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ABSTRACT

Quantitative scratch assay is significant in cell motility study
for tissue repair, evolution of disease, drug treatment, and
cancer metastasis. To overcome challenges in traditional
manual operations in scratch assay, computational scratch
assay is introduced, where image processing algorithms are
exploited for cell motility quantification. In this new research
realm, dedicated analysis tools are under-developed, which
provides many opportunities for researchers expert on signal
processing. This work presents a preliminary study in multi-
cellular segmentation, which aims to divide a scratch image
into wound area and cell-populated regions. The proposed
segmentation algorithm consists of a novel LBP-variant edge
detector and a parallel processing pipeline. Experimentation
on public scratch image benchmark demonstrates the superi-
ority of the proposed method over prior arts. Particularly, the
LBP-variant edge detector is capable of generating a single
directional-aware edge map so that multiple edge maps along
different orientations can be retrieved from it. Taking our pre-
liminary study on multi-cellular segmentation as an example,
it is suggested that with carefully designed image processing
algorithms, current scratch assay quantification can be much
improved.

Index Terms— Wound healing assay, multi-cellular seg-
mentation, computational scratch assay

1. INTRODUCTION

Scratch assay, or wound healing assay, is a classical technique
to study collective cell motility and migration for wound re-
covery, immune function, disease evolution, and cancer inva-
sion and metastasis [1, 2, 3, 4]. In scratch assay, a confluent
monolayer of cells are grown under a specific condition, and
an artificial wound is created. With time elapsing, cells mi-
grate to scratch areas and tend to close the wound. It should
be noted that cell migration is a dynamic processing compris-
ing spatial and temporal information. To record this recovery
process, time-lapse transmitted-light techniques are used to
generate a sequence of scratch microscopic images over time.
Then cell motility is analyzed and quantified based on the se-
quence of scratch images in terms of multi-cellular tracking,

scratch front-edge tracing, wound area measuring, and recov-
ery rate estimation [5].

Traditionally, wound healing assay is performed by
specialists manually. However, the complication nature of
scratch images poses several challenges for analysis. First,
scratch assay manually is not only time-consuming, but also
prone to subjective. For instance, to measure wound areas
and cell migration rate, the operator needs to identify wound
edge based on multi-cellular’s locations on each time-lapse
image. However, cells at the scratch edges often grow into
the wound areas at different rates for recovery, resulting in
an ill-defined cell front when time elapses [6]. It has been
reported that analysis inconsistency occurs between different
operators [7]. Second, to achieve high-quality analysis, quan-
titative measurement is performed across multiple replicates
of the same cell condition in a statistics manner. To this end,
wound healing assay may contain as many as 384 well plates
of cells [8]. The massive data makes manual operations in-
efficient, or even infeasible. Therefore, automated scratch
assay which can provide objective and efficient analysis is
highly desirable.

Computational scratch assay is a research subject that
uses image processing tools to analyze cell migration in
wound healing images. Fig. 1 depicts a general scheme of
computational scratch assay. The input scratch image can
be either color or grayscale depending on imaging modali-
ties. After pre-processing, multi-cellular segmentation which
divides an image into wound region and cell-populated re-
gions is performed for subsequent quantitative cell mobility
analysis. It should be noted that comparing to the develop-
ments of computational histo-pathology and fluorescence cell
analysis, computational scratch assay is lag behind, and ded-
icated analysis tools are either under-developed or prone to
adopting general image routine algorithms proposed decades
before, leading to unsatisfied analysis results. For instance,
in the Broad Bioimage Benchmark Collection (BBBC) multi-
cellular segmentation benchmark [9], the three examined
tools achieve only about 60% F-measure score for scatter im-
age multi-cellular segmentation. One can refer to [5] for com-
putational scratch assay overview. The under-development
of computational scratch assay provides signal processing
society lots of opportunities and spaces for contributions.
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Fig. 1. A general pipeline of computational scratch assay, where most analysis tasks are based on multi-cellular segmentation.

As shown in Fig. 1, multi-cellular segmentation is the ba-
sic common computation step for many scratch assay analy-
sis tasks. The accuracy of segmentation is crucial and directly
effects precision of further analysis. Despite its significance,
multi-cellular segmentation is little addressed by image pro-
cessing community, with limited studies reported in literature.
In this work, we present our very preliminary study on multi-
cellular segmentation particularly in scatter images. Differ-
ent from prior arts that use multiple filters to collect edge in-
formation, a novel LBP-variant edge detection operator com-
putes intensity differences along different orientations simul-
taneously and generates a single orientation-aware edge map.
The obtained edge map is then processed by a parallel filtering
structure, generating a robust segmentation result. We evalu-
ate the proposed segmentation method using public scratch
images, observing that our method achieves much better re-
sults compared to prior arts. To clarify, in this study, we say a
edge map is direction-aware in the sense that based on a pixel
value in the edge map, edge orientation information at that
particular pixel can be uniquely retrieved.

The contributions of this work are summarized as follows.

• Computational scratch assay is seldom addressed by
signal processing society1. This study demonstrates
that dedicated-designed algorithms can largely improve
the performance of current digital scratch image anal-
ysis. We hope this study would encourage more re-
searchers in signal processing society to contribute to
this new research frontier.

• We present a very preliminary study on multi-cellular
segmentation in scratch images, where a LBP-variant
edge detector is introduced in the proposed multi-
cellular segmentation method. The obtained single
edge map is capable of preserving edge information
along various orientations. To the best of our knowl-
edge, this work constitutes the first attempt in literature
to translate the LBP-based paradigm to the edge detec-
tion scenario.

The rest of this paper is organized as follows. Prior arts
in multi-cellular segmentation is reviewed in Section 2. Sec-
tion 3 presents the proposed segmentation algorithm in detail.
Experimental results and discussion are given in Section 4,
followed by conclusion in Section 5.

1It is hardly to find a work of computational scratch assay published in
IEEE Signal processing venues.

2. MULTI-CELLULAR SEGMENTATION REVIEW

Different from classical cell segmentation which aims to seg-
ment every single cell, multi-cellular segmentation is essen-
tially a foreground-background segmentation task, where im-
age pixels are labeled by either scratch area or cell-populated
regions. The major difficulties in this task are introduced by
the high variability in imaging conditions and cells’ appear-
ance [9]. The existing multi-cellular segmentation algorithms
can be categorized into two groups.

The first category of scratch image segmentation methods
is based on edge or texture information in every single im-
age and achieves segmentation in the unsupervised manner.
The first freely-available designated tool, namely TScratch
[10], is a typical example in this category. It developed edge-
detection algorithm based on the discrete curvelet transform
in various scales, orientations and positions in an image. Then
the obtained curvelet magnitude image is divided into wound
area and cell region by thresholding. Later, instead of using
the discrete curvelet transform to obtain edge information,
Sobel edge detector or Canny method is exploited to gener-
ate image edge maps [11, 12, 6]. Alternatively, in Topman’s
method [13], rather than edge information, texture knowl-
edge, in terms of standard deviation of pixel intensities over
a square window, is collected to distinguish wound area and
cell-populated regions in scratch images.

The other group adopts supervised learning for wound
area segmentation. MultiCellSeg [14] is a dedicated software
of multi-cellular segmentation for cell motility. After parti-
tioning an image into small patches, each patch is classified
by a linear support vector machine (SVM) with confidence
score. Then the score map is segmented by an automatically-
selected threshold. Later, a method that augments level set
segmentation with a SVM is proposed for scratch assay [15].

In sum, compared with the supervised learning methods
whose performance heavily depends on training, the edge-
detection based methods are much fast without sacrificing
segmentation accuracy [9]. However, we noticed that in prior
edge-detection based methods, to obtain accurate segmenta-
tion, edge-detection filters in various directions were used to
generate multiple edge maps [10, 11, 12, 6]. The resulted
multiple maps pose difficulties on data fusion for subsequent
analysis. Hence, in this paper, we introduce a multi-cellular
segmentation algorithm that uses one edge detection opera-
tion to generate a single direction-aware edge map.
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Fig. 2. Block diagram of the proposed multi-cellular segmen-
tation method for wound microscopic images.

3. PROPOSED SEGMENTATION ALGORITHM

Briefly, the proposed multi-cellular segmentation method fol-
lows the edge-detection based paradigm for wound healing
assay segmentation, where thresholds are used to generate bi-
nary segmentation over edge maps. The block diagram of the
proposed method is depicted in Fig.2. Given a query wound
microscopic image, a single direction-aware edge map is gen-
erated using the proposed LBP-variant edge detection opera-
tor. Then a parallel coarse segmentation pipeline consisting
of two processing paths is applied to the resulting edge map.
The finally multi-cellular segmentation is obtained by fusing
the two coarse segmentation together.

3.1. Direction-Aware Edge Detection Operation

Generally, two steps are needed to generate edge maps in prior
works. First, an image is convolved with an image differential
operator (for example, Roberts operator and Sobel operator),
obtaining information on intensity differences at each pixel.
Then compared to a threshold which can be predetermined or
adaptively generated, intensity difference which is larger than
the threshold is believed corresponding to an edge. It should
be noted that since image edges may be along any directions,
edge detection operators in various orientations are needed. In
addition, to obtain a single edge image, edge maps associated
with different directions need to combine together, where the
knowledge of edges’ orientations may be lost.

Different from the traditional edge detection paradigm,
the proposed edge detection algorithm follows the LBP
paradigm [17] and achieves intensity differentiation and
thresholding by one operation, generating a single direction-
aware edge map. That is, given an edge map generated by
the proposed algorithm, edges associated with certain orien-
tations can be retrieved. In specific, given a query scratch
image, let image intensities at a pixel c = (x, y) and its P
neighborhood pixels be Ic and Inp , respectively. To generate a
single directional-aware edge map, absolute values of inten-
sity differences between Ic and Inp s are computed, forming an
intensity difference vector. Then each element of the vector
is compared to a predetermined threshold θ. If the intensity
difference is larger than θ, the corresponding element of the
vector is replaced by 1; otherwise, 0. Finally, the obtained

binary code is converted to a decimal integer, represented by
ec, in the edge map. The proposed edge detection operator
can be summarized by Eqn. (1) as follows.

ec =

P−1∑
p=0

s(|Ic − Inp | − θ)× 2p, (1)

where s(z) = 1 for z ≥ 0; otherwise, s(z) = 0. From
Eqn. (1), only intensity difference larger than a threshold is
considered as an edge and contributes to the value ec in an
edge map.

It is noteworthy that the obtained edge map is said
direction-aware in the sense that edge orientations are ex-
plicitly indicated by 1s in the binary representation of ec.
That is, based on an ec, information of edge orientation at
pixel c can be uniquely determined. Fig. 3 demonstrates
an example of the proposed edge detection operation on a
scratch image patch, where edges in different directions in
(c)-(f) can be retrieved from the single edge map in (b).

3.2. Parallel Coarse Segmentation Based on Edge Map

With the edge map, we precede to multi-cellular segmenta-
tion. Note that compared to classical cell segmentation, multi-
cellular segmentation does not need to segment every single
cell independently; instead, areas populated by cells should
be identified as non-wound regions, even though these regions
may not be completely covered by cells. To this end, a two-
path parallel filtering structure is exploited in the proposed
method, where each path is composed by smooth filtering
and thresholding. Specifically, for major cell-clustering re-
gion segmentation, a median filter with a large window is ap-
plied to the edge map in one path. Consequently, blank areas
in cell-populated regions is diminished, eventually preventing
over-segmenting non-wound regions. However, a median fil-
ter in large window size may lead to segmentation failure for
areas taken by small/isolated cell clusters. Such failures are
more observed along wound boundary when cells are closing
the scratch. Hence, to address this issue, in the other segmen-
tation path, a Gaussian filter with a small window is used to
preserve small isolated cell clusters in the edge map. How-
ever, the drawback of using a filter in a small window size is
over-segmenting large multi-cellular areas.

To obtain a robust multi-cellular segmentation in scratch
images, the proposed method combines the two preliminary
coarse segmentation generating by the parallel structure us-
ing an OR bit operation. That is, a pixel is labeled as a wound
pixel if it locates in wound regions in both segmentation ob-
tained from the parallel processing paths.

4. EXPERIMENTAL RESULTS

In this work, the proposed method is evaluated using publicly-
accessible scatter images and compared with three designated
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Fig. 3. (a)Scratch image patch; (b) edge map obtained by the proposed detector in Eqn. (1); (c)-(f) edges along different
orientations (vertical, 135 degree oblique, horizontal, and 45 degree oblique) retrieved from (b).

Table 1. Evaluation of multi-cellular segmentation algo-
rithms on scatter images

Algorithm Mean F-measure Median F-measure
Tscratch [10] 0.514±0.164 0.536

MultiCellSeg [14] 0.611±0.107 0.587
Topman [13] 0.647±0.086 0.616

Proposed 0.858±0.042 0.861

algorithms, which are TScratch [10], multiCellSeg [14], and
Topman’s method [13].

Testing Data: Query grayscale scatter images are from
the BBBC multi-cellular segmentation benchmark. This
dataset contains 6 differential interference contrast images of
Madin-Darby Canine Kidney epithelial cells acquired during
a multi-well scatter assay [9]. Since manual segmentation is
provided as ground truth for 5 images, with one groundtruth
missing, only the 5 images with groundthuth are used as
testing data.

Experimental Design: Each scratch images is segmented
using the proposed method. Following the BBBC scratch ar-
ray benchmark [9], agreement between segmentation results
and ground truth is quantified by F-measure score. F-measure
is defined as the harmonic mean of segmentation recall and
segmentation precision of wound areas, which is computed
by 2precision·recall

precison+recall . A high F-measure score indicates a bet-
ter segmentation. In this preliminary study, we set θ = 25,
and the window size for the median filter and the Gaussian
filter are 25-by-25 and 5-by-5, respectively2. We compare the
proposed method with prior arts (TScratch [10], multiCellSeg
[14], and Topman’s method [13]), whose segmentation results
are provided by the BBBC benchmark.

Results and Discussion: Statistics of F-measure scores
for multi-cellular segmentation evaluation are presented in
Table 1. Compared to the three algorithms, the proposed
method achieves much higher F-measure scores over the
scatter image set. For visualization, an example of multi-
cellular segmentation is presented in Fig. 4. Compared to
the groundtruth, our segmentation result has some noise (i.e.
small white areas). We believe these segmentation errors can
be removed by post-processing, for instance, morphology

2The discussion on parameter settings on segmentation performance will
be presented in our future works.

Fig. 4. Example of multi-cellular segmentation in a scatter
image obtained using proposed method, TScratch [10], mul-
tiCellSeg [14], and Topman’s method [13].

operations. We will discuss the potential improvement in our
future study.

5. CONCLUSION

Computational scratch assay is a new research realm, where
many analysis tools are under-developed and highly desirable.
This paper took multi-cellular segmentation in a scratch im-
age as an example, showing that with carefully designed algo-
rithms, the current scratch assay quantification can be greatly
improved. Specifically, based on a single directional-aware
edge map obtained by a novel edge detector, a parallel pro-
cessing pipeline was used to segment both cell-populated ar-
eas and small cell-cluster regions. In particular, the proposed
detector adopted the LBP paradigm, and the edge orientation
information was summarized using a binary code. Conse-
quently, given a resulting edge map, various edge maps in dif-
ferent directions could be retrieved accordingly. Compared to
prior arts, the proposed method achieved much more accurate
segmentation in terms of F-measure over a public scatter im-
age set. We hoped that this preliminary study would encour-
age image processing experts to contribute to this research
frontier, fostering computational scratch assay research.
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