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Abstract

Anomaly detection in video surveillance aims to detect
anomalous frames whose properties significantly differ from
normal patterns. Anomalies in videos can occur in both
spatial appearance and temporal motion, making unsuper-
vised video anomaly detection challenging. To tackle this
problem, we investigate forward and backward motion con-
tinuity between adjacent frames and propose a new video
anomaly detection paradigm based on bi-directional frame
interpolation. The proposed framework consists of an op-
tical flow estimation network and an interpolation network
jointly optimized end-to-end to synthesize a middle frame
from its nearest two frames. We further introduce a novel
dynamic memory mechanism to balance memory sparsity
and normality representation diversity, which attenuates
abnormal features in frame interpolation without affecting
normal prototypes. In inference, interpolation error and dy-
namic memory error are fused as anomaly scores. The pro-
posed bi-directional interpolation design improves normal
frame synthesis, lowering the false alarm rate of anomaly
appearance; meanwhile, the implicit “regular” motion con-
straint in our optical flow estimation and the novel dy-
namic memory mechanism play blocking roles in interpo-
lating abnormal frames, increasing the system’s sensitiv-
ity to anomalies. Extensive experiments on public bench-
marks demonstrates the superiority of the proposed frame-
work over prior arts.

1. Introduction
Unsupervised anomaly detection is a challenging task

with a wide range of real-world applications, such as in-
dustrial defect detection [2], medical diagnosis [40], and
video surveillance [27, 21, 17]. In particular, unsuper-
vised anomaly detection plays an increasingly important
role in intelligent video surveillance systems. Video is high-
dimensional spatiotemporal data. Detection of abnormal
patterns from such huge data volume is challenging.

In literature, unsupervised video anomaly detection pri-
marily follows the paradigm of either frame reconstruction

Figure 1. Left: Conceptual demonstration of conventional frame
prediction-based methods where the current frame (in orange) is
predicted from previous continuous sequence (in blue). Right:
the proposed bi-directional interpolation method that only use the
nearest two frames (in blue) to interpolate the middle frame (in or-
ange). Such a design exploits spatial similarity and temporal con-
tinuity between adjacent frames and exhibits two benefits. First,
forward and backward information facilitates normal frame inter-
polation, which lowers the false detection rate of anomaly appear-
ance. Second, the minimized data volume (i.e. two frames) re-
quired in our frame interpolation remedies the anomalous motion
leakage problem in conventional prediction-based methods.

or future frame prediction. Spatial appearance and tempo-
ral motion patterns are usually exploited as mutually com-
plementary cues to tackle this problem [17, 3]. Since both
paradigms rely on frame synthesis, generative models such
as auto-encoders [11, 14] naturally serve as the backbone
architecture. Specifically, reconstruction-based approaches
treats video frames independently and targets to synthesize
the input picture [8]. It hypothesizes that an anomalous
frame incurs large reconstruction errors by an anomaly-free
trained model. However, this hypothesis is not always true.
Instead, abnormal appearance in video frames may be re-
constructed partially, or even completely [9, 32]. In ad-
dition, frame reconstruction-based methods usually don’t
consider temporal continuity among video frames. Con-
sequently, it is weak to detect abnormal motion patterns.
To address these problems, future frame prediction-based
methods are proposed [17]. With a hypothesis that anoma-
lous events are unpredictable from previous sequence [29],
these methods target the generation of future frames from
the previous sequence and take the prediction error as an
indicator of anomaly. Since the targeted future frame is
not fed into the generative model, the problem of abnormal
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appearance residue in frame reconstruction-based methods
is alleviated. To further improve performance, SIGnet co-
operates two independent U-Nets to predict a frame for-
ward and backward with a bi-directional consistency term
in training [8]. Despite the specific design, conventional
frame prediction-based approaches take a short sequence
as input, which may leak anomalous motion patterns ex-
isting in those sequences to the synthesized future frame
[17, 10, 4, 26, 32, 8], hurting the detection of abnormal mo-
tion patterns.

To facilitate detection of abnormal appearance and mo-
tion patterns in videos, we explore the spatial similarity
and temporal continuity among adjacent frames and pro-
pose the use of bi-directional frame interpolation as a novel
paradigm for unsupervised video anomaly detection. We
conceptually demonstrate the proposed frame interpolation-
based method and its difference from conventional frame
prediction-based methods in Fig.1. On one hand, in-
stead of taking video sequences as input, our interpolation
method minimizes the input data volume (i.e. two frames
only), which remedies the anomalous motion pattern leak-
age problem in conventional prediction-based methods. On
the other, it is noteworthy that our method incorporates for-
ward and backward knowledge from adjacent frames for
better interpolating normal frames, lowering the false alarm
rate in anomaly detection.

Specifically, our framework consists of an optical flow
estimation network and an interpolation network jointly
trained from scratch on normal video sequences. The for-
mer learns to estimate regular optical flows corresponding
to normal motions only, prone to generate poor optical flows
for unseen, abnormal motion patterns. The latter regresses
the target frame from the adjacent frames and correspond-
ing “regular” optical flows. In inference, a large interpo-
lation error indicates an anomalous frame. We also de-
sign a novel dynamic memory mechanism that stores em-
bedding associated with regular motion and appearance and
sparsely address these normal prototypes in frame interpo-
lation, thereby increasing the generative error of anomalous
samples. In sum, the implicit “regular” motion constraint
in our bi-directional optical flow estimation and the novel
dynamic normal prototype addressing strategy in the pro-
posed memory mechanism play blocking roles in interpo-
lating abnormal frames, increasing the system’s sensitivity
to anomalies. Our contributions are summarized as follows:

• We introduce a simple yet effective bi-directional
frame interpolation framework as a novel paradigm for un-
supervised video anomaly detection. Spatial similarity and
temporal continuity among adjacent video frames are ex-
ploited. The novel design greatly reduce the input data vol-
ume as well as model complexity.

• We improve the memory module by dynamically se-
lecting the Top-K representative memory items to represent

normal features. It well balances memory sparsity and pro-
totype diversity in normal representation.

• Extensive experiments on public video anomaly detec-
tion benchmarks demonstrate superiority of our approach
over prior arts.

2. Related Work
Unsupervised video anomaly detection. Most ef-

forts to tackle this problem deploy generative models for
either frame reconstruction or future frame prediction.
Reconstruction-based approaches aim to train a model to re-
tain prototypical normal patterns, from which normal sam-
ples can be reconstructed well while anomalies cannot.
These models include sparse coding [24, 9], auto-encoding
[11, 39], etc. Later, future frame prediction, a task-specific
paradigm, is introduced for video anomaly detection [17].
These approaches take prediction errors as anomaly clues
and demonstrate promising performance [4, 32, 10]. Aware
of the high-dimensional spatiotemporal properties of video
sequences, many studies exploit various complexity mod-
els such as 3D convolution [39], recurrent neural networks
[24] ,and long short term memory [23] to estimate spatio-
temporal dependency and appearance-motion association
for video anomaly detection [30, 4].

This study proposes a new frame interpolation based
method for video anomaly detection. Unlike previous
works [30, 38, 4, 19, 10, 8] that either use a pre-trained
FlowNet to estimate optical flow or designs two indepen-
dent generative models for forward and backward predic-
tion, our method train one model from scratch without any
performance degradation. Despite the simple architecture,
we demonstrate its effective and superior performance in
public video anomaly detection benchmark.

Frame interpolation. Video frame interpolation is gen-
erally based on time-varying information in the optical flow
to produce a continuous motion association [1]. More re-
cently, convolutional neural networks enable optical flow
estimation to be trained in an end-to-end fashion, and
most video frame interpolation methods incorporate this ap-
proach into the frame synthesis process [12, 13, 37]. Alter-
native, flow-free methods attempt precise frame interpola-
tion without explicit optical flow estimation. These meth-
ods include, but not limited to, PixelShuffle [35], PhaseNet
[28], and channel attention [6]. While some methods
[38, 8, 7, 31] propose to interpolate a frame from a con-
tinuous sequence, we follow the frame-based paradigm that
bi-directionally predict the middle one from its nearest two
frames.

Memory mechanism. Memory mechanisms are widely
used to constrain the generalization capabilities of genera-
tive models for anomaly detection. In memory-augmented
auto-encoders, anomaly-free features are reorganized in the
memory bank according to similarity-weighted memory
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Figure 2. Systematic diagram of the proposed method. Our end-to-end trained model consists of optical flow estimation and frame refine-
ment augmented with a dynamic memory module. Assuming the current frame It being the interpolation target, we feed It−1 and It+1

into the optical flow estimation network. Then, we calculate the forward/backward optical flows and synthesize interpolation candidates
It−1→t and It+1→t from It−1/It+1, respectively. The refinement network is deployed to regresses the target frame It from those coarse
interpolations and generates the final result Ît. In inference, the interpolation error between It and Ît indicate anomalous degree.

items for reconstruction [9]. Park et al. [32] propose the
compact loss and separation loss to reduce the distance of
the nearest feature and enhance the diversity of memory pat-
terns, respectively. Moreover, the memory module remains
effective and outperforms the reconstructed results on the
predictive model [32]. Cai et al. [4] introduce the mo-
tion information from a pre-trained flow estimation network
signals and utilize the appearance-motion memory consis-
tency to increase the gap between the abnormal and regu-
lar events. To cope with unseen test scenarios, a dynamic
attention mechanism is proposed to encode normal patterns
[26]. Liu et al. [19] proposed a multi-stage memory module
combined with skip connections to guarantee reconstruc-
tion quality. In this study, we incorporate a novel dynamic
memory mechanism to balance memory sparsity and proto-
type diversity for normal representation, which helps to in-
terpolate normal frames well while interpolating abnormal
frames poorly, thus promoting discrimination of anomalies.

3. Methodology

In the proposed method, we full exploit the spatial sim-
ilarity and temporal continuity among video frames for
frame interpolation and anomaly detection. As shown in
Fig. 2, for the anomaly detection of frame It, our proposed
method takes its previous frame It−1 and future frame It+1

as input and infers the forward and backward optical flows
between these two frames. Then the optical flows, together

with the two frames, are concatenated and fed into the in-
terpolation network to synthesize the “normal” version of
the current frame, Ît. The interpolation error between the
target It and its “normal” version Ît is a strong indicator
of anomaly. In addition, we introduce a dynamic memory
mechanism in the interpolation network, which strengthens
the normality representation but impairs the representation
of anomalies.

3.1. Frame interpolation

Given a video sequence {I0, ..., It−1, It, It+1, ..., IN}
of N + 1 frames, our goal is to predict a sequence
{Î1, ..., Ît−1, Ît, Ît+1, ..., ÎN−1} by interpolation of the
neighboring two frames for each time step t. More specifi-
cally, at time t, we use frame It−1 and It+1 as the input to
infer the current frame Ît, whose difference with the given
frame It is considered as the criterion of anomaly detection.

Following previous works [4, 19, 38], the model for op-
tical flow prediction is trained via unsupervised learning
by warping the input two frames with the estimated flows.
Since the optical flow interprets the motion between frames,
it can be employed to interpolate the intermediate frames.
Let Ft−1→t+1 and Ft+1→t−1 denote the optical flow from
It−1 to It+1 and It+1 to It−1, respectively. Given the flows
between frame t − 1 and t + 1, the intermediate frame can
be obtained by warping with the interpolated optical flow.
Since frame at t located at the center of two frames at t− 1
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Figure 3. The U-Net architecture used in our framework. The 2D
convolution layer consists of 3×3 convolutional kernel with stride
of 1, batch normalization and ReLU activation. We use max pool-
ing layer for down-sampling and transposed convolution for up-
sampling. The output layer is also a 2D convolution but uses Tanh
activation.

and t+ 1, we have the optical flow from It to It−1 as

Ft→t−1 =
1

2
Ft+1→t−1 = −1

2
Ft−1→t+1, (1)

and the optical flow from It to It+1 as

Ft→t+1 =
1

2
Ft−1→t+1 = −1

2
Ft+1→t−1. (2)

Then the optical flows from It to It−1 and from It to It+1

are interpolated linearly as follows,

F̂t→t−1 = −1

4
Ft−1→t+1 +

1

4
Ft+1→t−1, (3)

F̂t→t+1 =
1

4
Ft−1→t+1 −

1

4
Ft+1→t−1. (4)

When anomalous motion enters the network, the bi-
directional optical flow estimates produce more cumulative
motion bias that contributes to detecting anomalies. In this
study, we use a U-Net[34] to predict the bidirectional opti-
cal flows Ft−1→t+1 and Ft+1→t−1. The detailed architec-
ture of U-Net [34] used in our work is shown in Fig. 3.

With these interpolated flows, we can get the frame
It−1→t and It+1→t at time t by backward warping oper-
ation respectively, which are represented as

It−1→t = ϕ(It−1, F̂t→t−1), (5)

It+1→t = ϕ(It+1, F̂t→t+1), (6)

where ϕ(I, F ) is the backward warping operation. Since
It−1→t and It+1→t are roughly estimated by temporal con-
tinuity, another interpolation model, R, is applied for the
refinement of frame at t, whose output is the final interpo-
lated result Ît:

Ît = R(F̂t→t−1; It−1→t; F̂t→t+1; It+1→t). (7)

Note that previous video interpolation methods [13] use a
residual connection to the output image in the refinement
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Figure 4. Overview of the dynamic memory mechanism. Given a
feature map as a query, we calculate the similarity between it and
the memory items. For each query, we select the top K items in
terms of the similarity. Finally, we calculate a weighted average
value in terms of the matching probability of the selected image as
the addressing output.

model, which is shown to produce high quality images.
However, it causes anomalous information leakage into the
restored image, weakening the interpolation discrepancy for
anomalies. Therefore, we use direct generation path with-
out the residual connection on the output image.

3.2. Dynamic memory mechanism

The generative U-Net model itself is not able to learn
different representation between normal and anomaly in-
puts. Thus we introduce a memory module in the refine-
ment model as is shown in Fig. 4. Intuitively, the memory
module in the unsupervised anomaly detection is able to re-
member normal patterns which have distinct representations
with anomalies. This module is plugged into the refinement
model located before the output layer as shown in Fig. 2,
which avoids anomalous information leakage into the re-
stored image. In this paper, we propose a dynamic memory
mechanism, where top K memory keys are addressed ac-
cording to the rank of cosine similarity. This is different
from previous works [9, 32, 26, 4, 19] that either uses a
hard threshold to select memory keys, select only the most
similar memory key or linearly combine all the keys. Our
dynamic strategy balances the memory capacity and normal
prototype diversity, thus boosting performance on anomaly
detection (see Sec. 4.3).

Specifically, the memory pool M ∈ RN×C is defined
as a matrix consisting of N keys with each key of dimen-
sion C. The memory pool is learnable and is expected to
learn typical patterns of anomaly-free features while train-
ing. Given the feature map Q ∈ RH×W×C extracted from a
frame, we linearly query its mapped features on the normal-
ity space from the memory pool. As we discussed above,
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the memory module is located before the output layer, so
the height H and width W of the feature map are consistent
with the frame. For each input feature vector qij ∈ RC in
the feature map Q, we use cosine similarity to represent the
matching extent,

ω(km, qij) =
k⊤mqij

||km|| ||qij ||
, (8)

where km is the m-th key in the memory pool.
The goal of memory addressing is to find the prototypical

normal patterns in the memory and perform reconstruction
that is able to present discrepancy between the anomaly and
normal queries. For a given feature vector qij , we dynami-
cally select top K of N memory keys as the addressing tar-
get according to the similarity ranking, as these keys are the
most representative for normal features. Then the matching
probabilities between qij and the top K selected keys are
given by

p̂m =
exp(ω(km, qij))∑K
n=1 exp(ω(kn, qij))

. (9)

Using the matching probabilities as the addressing weights,
the addressing result vij is obtained by the weighted average
of all selected keys,

vij =

K∑
n=1

p̂n · kn. (10)

Then, we add the value vij as a residual term to the query
qij as the output of the memory module. Finally, we have
the output as the reconstructed frame Ît at time t via frame
interpolation.

3.3. Joint training

We train the model end-to-end according to the loss de-
fined below,

L = Lwarp + Lframe + λ1LSSIM + λ2Lcon + λ3Ldiv, (11)

where Lwarp is the bidirectional warping loss between frame
It−1 and It+1, defined as

Lwarp = ∥It−1 − ϕ(It+1, Ft−1→t+1)∥2

+ ∥It+1 − ϕ(It−1, Ft+1→t−1)∥2. (12)

It is used as a regularization term to jointly train the flow
estimation networks. Lframe denotes the loss between the
predicted frame Ît and ground-truth frame It,

Lframe = ∥It − Ît∥2, (13)

and LSSIM is the structure similarity (SSIM) loss [36] to
measure the perceptual difference between Ît and It,

LSSIM = SSIM(It, Ît). (14)

In addition, we use a feature constraint loss to minimize the
discrepancy between the query and addressed keys. So the
normal queries are sufficiently reconstructed with only the
top K memory keys, while for unknown anomalous queries,
these K keys are not sufficient to represent it and give larger
reconstruction error. The constraint loss is defined as:

Lcon =
1

HW

H∑
i=1

W∑
j=1

∥vij − qij∥2. (15)

Dynamic addressing involves only some of the memory
keys for each query, and the feature constraint loss enforces
the query and the aggregated memory key close to each
other. To prevent all memory keys from being close to each
other, we impose a diversity loss [26] as the memory regu-
larization, which increases the distinction between memory
features, especially between normal and abnormal. The ob-
ject function is maximize the mean square error between
memory items,

Ldiv = − 1

N2

N∑
n=1

N∑
n′=1

||kn − kn′ ||2. (16)

Note that λ1, λ2 and λ3 are hyper-parameters to balance
each loss during training.

3.4. Anomaly Score

The frame interpolation model is trained on video se-
quences with normal frames, while for unknown anoma-
lous samples it yields higher interpolation errors. Thus, the
anomaly score is represented by the interpolation error as
below,

Sint = Lframe = ||It − Ît||2. (17)

Since abnormal queries incur errors when addressing in the
memory pool, we also refer to Lcon as the anomaly score:

Scon = Lcon =
1

HW

H∑
i=1

W∑
j=1

||vij − qij ||2. (18)

The overall anomaly score is defined as

S = αϕ(Sint) + (1− α)ϕ(Scon), (19)

where ϕ(∗) denotes the min-max normalization and α is a
hyper-parameter to balance Sint and Scon.

4. Experiments
4.1. Setup

Datasets. Three benchmark datasets are used to valuate
our proposed method.

1) UCSD Ped2 [15] dataset is composed of 16 training
videos and 12 testing video depicting pedestrian moving

2638



parallel to the camera plane, the samples are in 240 × 360
pixels resolution. The crowd density varies from sparse to
crowded following natural undulation. Anomalous pedes-
trian motions and non pedestrian entities including bikers,
skaters, and people walking across a walkway, are consid-
ered as abnormal cases.

2) The CUHK Avenue[22] dataset contains 16 training
videos and 21 testing videos from camera overlooking a
busy sidewalk. The It includes 47 unusual events such as
throwing objects, loitering, and running, the spatial resolu-
tion of each frame is 600× 360.

3) ShanghaiTech Campus [18] dataset consists of 274k
training and 42k testing frames with 130 irregular events,
covering 13 different scenes of size 856 × 480. Compared
with other datasets, ShanghaiTech is more challenging be-
cause of the diversity of scenes, multiple view angles, com-
plicated light conditions, and the introduction of sudden
motion like chasing and brawling.

Implementation Details. We use PyTorch [33] to im-
plement the proposed method. The frames are resized to
256 × 256 and normalize the pixel values to the range of
[−1, 1] for all three datasets. The memory size is same as
MNAD [32] and MPN [26] at 10. Various value of dynamic
selection number K in constraint loss are also explored from
1 to 9. The balance weights in the objective function are
empirically set as λ1 = 0.0001, λ2 = 1, λ3 = 0.0001.
The model is optimized by Adam optimizer. The learn-
ing rate is initialized to be 0.0002, and decayed to 0 in the
last epoch monitored by Cosine Annealing [20] scheduler.
Training epochs are set to 100, 50, 20 for Ped2, Avenue and
ShanghaiTech respectively. We set the batch size as 8 for all
datasets. The experiments are conducted with dual Nvidia
RTX-3090 GPUs in the form of parallel training, it takes
about 8, 12, 40 hours for training phase on Ped2, Avenue
and ShanghaiTech respectively. For inference, we choose
α = 0.3 to balance the anomaly score between interpolation
error and feature constraint error. Our code will be released
once the paper is accepted.

Evaluation. We use the AUC (Area Under Curve) as the
measurement for frame-level score. It’s obtained by com-
puting the areas under the ROC curve through a varying
threshold for the anomaly score of the frame interpolation.

4.2. Quantitative Comparison

As shown in Tab.1, we compare state-of-the-art frame-
level unsupervised video anomaly detection methods on
UCSD Ped2 [27], CUHK Avenue [21] and ShanghaiTech
Campus [17], including both reconstruct-based and predict-
based methods. The primary comparison methods are
memory-augmented models, which are MemAE [9],
MNAD [32], AMMC [4] and MPN [26]. In partic-
ular, MemAE [9] is a reconstruction-based model and
AMMC [4] is a prediction-based model, while MNAD

Method\Dataset Ped2 Avenue Campus

O
bj

ec
t Rec. HF-R [19] 98.8% 86.8% 73.1%

Pre. VEC [38] 97.3% 89.6% 74.8%
HF-P [19] 94.5% 90.2% 76.2%

Fr
am

e

Rec.

2DAE [11] 85.0% 80.0% 60.9%
3DAE [39] 91.2% 77.1% -
MNAD-R [32] 90.2% 82.8% 69.8%
TSC [24] 91.0% 80.6% 67.9%
sRNN [25] 92.2% 81.7% 68.0%
MemAE [9] 94.1% 83.3% 71.2%
STCEN [10] 96.9% 86.6% 73.8%
AMC [30] 96.2% 86.9% -
MPN-R [26] 96.2% 87.1% 71.9%

Pre.

MPN-P [26] 92.6% 85.2% 71.1%
VPC [16] 93.6% 85.4% -
Frame-Pred [17] 95.4% 84.9% 72.8%
STD [5] 96.7% 87.1% 73.7%
MNAD-P [32] 97.0% 88.5% 70.5%
AMMC [4] 96.6% 86.6% 73.7%

Int.
SIGnet [8]. 96.2% 86.8% -
Ours w/o Mem. 98.2% 86.9% 73.4%
Ours w/ Mem. 98.9% 89.7% 75.0%

Table 1. Comparison with state-of-the-art methods on the UCSD
Ped2 [27], CUHK Avenue [21] and ShanghaiTech Campus [17]
in terms of AUC score. The results in bold denote the best per-
formance of frame-level anomaly detection. Rec., Pre., and Int.
indicate reconstruction-based methods, prediction-based methods,
and frame interpolation-based method, respectively.

[32] and MPN [26] provide results for both. In ad-
dition, we also compare the proposed model with other
reconstruction-based and prediction-based methods, includ-
ing 2D Auto-Encoder (2DAE) [11], 3D Auto-Encoder
(3DAE) [39], Temporally-coherent Sparse Coding (TSC)
[24], stacked Recurrent Neural Network (sRNN ) [25],
Spatiotemporal Consistency-enhanced Network (STCEN )
[10], Appearance-motion Correspondence (AMC) [30],
Frame Prediction (Frame − Pred) [17], Video Prediction
and Compression (V PC) [16] and Spatio-temporal Disso-
ciation (STD) [5]. Note that the prediction-based methods
are generally better than the reconstruction-based methods.
In particular MNAD [32] and MPN [26] set up for com-
parison in the same settings also show this trend. Also, we
present the comparison with the sequence-based interpola-
tion approach, Siamese generative network (SIGnet) [8].
Our proposed frame-based interpolation method achieves
better results overall, by avoiding direct input of both ap-
pearance and motion information. Additionally, the object-
level methods V EC [38] and HF [19] are also shown as
references. In contrast to frame-level settings [9], object-
level methods use an extra object detection model to extract
objects in the video. Although comparisons with frame-
level methods [38, 19] are unfair as they use a prior knowl-
edge model, our method still achieves comparable results.
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4.3. Ablation Study

Method\Dataset Ped2 Avenue Campus

Rec. MemAE [9] 91.7% 81.0% 69.7%
MNAD-R [32] 86.4% 80.6% 65.8%

Pre.
MNAD-P [32] 94.3% 84.5% 66.8%
AMMC [4] 95.1% 84.9% 71.5%
MPN [26] 95.1% 83.9% 66.7%

Int. Ours 98.2% 86.9% 73.4%
Table 2. Comparison with the baselines with out memory module
used in state-of-the-art in terms of AUROC.

Comparison on baselines. We compare with the base-
lines of memory-augmented methods, such as MemAE
[9], MNAD [32], AMMC [4] and MPN [26]. The
detailed comparison is shown in Table 2, showing the
results of methods without the memory module. Our
approach and AMMC [4] achieve promising results
on all three datasets because both involve a concern on
motion abnormalities. However, for the detection of motion
anomalies, AMMC [4] utilizes an extra network for the
prediction of the optical flow. As a baseline, our proposed
frame interpolation method is superior in unsupervised
video anomaly detection.

Analysis on components. To evaluate the effectiveness
of each component of the proposed framework, a detailed
ablation comparison is implemented on the CUHK Avenue
[21] dataset as shown in Table. 3. In addition to pixel-level
interpolation loss Lframe, we also implement structural sim-
ilarity loss LSSIM to improve the perceptual effect and thus
obtain a small gain. As skip-connects can cause anoma-
lies to leak and decrease anomaly scores [19], we insert a
memory module in the last layer to prevent this. The dy-
namic memory mechanism is promoted from two aspects.
At first, we implement a feature constraint Lcon to make
the dynamically addressed memories represent the normal
query and add the diversity Ldiv loss to enlarge the distance
between memory items. By doing so, a compact normal fea-
ture space is formed without affecting the memory capac-
ity. Secondly, the feature constrain can be seen as feature-
level reconstruction, which can be used as a unique anomaly
score Scon. The feature-level anomaly score Scon achieves
the AUROC of 85.5% and improve the interpolation-based
anomaly score Sint slightly. Compared to the baseline and
vanilla memory module, the proposed method improves by
2.8% and 2.2% AUROC scores respectively.

Impact of memory quantity. The impact of the
dynamic quantity K for the memory addressing is demon-
strated in Fig. 5. The anomaly scores Sint, Scon and
S are denoted as int., con. and mix. respectively. We
also explore the evaluation results for different memory

Network Loss Score AUROC
Memory LSSIM Ldiv Lcon Scon Sint

✗ ✗ - - - ✓ 86.2%
✗ ✓ - - - ✓ 86.9%
✓ ✓ ✗ ✗ ✗ ✓ 87.5%
✓ ✓ ✓ ✗ ✗ ✓ 87.7%
✓ ✓ ✓ ✓ ✗ ✓ 89.5%
✓ ✓ ✓ ✓ ✓ ✗ 88.5%
✓ ✓ ✓ ✓ ✓ ✓ 89.7%

Table 3. Ablation study results under different settings on CUHK
Avenue in terms of AUROC.

capacities N with respect to the ratio of K. The memory ef-
fectiveness reaches an optimal distinction between normal
and abnormal events at K = 5, N = 10, while achieving
the best AUROC result.

Figure 5. Analysis on the memory capacity N and quantity of dy-
namic memory items K in terms of AUROC on CUHK Avenue
[21] dataset

Visualization. Three examples of anomaly scores over
time for all frames in a sequence on UCSD Ped2 [27],
CUHK Avenue [21] and ShanghaiTech Campus [17] are
shown in Figure 6, respectively. The line charts show the
anomaly scores of all frames of a video sequence, by which
temporal changes in both normal and abnormal events can
be intuitively observed. We release a more clear visualiza-
tion in Fig. 7 to show the effect of frame interpolation on
anomalous events, where the anomaly map represents the
pixel-level interpolation error. For better visual expression,
we apply the Gaussian smoothing on the anomaly map. The
interpolation results on UCSD Ped2 [27] represent an en-
hancement of bidirectional interpolation for anomalous mo-
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Figure 6. Visualization of variations in anomaly scores for nor-
mal and abnormal events. Abnormal scores for normal events are
highlighted in blue, while abnormal events are red. The heat map
shows the anomaly localization, with blue to red indicating the rise
in the anomaly score.

tion detection, with significant interpolation errors seen in
the interpolation column where the bicycle appears to be
overlapped. The overlap arises because motion delays occur
in both relative directions. The example from CUHK Av-
enue [21] dataset shows the abnormal behavior “running”
with attention on the “legs” of the object. The anomalous
event “fight” appears on the ShanghaiTech Campus [17]
and our model attention is on the “arm”.

5. Conclusions
This paper proposed an intermediate frame interpolation

framework as a novel paradigm for unsupervised anomaly
detection in video surveillance. This framework included

Pe
d2
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en
ue
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m
pu
s

current frame interpolation anomaly map 6𝐹!→!#$ 6𝐹!→!%$

Figure 7. Visualization examples of interpolated frame, anomaly
map and optical flow on UCSD Ped2 [27], CUHK Avenue [21] and
ShanghaiTech Campus [17]. The first two columns indicate the
current frame and the interpolated frame. The abnormal events for
the above three datasets are “bicycle”, “running” and “fight”
respectively. The anomaly region is visualized by heatmap in the
third column. The last two columns show the estimated optical
flow from the moment t to the moments t− 1 and t+ 1.

an optical flow estimation network and an interpolation net-
work jointly trained on normal video sequences. In the in-
ference phase, an anomaly was reflected by the interpolation
error. Unlike previous approaches, our pipeline blocked the
direct input of anomalous appearance and abnormal mo-
tion patterns, enlarging the cumulative error on anomalous
events. In addition, we introduced the dynamic memory
mechanism to enhance the discrepancy between normality
and abnormality in the feature space. Our dynamic memory
mechanism constrained the representation of abnormal fea-
tures without compromising the memory capacity for nor-
mal features. The excellent results of frame-level video
anomaly detection on public benchmarks verified the effec-
tiveness of the proposed framework.

Limitations. The key of the proposed method is to in-
terpolate the normal frames with small, or no, errors, but
abnormal frames with large errors. Since only two frames
are fed into the model, video content with obstacle views or
occlusions poses a challenge to our approach. We demon-
strate some failure cases in the supplementary document.

Potential negative social impact. Although video
anomaly detection was developed to solve real-life prob-
lems, such as traffic control and urban policing. However,
there are still factors that make this technology potentially
harmful to society. For example, frame interpolation can be
used as a means of video forgery to create false evidence
and evade surveillance, etc. We call for attention to such
issues and encourage researchers to develop more socially
friendly technologies in the future.
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