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ABSTRACT

Texture is considered one of most significant information
sources in histo-pathology image analysis. To take advantage
of information on color texture in digital histo-pathology, this
work analyzes inherent characteristics of the hue component
in the cylindrical color space, and introduces an effective
color texture descriptor based on the LBP paradigm. Unlike
existing LBP variants designed for linear data, the proposed
descriptor, namely Hue-LBP, addresses the angular and peri-
odic nature of hue and shows that color variation in the hue
channel can be quantified by an angular variable in the range
of [0, 180]. By introducing the concept of color similarity as
a metric to measure color variation, we obtain a histogram
to describe local color texture patterns. Experimentation
on histo-pathology image classification suggests that the pro-
posed Hue-LBP is discriminative as it is capable of describing
texture information conveyed by the hue components.

Index Terms— Texture description, Hue-LBP, circular
processing, histo-pathology image analysis

1. INTRODUCTION

Histo-pathology image analysis is a new research realm that
exploits color image processing algorithms to achieve intel-
ligent pathology image understanding. Different from other
medical images (such as X-ray imaging or MRI imaging)
that deliver medical information by image intensities, histo-
pathology images are color in nature. Since chemical staining
highlights histological components of interest by counter-
color chemical dyes in biopsy sample preparation, color spa-
tial distributions in the corresponding histo-pathology image
are strong indicators of spatial organization of tissue sub-
stances. Hence, some efforts have been made to study color
textures in histo-pathology image analysis. For instance, in
[1, 2], the authors compared grayscale texture features to its
color-version texture descriptors in histo-pathology image
classification, and concluded that color texture descriptors
improve classification performance when limited appearance
variation resulting from the disagreement of illumination
conditions existed in histo-pathology images. Though ap-
pearance variation introduced by different illumination con-

ditions is a challenge in digital histo-pathology [3], recent
work on color normalization for histo-pathology images [4]
can be used to mitigate effects of such appearance variation
on subsequent quantitative analysis. Based on these previ-
ous works, we believe that effective color texture descriptors
would contribute to digital histo-pathology image analysis.

Note that most texture analysis tools are proposed for
grayscale images using scalar processing, it is a non-trivial
task to extend it to color images. To exploit color informa-
tion for accurate texture analysis, a straightforward method
is to apply grayscale texture features to each channel in a
color spaces and then concatenate the obtained features to-
gether [1]. To take the correlation between color channels
into consideration, opponent color (OC) texture description
method [5] which computed 6 texture features from pairs
of color channels was proposed. To obtain a compact color
texture descriptor, the work [6] applied the LBP operator to
the hue channel and illustrated its good performance on the
PASCAL visual object classes challenge 2007 image bench-
mark. Recently, vector processing based method to extract
color texture features was designed for face recognition [7, 8],
where LBP was extracted from the color magnitude and color
angular domains individually.

Among the color texture research, the work that computes
LBP from the hue channel interests us. In the HSV domain,
chromatic information is separated from image luma [9] and
mainly delivered by the hue component. Therefore, extract-
ing LBP from image hue components leads to a compact color
texture descriptor. However, it should be noted that hue is a
circular color descriptor and ignoring its non-linear property
in analysis may introduce error. Hence, in this paper, we an-
alyze characteristics of the hue component in the cylindrical
color space, and propose a novel hue-LBP (HLBP) descrip-
tor. Unlike existing texture analysis algorithms being scalar
processing, the proposed Hue-LBP quantifies color change in
the hue component using circular processing and generates
HLBP based on color similarity quantification. To investi-
gate the descriptive power of the proposed color descriptor in
histo-pathology image analysis, in experimentation, we ex-
tract HLBP and classical LBP from the hue channels, and
compare their performance in glomerulus image classifica-
tion, concluding that the introduced descriptor is more dis-



criminative.
The rest of this paper is organized as follows. As the con-

struction of the proposed Hue-LBP follows the classical LBP
paradigm, Section 2 briefly reviews the LBP algorithm. In
Section 3, the circular nature of hue is analyzed, followed
by the specification of Hue-LBP. Performance evaluations are
discussed in Section 4, followed by conclusions in Section 5.

2. BACKGROUND

Due to the computational efficiency and discriminative power
of LBP, it is widely adopted to quantify texture patterns in
image analysis. The proposed feature in this paper can be
considered as a variant of LBP particularly designed for cir-
cular data such as the hue component. Hence, this section
reviews the LBP paradigm concisely before the specification
of Hue-LBP.

LBP describes the local texture at an image pixel (x, y) by
thresholding its neighborhood using intensity value I(x, y),
where the neighborhood is defined by P equally spaced pixels
on a circle of radiusR. In specific, a neighbor pixel is defined
by Np(x, y) = (x + Rcos(2pπ/P ), y − Rsin(2pπ/P )) for
p ∈ [0, P − 1]. If Np(x, y) is not on integer coordinates, in-
tensity of the neighbor pixel I(Np(x, y)) is computed through
interpolation. The LBP index is then obtained by

LBPP,R(x, y) =

P−1∑
p=0

s(I(x, y)− I(Np(x, y)))× 2p, (1)

where s(z) = 1 for z ≥ 0; otherwise, s(z) = 0. By accumu-
lating LBP indexes in a histogram histI , a vector with length
2P is obtained and used as features, where the ith bin of the
histogram is defined as follows.

histI(i) =
∑
x,y

δ(i, LBPP,R(x, y)), (2)

where δ(·) is the Kronecker delta. Though the LBP descrip-
tor is simple, it is invariant to grayscale intensity change [10]
and very discriminative for textures. Later, various LBP vari-
ants are proposed to improve the original LBP algorithm in
terms of rotation invariance [10, 11], soft histogram [12], and
dominant LBP descriptors [13].

3. HUE-LBP BASED ON CIRCULAR PROCESSING

Grayscale texture features describe the spatial arrangement of
image intensity. Particularly in LBP, local intensity change
patterns are summarized based on linear signal order. Since
hue is a periodic signal on the unit circle, linear order is ill-
defined for hue. To quantify color texture within an image, we
process hue signals using circular processing and introduce
the Hue-LBP descriptor which aims to describe local color
variation patterns in this section.

Fig. 1. Hue is an angular measurement on the unit circle of
the chromatic plane. Color h1 and h3 are similar, while h2
represents a very different color.

3.1. Angular Nature of Hue

Hue is an efficient color feature, independent of image luma
attribute. In the cylindrical color spaces, for instance, the
HSV color space, hue is an angular quantity on the unit chro-
matic circle, with a period of 360. That is, hue values h+360k
for k ∈ Z represent the same color. For illustration, Figure 1
depicts the hue circle, where the hue value equaling 0 corre-
sponds to red. As shown in the figure, color on the chromatic
circle follows the distribution that similar colors have similar
hue values, residing closely. For instance, color h1 and h3
in Figure 1 are close and belong to the red region, while h2
is located far from them on the circle and represents a very
different color.

Note, though quantification in a scalar system, such as
image intensity, can be used to compare and order signals, in
the hue circle, the hue value is a quantitative description of
colors and cannot be used for color ordering. For specific,
scalar variables reside along the real axis, where the number
on the left is always smaller then the number on the right.
Hence when we travel along the real axis from n0, we will
depart from it and can never return back to n0. However, if
we travel along the hue circle from h0, we always return back
to the same color since h0 = h0 + 360k for k ∈ Z. Hence, it
is problematic to say hi < hi+∆ for ∆ > 0 on the chromatic
plane.

Since color order based on hue values is ill-defined, ap-
plying LBP on image hue components based on hue values
is problematic. This is because the basic operator of LBP is
signal order/comparison, as described in (1). Therefore, to
accurately quantify color texture patterns in the hue compo-
nent, new color texture features that addresses the periodic
and angular nature of hue are needed.

3.2. Angular Similarity Based HLBP

Color texture describes the spatial color arrangement in an
image. As color transition on the hue circle is very smooth,
a very small amount of change in hue values may not be ob-



served by human. Motivated by this observation, we propose
to use color similarity, rather than color order, as the basic
operator to quantify color textures.

Specifically, to address the angular nature of the hue com-
ponent when describing local color variation, color difference
between hi and hj is quantified by an angular quantity ∆h
such that

‖hi − hj‖2 = ‖hi‖2 + ‖hj‖2 − 2‖hi‖‖hj‖ cos(∆h), (3)

where ‖·‖ is the vector norm. As hue resides on the unit circle,
‖hi‖ = ‖hj‖ = 1. Hence, ‖hi − hj‖2 = 2 − 2 cos(∆h). In
circular computation, ‖hi − hj‖2 = [sin(hi) − sin(hj)]

2 +
[cos(hi)− cos(hj)]

2. After trigonometric derivation, it is not
hard to obtain ‖hi − hj‖2 = 2− 2 cos(hi − hj). Hence,

cos(∆h) = cos(hi − hj). (4)

Note, as hue is an angular variable, color difference ∆h
should be measured by the acute angle formed by hi and hj ,
rather than the value of hi − hj . Hence, when colors are
separated apart by 180 on the chromatic plane, it results in
the largest color difference. For instance, h1 and h3 in Fig. 1
denote two colors close to red. The color difference should
be measured by the acute angle of h1 + 360 − h3, rather
than the value of h3 − h1. That is, color difference has a
constraint that ∆h ∈ [0, 180]. Therefore, with hi ∈ [0, 360)
and hj ∈ [0, 360), ∆h is defined as

∆h =

{
|hi − hj | if |hi − hj | ≤ 180
360− |hi − hj | otherwise , (5)

where | · | is the operation of obtaining the absolute value.
In the LBP computation, intensity difference is either neg-

ative or positive (plus zero) and represented by either 0 or 1.
However in the hue channel, as color order is undefined and
∆h ∈ [0, 180], the operation s(∆h) in (1) is always 1, which
does not deliver any information on texture patterns. There-
fore, we introduce a threshold th ∈ [0, 180] in the proposed
Hue-LBP descriptor, and propose to use color similarity as a
metric to characterize local color variations. In specific, when
∆h− th > 0, we consider the two colors are different; Other-
wise, the two colors are similar. Hence, by casting the angular
similarity comparison into the LBP paradigm, our Hue-LBP
can be formulated as follows.

HLBP th
P,R(x, y) =

P−1∑
p=0

s(∆h− th)× 2p. (6)

Finally, the color texture features are summarized by a his-
togram histthI , where the ith bin is

histthI (i) =
∑
x,y

δ(i,HLBP th
P,R(x, y)). (7)

Note that in histo-pathology image analysis, rotation
invariance and uniformity are very important properties

for texture description. Hence, for the proposed descrip-
tor HLBP th

P,R(x, y), we follow the mapping rule of the
rotation-invariant uniform LBP, LBP riu

P,R [10], and obtain a
rotation-invariant uniform feature HLBP th,riu

P,R (x, y).
Since the proposed Hue-LBP only considers color vari-

ation patterns, no texture information associated with image
luma component is included. To obtain a complete color tex-
ture patterns, we concatenate HLBP with LBP extracted from
the value component in the HSV color space. Given a color
histo-pathology image represented in the HSV domain, I =
[Ih, Is, Iv], the resulting texture feature vector is thus gener-
ated by Hf thI = histthIh ⊕ histIv , where ⊕ is the concatena-
tion operator1.

4. EXPERIMENTATION AND DISCUSSIONS

Tow experiments are designed to evaluate the new descrip-
tor, Hue-LBP. The first experiment evaluates the descriptive
power of texture features which is classification-independent.
The other one is classification of histo-pathology images
based on texture features. All simulations run on Matlab.

In this study, we use the GlomDB glomeruli dataset [2],
published for color and texture descriptor evaluation, as eval-
uation images. The GlomDB dataset consists of 1976 16-by-
16 non-overlapping square patches selected from 15 kidney
biopsies stained following the Masson’s trichrome protocol in
the same hospital. Among the 1976 patches, half images cor-
respond to kidney glomeruli and the other half contain other
tissue substances in kidney biopsies.

4.1. Descriptive Power of HLBP

Evaluation of the proposed color texture feature is first based
on a classification-independent experiment.

Experimental Design: The new descriptor HLBP th,riu
P,R

is computed from the hue channel of each GlomDB image,
where we set th = 36, P = 8, R = 1. Then the discrim-
inant power of Hue-LBP associated with glomerulus and
non-glomerulus patches is examined qualitatively. In this
experiment, we believe that a descriptor has large discrimi-
nant power if the feature sets between glomerulus and non-
glomerulus images are more separable. For comparison, this
experiment is also performed on the classical LBP descriptor
obtained by (1) and (2) extracted from the Hue channel.

Results and Discussion: Since dimensions of LBP riu
8,1

and HLBP 36,riu
8,1 extracted from the hue channel are 10, to

visualize their discriminant powers, we use PCA to reduce
the feature dimension to 2, and depict the projected feature
sets in Fig. 2, where the axes of the plots correspond to the
two dominant eigenvectors found by PCA, and a red ∗ and a

1The texture features from the saturation components are not included
because in hito-pathology images, less histological information conveyed by
saturation.



Fig. 2. Texture descriptor LBP riu
8,1 and HLBP 36,riu

8,1 in the
hue channel are projected into 2-dimensional subspaces by
PCA to visualize their discriminative powers. In the figure, a
red ∗ represents a glomerulus patch, and a blue× corresponds
to a non-glomerulus image.

blue × represent a glomerulus patch and a non-glomerulus
image, respectively. Texture features of glomerulus and non-
glomerulus images described by LBP riu

8,1 that is depicted in
the top diagram mix together, whereas features of glomerulus
and non-glomerulus patches representd by HLBP 36,riu

8,1 in
the lower plot are more separable. This observation suggests
that the proposed circular processing based Hue-LBP is more
descriptive for the GlomDB image set because angular nature
of hue is carefully addressed in HLBP.

4.2. Glomeruli Image Classification

In the second experiment, we evaluate Hue-LBP in terms of
binary classification over the GlomDB image set.

Experimental Design: The 10-fold cross validation method-
ology is adopted in this experiment, where the entire GlomDB
image set is split into two parts, with 1/10 as training cases,
and 9/10 as testing images. To avoid data drift in evaluation,
both training and testing sets maintain the same proportion
of glomerulus images as that the original dataset has. After
training a linear classifier based on the dominate 10 features
selected by PCA from the 1/10 images, the testing images are
classified individually based on extracted features. In this ex-
periment, four different sets of texture features are evaluated,
which include LBP riu

8,1 and HLBP 36,riu
8,1 in the hue channel

only, and fI = histthIh ⊕histIv and Hf thI = histthIh ⊕histIv

Table 1. Statistics (Mean (std)) of glomerulus image classifi-
cation over the GlomDB dataset

Feature Dim ACC AUC
LBP riu

8,1 10 0.559 (0.035) 0.606 (0.038)
HLBP 36,riu

8,1 10 0.671 (0.028) 0.716 (0.036)
fI 20 0.673 (0.032) 0.733 (0.033)

Hf thI 20 0.743 (0.030) 0.816 (0.028)

from the value and hue components in the HSV domain.
The agreements between groundtruth and classification

results are estimated using two metrics, which are classifi-
cation accuracy (ACC) and the area under the ROC curve
(AUC). Both ACC and AUC are in the range of [0, 1], and
large values indicate better classification. The 10-fold cross
validation process is repeated 5 times and the 50 performance
indexes are summarized for each feature set.

Results and Discussion: Table 1 lists the statistics of the
classification results using different sets of texture features
over the GlomDB dataset. We obtain two observations in
this experiment. First, the first two rows in the table show
statistics of glomberulus classification using texture features
extracted from the hue channel only. With similar compu-
tational complexity, HLBP 36,riu

8,1 greatly improves classifi-
cation performance compared to LBP riu

8,1 . This actually can
be inferred from our observations in the previous experiment.
Second, when texture information in the value channel in the
HSV color space is included in feature sets, classification per-
formances are boosted. This suggests that texture features ex-
tracted from image hue component and the luma component
are complementary.

5. CONCLUSION

Color cues due to chemical staining is considered a very im-
portant information source in histo-pathology image analysis.
However, directly applying classical linear texture descrip-
tors to the hue component of an image may introduce anal-
ysis error. To take advantage of color cues conveyed by im-
age hue components in histo-pathology image, this paper an-
alyzes characteristics of the hue component in the HSV color
space, and introduces a descriptive color texture feature, Hue-
LBP, based on the paradigm of LBP. Particularly, the novel
descriptor takes into account the circular and periodic nature
of hue, and uses an angular variable to quantify color varia-
tion. To represent local color change within a neighborhood,
we propose to use the concept of color similarity, rather than
signal order which is ill-defined for hue, to generate the LBP-
equivalent histogram. Experimentation on glomerulus images
suggests the superiority of the introduced descriptor in terms
of discriminative power in the hue component.
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