolutional net has been pop-
ular in many image-to-image inference tasks, e.g. semantic
segmentation.

Fully convolutional autoencoder is one instance of fully
convolutional neural networks. The net takes input of arbi-
trary size and produces corresponding-sized output. Specif-
ically, it encodes an image data x of arbitrary size into a
low-dimensional representation x̂ such that the important

properties of the original data can be reconstructed and main-
tained in the output x̃ . Mathematically, a fully convolutional
autoencoder is composed of an encoder E() and a decorder
D(), each of which is a composition of a sequence of C
layers, i.e.

x̃ = D(x̂ ; v1, ..., vC) (1)
= D(E(x ;w1, ...,wC); v1, ..., vC),

where x̃ = D(x̂ ; v1, ..., vC) = DC(·; vC) ◦ · · · ◦ D1(x̂ ; v1)
and x̂ = E(x ;w1, ...,wC) = EC(·;wC) ◦ · · · ◦ E1(x ;w1).
D() ◦ E(x ) = D(E(x )) and wi and vi are the weights
and bias for the ith encoder layer Ei() and decoder layer
Di(), respectively. Conventionally, Ei() performs one of the
following operations: a) convolution with a bank of filters, b)
downsample by spatial pooling, and c) non-linear activation;
and Di() takes actions including: d) convolution with a bank
of deconvolution filters, e) upsample by interpolations, and
f) non-linear activation. Given a set of T training sample
{x1, ..., xT }, the parameter set of autoencoder {wk, vk, 0 <
k ≤ C} is optimized such that reconstruction x̃ resembles
input x :

arg min
wk,vk,0<k≤C

1

T

T∑
i=1

L(xi, x̃i), (2)

where L is a loss function measuring the similarity between
xi and x̃i, e.g. MSE.

B. ONE-CLASS SUPPORT VECTOR MACHINE
One-class SVM is an approach for semi-supervised anomaly
detection. It models the normal data as a single class that
occupies a dense subset of the feature space corresponding
to the kernel and aims to find the "normal" regions. A test
instance that resides in such a region is accepted by the
model whereas anomalies are not [23]. That is, it returns a
function for input z that takes the value +1 in the small region
capturing most of normal points, and -1 elsewhere. With the
training set {z1, ..., zT }, the duel problem of the one-class
SVM solution can be formulated by

min
αi,0<i≤T

1

2

T∑
i,j=0

λiλjk(zi, zj) (3)

s.t. 0 < λi ≤
1

νT
,

T∑
i=0

λi = 1, (4)

where λi is a Lagrangian multiplier for sample zi, k(zi, zj) =

e−‖zi−zj‖
2/c is the Gaussian kernel with parameter c, and

ν ∈ (0, 1] is a hyper-parameter that controls training errors
in this optimization problem [23]. The samples {zi : λi > 0}
are support vectors which lay on the "normal" region bound-
ary. For a new point z , SVM computes the corresponding
decision function G(z ) =

∑T
i=0 λik(zi, z ) − ρ and the label

of the new point, y, is evaluated by the function’s sign, i.e.

y = sgn(G(z ) = sgn(
∑T
j=0 λjk(zj , z )− ρ), (5)

where ρ =
∑T
j=0 λjk(zj , zi),∀zi : λi > 0. (6)
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It should be noted that performance of one-class SVM
strongly depends on the settings of their hyper-parameters ν
and c [25]. However, these two parameters are application-
dependent, and their settings in an efficient and weak-
supervised manner is still an open research problem [26].

C. BREAST CANCER BIOPSY IMAGE SET
The breast cancer benchmark biopsy dataset collected from
clinical samples was published by the Israel Institute of
Technology [14]. The image set consists of 361 samples, of
which 119 were classified by a pathologist as normal tissue,
102 as carcinoma in situ, and 140 as invasive carcinoma. The
samples were generated from patients’ breast tissue biopsy
slides, stained with H&E. They were photographed using
a Nikon Coolpix 995 attached to a Nikon Eclipse E600 at
magnification of 40× to produce images with resolution of
about 5µm per pixel. No calibration was made, and the
camera was set to automatic exposure. The images were
cropped to a region of interest of 760 × 570 pixels and
compressed using the lossy JPEG compression. The resulting
images were again inspected by a pathologist in the Institute
to ensure that their quality was sufficient for diagnosis.

III. METHODOLOGY
A. SYSTEM OVERVIEW
Given a dataset {(I1, †1), (I2, †2), ..., (IK , †K)} with K
samples, where Ii is an image and †i ∈ {−1, 1} is a class
label indicating whether the corresponding image contains
malignant tumor, the goal is to predict the label † for an query
image I and at the same time to generate a probability map
indicating suspected abnormal regions in image I. For sim-
plification, I−i and I+i denote that Ii is a normal or malignant
image in following sections, respectively. Without loss of
generality, assume that there are N normal images and M
invasive breast cancer images in the dataset, 0 < N,M < K
and N +M = K, and the normal images are ordered before
the malignant ones. That is, the training set is organized as
{I−1 , I

−
2 , ..., I

−
N , I

+
N+1, I

+
N+M−1, I

+
K}.

To generate the probability map of cancerous cells, we
propose a patch-based learning solution, whose schematic
diagram is depicted in Fig. 2. Specifically, for each training
image Ii, we extract li overlapping image patches, denoted
by {xi1, ..., xi,li}. Patches from normal image I−i are as-
signed label yi,j = −1. However, since patches from ma-
lignant image I+i may contain normal tissues only, patch
labels yi,j are unknown with a positive constraint that at
least one patch contains cancerous cells, i.e. max yi,j = 1
for 0 < j ≤ li. If we collect all image patches into a
patch set {(x11, y11), ..., (xi,j , yi,j), ..., (xK,lK , yK,lK )}, then
it is evident that in the total T = TN + TM patches, the
first TN =

∑N
i=1 li patches are true-normal ones from the

normal histopathology images while the remaining TM =∑K
i=N+1 li patches are from malignant images.
In the training phase, the target is to learn a mapping

function F : x → {−1,+1} from the training set
{(xi,j , yi,j), 0 < j ≤ li, 0 < i ≤ K}. Since labels of the

last TM patches from malignant images I+i are unavailable,
we make the use of weak-supervised learning methods for
discriminative patterns mining to classify image patches.
As shown in Fig. 2, an under-complete deep convolutional
autoencoder and a one-class SVM, both trained with true-
normal patches, are used to implicitly mine dominant pat-
terns in true-normal patches. As a representation method, au-
toencoder learns the common information in training patches
and delivers contrast patterns in its reconstruction residues.
Briefly, a normal patch has a low construction error while a
malignant patch is with a high residue. Then the trained one-
class SVM assigns a label {+1,−1} to patch xi,j from ma-
lignant image I+i based on autoencoder’s residues. Since the
one-class SVM is incapable of generating a probability value,
with the obtained decision function and labels generated by
the SVM, a 1-layer NN is trained to obtain Platt’s score [27]
as patch-based posterior probabilities.

In the testing phase, l overlapping patches xj for 0 < j ≤ l
are extracted from the query image I. The learnt mapping
function F , achieved by the trained autoencoder and the
one-class SVM with the 1-layer NN, is operated on each
patch, generating a patch label and a value between [0, 1]
indicating the probability that the patch contains malignant
tumor. Finally, image classification and a probability map are
inferred from obtained patch labels.

B. CONTRAST PATTERN MINING VIA CONVOLUTIONAL
AUTOENCODER
Though cell’s spatial distribution is the one of the key fea-
tures for invasive breast cancer diagnosis, this feature is not
trivial to quantify. This is because specific structures and
patterns of malignant cell clusters differ very much among
different tumors and also locally within the same tumor.
The incompleteness of local patch labels in this study makes
the problem more challenging. Hence in this study, a data-
driven solution, specifically, deep convolutional autoencoder,
is used to learn the contrast patterns in the training data.

It is noteworthy that an autoencoder is used as a gen-
erator of normal patches in this study. In pathology, nor-
mal breast tissues usually share certain common patterns,
whereas abnormal patterns are highly heterogeneous and
features learned from limited quantity of malignant samples
may not be descriptive for unseen samples. To overcome
this challenge, our method proposes detection of histological
abnormalities implicitly by identifying the common patterns
in normal breast images. To this end, we make use of the data-
specific property of autoencoder and train an autoencoder to
learn histological knowledge in true-normal patches.

1) Architecture
Since histopathology images are H&E stained and image
patches from normal and malignant biopsy images share
certain common features, efforts are made to enforce the
autoencoder to learn discriminative structural patterns via de-
signing autoencoder’s architecture. Particularly in this study,
the experimental images from the Israel Institute of Technol-
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FIGURE 2. Overview of the proposed contrast pattern mining method for invasive breast cancer diagnosis in histopathology images. The output is a probability
map of malignant cell clusters in the query image, bright pixel values representing high probability. The whole system is mainly composed of three learning phases.
First, a fully convolutional AE is applied to true-normal patches, so that the common patterns shared by true normal patches are learned. Based on AE’s
reconstruction residues, we propose to use one-class SVM to learn the regions taken by true-normal patches in the feature space. Finally, the distance to the
normal region boundary in the feature space is feed to a 1-layer NN for posterior probability prediction.

ogy image set [14] have a magnification of 40x where pixel
size is approximately 5µm. Since the diameters of breast
epithelial cells’ nuclei stained by H&E are approximately
6µm [12], nuclei radii are between 1 and 3 pixels. Thus,
we design the proposed convolutional autoencoder whose
encoder E() and decorder D() both are with C = 6 and have
3 convolutional layers, such that the nuclei-scale features,
nuclei organization features, and the tissue structural-scale
features are explored. Table 2 provides detailed architecture
of the proposed autoencoder and associates histological fea-
tures with network layers. Note that the first 6 convolutional
layers are composed of the Rectified Linear (Relu) activation
unit Relu(x) = max(0, x) [28]. We select the sigmoid
function sigmoid(x) = 1

1+e−x as the activation function in
the last convolutional layer to generate a grayscale image in

the range of [0, 1].

2) SSIM-Based Loss Function

The loss functionL is the effect driver of the neural network’s
learning, and the loss function in an autoencoder network
generally defaults to MSE. However, MSE is prone to lead to
a smooth/blur reconstruction which may lose some structural
information in the original signal [29]. Structural information
refers to the knowledge about the structure of objects, e.g.
spatially proximate, in the visual scene [22]. Particularly
in this study, structural information mainly refers to the
spatial organization of cells in H&E stained breast cancer
histopathology images. It should be noted that since the mul-
ticellular structural information is a key for invasive breast
cancer diagnosis [12], it should be learned and maintained in
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TABLE 2. Architecture of the proposed convolutional autoencoder

Layer Layer type Filter Size Activation Input/Output Dimension Histological association with breast
cancer images in magnification of 40x

Encoder E()

0 input 256× 256× 1
1 Convolutional 3× 3× 16 Relu 256× 256× 16 nuclei & edge2 Max-polling 2× 2 128× 128× 16
3 Convolutional 3× 3× 8 Relu 128× 128× 8 nuclei organization4 Max-polling 2× 2 64× 64× 8
5 Convolutional 3× 3× 8 Relu 64× 64× 8

Structure & tissue organization6 Max-polling 2× 2 32× 32× 8

Decoder D()

7 Convolutional 3× 3× 8 Relu 32× 32× 8
8 Upsampling 2× 2 64× 64× 8
9 Convolutional 3× 3× 8 Relu 64× 64× 8 nuclei organization10 Upsampling 2× 2 128× 128× 8
11 Convolutional 3× 3× 16 Relu 128× 128× 16 nuclei & edge12 Upsampling 2× 2 256× 256× 16
13 Convolutional/Output 3× 3× 1 Sigmoid 256× 256× 1

autoencoder’s output. To this end, we make use of the SSIM
index to compose the loss function for AE’s training, i.e.

L(xi,j , ˜xi,j) = 1− SSIM(xi,j , ˜xi,j), (7)

which facilitate the autoencoder to maintain structural infor-
mation in image patches. SSIM index is defined as

SSIM(x , x̃ ) = [l(x , x̃ )]α × [c(x , x̃ )]β × [s(x , x̃ )]γ , (8)

where l(), c(), and s() are the luminance comparison func-
tion, contrast comparison function, and structural comparison
functions, respectively. α, β, and γ are used to adjust the
relative importance of the three components.

3) Pattern Learning With True-Normal Patches
It is noteworthy that in this study, instead of training the net-
work with all training patch {x11, ..., xK,lK}, the autoencoder
is trained with only true-normal patches {x11, ..., xN,lN }.
The motivation behind this innovation is the data-specific
property of autoencoder. That is, an autoencoder has low
reconstruction errors for samples following training data’s
generating distribution, while having a large reconstruction
error otherwise. Specifically, in our study, the autoencoder
learns the common properties and dominant patterns among
true-normal patches. Thus, the trained autoencoder is capable
of recovering the common content shared by query and true-
normal patches. The smaller the residue is, the similar the
query patch is to true-normal patches. However, since patches
containing invasive tumor have some distinct patterns so that
the autoencoder cannot represent well, large construction
residue is generated. In other words, the discriminative and
contrast patterns in this problem are embedded in autoen-
coder’s residues ∆x , which is quantified by the absolute
value of the difference between AE’s input and output.

∆x = |x − x̃ | = |x −D(E(x ))| . (9)

To facilitate downstream patch labeling, discriminative
patterns embedded in ∆x are summarized by several com-
pact numerical descriptors. Motivated by the radiomics anal-
ysis [30], we compute 16 patch-wise first-order statistics to
describe the distribution of intensities within AE’s residue

∆x , which are energy, minimum, maximum, 10th percentile,
90th percentile, mean, median, interquartile range, full range,
mean absolute deviation, robust mean absolute deviation,
variation, skewness, kurtosis, entropy, and histogram uni-
formity. We denote the obtained numerical feature set by
{z11, ..., zK,LK

}, where zi,j is the description vector of the
residue corresponding to patch xi,j and the first TN elements
in the feature set come from the true-normal patches.

C. PATCH LABELING BY ONE-CLASS SVM
With the discriminative representation {zi,j} generated by
a deep convolutional autoencoder, we precede to investigate
the mapping function F : zi,j → {−1,+1} from numerical
features of true-normal patches. Note that for malignant im-
ages with †i = 1, patch labels are not necessarily consistent
with image labels; in addition, the number of patches having
malignant tumor may be much smaller compared to the
quantity of true-normal patches in the training set. As only
true-normal patches with their labels are reliable, we cast
the problem into the problem of semi-supervised anomaly
detection. Intuitively, if one can find regions in the feature
space where true-normal patches cluster, patches falling out
of the "normal" regions are highly likely to be abnormal.

Due to the good performance of one-class SVM in medi-
cal anomaly detection [31], [32], we select one-class SVM
to approximate the distribution of true-normal patches for
anomaly patch detection. It should be noted that in one-class
SVM, normal patches are labeled as +1, which is opposite
to the patch labels defined in this study. Hence, based on the
features of true-normal patches {zi,j : 0 < i < Tn}, a patch
label can be obtained using a mapping function

F(z ) = −sgn(G(z ) = −sgn(

Tn∑
i=0

λik(zi, z )− ρ), (10)

where ρ is defined in (6).

D. MALIGNANT TUMOR PROBABILITY MAP
GENERATION
Now we obtain a labeled training set {(zi,j , yi,j) : 0 <
j ≤ li, 0 < i ≤ T}, where the last TM samples have
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labels generated by the one-class SVM. It should be noted
that in precision medicine, patches having cancerous tissues
definitely (locating far from SVM’s hyperplane) and those
suspected containing abnormality (residing near SVM’s hy-
perplane) should be distinguished. However, SVM does not
provide a posterior probability p(yi,j |zi,j) and the resulting
labels cannot differentiate these cases. Hence, for any data
sample zi,j , we make use of SVM’s decision function G(zi,j)
to compute Platt’s score for posterior probability approxima-
tion [27]. Platt’s score is defined as a sigmoid function on
SVM’s decision function. That is,

p(yi,j |zi,j) ≈ p(yi,j |G(zi,j)) =
1

1 + e(AG(zi,j)+B)
, (11)

where A and B are parameters trained using sample labels.
Examining the Platt’s score in (11), we notice that Platt’s

score can be implemented by a 1-layer neural network with
a sigmoid activation function for two reasons. First, from a
theoretical point of view, sigmoid function is a good candi-
date to generate a probability from a real value (i.e. SVM’s
decision function G(zi,j) in this study) because its output can
be interpreted as the posterior probability for the most general
categorical distribution: Bernoulli distribution. Second, from
the application point of view, though there is a "-" sign
difference between Platt’s score in (11) and the standard
sigmoid function in machine learning, the sign difference
can be easily compensated by the trainable parameters in
deep learning. Consequently, the recursive optimization of
platt’s score is realized by training a 1-layer NN with sigmoid
activation function. For the 1-layer NN, input is one-class
SVM’s decision function. Parameters of the network, a 1× 1
transformation matrixA and a biasB, can be optimized using
training set {(G(zi), yi) : 0 < i ≤ T}.

To infer an image label from obtained patch labels, patch
majority voting, where the image label is selected as the
most common patch label, is the most common method in
literature of breast cancer histopathology image diagnosis
[11], [12]. However, in clinical practice, any abnormalities,
suspect lesions in particular, should trigger an alarm. Based
on this belief, instead of using majority voting, we propose a
much stricter rule to combine patch diagnosis results, that is,
an image is labeled as benign when all patches are classified
as normal. Finally, we proceed to generate a probability map
of abnormality for an image. With the obtained probability
p(yi|zi), if an image pixel is only contained in one patch,
the probability is assigned to the pixel directly. Otherwise (a
pixel is in multiple overlapping patches), the probability at
the pixel is obtained by averaging probability values of the
overlapping patches.

IV. SYSTEM IMPLEMENTATION AND TRAINING DETAILS
A. SYSTEM IMPLEMENTATION AND
HYPER-PARAMETER SETTING
The proposed method is implemented using python 3.6.6.
Each histopathology image is normalized using the illumi-
nant normalization method [33]. Then the normalized image

is converted to the grayscale version and rescaled to [0, 1].
The two-step pre-processing mitigates the effect of color
variations usually observed in histopathology images on
downstream discriminative pattern mining. The autoencoder
and the computation of Platt’s score are realized using the
Keras library which uses tensorFlow as its backend. The One-
class SVM is called from the scikit-learn library.

To compute the SSIM index when training autoencoder,
we use the Gaussian filter with size 11× 11 to smooth image
patches and fuse the luminance comparison function, contrast
comparison function, and structural comparison functions
with α = β = γ = 1 following SSIM’s original paper [22].

One-class SVM has application-dependent hyper-
parameters, ν and c. In this study, we propose the use of
the whole training set to select the optimal hyper-parameters.
Given a pair of ν and c, after training over true-normal
patches, one-class SVM generates a label for each training
patch. Though we cannot directly assess patch classification
accuracy due to the lack of patch annotation, we can corre-
spond image labels to evaluate the SVM model indirectly.
Specifically, all patches from normal images are normal
and an image is labeled as malignant when at least one
of its patches contains cell’s malignant growth pattern, i.e.
max yi,j = †i,∀j ∈ [1, li]. Hence, the one-class SVM’s
classification accuracy in image level, denoted by ACCimg ,
can be measured by

ACCimg =
1

T

T∑
i=1

δ(†i −max
j

yi,j), (12)

where δ()̇ is the Dirac delta function, i.e. δ(x) = 1 for
x = 0 and δ(x) = 0 otherwise. By comparing all obtained
ACCimg , the one-class SVM with highest image classifica-
tion accuracy is selected, i.e.

νopt, copt = arg max
ν,c

ACCimg. (13)

B. TRAINING DATA AUGMENTATION
For histopathology images in the training set, each pre-
processed image is divided into 35 patches, each having
256 × 256 pixels with 30% overlap at most. Different from
conventional data augmentation methods that generates a
fixed augmented training set, data augmentation in this study
is performed in an online manner with the support of Keras.
Specifically, to learn a rotation-invariant AE network, data
augmentation operations in this study include patch rotation
with an angle randomly drawn from [0, 180) degrees, vertical
reflection, and horizontal flip. At each learning epoch, trans-
formations with randomly selected parameters among the
augmentation operations are generated and applied to orig-
inal training patches. Then the augmented patches are feed
to the network. When the next learning epoch is started, the
original training data is once again augmented by applying
specified transformations. That is, the number of times each
training data is augmented is equal to the number of learning
epochs. In this way, the AE network almost never sees two
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exactly identical training patches, because at each epoch
training patches are randomly transformed. For example,
with the breast cancer image data set used in this study, we
got a basic set of 3750 true-normal patches for AE’s training.
After 100 epoch learning, the network had seen 375,000
augmented patches in total. We believe the online augmented
method helps to fight against network’s over-fitting in this
study.

C. NETWORK INITIALIZATION AND TRAINING
For both the deep convolutional autoencoder and 1-layer
neural network for Platt’s score, we initialized all weights
with zero-mean Xavier uniform random numbers [34]. All
biases were set to zero. The networks were trained using
Adam stochastic optimization with learning rate 0.001, and
the exponential decay rates for the first and second moment
estimations are set to 0.9 and 0.999. To enforce the autoen-
coder to learn the dominant patterns in true-normal patches,
the training ran 100 epochs. The 1-layer neural network for
Platt’s score was trained with 25 epochs. We used 10% of the
training data for validation. The optimal networks for autoen-
coder and Platt’s score were selected based on the proposed
SSIM-based loss function and the binary-classification cross-
entropy on the validation sets, respectively.

V. EXPERIMENTATION
In this study, the proposed method is evaluated using the 119
images of the morphologically normal breast tissue and the
140 images of invasive breast cancer in the breast cancer
benchmark data set published by the Israel Institute of Tech-
nology1. We will first compare image patches reconstructed
by autoencoder with loss functions of SSIM and MSE. Then
we qualitatively assess the effectiveness of contrast pattern
mining by visualizing obtained features and their distribution
in a manifold space. Finally image classification and the
obtained abnormality maps are examined and compared to
prior arts.

A. PATCH RECONSTRUCTION USING SSIM AND MSE
The proposed method exploits an autoencoder as a genera-
tor of normal patches. A loss function should be selected
such that the autoencoder can reconstruct a normal patch
as much as possible. In this experiment, we compare re-
constructed patches generated by different loss functions,
SSIM and MSE, and quantify their effects on normal patch
generation. After 100-epoch training over 4165 patches gen-
erated from the 119 normal breast tissue images, energies
of reconstruction residues over all true-normal patches are
calculated and averaged. Specifically for SSIM and MSE
based loss functions, the average energies per patch are
194.756 and 219.785, respectively. That is, the SSIM-based
function drives the autoencoder to learn more from its inputs.
Fig. 3 presents examples of patch reconstructions associated

1Please refer to Section II for detailed information about the image set.

FIGURE 3. Comparison of patch reconstruction using different loss functions,
SSIM and MSE. The SSIM-driven reconstructions are sharper than the
MSE-driven images.

with loss functions of SSIM and MSE, where reconstructed
patches associated with MSE is more blurred.

B. VISUALIZATION OF CONTRAST PATTERN MINING
A fully convolutional autoencoder net is used to mine the
common patterns in normal histopathology image patches.
Fig. 4 presents several examples of autoencoder’s input
(in the left column) and their corresponding reconstruction
residues (in the right column), where AE’s residues are
represented as heatmaps for visualization. As shown in the
figure, residue images (e)-(f) that correspond to the malignant
patches (a)-(b) have brighter values; on contrast, the true-
normal patches (c)-(d) have relatively small reconstruction
errors (g)-(h). Thanks to the data-specific property of the
autoencoder, the dominant patterns in normal image patches
are well summarized, while the abnormal patterns among ma-
lignant breast cancer images are maintained in AE’s residues.

To visualize the distribution of learnt contrast patterns,
we project the obtained high dimensional feature set into
2-D domain via T-SNE [35] and illustrated in Fig. 5(a). A
green sample is associated with a true-normal patch and
a red sample represents a patch from a malignant image.
From the figure, more than half red samples share different
characteristics from green samples. Fig 5(b) visualizes the
performance of one-class SVM, where green sample corre-
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FIGURE 4. Examples of the deep autoencoder’s inputs (256× 256 grayscale
patches from images with a magnification of 40x) (a)-(d) and their
reconstruction residues (e)-(h), where brighter values in the residue heatmaps
represent large reconstruction errors. The upper two patches from malignant
images (a)-(b) contain abnormal cell growth patterns, and the lower two (c)-(d)
are extracted from normal breast tissue histopathology images.

sponds to a true-normal patch, while yellow and red samples
are associated with patches from malignant images in the 2-
D T-SNE domain. The difference is that yellow samples are
classified as normal by the one-class SVM, while red data
represent patches that are labeled as containing malignant
cell clusters.

C. BREAST CANCER IMAGE CLASSIFICATION
1) Evaluation Protocol
To evaluate the proposed method, stratified 10-fold cross-
validation is performed. Specifically, the image set is ran-

FIGURE 5. Feature set visualization via T-SNE. (a) Some patches from
malignant images overlap with true-normal patches in the low-dimensional
T-SNE domain. (b) The yellow samples represent patches that are extracted
from malignant images and classified as normal by the one-class SVM.

domly partitioned into 10 equal-size folds, where each fold
contains roughly the same proportions of normal and ma-
lignant labels. The cross-validation is repeated 10 times
where each fold is used as the test set once and images in
remaining 9 folds are used as training data. Then the obtained
10 diagnosis results are averaged to estimate classification
performance. In each round of cross-validation, images in
the training set are processed as described in the section of
data augmentation. In the testing phase, image patches are
extracted every 16 pixels, i.e. the centers of two patches may
be only 16 pixels apart in an image. The distance of 16 pixels
is a trade-off between generating a fine probability map and
maintaining computation efficiency.

In this experiment, we first perform a quantitative evalu-
ation on image classification. Particularly, to measure image
classification performance, we use the most common medical
diagnosis assessments, which include classification accuracy
ACC ∈ [0, 1], F-measure score F1 ∈ [0, 1], positive/negative
likelihood ratios LR+ ∈ [1,∞) and LR− ∈ [0, 1], and
diagnostic odds ratio DOR ∈ [1,∞). ACC is one of the

VOLUME 7, 2019 9



most common classification performance measurements. It
represents the proportion of accurate diagnoses, but it is
impacted by disease prevalence. F1 is the harmonic average
of the precision and sensitivity and F1 = 1 corresponds
to a perfect binary classification. Likelihood ratios use the
sensitivity and specificity of the test to determine its diag-
nostic performance. They are believed as good institutions
of AUC when ROC analysis is infeasible. DOR combines
sensitivity and specificity and equals to the ratio of positive
and negative likelihood ratio. Among the five measurements,
F1 score, likelihood ratio, and DOR are independent of test
prevalence, with higher values indicating a better discrimina-
tive performance.

Since the breast cancer image set does not delineate the
specific locations of malignant cell clusters, we perform a
qualitative assessment of the obtained probability maps by
comparing it to abnormality regions derived by malignant
cell growth.

2) Other Approaches
To the best of our understanding, the proposed method
constitutes the first attempt in literature of breast cancer
diagnosis to infer locations of abnormalities from image
labels. Since there is no such breast cancer diagnosis study
in literature, we compare the performance of the proposed
method to the latest patch-based deep-learning breast cancer
histopathology image classification methods proposed by
Spanhol et. al [11] and Araujo et.al [12]. Spanhol’s method
divides an image into 64 × 64 image patches and uses an 8-
layer convolutional neural network to classify image patches.
Then three fusion rules, majority voting, malignant patch
detection (i.e. maximum probability), and sum of probability,
are used to obtain the final image classification. Araujo’s
method divides images into 512 × 512 patches and enforces
training-patch labels consistent with image labels. Based
on training patches and their newly-assigned labels, a 13-
layer convolutional neural net is trained and used to classify
unseen image patches. The final image classification is also
achieved by combining all inferred patch labels using one
of the three rules used in Spanhol’s method. Noted that in
both studies, malignant patch detection is reported to achieve
worse performance than the other two fusing rules for image
diagnosis. However, based on the belief that in a medical alert
system, any suspected alterations should trigger an alarm, we
select the fusing rule of malignant patch detection for both
image classification methods in this comparison experiment.

3) Results and Discussions
Table 3 lists the image classification performance. The sign
? indicates that the performance difference between the prior
method and the proposed method is of statistical significance
at the 5% significance level. The better performance of the
proposed method is mainly contributed by its practicality and
generalizability in contrast pattern mining. First, the mini-
mum prior knowledge to train the proposed method is WSI
label which can be easily acquired in clinic practice. But this

TABLE 3. Image-level classification evaluation. The sign ? indicates that the
performance difference between the prior method and the proposed method is
of statistical significance at the 5% significance level.

Spanhol’s [11] Araujo’s [12] proposed
ACC 0.700? 0.710 0.760
F1 0.766? 0.763? 0.777
LR+ 1.540? 1.554? 2.645
LR− 0.229? 0.281? 0.304
DOR 8.563 8.132 12.876

information is not enough to train Spanhol’s method [11] and
Araujo’s method [12]; instead, patch-label or even pixel-wise
annotation is required. It should be noted that these prior deep
models have more than ten thousands of trainable param-
eters. Acquisition of sufficient amount of well-labeled data
for these models is fairly prohibitive, if not impossible, in
practice due to the expensive and time-consuming properties
of pathological annotations. To address the shortage of well-
labeled training patches for supervised learning, Araujo’s
method makes an assumption that patch-labels are identical
to their image labels [12]. However, this assumption hardly
holds in practice because a tumor usually takes 0.01%-70%
(median 2%) areas of a WSI image [36]. The less practical
requirement/assumption on training data in prior arts limits
their diagnosis performance in practice. Second, in pathol-
ogy, normal breast tissues usually share common histological
patterns, whereas structures and patterns of malignant cell
clusters are heterogeneous. Consequently, quantification of
the normal patterns is relatively feasible, but representation
learning among histological irregularities is more challeng-
ing. In prior studies, cell’s abnormal patterns are usually
learnt directly from training samples. However, due to the
limited amount of training data, variations in histological
abnormalities may not be fully represented. As a result, the
generalizability of these deep diagnosis models to unseen
malignant cancer images is still in question. To overcome the
challenge of abnormality representation in digital pathology,
the proposed method learns the common patterns in normal
breast images first and diagnoses malignant cells by similar-
ity of these cells and their growth patterns to normal ones. In
this way, detection of histological abnormalities is simplified
to identification of common patterns in normal breast images.
Consequently, the proposed method is less dependent on
specific malignant image samples and can generalize well.

Examples of the obtained probability maps with their
corresponding H&E images are demonstrated in Fig. 6. Ab-
normality regions derived by malignant cell growth in the
query images were delineated by our senior pathologist and
highlighted in images at the second row. A probability map
is presented in the form of a heat-map where bright pixels
represent high probabilities of abnormalities. It provides an
insight and verification of the image diagnosis result by
inferring locations of abnormalities in an image. In this
sense, it even conveys more information compared to the
classification result itself. Since Spanhol’s’s approach and
Araujo’s method are also based on patch processing, as a
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FIGURE 6. Examples of breast tissue images and their corresponding abnormality probability maps, where probability value greater than 0.5 indicates
abnormalities in this study. In images in the second row, abnormality regions derived by malignant cell growth were delineated red.
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TABLE 4. Comparison summary of examined methods

Spanhol’s method [11] Araujo’s method [12] proposed method
Training procedure 1 end-to-end training 1 end-to-end training 3 training phases

Practicality no no yes
Generalizability less generalizable less generalizable generalizable

classification accuracy fair fair better
self-interpretability no no yes

comparison, the obtained patch-level probabilities are used
to form the corresponding probability maps following the
method proposed in this study. As shown in the figure, the
two prior methods are prone to yield large probabilities in
background areas of invasive breast cancer histopathology
images.

In summary, the advantages of the proposed method
are contributed by its practicality, generalizability, and
self-interpretability. First, the minimal prior knowledge on
whose-slide-imaging (WSI) labels for system training is eas-
ily acquired in clinic practice. Second, the proposed method
detects discriminative patterns in images in weak-supervised
manner. Because the method is less dependent on specific
malignant image samples, it generalizes well on unseen
images. Third, the obtained probability map infers locations
of abnormalities in an image. The insightful information
explains the final diagnosis result and helps pathologists to
verify the diagnosis reasoning. Table 4 summarizes a com-
prehensive comparison of examined methods. The major lim-
itation of this study is the size of the experimental image set
and the absence of the external validation group. However,
the carefully designed experimentation and the involvement
of pathologist’s expertise in this study support the reliability
of the obtained results. In addition, the public-accessibility
of the experimental image set facilitates other scholars to
reproduce our study.

VI. CONCLUSION
In this study, we presented a discriminative pattern mining
approach for invasive carcinoma diagnosis in routine H&E
stained breast tissue histopathology images. By learning con-
trast patterns between normal and malignant breast cancer
images, the proposed method was capable to identify sus-
pected regions of malignant cell clusters in an image. The
evaluation was conducted on a public histopathology im-
age set and experimentation demonstrated that the proposed
method outperformed prior arts. Particularly, the superiority
of the proposed method was its practicality, generalizability,
and self-interpretability. The obtained probability map would
facilitate a better understanding of the proposed pattern min-
ing and diagnosis solution.

In this study, heterogeneity of histological abnormalities
posed a big challenge in pattern mining. we noted that there
was still a large room to improve the diagnosis performance
by investigating more efficient pattern mining methods. On
the other hand, though we tried to tackle the problem of self-
interpretability in machine learning and proposed a diagnosis

system which was capable to generate visualized information
to support and verify its decision, the black-box property
of deep learning in terms of data representation was still
less-touched. Following the work of CAM [37] and Grad-
CAM [38], we would investigate how to interpret the internal
reasoning of a deep diagnosis system in future.
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