
Unsupervised Liver Tumor Segmentation
with Pseudo Anomaly Synthesis

Zhaoxiang Zhang(B) , Hanqiu Deng , and Xingyu Li

University of Alberta, Edmonton, AB T6G 2R3, Canada
{zhaoxia2,hanqiu1,xingyu}@ualberta.ca

Abstract. Liver lesion segmentation is a challenging task. Liver lesions
often appear as regional heterogeneity in various shapes and intensi-
ties, while collecting a comprehensive dataset for supervised learning
is costly. To address this issue, this study formulates unsupervised liver
tumor segmentation as an anomaly segmentation problem and presents a
pseudo-supervised anomaly segmentation solution with synthetic anoma-
lies. In this regard, we investigate two fundamental, yet under-explored
questions: (1) how to generate anomalies? and (2) how to address a
covariant shift between synthesis data and real tumor samples in model
training? To the first question, instead of fabricating anomalies approx-
imating the known abnormal patterns, we propose to generate anoma-
lies spreading over a broader spectrum to encourage a model to learn
the cluster boundary of normal samples. Our rationale toward the sec-
ond question suggests light training on synthesis data for model gener-
alizability. Based on these insights, this study incorporates a random-
shaped anomaly synthesis module and two-stage training strategy into
the DRAEM architecture for unsupervised liver tumor segmentation.
Experiments on the public benchmark show that the proposed method
trained on various synthetic anomalies has good generalizability on real
tumor and achieves a comparable performance to prior arts. Our code is
available at: https://github.com/nono-zz/LiTs-Segmentation.
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1 Introduction

Liver tumors are one of the leading causes of cancer-related deaths, and accu-
rately segmenting them in medical images such as computed tomography (CT)
is crucial for early detection and diagnosis. While supervised tumor segmenta-
tion methods show promising results, their performance is heavily dependent on
high-quality annotated data, which can be expensive to obtain. Furthermore,
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due to the high heterogeneity of tumors, the generalizability of supervised mod-
els may be limited in identifying rare lesions or anomalies. Recently, there is an
increased interest in treating tumors as anomalies in medical images and explor-
ing unsupervised learning approaches, i.e. anomaly segmentation, to address the
aforementioned challenges. In the context of unsupervised anomaly segmenta-
tion, a model is expected to identify and segment potential abnormalities by
learning from a healthy cohort of patients during model training.

Prior arts in unsupervised anomaly segmentation can be categorized into
two paradigms. The first paradigm stems from anomaly detection, where a
model predicts if a query is normal or not and image regions that contribute
most to this results are taken as the anomaly segmentation results. Among var-
ious anomaly detection methods, generative models, such as Variational Auto-
Encoders (VAEs) [13], Generative Adversarial Networks (GANs) [8], Denois-
ing Diffusion Probabilistic Models (DDPM) [9] have been extensively exploited
[1,24,27,28,30,34]. Relying on the assumption that abnormal regions would be
poorly reconstructed, the residue between the input and the generative model’s
output is used to detect abnormalities. Feature modelling in the embedding space
is another approach. [5,23] employ the teacher-student architecture to extract
features for normal and abnormal sample discrimination. [4,22] propose to detect
the anomalies by out-of-distribution feature embedding. Despite their success in
industrial anomaly detection [2], their effectiveness may be limited when applied
to medical domain.

Alternative, anomaly synthesis has emerged as a prominent approach that
incorporates pseudo-positive samples to enhance anomaly segmentation. By
overlaying color, texture, and semantic outliers on normal samples, a model
is trained to segment the synthetic anomalous regions [6,10,11,16,25,26,31,33].
Despite yielding promising results, there exists significant variation in methods
for generating pseudo anomalies. For instance, [15,25,26] generate anomalies
by utilizing in-distribution image patches, while [10,16,31,33] focus on produc-
ing lesions that closely resemble real anomalies. Additionally, prior arts usually
focus on model design [16,32]. However, there is little study explicitly tackling
the following two fundamental questions behind this paradigm.

– Should pseudo-anomalies approximate the queries in the test phase?
– How should the segmentation model be trained on the synthesis data?

In this study, we explore these questions and introduce two principles for
pseudo-supervised anomaly segmentation with synthetic anomalies. We apply
these principles to unsupervised liver tumor segmentation through adapted dis-
criminative joint reconstruction anomaly embedding (DRAEM) [32]. Our app-
roach introduces a varied anomaly synthesis pipeline and a balanced two-stage
training strategy for DRAEM, resulting in outstanding performance on the liver
tumor segmentation dataset (LiTs) [3].
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2 Preliminaries

This section tackles two fundamental, yet under-explored questions in pseudo-
supervised anomaly segmentation with synthetic abnormalities. The reasoning
offers insights for designing the proposed solution.

Q1: About pseudo anomaly generation: Should pseudo-anomalies
approximate the common queries in the test set?

Pseudo anomaly is introduced to establish the boundary that distinguishes
abnormality, transforming the unsupervised problem into pseudo-supervision,
which helps the model learn normal patterns by providing negative samples.
Since there is no clear definition of what constitutes an anomaly, there shouldn’t
be any bound or limit on pseudo anomaly synthesis. Instead of focusing on creat-
ing pseudo anomalies that match known abnormal patterns in queries, we advo-
cate generating a diversity of anomalies to facilitate a model to learn the compre-
hensive normal spectrum. In particular, when dealing with unsupervised tumor
segmentation, we believe that generating a large diversity of pseudo anomalies
in terms of intensity, shape, and textures facilitates addressing the high hetero-
geneity in tumors. This motivates the design of the proposed pseudo anomaly
generation module.

Q2: About model training: Should the model training follow the
exact supervised training principles on synthetic anomalies?

The success of supervised learning relies on the IID assumption that both the
training and test data follow an identical distribution. Under this assumption, a
model is usually well-trained on the training set with multiple iterations. How-
ever, we argue that one shouldn’t follow the same philosophy to train a model
on pseudo anomalies in anomaly detection and segmentation. According to the
reasoning in Q1, a covariate shift is likely to exist between the synthesized and
query anomalies. We visualize this covariate shift by 2-D TSNE in Fig. 1(C),
where both tumor samples and normal images are from the LiTs dataset [3].
Consequently, due to the potential covariate shift between the synthesized and
the common anomalies in pseudo-supervised segmentation, training a model on
the pseudo anomalies may cause a bias and harm its performance on real queries.
In another words, a good-fit model on the pseudo-anomaly data may fail on real
testing data. Our ablation experiment shown in Fig. 3 validates this hypothe-
sis. Therefore, unlike conventional supervised learning that requires a relatively
long training time, we argue that model optimization on anomaly synthesis for
pseudo-supervised segmentation should stop early to preserve the model’s gen-
eralizability on queries. Our answer to Q2 inspires us to design the two-phase
training strategy in this study.

3 Method

Toward unsupervised liver tumor segmentation, we incorporate our reason-
ing to Q1 and Q2 into the DRAEM-similar [32] architecture. As depicted in
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Fig. 1. (A) Systematic diagram of the proposed unsupervised liver tumor segmentation
scheme. During training, synthetic abnormalities are fed to a restoration net followed
by a segmentation net. To avoid model overfitting on synthesis, the two models are
trained in two phases represented by blue and orange, respectively. In inference, a
query is directly passed to the two networks for segmentation. (B) Proposed synthesis
pipeline based on Gaussian noise stretching. (C) Liver image embedding by 2-D TSNE.
(Color figure online)

Fig. 1(A), the framework comprises random-shape anomaly generation, a restora-
tion network, and a segmentation network. Unlike DRAEM training both net-
works jointly, we propose a two-phase learning to avoid segmentation model
over-fitting on synthetic abnormalities. In inference, only the reconstructive net-
work and segmentation network are deployed on queries. Compared to DRAEM,
our experiments show that both the proposed anomaly generation module and
the two-phase learning strategy boost the liver tumor segmentation performance
in terms of segmentation accuracy and model stability.

3.1 Pseudo Anomaly Generation

The anomalous training samples are simulated by the anomaly synthesis mod-
ule, which generates masks of random shapes and sizes through Gaussian noise
and morphological transformations. Initially, Gaussian noise is generated with
the same resolution as a normal image and then blurred with a Gaussian kernel.
The noise is then stretched and thresholded to produce a binarized mask. Sub-
sequently, closing and opening operations with the elliptical kernel are applied
to the binarized mask to obtain an anomaly segmentation mask. The detailed
algorithm is shown in Algorithm 1 in Supplementary.

Using the generated anomaly mask Ms, we proceed to synthesize the abnor-
mal sample Is. In CT slides, unhealthy patterns in liver regions are demonstrated
by abnormal Hounsfield-Unit (HU) values. Therefore, we propose to randomly
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shift the intensity of the slice and overlay the new intensity values on the original
image I within the mask regions (as shown in Fig. 1(B)). We demonstrate the
proposed abnormality synthesis in Fig. 1(B) and formulate it as

Is = (1 − Ms) � (I + C) + Ms � I, |C| ∈ (minRange,maxRange), (1)

where Is represents synthesized anomalies, � is element-wise multiplication, and
C is a random value drawn from a Gaussian distribution within a defined range.

It is noteworthy that unlike [10,33] that aims to fabricate pseudo anomalies
to approximate the common patterns of liver tumors, we follow our principle to
Q1, leverage the stochastic nature in the proposed synthesis process to gener-
ate a wide spectrum of anomalies deviating from normal patterns (as shown in
Fig. 1(C)). Our experiment shows that our method outperforms [33] by 12% in
Dice.

3.2 Model Architecture and Training Functions

The reconstruction network is trained to restore anomalous regions while pre-
serving the normal regions. The segmentation network takes the concatenation
of the restoration and pseudo-anomalous image as input and targets to estimate
an accurate segmentation map for the anomaly. For the reconstruction network,
we use U-Net [21] with 3 encoder and decoder blocks as backbones. The spe-
cific encoder block in the restoration network adopts the architecture proposed
in [11], where it consists of 2 weight-standardized convolutions [19] followed by
swish activation [20] and group normalization [29].

To address diverse levels of model optimization complexity, we train the two
networks consequently in two phases. The reconstruction model is first trained
to restore the anomalous region in synthetic abnormal images with L1 loss:

Lrec(Is, Ĩs) = |Is − Ĩs|, (2)

where Is, Ĩs are the pseudo outlier augmented sample and the reconstruction
image. After freezing the well-trained generative module, we slightly train the
segmentation model to avoid bias introduced by the covariance shift. To accom-
modate potential small tumors, Focal Loss [17] is adopted:

Lseg(Ms, M̃s) = − 1
N

N∑

i=1

C∑

j=1

αj(1 − m̃s,ij)γ log(m̃s,ij) (3)

where m̃s,ij is the predicted probability of class j at pixel i and αj is the weight
for class j, and Ms, M̃s are the ground truth and the estimated anomaly masks.

4 Experiments

4.1 Experimental Setting

Dataset Preparation: We evaluate the proposed method on the Liver Tumor
Segmentation (LiTs) dataset [3] from MICCAI 2017 challenge. LiTs dataset
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consists of 131 abdominal computed tomography (CT) scans with the paired liver
and liver tumour ground truth labels. Unlike with previous works [7,16], which
perform the cross-fold validation on the LiTs dataset, we argue that training
on the retrieved partial samples from an unhealthy CT scan is not ideal for the
model to learn the complete liver feature distribution. Therefore, we train our
model on an anomaly-free dataset BTCV [14], which provides 40 healthy CT
abdomen scans and the corresponding organ masks.

Table 1. Liver tumor segmentation on LiTs [3]. Our method exhibits the best Dice
with a standard deviation 1.78. Results with ∗ are directly copied from original papers.

Methods Supervision Dice

Zhang et al. [33] � 61.91∗

DRAEM [32] X 14.75

Zhang et al. [33] X 40.78∗

ASC-Net [7] X 32.24∗

ASC-Net + postprocessing [7] X 50.23∗

Hu et al. [10] X 59.77∗

Ours X 53.03

For all CT volumes in training and test, HU values are transformed into
grayscale and the liver Region of Interest (ROI) is extracted according to the
organ annotations. Then 2D slices are obtained along the Axial plane, resized
to 256 × 256, and normalized independently by histogram equalization.

Implementation Details: We run the experiments on dual Nvidia RTX-3090
GPUs. The threshold for pseudo mask generation is set to be 200, and the inten-
sity range of the random intensity shift is [−100, 100]. The focal loss parameters
are defined as α = 1 and γ = 2. We use PyTorch [18] to implement the proposed
method. The model is trained for 200 epochs for the first stage and just 1 epoch
for the second stage to avoid bias introduced by pseudo anomalies. The learning
rate is set to 0.0001, with a batch size of 8 using Adam [12] optimizer. We follow
previous studies and use the Dice score as our evaluation metric.

4.2 Results and Discussion

Comparison to SOTA: We quantitatively compare the proposed method with
state-of-the-art unsupervised liver tumor segmentation methods including Zhang
et al. [33], Hu et al. [10] ASC-Net [7] both with and without manually-designed
post-processing and report the results in Table 1. The fully supervised method
is taken as performance upper bound. As shown in Table 1, our approach signifi-
cantly outperforms the other methods, with the exception of [10] and shrinks the
gap between unsupervised method and fully-supervision. Notably, [10] leverages
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extensive clinical prior knowledge to synthesize pseudo anomalies resembling real
tumors. Furthermore, our approach achieves a substantial reduction in runtime
at 0.018 s/slice, compared to 0.476 s/slice in [10] which operates on 3D volume,
incurring higher memory usage and slower inference time. In Fig. 2, we show our
segmentation results on real tumor data in the LiTs dataset.

Fig. 2. Tumor segmentation on real liver tumor data, from easy (left) to difficult (right).
Iin: Input , Mseg: segmentation mask, and Mgt: Ground-Truth.

Table 2. Ablation study of two-phase training (TP), pseudo anomaly (PA), and recon-
structive network. The baseline is DRAEM model [32]. Asterisks indicate statistical
significance (*: p ≤ 0.05, **: p ≤ 0.001) when using a paired Student’s t-test compared
to the baseline.

Method +TP +PA +U -Net Dice

Baseline 14.75 ± 14.28

Baseline � 21.31 ± 12.54

Baseline � � 30.17 ± 5.50∗

Baseline � � 40.06 ± 6.85∗

Baseline � � � 53.03± 1.78∗∗

Ablation on Model Components: The proposed method and DRAEM
differ in three aspects: pseudo anomaly generation (corresponding to Q1), two-
phase training (corresponding to Q2), and U-Net backbone in the restoration
net. In this ablation study, we take the DRAEM as baseline, decouple these
factors, and evaluate their impact in terms of tumor detection (by AUROC)
and segmentation (by DICE) on LiTs. We run this ablation 3 times, and the
performance is reported in Table 2. Due to page limitation, additional results
such as AUROC, anomaly size mask threshold selection, and a wide spectrum
of pseudo anomalous samples can be found in supplementary.

The two-phase training strategy improves Dice by 6.5% on the baseline.
When combined with U-Net and PA, there’s a significant 13% performance
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boost compared to using only U-Net and PA, validating our hypothesis that
light segmentation training on pseudo anomalies helps address the covariant
shift between synthetic anomalies and real tumors. We further extended the
training of the segmentation net to 200 epochs and captured tumor detection
performance (by AUROC) and segmentation quality (by Dice) every 5 epochs.
It’s worth emphasizing that these experiments incorporate the synergistic appli-
cation of TA, U-Net and PA, as this combination has proven to demonstrate
optimal outcomes with TA. Therefore, Fig. 3 results diverge from the Dice score
in Table 2, where TA solely influences the baseline, yielding a comparatively less
pronounced impact on reducing training perturbation. As shown in Fig. 3, the
mean AUROC keeps decreasing, and the standard deviation keeps increasing.
The perturbation also occurs in Dice after 50 epochs. We attribute this to model
overfitting on the pseudo data, which hurts model’s generalizability on queries.

Additionally, the proposed anomaly synthesis module and U-Net designed in
our restoration net significantly boost the segmentation performance. Figure 4
presents a visualization comparison of reconstructions generated by autoencoder
(AE) and U-Net. Compared to the AE-based network, the skip-connection in
U-Net helps preserve the texture details in liver reconstruction images, which
facilitates the downstream segmentation task.

Fig. 3. An illustrative depiction of the evaluation performance of the segmentation net-
work reveals a tendency to overfit shortly after a short period of training. Throughout
this process, the reconstruction network maintains a frozen state.

Fig. 4. Visualization of image reconstruction by AE and U-Net.
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5 Conclusion

In this study, we tackled the challenging problem of unsupervised liver tumor seg-
mentation and proposed a two-stage pseudo-supervision solution with synthetic
anomalies. By generating anomalies spreading over a large spectrum, the synthe-
sis data facilitated the model in finding normal sample boundary in embedding
space. The two-stage training strategy mitigated the impact of covariant shift
between synthesis data and actual tumor data on model optimization, and thus
avoid segmentation model’s overfitting on synthetic anomalies. Experimentation
suggested that the proposed method performs comparably to SOTA methods.
Looking ahead, we aspire to extend our exploration of model performance to
encompass various other diseases and data modalities and investigate the inte-
gration of both real and synthetic tumor within the model training pipeline.
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