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ABSTRACT

In this paper, we present a novel approach to achieve blind

stain decomposition in histo-pathology images. The method

is based on stain color estimation, followed by stain absorbing

vector generation and matrix computation. Unlike conven-

tional approaches adopting linear processing algorithms to

analyze chromatic information in the cylindrical-coordinate

color spaces, which may be inappropriate for circular data

such as hue, we propose the use of circular thresholding on

saturation-weighted hue histogram to compute candidates for

stain representative colors. Experimental results suggest that

our stain decomposition method is capable to address spec-

tral variation in stains effectively. We compare the proposed

method to state-of-the-art blind stain separation algorithms

for nuclei segmentation on breast histo-pathology images,

and demonstrate that the segmentation scheme adopting our

method in its pre-processing step achieves the best segmenta-

tion results.

Index Terms— Histo-pathology image, circular thresh-

olding, saturation-weighted hue histogram, stain separation.

1. INTRODUCTION

In digital histo-pathology, color plays a vital role in image

analysis due to the use of chemical stains to highlight dif-

ferent histological components. When analyzing such color

information, stain decomposition is frequently performed as

a pre-processing step in various digital histo-pathology tasks

for two purposes. First, stain decomposition is capable to ad-

dress the stain co-localization (or color mixing) issue for his-

tological component detection and segmentation [1, 2]. Sec-

ond, appearance variation in histo-pathology images is a key

challenge in automatic histo-pathology image analysis [3].

Stain decomposition followed by stain normalization can be

used to address this issue [4, 5].

Stain decomposition, or stain separation, is a signal anal-

ysis process that estimates stain spectra and corresponding

stain proportions in a histo-pathology image according to the

Beer-Lambert law [6]. Assuming N types of stains used in
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tissue staining, image color I(p) = [r(p), g(p), b(p)] at loca-

tion p = (x, y) generated by transmitted light that is not ab-

sorbed by stains can be formulated as I(p) = Iiexp(−M ×
D(p)), where Ii = [ri, gi, bi] denotes imaging illumination

coming from back of tissue samples, M is a N -by-3 spec-

trum matrix whose jth row, mj = [mjr,mjg,mjb] for 1 ≤
j ≤ N , is the jth stain’s spectrum vector quantified by its

absorbing factors in the red, green, and blue channels, and

D(p) = [d1(p), ..., dN (p)]′ is so-called stain proportions, or

stain density map, describing amount of stains bounded at lo-

cation p. By moving Ii to the left and taking logarithm on

both sides, the more frequently-used optical density (OD) do-

main equivalent expression is as follows:

log(Ii/I(p)) = M ×D(p). (1)

Once the spectrum matrix M is determined, stain density map

D(p) can be derived by matrix inverse computation. Specif-

ically, in the fixed-matrix (FM) decomposition method [7],

matrix M was pre-determined via experiments. To address

spectral variation in stains, many adaptive stain separation

approaches were proposed, while most of them required hu-

man intervention [5, 8, 9]. To achieve fully-automatic stain

decomposition, a plane-fitting (PF) method [10] is achieved

by singular value decomposition and thresholding for images

containing two stains only. Later, blind color decomposi-

tion (BCD) proposed to perform expectation-maximization

on color distributions in the Maxwell color triangle to esti-

mate matrix M [11]. Though a heuristic randomization func-

tion tries to select stable colors for stain estimation, BCD

method is prone to be affected by achromatic pixels when es-

timating spectrum vectors for weak stains.

In this paper, we introduce a novel blind stain decom-

position method for histo-pathology images generated by

light-absorbing stains (e.g. Hametoxylin and eosin (H&E)).

The proposed method generates a pool of candidates for stain

representative color, which is a key in our method, followed

by stain spectrum vector generation, and achieves optimal

stain decomposition in terms of minimizing decomposition

residue. Particularly, unlike conventional image process-

ing works that apply linear analysis algorithms to image

color which may be measured by circular data, stain color

estimation in this paper adopts circular thresholding and
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Fig. 1. Block diagram of the proposed blind stain decompo-

sition method.

saturation-weighted hue histogram to address the periodic

nature of hue and close relationship between saturation and

hue components in color description, respectively. Experi-

mentation demonstrates that the proposed method addresses

spectral variation in stains effectively and improves nuclei

segmentation in breast cancer images.

The rest of this paper is organized as follows. Section 2

presents the proposed stain decomposition method in detail.

Evaluation protocols and corresponding experimental results

are given in Section 3, followed by conclusions in Section 4.

2. PROPOSED STAIN DECOMPOSITION

The block diagram of our blind stain decomposition method is

illustrated in Fig.1. Given a query image, candidates for stain

representative colors are generated by circular thresholding

on saturation-weighted hue histogram in the HSV color space.

Then each color candidate is converted to a light-absorbing

vector in the OD domain. Finally, optimal spectrum vectors

are selected from resulting vector pools to form spectrum ma-

trix M , and stain density map D(p) is obtained via matrix

inverse operation.

The input of the proposed stain decomposition approach

is a linear RGB-format histo-pathology image, which is as-

sumed to 1) contain light-absorbing stains only, and 2) be

imaged under a standard illumination Ii, such as CIE illumi-

nant D65 [12], so that image colors are mainly determined by

stains’ light-absorbing activities. The outputs of our scheme

are density maps, a series of single-stain images.

2.1. Stain Representative Color Estimation

Though the RGB color space is widely used in image sensing

and display, it is not suitable for image analysis due to its less

coherent to human visual perception. To estimate stain rep-

resentative colors from a query image, we convert an RGB-

format input to the HSV color space, where colors are de-

scribed by hue and saturation on the chromatic plane.

In histo-pathology images, colors are generated by trans-

mitted light that is not absorbed by stains [13]. A hue his-

togram of an image actually shows what spectra of light are

not absorbed, and thus can be used to estimate stains’ absorb-

ing spectra. Remind that in the HSV color model, a hue value

of an achromatic pixel, or a low-saturated pixel, is meaning-

less for color description. In particular, less saturated pixels in

histo-pathology images are usually noise or tissues bounded

by few stains. To limit impacts of such achromatic colors on

stain color estimation, this work uses a saturation-weighted

hue histogram [14] defined as follows:

Hsw
θ =

∑

p

s(p)δ(θ, h(p)), (2)

where δ(θ, h(p)) =

{

1 if θ = h(p)
0 otherwise

.

θ ∈ [0◦, ..., 360◦) represents a bin in histogram, s(p) and

h(p) are the saturation and hue at pixel p in the HSV color

space. Fig.2 (b) and (c) depict 360-bin standard histogram

and saturation-weighted histogram for an H&E stained image

in Fig.2 (a). The standard hue histogram has more spikes con-

tributed by achromatic pixels; while the saturation-weighted

histogram shows smooth dominant colors which are con-

tributed by reliable image pixels and thus more coherent to

human’s color perception.

Observing that clusters in the saturation-weighted his-

togram associate with different stains contained in a query

image, we propose the use of circular thresholding [15],

which addresses the angular nature of hue, to divide a his-

togram into non-overlapping stain regions. Specifically, hue

is a periodic measurement in the range of [0, 360). Dividing

hue histogram into N stain regions requires N thresholds;

whereas conventional linear thresholding methods, such as

the Otsu’s method [16], generate N − 1 thresholds only. An

implicit assumption when applying linear thresholding to cir-

cular data is that the angular value of 0 is always a threshold.

However, this assumption hardly holds as pixels whose hues

are around 0 and 360 may be all observed red. Take the image

in Fig.2 (a) as an example. To highlight the angular attribute

of hue, the circular equivalent 360-bin saturation-weighted

histogram of the image is depicted in Fig.2 (d). By applying

circular thresholding to it, two thresholds labeled as th1 and

th2 divide the hue histogram into H region and E region.



Fig. 2. Example of stain representative hue estimation. (a) Original query H&E stained breast cancer image; (b) Standard

hue histogram of the query image; (c) Saturation-weighted hue histogram; (d) Circular thresholding on the circular equivalent

saturation-weighted histogram.

Assuming that a hue histogram has L bins, representative

hue values of the N stain regions can be derived by formula

of circular mean as follows:

hk = arctan(

∑thk+1−1

θ=thk
Hsw

θ cos θ
∑thk+1−1

θ=thk
Hsw

θ sin θ
), 1 ≤ k < N, (3)

hN = arctan(

[

∑L−1

θ=thN
+
∑th1−1

θ=0

]

Hsw
θ cos θ

[

∑L−1

θ=thN
+
∑th1−1

θ=0

]

Hsw
θ sin θ

). (4)

Then we proceed to compute value and saturation compo-

nents in the HSV color space for each stain, finally generating

candidates for stain representative color. For this end, we ex-

ploit the normalization constraint of a spectrum matrix, and

derive the value and saturation components as follows. As-

sume that a stain is observed in a color chsv = [h, s, v] in

the HSV color space, where h is derived following Eqn.(3)

or Eqn.(4). Let frgb
hsv(·) denote the function to convert a color

in the HSV model to the RGB color space. Then crgb =

[r, g, b] = frgb
hsv(chsv) represents the corresponding stain color

in the RGB color space, where r, g, b ∈ [0, 1]. As any stain’s

absorbing vector in the spectrum matrix has a unit length,

it requires ‖log(Ii/crgb)‖
2 = log2(ri/r) + log2(gi/g) +

log2(bi/b) = 1, which can be expressed as

‖log(Ii/frgb
hsv(chsv))‖

2 = 1. (5)

Given a value v, cooperating with an estimated hue h from

Eqn.(3) or Eqn.(4), a value of saturation can be obtained by

solving Eqn.(5). Then, the derived color chsv is converted

to the RGB color space via crgb = frgb
hsv(chsv). Since v lies

in the range of [0, 1], we build a color pool for each stain

by letting v = kδ, where the step-size δ ∈ [0, 1] and k =
1, ..., f loor(1/δ).

2.2. Stain Absorbing Vector Generation

An absorbing vector in the spectrum matrix characterizes the

deduction amount of light in the OD domain when light trans-

mits through a stain [7]. Hence, for each stain whose repre-

sentative color is crgb, its corresponding absorbing vector in

the OD domain is m = log(Ii/crgb). As we build a color

pool for each stain, each stain possesses a pool of candidates

for stain absorbing vectors.

2.3. Optimal Stain Decomposition

For a biopsy sample stained by N types of stains, the N -by-3

spectrum matrix M is formed by using mj , j = 1, ..., N as

the jth column. Since each stain has a pool of candidates for

its absorbing vector, we need to find one appropriate vector

from each pool to form the matrix M . In this work, taking into

account the physical constraint that stain proportions D(p)
must be non-negative, we propose the search of stains’ op-

timal absorbing vectors in terms of minimizing the expected

decomposition mean-squared residue over all pixels p:

arg min
mj ,1≤j≤N

Ep

[

‖log(Ii/I(p))−M ×D(p)‖2
]

,(6)

where

{

M = [m1; ...;mN ]
D(p) = max(M−1log(Ii/I(p)), 0).

With the search of optimal absorbing vectors mj for j =
1, ..., N , a spectrum matrix M and stain density maps D are

obtained simultaneously.

3. EXPERIMENTAL RESULTS

In this work, the UCSB breast cancer cell dataset [17], which

consists of 58 H&E stained breast cancer histo-pathology im-

ages stored in 24-bit RGB format, is selected as our evalua-

tion dataset for two reasons. First, spectral variation in H&E

stains in this dataset enables us to assess performance of the

proposed method against stain variation. Second, groundtruth

of nuclei segmentation in region of interest for each image

is provided in this dataset. Note, we take H&E stained im-

ages as evaluation data in this work because H&E staining is

the dominant staining protocol in histo-pathology; However,

our method is applicable to histo-pathology images stained by

other light-absorbing chemical dyes.

To evaluate the proposed stain decomposition method

qualitatively and quantitatively, three experiments are con-

ducted on the UCSB image set as follows.



Fig. 3. Parameters analysis of our stain decomposition.

Fig. 4. Examples of stain separation by our method. Color

variation in images is attributed to spectral variation in stains.

System Robustness to Parameter Settings: There

are two parameters pre-determined in our stain separation

method: the number of bins in a hue saturation-weighted

histogram, L, and the search stepsize of v in the HSV color

space, δ. We perform a parameter analysis using the H&E

stained image in Fig.2(a) to check different combinations of

L and δ, which is shown in Fig.3. The vertical axis rep-

resents the expected decomposition residue computed by

Ep[‖log(I
i/I(p))−M ×D(p)‖2]. The small decomposition

residues in order of 10−2 imply that our method is insensitive

to system settings, especially when L ≥ 180 and δ ≤ 0.1.

For decomposition accuracy and computational efficiency,

we set L = 360 and δ = 0.05 in all our experiments.

Qualitative Evaluation of Stain Decomposition: In this

experiment, we qualitatively examine capability of the pro-

posed method to address the stain variation issue which is

often observed among histo-pathology images. As similar

observations are obtained, two stain separation examples are

presented in Fig. 4. Though nuclei and cytoplasm in the upper

H&E stained image appear more magenta and more pink, re-

spectively, compared to histological components in the lower

query image, our method works on both images successfully.

Nulcei Segmentation After Stain Decomposition: Seg-

mentation of nuclei in histo-pathology images is a key task

Table 1. Dice coefficients of nuclei segmentation using vari-

ous stain decomposition approaches over the UCSB dataset

Methods Mean (Std) Min Max

FM method [7] 0.7264 (0.0069) 0.4746 0.8571

PF method [10] 0.7465 (0.0034) 0.5783 0.9019

BCD method [11] 0.7309 (0.0062) 0.5366 0.8727

Proposed method 0.7469 (0.0046) 0.5814 0.8728

for cancer diagnosis. This experiment quantitatively eval-

uates performance of a nuclei segmentation algorithm [2]

on the UCSB dataset when its color unmixing step exploits

different stain separation methods: the FM method [7], the

PF approach [10], the BCD approach [11], and the proposed

method. Specifically, we first tune parameters of the seg-

mentation algorithm particularly on a reference image in the

UCSB dataset. Then the parameter set is applied to other

images in the dataset. Segmentation performance is evaluated

using the dice coefficient [2], which measures the agree-

ment between groundtruth X and segmentation result Y via

D(X,Y ) = 2|X ∩ Y |/(|X| + |Y |). D(X,Y ) ∈ [0, 1] and

D(X,Y ) = 1 indicates identical segmentation.

The statistics of dice coefficients of nuclei segmentation

over the UCSB dataset are shown in Table 1, where the largest

dice coefficients are marked black. Taking performance of

the FM method [7] as comparison baseline, we get two ob-

servations. First, all three blind decomposition methods im-

prove nuclei segmentation as they can address stain variation

in different degrees. Particularly, the minimum dice coeffi-

cient over the UCSB image set is improved more than 0.1 by

our method. It should be note that in medical-target tasks,

0.01 improvement may mean significance. Second, though

the proposed method and the PF approach [10] achieve close

dice coefficients, our method outperforms the PF approach

since the PF approach works on images containing two stains

only, whereas the proposed method has no such constraints.

4. CONCLUSION

This paper introduced a blind stain decomposition method

for histo-pathology images, which was capable of address-

ing spectral variation in stains. The introduced approach was

able to select reliable pixels from a query image for subse-

quent image analysis, and generated optimal spectrum ma-

trix to minimize decomposition residue using an optimization

search algorithm. Especially, to achieve accurate stain color

estimation which is a key in our method, we made use of

saturation-weighted histogram to limit impacts of achromatic

colors, and adopted circular thresholding to address the pe-

riodicity of hue properly when processing color information.

Experimental results demonstrate superiority of our method

in nuclei segmentation over state-of-the-art blind stain de-

composition methods.
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