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ABSTRACT

In this paper, we present a novel approach to achieve diagnos-
tic color estimation for histological objects in pathology im-
ages. The method is based on a von Mises mixture model for
hue histogram, followed by implicit pixel clustering via max-
imum likelihood estimation and representative color compu-
tation. Unlike conventional approaches adopting linear pro-
cessing algorithms to analyze hue histogram which is char-
acterized by a nature of periodicity, we build a circular clus-
ter model composed of multiple von Mises distributions to
address the directional nature of hue. Experimental results
on synthetic circular data suggest that the proposed circular
model outperforms both classical linear thresholding methods
and the state-of-art circular thresholding approach in terms
of cluster parameter estimation. The color estimation exper-
iment on publicly-accessible cytopathology images demon-
strates that our method is capable to accurately estimate ob-
ject’s diagnostic color, which can be used for subsequent im-
age analysis.

Index Terms— Pathology image, von Mises mixture
model, circular data, hue histogram, color estimation.

1. INTRODUCTION

Color vision cue is an important information source in human
visual system, as it helps people to sense and to segment ob-
jects. It is believed that objects in their diagnostic colors are
recognized more readily [1]. Based on the functionality of
color in human vision processing, many color analysis algo-
rithms are developed for computer vision applications. Par-
ticularly in pathology image analysis, color cues attributed
to chemical staining of biopsy samples provide useful and
reliable information and are widely used to detect histolog-
ical objects from background. For instance, diagnostic colors
of stroma, lumen, epithelial nuclei, and epithelial cyoplasm
in H&E stained images are widely used to label histological
structures for prostate gland segmentation and classification
[2, 3, 4]. It should be noted that though chemical dyes have
their own typical colors, color variation, which refers to color
difference for the same type of stains, is usually observed in
pathology images due to stains’ distinct manufacturers, stor-

age conditions, and concentrations [5]. Consequently, color-
based pathology images analysis may generate inaccurate re-
sults due to color variation in images. To take advantages of
color cues in pathology images and meanwhile to address the
color variation issue, blind estimation of object’s diagnostic
color is significant for subsequent quantitative analysis.

Hue is an efficient color feature, independent of inten-
sity attribute [6]. Hence, in literature of color estimation for
object’s detection and segmentation, multilevel thresholding
on hue histogram followed by representative color computa-
tion in resulting divided regions is widely used. Depending
on thresholding algorithms, we categorize various histogram-
based color estimation methods into non-parametric and para-
metric approaches. In nonparametric methods, hue histogram
is divided into regions by thresholds determined by optimiz-
ing certain objective functions [7, 8, 9]. Particularly, Otsu’s
method [10] and its variants, which aim to minimize intra-
class variance for thresholding separation, are usually used
to cluster hue components so that each cluster corresponds
to one object [9]. However, applying these linear threshold-
ing methods on circular data, such as hue, may lead to in-
appropriate separation, finally resulting inaccurate color esti-
mation. Later, circular histogram thresholding were achieved
by exhaustive search on the hue circle using Otsu’s criterion
as an objective function [11, 12]. However, their computa-
tion complexity increases dramatically as thresholding level
increases. Recently, efficient circular thresholding proposed
in [13] reduces the computation complexity of binary circu-
lar thresholding from quadratically to linearly. By contrast,
parametric approaches model hue distribution using various
statistical cluster models, e.g. the Gaussian mixture distri-
bution [14]. By computing parameters of the mixture model
on the basis of hue distribution in histogram, image pixels
are clustered into groups for color estimation [15, 16]. How-
ever, as classical statistical models, including the widely used
Gaussian mixture model, describe distributions of linear vari-
ables, they are incapable to address the periodic nature of hue,
which may introduce inaccurate, or even irrelevant color esti-
mations. Hence, an efficient circular cluster model is needed
when processing directional data, such as hue histogram.

In this paper, we address the issue of object’s diagnostic
color estimation in pathology image analysis and introduce
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a novel blind color estimation method based on circular data
clustering. The proposed method models image saturation-
weighted hue histogram using a statistical distribution com-
posed of multiple von Mises distributions, followed by pixel
clustering and color information estimation. Particularly, un-
like conventional parametric color estimation methods that
apply linear mixture models to image hue components, the
von Mises mixture model used in this paper addresses the pe-
riodic nature of hue and achieves optimal pixel clustering via
maximum likelihood estimation. Experimentation suggests
that our von Mises mixture model outperforms classical linear
thresholding methods and the state-of-art circular threshold-
ing algorithm in terms of circular data clustering. Diagnos-
tic color of histological components estimated from pathol-
ogy images demonstrates the effectiveness of the proposed
method.

The rest of this paper is organized as follows. Section
2 presents the proposed diagnostic color estimation method
in detail. Experimental results and discussion are given in
Section 3, followed by conclusion in Section 4.

2. PROPOSED COLOR ESTIMATION SCHEME

The block diagram of the proposed color estimation method is
depicted in Fig.1. Given a query color image, its saturation-
weighted hue histogram in the HSV color space is modeled
via a von Mises mixture distribution, and image pixels are
clustered into groups, each corresponding to one type of cyto-
logical objects. Then complete diagnostic color in each clus-
ter is estimated from the query image. The inputs of the pro-
posed estimation method are a color pathology image and the
number of stained tissue components contained in the image.
The outputs of our scheme are diagnostic colors for different
cytological objects. In this work, we assume that a query im-
age is imaged under a standard illuminant, such as CIE D65

[18], so that image background appears white.
It is noteworthy that though this work focuses on diag-

nostic color estimation for histological objects in pathology
images, the proposed method is applicable to color images in
other computer vision applications.

2.1. Saturation-Weighted Hue Histogram

As tissue samples are almost transparent, even though they
are stained by chemical dyes, their corresponding images may
still contain a number of achromatic pixels. For instance, the
pathology image in Fig. 1 has a large area of white back-
ground, which is composed of achromatic pixels. Since
achromatic color characterized by a small saturation com-
ponent in the HSV color space is less meaningful, or even
meaningless, for color description, impacts of low-saturated
pixels on object’s color estimation should be avoided. To this
end, a color image is converted to the HSV model and color
estimation is performed on saturated image pixels only. In

Fig. 1. Block diagram of the proposed object’s color esti-
mation method. The color cytopathology image is from the
thyroid image atlas [17].

specific, to select reliable pixels for object’s color estimation,
we follow the work in [19] and use saturation-weighted hue
histogram [20] defined as follows:

Hsw
θ =

∑
p

s(p)δ(θ, h(p)), (1)

where δ(θ, h(p)) =

{
1 if θ = h(p)
0 otherwise .

θ ∈ [0◦, ..., 360◦) represents a bin in histogram, s(p) and h(p)
are the saturation and hue at pixel p in the HSV color space.
In Eqn. (1), saturation components are used as filter parame-
ters to compute histogram. Consequently, less-saturated pix-
els have small contributions to the hue histogram.

2.2. Von Mises Mixture Modeling of Hue Histogram

In linear processing, values of 0 and 360 are separated apart
and their average is 180. By contrast, hue is an angular mea-
surement of color in the chromatic plane, and h(p) = 360 is
equivalent to h(p) = 0. Hence, the average hue value of 0 and
360 on the chromatic plane is still 0 (or 360). The different
mean values of linear and circular data suggest that apply-
ing linear processing to directional data is inappropriate. To
avoid analysis errors, this work uses a circular distribution,
rather than linear statistical models, to model hue histogram.

As demonstrated in Fig. 1, the resulting hue histogram is
composed of multiple hue clusters, each corresponding to one
type of stained tissue components in the query image. With-
out any prior knowledge on color distribution, we propose



the use of a circular unimodel, called von Mises distribution
vM(µ, κ) [21], to model each cluster of hue in the resulting
saturation-weighted histogram. Specifically, the probability
density function (pdf) of vM(µ, κ) is defined as follows:

vM(µ, κ) =
1

2πI0(κ)
eκcos(x−µ), (2)

where x is a circular random variable, 0 ≤ µ < 2π and κ ≥
0 represent its mean direction and concentration, and I0(κ)
is the zero-order modified Bessel function. When κ = 0,
vM(µ, κ) converges to the uniform distribution on the unit
circle, and when κ → ∞, vM(µ, κ) tends to an impulse at
the direction µ. The reason for selecting the von Mises dis-
tribution is because vM(µ, κ) is the ’nature’ analogue on the
circle of the Gaussian distribution in linear statistics [21].

For the entire hue histogram that contains N clusters of
hue, we build a von Mises mixture model whose pdf is

g(x) =

N∑
i=1

πivM(µi, κi), s.t.

N∑
i=1

πi = 1. (3)

Based on the mixture model and the specific hue histogram
Hsw
θ , maximum likelihood estimation (MLE) of unknown pa-

rameters Ψ = {µi, κi, πi} for i = 1, ..., N is performed. We
formulate this MLE problem in Eqn. (4).

Ψmle = arg max
Ψ

g(Hsw
θ |Ψ), s.t.

N∑
i=1

πi = 1. (4)

Due to the complexity of the mixture model in the MLE prob-
lem, solving Eqn. (4) directly by the Lagrangian method
is difficult. Hence, we apply the expectation-maximization
(EM) algorithm [22] to obtain Ψmle iteratively. An example
of the proposed circular mixture model with MLE parame-
ters is illustrated in the diagram scheme in Fig.1. It should
be noted that when approaching a solution to Eqn. (4), the
EM algorithm iteratively updates pixel clustering informa-
tion, which can be used for subsequent quantitative analysis.

2.3. Diagnostic Color Computation

In the optimal solution to the MLE problem expressed in Eqn.
(4), we obtain mean direction hi = µmlei for the ith cluster
in the hue histogram. Then we proceed to calculate complete
diagnostic color information for each cluster, which includes
representative value and saturation components in the HSV
space. Specifically, for each cluster of hue that corresponds
to one stained cytological component, the two components of
a diagnostic color are estimated using following formulas [23]
to mitigate effects of achromatic pixels on the estimation:

vi = [
∑
p

v(p)δ(hi, h(p))]/[
∑
p

δ(hi, h(p))], (5)

si = [
∑
p

s(p)δ(hi, h(p))]/[
∑
p

δ(hi, h(p))], (6)

Fig. 3. Pdf of the two statistical models in the first experiment.
(a) wrapped Normal mixture distribution; (b) von Mises mix-
ture distribution.

where δ(x, y) is an indicator function, i.e. δ(x, y) = 1 when
x = y, otherwise δ(x, y) = 0. Finally, complete diagnos-
tic color of a stained histological object in a query image is
described by a color vector [hi, si, vi] in the HSV model.

3. EXPERIMENTAL RESULTS

In this work, two experiments are performed to evaluate the
proposed method. In the first experiment, the proposed von
Mises mixture model is assessed and compared to Otsu’s
method [10], Gaussian mixture model [14], and the state-of-
art circular thresholding [13] on synthetic circular data. In the
second experiment, the proposed color estimation approach
is applied to publicly-accessible pathology images which are
stained by different chemical dyes.

3.1. Effectiveness of Von Mises Model On Circular Data

This experiment quantitatively evaluates effectiveness of the
von Mises mixture model on circular data generated follow-
ing different mixture statistical distributions in the form of
πf(Θ1) + (1 − π)f(Θ2), where f(Θ) is a certain circular
unimodel distribution with a parameter set Θ.

Testing Data: Two mixture models are used to gen-
erate synthetic data in this experiment. The first distribu-
tion is defined by pdf of fWN = 0.55WN(−0.9π, 0.9) +
0.45WN(0.5π, 0.99), where WN(Θ = {µ, κ}) denotes the
wrapped Normal distribution [21]. The other distribution
for data generation has pdf of fvM = 0.55vM(0.6π, 20) +
0.45vM(0.9π, 6). We depict pdf of the two mixture models
in Fig. 3. Following each distribution, 20 sets of data are
generated, each set containing 10000 data points.

Experimental Design: In this experiment, Otsu’s method
[10], Gaussian mixture model [14], binary circular threshold-
ing [13], and the proposed von Mises mixture model are used
to estimate directional mean for each set of circular data. As
20 sets of data are generated following one distribution, statis-
tics of the 20 mean values are summarized and compared to
the true means used for data generation.

Results and Discussion: Statistics (mean and standard
deviation) of circular mean estimated from synthetic data are



Table 1. Statistics of mean estimation on synthetic circular data using different thresholding methods
Statistics models Linear processing Circular processing
Name Means Otsu’s method [10] Gaussian mixture [14] Circular thresholding [13] von Mises mixture

fWN
−0.9π −0.836π ± 0.001 −0.758π ± 0.245π −0.889π ± 0.002π −0.901π ± 0.002π
0.5π 0.600π ± 0.002π 0.538π ± 0.173π 0.509π ± 0.002π 0.500π ± 0.001π

fvM
0.6π 0.698π ± 0.001π 0.696π ± 0.001π 0.614π ± 0.001π 0.600π ± 0.002π
0.9π 1.083π ± 0.002 1.080π ± 0.003π 0.945π ± 0.002π 0.900π ± 0.004π

Fig. 2. Examples of color estimation using different thresholding methods for pathology images.

presented in Table 1. We compare the results to the true means
used for data generation and obtain three observations. First,
estimations generated by linear processing (Otsu’s method
and Guassian mixture model) are poor, because periodicity
of circular data is ignored. Second, binary circular threshold-
ing proposed in [13], which is an extension of Otsu’s method
for directional data, may generate non-optimal thresholding
results. Third, mean estimations by the von Mises mixture
model are accurate and stable, even though the synthetic data
follows non-von Mises distributions.

3.2. Qualitative Evaluation of Color Estimation

Testing Data: Cytopathology images of thyroid lesions in the
thyroid image atlas [17] published by Papanicolaou Society
of Cytopathology are selected for the following reason. Un-
like conventional pathology image sets consisting of images
stained by the same types of chemical dyes, lesion images
in this thyroid dataset are stained following different staining
protocols, which makes our evaluation reliable and solid.

Experimental Design: Images in the thyroid image atlas
are used as input to the proposed color estimation method.
For comparison, Otsu’s method [10], Gaussian mixture model
[14], state-of-art circular thresholding [13] are also performed
on resulting hue histograms, replacing the von Mises mixture
model to generate diagnostic hue for histological objects.

Results and Discussion: Three examples of color esti-
mation are presented in Fig. 2. As tissue samples are stained

by different chemical dyes, color in the three images has dis-
tinct distributions. As shown in the figure, linear processing
approaches including both Otsu’s method and the Gaussian
mixture modeling may fail to obtain diagnostic color, as lin-
ear processing cannot address periodic nature of hue. Com-
pared to the query images, diagnostic colors generated by cir-
cular thresholding [13] are a little faded due to its non-optimal
thresholding. As the proposed method is capable to estimate
object’s diagnostic color accurately, it can be used for sub-
sequent pathology image analysis, such as tissue component
detection and segmentation.

4. CONCLUSION

This paper introduced a blind object’s color estimation
method for pathology images, which particularly addresses
the circular nature of the chromatic component in analy-
sis. The introduced approach was able to select reliable
pixels from a query image for subsequent estimation, and
obtained accurate color information based on clustering re-
sults achieved by maximum likelihood parameter estimation.
Especially, to accurately model hue distribution of a color im-
age, which is a key in our method, we made use of a circular
mixture model that was composed of multiple von Mises dis-
tributions. Experimental results demonstrate that our method
is effective in diagnostic color estimation for histological
objects in pathology images.
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