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Abstract. Computational histopathology image diagnosis becomes in-
creasingly popular and important, where images are segmented or classi-
fied for disease diagnosis by computers. While pathologists do not strug-
gle with color variations in slides, computational solutions usually suf-
fer from this critical issue. To address the issue of color variations in
histopathology images, this study proposes two stain style transfer mod-
els, SSIM-GAN and DSCSI-GAN, based on the generative adversarial
networks. By cooperating structural preservation metrics and feedback
of an auxiliary diagnosis net in learning, medical-relevant information
presented by image texture, structure, and chroma-contrast features is
preserved in color-normalized images. Particularly, the smart treat of
chromatic image content in our DSCSI-GAN model helps to achieve no-
ticeable normalization improvement in image regions where stains mix
due to histological substances co-localization. Extensive experimentation
on public histopathology image sets indicates that our methods outper-
form prior arts in terms of generating more stain-consistent images, bet-
ter preserving histological information in images, and obtaining signifi-
cantly higher learning efficiency. Our python implementation is published
on https://github.com/hanwen0529/DSCSI-GAN.

Keywords: Stain style transfer· generative model· color normalization·
structural similarity· computational histopathology.

1 Introduction

Computational histopathology is a promising field where image processing and
machine learning techniques are applied to histopathology images for disease
diagnosis. One critical issue with it is color variation among histopathology im-
ages. Due to the variation in chemical stains and staining procedures, tissue
slides can differ greatly from each other in visual appearance. Other factors may
also introduce variation to visual appearance, including the storage conditions
of stain prior to use and the handling of slides. Since color information is recog-
nized as key factor in an automatic histopathology analysis system, the tissue
slices varying appearance directly increases diagnosis complexity and impacts
the quality and accuracy of a computational solution [1]. To address the color
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variation issue in computational histopathology, one potential, practical solution
is to eliminate color variation in the pre-learning stage and many color normal-
ization solutions are proposed. Briefly, prior color normalization approaches can
be categorized into three groups: (i) histogram matching methods [2–4]; (ii)
spectral matching based on stain decomposition [4–7]; (iii) style transfer based
on generative learning [8–12]. Among the three categories, histogram matching
methods treat color distribution independent of image content, thus may intro-
duce image distortions after normalization. The spectral matching methods are
based on Beer-Lambert law for stain decomposition [13] and achieve good per-
formance for light-absorbing stains. However, there are many scattering stains
in histopathology images that do not follow Beer-Lambert Law. To overcome
these limitations, deep learning methods, especially generative adversarial net-
works(GAN) [14], are exploited, hoping for a generalizable color normalization
solution for computational histopathology.

In this study, we develop a novel stain-style transfer framework combining a
GAN network and a classification network for color normalization on histopathol-
ogy images. The proposed framework learns the histopathological staining proto-
col from training set and achieves stain style transformation with high efficiency.
To preserve histopathological information delivered by texture, structural, and
color content in images, we respectively innovate the use of structural similarity
index matrix (SSIM) [15] and directional statistics based color similarity in-
dex (DSCSI) [16] as the image reconstruction loss function in training process.
A feature preservation loss function is exploited in the proposed framework to
minimize the loss of discriminative representations in images. We perform ex-
tensive experimentation to evaluate the proposed SSIM-GAN and DSCSI-GAN
models against prior arts. The results suggest that the proposed models suc-
ceed in transferring stain style, generating stain-consistent images, and bringing
significantly higher learning efficiency than prior arts.

In summary, our contributions are in two-folds. First, we propose two stain
style transfer models that learn histopathological staining protocols and realize
color normalization. Second, we introduce the use of SSIM and DSCSI metrics
in GAN’s learning, preserving structural information in images when transfer-
ring color patterns. DSCSI-GAN is the first to utilize image chromatic spatial
organization to regularize GAN in stain style transfer and achieves noticeable
normalization improvement in image regions where chemical stains mix due to
histological substances overlap.

2 Method

To clarify the histopathological stain style transfer problem, we define the dataset
of histopathology images from pathology lab A as XA = {x1A, . . . xnA} and its
corresponding labels YA = {y1A, . . . ynA}, where xiA ∈ R3 is a color image in
RGB format and yiA ∈ (0, 1) indicates whether it is normal or tumor image. We
also define the test dataset from pathology lab B as XB which represents the
same type of tissue but has different staining appearance. The proposed stain
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Fig. 1: Overview of the stain-style transfer network and classification network.

normalization model aims at generating images ẊB from source images XB ,
where ẊB should preserve the histological information in XB and have the
same color style as training set XA .

Network Architectures: The block diagram of the proposed framework is
shown in Fig. 1. In this study, we deploy an auxiliary model C(X; θC) to aug-
ment the learning procedure of GAN [14] for color normalization. A GAN model
comprises of a generator G(X; θG) and a discriminator D(X; θD), which respec-
tively generates color-normalized images and discriminates original images from
generated ones. The model learns color characteristics within an entire dataset
XA in training and finally is capable of processing query images XB so that the
normalized images ẊB appear the same stain style of XA . We cooperate image
structural similarity loss functions in GAN’s learning for histological information
preservation.

As presented in Fig. 1, the proposed framework is composed of three con-
volutional neural networks. For generator G(X; θG), we adapt U-Net [17] to
communicate image histological content between layers and to embrace precise
localization property. For discriminator D(X; θD), we adopt the discriminator
part from vanilla GAN [14], which takes real images or fake images generated
by G(X; θG) for classification. Our framework also deploys ResNet [18] as the
auxiliary net C(X; θC) to classify histopathology images as tumor or normal
images. After the network is trained on XA , we use C(X; θC)’s feature map
before the last fully-connected layer as feedback for GAN’s update.

Objective Functions: Given the proposed GAN based stain transfer frame-
work with parameter set θ = {θG, θD, θC}, where θG and θD are the trainable
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parameters of generator and discriminator of GAN and θC is the trainable pa-
rameters of the diagnosis net, the objective function L(θ) of the proposed model
is composed of three loss functions:

L(θ) = αLGAN (G,D) + βLreco(G) + γLfp(G,C)), (1)

where α, β, γ are the weights to balance GAN loss LGAN (G,D), image recon-
struction loss Lreco(G), and feature preserving loss Lfp(G,C).

The GAN loss LGAN (G,D) [14] drives the system to perform an adversarial
game (i.e. the generator learns to generate images that can fool discriminator
whose task is to distinguish between real and fake images). Since the generic
GAN loss LGAN (G,D) may induce the model to generate an image losing his-
tological patterns, we introduce two more loss functions in training.

The reconstruction loss Lreco(G) measures the difference between generated
images ẊA and its original counterpart XA, and enforces the generator learning
image color distribution and maintaining the structural information in images
at the same time. Specifically, structural information refers to the knowledge
about the structure of objects, e.g. spatially proximate, in the visual scene [19].
Particularly in the context of computational histopathology, structural infor-
mation mainly refers to the spatial organization of histological substances, i.e.
multicellular structures, in histopathology images. Such information is a key for
downstream computational histopathology and thus should be maintained in
color normalization. In prior arts, generative networks usually adopt MSE as
image reconstruction loss function. However, MSE-driven models are prone to
generating a smooth/blur reconstruction where some structural information in
the original signal is missing [20]. To address this problem, we introduce two loss
functions based on image structural similarity (i.e. SSIM and DSCSI) to measure
quality of generated images. The motivations behind is that structural similarity
correlates well with humans perception of image quality [21] and facilitates the
networks to maintain the texture and structural patterns in images.

The SSIM based reconstruction loss function when training G(X; θG) and
D(X; θD) can be formulated by

Lreco(G) = Ex∼XA
[1− SSIM(x,G(x; θG))], (2)

where Lreco(G) ∈ [0, 1] and SSIM [15] is the structural similarity index matrix
between original image xiA and generated image ẋiA by G(X; θG). As SSIM is pro-
posed for gray-scale images, in practice, we first map RGB images to gray-scale
images. A sliding window is applied to obtained gray-scale images and image
differences within the sliding windows, characterized by luminance, structure,
and contrast, are evaluated and averaged for a single SSIM value. We name the
stain style transfer model with SSIM as SSIM-GAN in this study.

Note SSIM is proposed for grayscale image quality measurement and may fail
for color images that exhibits chromatic deviations [16]. Aware that histopathol-
ogy images are color in nature and color normalization in these images focuses
on chromatic style transfer, we also develop a DSCSI based reconstruction loss
and replace the SSIM metric in GAN learning. The correpsonding model is called
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DSCSI-GAN in this paper. The DSCSI loss combines chromatic and achromatic
similarity and is formulated as:

Lreco(G) = Ex∼XA
[1−DSCSI(x,G(x; θG))]. (3)

In training, the original image and generated image are first transformed to the
S-CIELAB space [22] and six similarity measures in the hue/chroma/lightness
channels are developed to compute the similarity score in SDCSI loss.

The last term in Eqn. (1) is used to preserve discriminative histological fea-
tures in images. In training, we feed original image xA and generated image ẋA
to the pre-trained auxiliary diagnosis net C(X; θC) and extract feature repre-
sentations after the final convolution layers. Following Cho’s work [9], we obtain
feature-preserving loss by means of Kullback-Leibler divergence.

Training Procedure: Our proposed methods are composed of two learning
stages. First, a diagnosis net used as the auxiliary classifier C(X; θC) is trained
on the training set XA and image labels. Second, the GAN type model is trained
following Algorithm 1 to optimize the proposed objective functions.

Algorithm 1: Training GAN model with Minibatch Stochastic Gradient
Decent.

Input: data XA ,YA , pre-trained model C(X; θC)
Initialized the weights of networks G(X; θG), D(X; θD)
for number of training iterations do

Sample minibatch of 2m images, half normal images and the other half tumor
images: x1A, x

2
A, x

3
A, . . . x

2m
A ;

Feed images to G(X; θG) and generate ẋ1A, ẋ
2
A, ẋ

3
A, . . . ẋ

2m
A ;

Update D(X; θD) by ascending its stochastic gradient:
∇θD 1

2m

∑2m
i=1

(
logD

(
xiA; θD

)
+ log

(
1−D

(
ẋiA; θD

)))
;

Feed original images x1A, x
2
A, x

3
A, . . . x

2m
A and generated images ẋ1A, ẋ

2
A, ẋ

3
A, . . . ẋ

i
A

to C(X; θC) to obtain feature representations F (xiA) and F (ẋiA);
Update G(X; θG) by descending its stochastic gradient:
∇θG 1

2m

∑2m
i=1

(
log
(
1−D

(
ẋiA; θD

))
+ lreco(xiA, ẋ

i
A) + KL

[
F
(
xiA
)
||F
(
ẋiA
)])

end for
Output:Networks model G(X; θG), D(X; θD)

3 Experimentation

Dataset: We conduct the experiment based on the Camelyon16 dataset [23],
which is composed of 400 WSIs from two different institutes, Radbound and
Utrecht. The WSIs in these two institutes demonstrate same type of tissue with
different stain appearance due to variance in slide preparation. In this study,
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100,000 256×256 patches are randomly extracted from WSIs generated in Rad-
bound institute for training, and another 20,000 256×256 patches from Rad-
bound are used for validation. The test set contains 80,000 256×256 patches
randomly extracted from Utrecht WSIs. Tumor patches are extracted from tu-
mor regions in tumor slides and are treated as positive samples. Normal patches
are extracted from non-tumor and non-background regions in normal slides and
are treated as negative samples. The number of positive and negative patches
are the same in all the training, validation and testing set.

Experimental Setup: To start with, we use SGD to optimize the diagnosis net
with a learning rate of 10−3, batch size of 8 on training set for 100 epochs. Then
we use SGD with a learning rate of 10−4 and a batch size of 4 to train the GAN
based style transfer model on the training set for 60 epochs. Hyper-parameters
(i.e. weights of different loss functions) are turned using the validation set. And
we finally choose α = 0.2, β = 0.3, γ = 0.5.

To evaluate the proposed method, two experiments are performed. First,
we execute style transfer on test images from Utrecht institute and examine
generated images qualitatively in terms of stain resemblance to template images,
color consistency, and preservation of histopathological information. Second, we
evaluate the learning efficiency of our model and investigate the effectiveness of
the SSIM and DSCSI based loss function in GAN learning. To this end, we record
the image reconstruction loss in training to trace the optimization procedure.

For comparison, we also apply above experiments to prior arts by Cho [9],
Zanjani [24], Janowczyk [4], Li [25] and Macenko [26]. Among these methods,
Chos method and the proposed methods have similar architectures. Based on
GAN, Cho’s method generates normalized images from the grayscale versions
of query color images and uses MSE as reconstruction loss. Cho and Zanjani
both took advantage of deep learning to generate color-normalized images. Note
that compared to deep learning methods which learn stain and pattern features
in the whole dataset, the last three methods use one slide as reference. For fair
comparison, for the last three non-deep learning methods, we randomly choose
patches from the training set as reference and execute color normalization over
test set. We repeat the experiment ten times and report the average results.

Results and Discussions: First, we compare different normalization methods
by visual examination. As you can see in Fig. 2, the target image sampled from
training set serves as a comparison reference. Source images are sampled from
test set and the below are the stain normalized results of each method. Com-
paring all the generated images of three samples, we observe that the first four
methods obtain better results than the last three non-deep learning methods.
Among the four deep learning methods, images generated by the DSCSI-GAN
and SSIM-GAN methods have comparatively more consistent stain appearance
and the former has clearer histopathological structure. For instance, for Cho’s
result, the pink tissue marked by yellow rectangular in Source 1 disappears and
tissues marked by yellow circular have stains inconsistent with the sources. The
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Fig. 2: Stain normalization results of source images by different normalization
methods. Target image in first row is sampled from training set as reference image
and Source images 1-3 are sampled from testing set for visualization. Images
from row2-4 respectively show the outputs of source images 1,2,3 generated by
different methods. Images generated by last three non-deep learning methods
appear quite different from target image. In the source images, circular and
rectangular markers respectively show the areas that have problems of color
inconsistency and histological information loss. The images generated by DSCSI-
GAN and SSIM-GAN have comparatively more consistent stain appearance and
the former ones have more clear histological structure.

disadvantage in Cho’s method is attributed to the discard of color information
in stain transfer and the misuse of mean-squared-error(MSE) for image recon-
struction. Images generated by Zanjanis method seem better than those from
Chos method and have consistent stain style as well as darker stain in cell areas.

Second, we investigate the effectiveness of the proposed structure-preserving
reconstruction loss on GAN’s learning efficiency. Under the same experimental
setting, we record the learning efficiency by SSIM based error, DSCSI based error
and MSE in Cho’s method, shown in FIG.3(a). Compared with Cho’s method
where MSE value fluctuates severely, SSIM-GAN and DSCSI-GAN converge
more quickly with steady decline. We also use diagnosis network to classify
tumor and normal images and compute AUC, Precision, Recall and Accuracy
score during training. The changes of four scores are shown in FIG. 3(b). The
AUC value, Recall and Accuracy increase more quickly and reach highest values
in SSIM-GAN than others. Cho’s model is the slowest among the three. These
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(a) (b)

Fig. 3: (a)Decrease of reconstruction errors in training. (b)Learning curve in the
context of histopathology image diagnosis.

results demonstrate higher efficiency and better optimization performance of the
proposed structure preserving loss in this study.

In summary, our methods have two advantages. First, opposed to traditional
stain normalization methods, our model learn color distribution referencing to
the whole training set not a single template. This helps to reduce the sensitivity
of the normalization method to a particular training case. Second, we propose
the use of structural similarity metrics, SSIM and DSCSI, as measurements of
reconstruction error in GAN’s training and induce the generator to generate
high quality images. Since the introduced metrics drive the generator to learn
structural content in the hue, chroma, lightness domains effectively, the learning
efficiency is high in training.

4 Conclusion

This work presented two stain style transfer models to solve the stain vari-
ation problem in computational histopathology. We took advantage of GAN
that could learn stain distributions from a template dataset and obtain strong
generalization capability to transfer the stain pattern to other datasets. In the
proposed methods, we exploited SSIM and DSCSI to construct the reconstruc-
tion loss which prompt the model to maintain texture, structure, and color fea-
tures in original images. Extensive experimentation on publicly available dataset
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demonstrates that the proposed framework outperforms prior stain normaliza-
tion solutions in generating stain-consistent images, preserving histopathological
information, and obtaining high training efficiency.
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