
SHAPE-INCLUDED LABEL-CONSISTENT DISCRIMINATIVE DICTIONARY LEARNING:
AN APPROACH TO DETECT AND SEGMENT MULTI-CLASS OBJECTS IN IMAGES

Mahdi Marsousi, Xingyu Li, Konstantinos N. Plataniotis

Multimedia Lab, The Edward S. Rogers Department of Electrical and Computer Engineering
University of Toronto, 10 King’s College Road, Toronto, Canada

ABSTRACT
This paper introduces a segmentation approach, where a
discriminative dictionary with objects’ shape information is
learned, followed by a sparse representation based segmenta-
tion process. In contrast with state-of-the-art sparse represen-
tation classification methods using discriminative dictionary
learning, the proposed method learns a discriminative dic-
tionary containing both intensity and shape information of
object classes, in which shape information is collected and
represented in the form of binarized masks. Object segmenta-
tion is achieved through an iterative process, including sparse
representation, shape estimation, and shape refinement. The
introduced method is evaluated and compared to state-of-the-
art sparse representation based segmentation methods, and
demonstrated better segmentation performance.

Index Terms— Object detection and Segmentation,
Sparse Representation, Discriminative Dictionary Learning

1. INTRODUCTION
Recent years have witnessed the promising benefits of sparse
representation in image processing and computer vision re-
search. Based on an over-complete dictionary D ∈ <n×K
which contains K atoms (columns), a signal y ∈ <n is rep-
resented as a sparse linear combination of dictionary atoms.
That is, y ≈ Dx under representation error constraint as,
‖y − Dx‖2 ≤ ε, or under sparsity constraint as, ‖x‖0 ≤ T ,
where x is a sparse vector. Note, D in sparse representa-
tion can be constructed analytically from parametric functions
such as wavelet basis, or it can be learned adaptively from
data [1]. The later method to generate an over-complete dic-
tionary, so-called dictionary learning, is preferred in many im-
age processing applications, because it provides better spar-
sity level and lower representation error for specific data [1].

To build a data-dependent dictionary for sparse represen-
tation, early works used manually-selected signals as atoms,
however they suffer from sub-optimality [2]. Later, methods
for learning a compact dictionary from a set of training sig-
nals were proposed. In brief, given a set of n-dimensional Np
signals P = {p1, ..., pNp

}, learning a reconstructive dictio-
nary D with K basis can be achieved by solving
〈D,X〉 = argmin

D,X
‖P −DX‖2F s.t. ∀i ||xi||0 ≤ T, (1)

using the K-SVD method [3], where X is a sparse matrix for
training data P . Since (1) focuses on signal representation
only, there is no guarantee that the resulting D is discrimina-
tive for subsequent signal analysis. To address this problem,
signal category information H and label-consistent constraint
Q are introduced in the learning process, leading to a new
dictionary learning algorithm which is formulated as [4, 5],
〈D,X,A,W 〉 =argmin

D,X,A,W
||P−DX||2F+α||Q−AX||2F

+β||H −WX||2F , s.t. ∀i ||xi||0 ≤ T,
(2)

where the first term targets the representation error, and the
second and third terms are added to minimize the classifi-
cation error. This optimization problem, so-called the label
consistent discriminative dictionary learning (LC-KSVD)
method [4, 5], is solved using the K-SVD method.

With the progress of sparse representation and dictionary
learning in image classification [2, 6], some efforts have been
also made to combine these two techniques for object detec-
tion/segmentation. In the deformable segmentation study, an
abstract shape dictionary, which is trained following (1) based
on shape prior knowledge of the target objects, is used to
refine a coarse segmentation in medical images [7]. To de-
tect/segment human motion in videos, video background is
assumed relatively stable and can be sparsely reconstructed
by a background dictionary, while the representation residue
is considered corresponding to human motion [8]. By cast-
ing the motion model into (1) for background dictionary con-
struction, human motion is detected based on coding residue.
To take advantage of LC-KSVD, in the study of MRI hip-
pocampus labeling [9], image patches from training data are
first used to generate atlas dictionary following (2). Then the
center pixel of each query patch is assigned a label based on
obtained sparse coefficients. In [10] that focuses on prostate
segmentation in 3D MRI images, a shape dictionary and an
appearance dictionary are learned individually via (2). By
combining sparse representations obtained by the two dic-
tionaries through ensemble learning, prostate pixels are de-
tected. Recently, in the work of multi-organ segmentation
in abdominal CT images, an abstract atlas is generated using
LC-KSVD. After classifying a query image based on sparse
coding coefficients, graph cut is applied to the resulting in-
dexed image for segmentation refinement [11]. In the kidney



detection work which cascades a dictionary learning and the
neural network (NN), sparse coefficients are used as features
for NN for object detection from background[12] .

It should be noted that though the discriminative dictio-
nary learning improves sparse representation-based segmen-
tation, it has a major limitation. As image pixels are classified
individually based on patch representations, correlation be-
tween image pixels are lost, and hence, the resulting segmen-
tation suffers from high discontinuity and low smoothness.

1.1. Contributions
This paper focuses on image multi-object segmentation sce-
nario, and introduces a new method to detect and segment
multiclass objects based on shape included label consistent
discriminative dictionary learning (SI-LC-KSVD). Partic-
ularly, since shape prior information is a significant clue
for segmentation, we include object’s shape knowledge into
discriminative dictionary learning, provide a complete dictio-
nary update algorithm, and introduce a novel class-specific
segmentation process, where information of classification
and coarse shape masks obtained from sparse coding is com-
bined/refined for final segmentation.

The rest of this paper is organized as follows. Section
2 presents the proposed SI-LC-KSVD based segmentation
method. Experimental results and discussions are given in
Section 3, followed by conclusions in Section 4.

2. METHODOLOGY

2.1. Segmentation Strategy
In this paper, a sparse representation based object detec-
tion/segmentation method is developed, where dynamically-
learned texture and shape information of objects in different
classes are used to segment objects in a query image. Briefly,
the proposed method consists of two phases: training and
segmentation. In the training phase, a dictionary learning
process is performed to collect discriminative texture and
shape information in dictionaries. Then the subsequent seg-
mentation process uses the learned dictionaries to reconstruct
a query image, and meanwhile to estimate and to refine ob-
jects shapes in a recursive manner. Details on the proposed
method is provided in the rest of this section.

2.2. Image and Patch Domains
The dictionary learning process and sparse representation
process in the proposed method work on image patch do-
main. For each image I ∈ <sx×sy , let IM ∈ <sx×sy be
its binarized shape mask, where pixels of objects’ bound-
aries are labeled by ones, and background pixels by zeros.
Further, we define P = [p1, p2, ..., pNp ] ∈ <np×Np and
M = [m1,m2, ...,mNp ] ∈ <np×Np as patches extracted
from I and IM respectively, where np = (2r + 1)

2 is the
number of pixels in a square patch with radius r, and Np is
the number of patches in an image. Since patches are ex-
tracted every other κ pixels horizontally and vertically from

I and IM , the number of patches along x- and y- axes in
an image are nx = floor( sx−2rκ ) and ny = floor(

sy−2r
κ ),

where floor(·) rounds a fractional number to its lower inte-
ger. Thus, Np=nx×ny . In this study, the operations of patch
extraction and image reconstruction are defined as ext(., κ, r)
and rec(., κ, r, sx, sy), respectively.

2.3. Shape Included Label-Consistent Discriminative
Dictionary Learning (SI-LC-KSVD)
Recently, LC-KSVD has been widely used to classify im-
age pixels for objects’ detection and segmentation. As no
prior information on objects’ shapes is used in LC-KSVD, the
obtained segmentation results suffer from high discontinuity
and low smoothness, as discussed in Section 1. To address
this short-coming, we introduce shape information of objects
in forms of binarized shape masks in the proposed SI-LC-
KSVD learning process. Let Dp ∈ <np×K = [dp1, · · · , d

p
K ]

and Dm ∈ <np×K = [dm1 , · · · , dmK ] represent dictionaries
with K atoms learned from training image patches and their
shape masks, respectively. Then the optimization problem of
the proposed SI-LC-KSVD is defined as,

〈Dp,Dm,A,W〉=argmin
Dp,Dm,A,W

||P−DpX||2F+α||Q−AX||2F

+β||H−WX||2F+λ||M−DmX||2F s.t.∀i ||xi||0 ≤ T,
(3)

where X ∈ <K×Np = [x1, · · · , xNp ] is the matrix of sparse
coefficients, where each column vector xi is associated with a
patch, pi. A and W are linear transformation matrix of label-
consistency and linear classifier matrix, respectively. α, β,
and λ are scalar weights, which control the contribution of
the corresponding terms in the dictionary learning process. To
solve (3) using the efficient K-SVD method, the optimization
problem is re-written as follows,

〈Dp, Dm, A,W〉=argmin
Dp,Dm,A,W

∥∥∥∥∥∥
 P√

αQ√
βH

−
 Dp
√
αA√
βW

X
∥∥∥∥∥∥
2

F

+λ||M −DmX||2F s.t. ∀i ||xi||0 ≤ T.

(4)

In (4), Dp, A, and W are vertically concatenated to form a
new matrix Dnew, and P , Q, and H are vertically concate-
nated to form a new matrix of patches Pnew, forming a LC-
KSVD learner. However, we do not include Dm in the newly
constructedDnew in (4) for following reason. Due to the large
portion of zeros in Dm for background patches, the concate-
nation of Pnew andDm would result in an imbalanced dictio-
nary after atom normalization, finally leading to imbalanced
dictionary learning process.

To solve (4), the optimization problem is iteratively up-
dated, in which each iteration consists of two steps including
sparse coding and dictionary atoms update. Specifically, in
each iteration, we first utilize the orthogonal matching pur-
suit (OMP) [13] to find sparse vectors xi for i ∈ [1, ..., Np].
Based on the K-SVD algorithm, atoms of Dnew are updated
one-by-one. After an atom, dnewn , is being updated, its corre-
sponding sparse coefficients are used to train a corresponding



atom dmn in Dm. The optimization method of SI-LC-KSVD
is represented in algorithm 1, where XR

k is the kth row of
the sparse matrix, X , and Epk is the reconstruction error of
patches, Y new, without considering the kth atom of Dp. Emk
is the reconstruction error of masks, M , without considering
the kth atom of Dm. Ẽpk and Ẽmk are reduced matrices of
Epk and Emk , where atoms corresponding to zero elements in
XR
k are removed. X̃R

k is also obtained by removing zero co-
efficients in XR

k . As shown in algorithm 1, dmk ’s are updated
using the efficient K-SVD method [14], as it has been shown
more effective training for Dm compared to the original K-
SVD method [3].

Algorithm 1: Optimization of SI-LC-DDS
Input: P ,H ,Q,M ,Dp

(0),D
m
(0),A(0),W(0),α,β,λ,NItr;

Output: Dp, Dm, A, W ;
begin

Set Pnew =
[
PT ,
√
αQT ,

√
βHT

]T
,

Dnew =
[
DmT

(0) ,
√
αAT

(0),
√

(β)WT
(0)

]T
;

for iter ∈ 1, . . . , NItr do
Sparse Coding X = OMP (Pnew, Dnew);
for k ∈ 1, . . . ,K do

Calculate: Ep
k =

(
Y −

∑
j 6=k d

new
j XR

j

)
;

Hold non-zero entries of XR
j : Ẽp

k ;
Calculate: UΣV T = SV D(Ẽp

k);
Update: dnew

k =U(:, 1), X̃R
k =Σ(1, 1)V (:, 1);

Calculate: Em
k =

(
M −

∑
j 6=k d

m
j Xj

)
;

Hold non-zero entries of XR
j : Ẽm

k ;
Update: dmk = Ẽm

k × X̃R
k ;

2.4. Dictionaries Initialization
The proposed optimization method of SI-LC-DDS in Algo-
rithm 1 needs initial matrices including Dp

(0), D
m
(0), A(0), and

W(0). In LC-KSVD, the K-SVD approach is used for train-
ing dictionaries for each class, which are then combined to
form the initial dictionary. However, this is not efficient in
the sense that the number of atoms in all classes are selected
equal, whereas dictionary sizes should be proportional to the
structural complexity (texture and shape information) of each
class. In this paper, we introduce a new scheme to provide
initial dictionaries Dp

(0) and Dm
(0), using an adaptive size dic-

tionary learning method (DLENE) [15], which trains efficient
dictionaries for each class. Then, we calculateA(0), andW(0)

based on the explained method in [4].
Assume for each class, cl ∈ [1,· · ·, NC ], a set of train-

ing images, {Icl,l}, and their corresponding binarized masks,
{Icl,lM }, exist. Then patches from {Icl,l} and {Icl,lM } are ex-
tracted. We define P cl = ∅, M cl = ∅, and P bg = ∅ as a set
of image patches in the clth class, a set of mask patches in
the clth class, and background patches. Note, only the patch,
pi, whose corresponding mask, mi, has at least a portion of

non-zero cells, (
∑np

j=1mi,j)>th×np, is added to P cl, mean-
while its corresponding mask is added to M cl. A patch with
(
∑np

j=1mi,j) = 0 is added to P bg . After collecting patches,
they are used to learn dictionaries of background and classes.

For each class, P cl and M cl are vertically concatenated
to form Y cl=[{P cl}T,{M cl}T ]T , and the DLENE method is
used to train dictionaries with efficient number of atoms as,[
{Dcl,p}T,{Dcl,m}T

]T
=DLENE(Y cl,ANNZCdes,RMSEdes), (5)

Dbg =DLENE(P bg,ANNZCdes,RMSEdes), (6)

whereANNZCdes andRMSEdes are desired average num-
ber of non-zero coefficients and desired root-mean-square-
error [15]. To match dictionary learning of initialization and
SI-LC-DDS processes, we set ANNZCdes = T . After fin-
ishing the process of learning the dictionaries, the initial dic-
tionaries are formed as, Dp

(0)=
[
Dbg, D1,p, · · · , DNC ,p

]
and

Dm
(0) =

[
∅, D1,m, · · · , DNC ,m

]
. Based on the sizes of learnt

dictionaries of background and classes, the matrices Q and H
are created as instructed in [4]. Finally, A(0) and W(0) are
obtained as explained in [4, 16].

2.5. Object Detection and Segmentation
The learnt dictionaries are used to automatically detect and
segment objects in input images. Given a query image,
Iin ∈ <sx×sy , patches are extracted, P = [p1, · · · , pNp ] =
ext(Iin, κseg, r), where κseg is a step size for segmentation
process, and r is the same as r of the dictionary learning
process. Since the intensity information is only available for
a query image, sparse vectors are initially calculated based on
image construction only,

Xe = argmin
X
‖P −DpX‖F s.t. ‖xi‖0 < T ∀i, (7)

whereXe=[x1, · · ·xNp ] is the matrix of sparse vectors. Then,
He =WXe and Me = DmXe are calculated, representing
rough estimations of H and M of the input image, Iin. Each
row of He = [{hRb g}T , {hR1 }T , · · · , {hRNC

}T ]T , represents
the membership of patches to a class, where hRcl ∈ <1,Np . We
define He

cl = vclh
R
lc, where vcl ∈ <np is a vector with zero

cells, except a single one at the location (2r+2)r+1, which
corresponds to the center point of a patch of radius, r. Now,
we transform data from the patch domain into the image do-
main by reconstructing IM

e

= rec(Me, κseg, r, sx, sy), and
IH,cl=rec(He

cl, κseg, r, sx, sy). For each class, we calculate
IM

e,cl = IM
e

. × IH,cl, where .× is the pixel-wised multi-
plying operator. IM

e,cl provides estimated segmentation of
objects of the clth class in the input image. The process of
generating IM

e,cl is called Class-Specific Segmentation.
Because IM

e,cl is obtained by intersecting mask and
class information, it contains wealthier information com-
pared to IM

e

and IH,cls. We extract patches from IM
e,cl

as Mrd,cl = ext(IM
e,cl, κseg, r) = [mcl

1 , · · · ,mcl
Np

], and
then, we generate refined classes of patches as, hrdcl =

[hcl,1, hcl,2, · · · , hcl,Np
], where hcl,i =

(
∑np

j=1m
cl
i,j)

np
. Now,



Hrd is generated by vertically concatenating hrdcl s, as Hrd=
[{hRb g}T , {hrd1 }T , · · · , {hrdNC

}T ]T . In this paper, the pro-
cess of generating Hrd from IM

e,cls is called Mask to Class
Translation. Now, we feed Hrd into the sparse coding as,

Xe = argmin
X
‖P ′ −D′X‖F s.t. ‖xi‖0 < T ∀i, (8)

whereP ′=[{P}T,{
√
βHrd}T ]T andD′=[{Dp}T,{

√
βW}T ]T ,

and each column of D′ is normalized. Then, He=WXe and
Me = DmXe are calculated again, and the Class-Specific
Segmentation process is repeated to find IM

e,cls.

3. EXPERIMENTS AND DISCUSSIONS

To evaluate the performance of the proposed algorithm for
object detection and segmentation, two classes of objects, in-
cluding cars and motorbikes, from the Caltech-101 database
[17], are used as target segmentation objects. We randomly
selected 40 images of cars and 40 images of motorbikes to
form our database. For each image, ground truth data are
manually generated. For the proposed method of this paper,
we set r=15, κ=4, κseg=2, α=10, β=0.1, and NItr=30.
For the initialization step, the DLENE’s parameters are set as
ANNZCdes=6 and RMSEdes=0.01.

Comparative experimentation is developed, where the
proposed algorithm and the state-of-the-art methods, includ-
ing D-KSVD [16] and LC-KSVD [4], are examined. Specifi-
cally, for each examined method, we perform three trainings
(i.e. dictionary learning processes) as follows: (1) for car im-
ages only, (2) for motorbike images only, and (3) for both car
and motorbike images. Thus, the first and second trainings
generate two binary-class dictionaries, each corresponding
to background and one object class, and the third training
involves three classes including background and two object
classes. For the first and second trainings, 20 images are
randomly selected as training set and the rest of images are
used as evaluation set. The segmentation accuracy of each
method is evaluated in the first two binary-class cases. For
the third training, 20 car images and 20 motorbike images are
randomly selected as training set, and the rest of images form
evaluation set. In this scenario, detection and segmentation
accuracies of cars and motorbike classes for each method
are measured. We use accuracy measure, ACCsg , to cal-
culate segmentation accuracy of methods[18]. To evaluate
detection performance, we define Ncr and Nmb as the num-
ber of correct detection of cars and motorbikes, respectively.
Then, detection accuracy is defined as ACCdt= Ncd

NT
, where

Ncd=Ncr+Nmb and NT =40 are the number of correct de-
tections and total number of evaluation images, respectively.

Table 1 demonstrates the detection accuracy of D-KSVD,
LC-KSVD, and SI-LC-KSVD. The LC-KSVD leads the de-
tection accuracy by 5%, compared to the proposed method.
Table 2 shows the segmentation accuracy of the methods. Ac-
cordingly, SI-LC-KSVD provides higher segmentation accu-
racy for the three trainings. Figure 1 shows two examples of
segmenting objects using the proposed method of this paper.

Fig. 1. Examples of segmentation results of a motorbike and
a car. The left, middle, and right columns correspond to
ground-truth, segmentation output at first iteration, and seg-
mentation output at second iteration, respectively.

Table 1. Comparing detection accuracy of the proposed
method with state-of-the-art.

Ncr Nmb ACC
D-KSVD 19 6 0.63

LC-KSVD 18 14 0.80
SI-LC-KSVD 13 17 0.75

Table 2. Comparing segmentation accuracy, ACCsg , of the
proposed method with state-of-the-art for three cases: (a) only
cars (Car), (b) only motorbikes (MotorB), and (c) both cars
and motorbikes (Car&MotorB). Results are shown as µ ± σ
where µ and σ are mean and standard deviation, respectively.

Car MotorB Car&MotorB
D-KSVD 0.859± 0.102 0.696± 0.082 0.814 ±0.112

LC-KSVD 0.824± 0.145 0.728± 0.068 0.801 ±0.103
SI-LC-KSVD 0.928± 0.025 0.816± 0.039 0.820 ±0.138

In Figure 1, the green boundary in the left sub-figure shows
the ground-truth, and the red boundary in middle and right
sub-figures shows the automated segmentation result. Figure
1 shows the improved segmentation performance in the sec-
ond iteration (the right sub-figure), compared to the segmen-
tation performance of the first iteration (the middle figure).

4. CONCLUSIONS

In this paper, we introduced a new segmentation approach
based on discriminative dictionary learning in sparse rep-
resentation. By including prior shape information of target
objects in the form of binarized masks in the proposed SI-
LC-KSVD learning, the resulting dictionary facilitated subse-
quent object detection and segmentation. We also introduced
a novel class-specific segmentation process, where estimated
shapes were fed back into sparse coding recursively to refine
object’s detection/segmentation. In evaluation, the proposed
segmentation method was compared to prior arts by detecting
and segmenting two types of objects in images. Experimen-
tation results suggested superiority of the proposed approach
in object segmentation. As the selection of training patches
in dictionary learning and proper parameter settings could
potentially affect detection and segmentation performances,
we will discuss these issues in our future works.
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