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Abstract—Quality and safety are critical elements in the
performance of surgeries. Therefore, surgical trainees need to
obtain the required degrees of expertise before operating on patients.
Conventionally, a trainee’s performance is evaluated by qualitative
methods that are time-consuming and prone to bias. Using
autonomous and quantitative surgical skill assessment improves the
consistency, repeatability, and reliability of the evaluation. To this
end, this paper proposes a video-based deep learning framework for
surgical skill assessment. By incorporating prior knowledge on sur-
geon’s activity in the system design, we decompose the complex task
of spatio-temporal representation learning from video recordings
into two independent, relatively-simple learning processes, which
greatly reduces the model size. We evaluate the proposed framework
using the publicly available JIGSAWS robotic surgery dataset
and demonstrate its capability to learn the underlying features of
surgical maneuvers and the dynamic interplay between sequences
of actions effectively. The skill level classification accuracy of 97.27%
on the public dataset demonstrates the superiority of the proposed
model over prior video-based skill assessment methods. The code of
this paper will be available on Github at link: sourceCode.

Index Terms—Surgical skill assessment, JIGSAWS dataset, Deep
learning, Transfer learning.

I. INTRODUCTION

Quality and safety are reckoned as critical factors in performing
surgeries. Surgical trainees need to acquire desirable degrees
of proficiency before operating on patients. A lack of proper
preparation may have a detrimental effect on the clinical outcome.
To assist trainees in surgical skill acquisition, effective training
and reliable methods to assess surgical skills are critical.

Conventionally, the trainee performance has been assessed via
outcome-based analysis, structured checklists, and rating scales
[1]. For example, Martin et al. developed surgical skill evaluations
for surgical residents called Objective Structured Assessment
of Technical Skill (OSATS), under which the performance was
assessed using operation-specific checklists, systematic global
ranking forms, and pass/fail judgments of a trainee [2]. The Global
Evaluative Assessment of Robotic Skills (GEARS) was proposed
by Goh et al. to identify levels of robotic surgery expertise [3].
Qualitative assessment methods like OSATS and GEARS require
a large extent of expert monitoring and manual ratings and can be
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unreliable because of bias and variability in human interpretation.
Although crowd-sourced assessment methods of technical skills
proved that even a naive person can rate the skill level of a
surgical operation with acceptable accuracy [4], these methods
seem unreliable for the delicate task of surgical skill assessment
due to the vital importance of patients’ safety in the critical care
procedures. Because of the challenges in minimally invasive
surgeries, traditional approaches are no longer sufficient, given
the increasing attention to the efficacy of assessment and targeted
feedback [5]. Therefore, it can be a rational idea to automate the
procedure of surgical skill assessment. In addition to saving time
and money, inexperienced surgeons can train effectively with less
dependence on a human supervisor using a surgical simulator that
is fitted with automated evaluation and feedback properties [6].

With the advent of surgical robot technologies, recording
video and kinematics data (i.e., position, velocity, rotation of
the robotic joints, etc.) has become available. This large amount
of data enables artificial intelligence (AI) based systems to be
deployed and utilized in surgical and medical practices. For
one thing, AI technology, especially deep learning (DL), can
retrieve high-level information from raw data; for the other, the
constructed AI models facilitate user training by evaluating and
providing feedback to users’ expertise levels. In particular, for
the surgical skill assessment task, early studies usually follow the
statistical machine learning paradigm, where numerical features
are manually designed. Recently, various deep learning based
models have been proposed and reported very promising results.
We briefly discuss pron and cons of prior arts in the next section.

In this paper, we present a DL architecture for video-based
surgical skill evaluation. By incorporating prior knowledge on
human activity into our system design, we successfully decompose
spatio-temporal feature learning into two phases: transfer-learning
based on intra-frame local feature extraction and an end-to-end
inter-frame temporal feature learning model. This decomposition
greatly reduces the model complexity. By effectively and efficiently
learning the underlying features of surgical activities and dynamic
interplay between sequence of actions over time, the system
outperforms the state-of-the-art methods on a public surgery dataset
in terms of assessment accuracy and model complexity. It is note-
worthy that our method focuses on the analysis of surgery video
recording, instead of kinematic or tool motion data, for two reasons.
First, video recording is easy to obtain in robot-assisted minimally
invasive surgery due to the deployment of laparoscopic camera.
Second, though video data is substantially more complicated than
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Fig. 1. Network architecture for the proposed video-based skill evaluation method. The spatio-temporal feature representation learning from video recording is decomposed
into transfer-learning based intra-frame local feature extraction and an end-to-end inter-frame temporal feature learning. The fast Fourier transform (FFT) operation
between the two feature learning phases incorporates prior domain knowledge on robotic surgery in architecture design and helps to reduce the complexity of the model.

sequences of a few motion variables [6], it does contain more
comprehensive information on the surgery process.

The structure of the current study is as follows: Section II
presents the background of surgical skill evaluation methods and
techniques. The proposed skill assessment framework is elaborated
in Section III. In Section IV, we evaluate our method on the public
JIGSAWS dataset and discuss the advantages and limitations of
this study. Finally, conclusions and some recommendations for
future study are presented in Section V.

II. RELATED WORK

Early autonomous surgical skill assessment systems were
constructed by traditional machine learning techniques. Rosen et al.
and others pioneered the idea that the Markov structure of a surgical
task was an indicator of user’s skill [7, 8, 9]. Later works extended
basic hidden Markov models (HMMs) in a variety of ways by train-
ing a segmentation HMM for each skill level [10, 11, 12]. These en-
deavors exploit the fact that “surgeries are composed of several pre-
defined surgical gestures and surgeons with a particular level of ex-
pertise distinctly perform these gestures”. Training HMMs requires
a large number of gesture annotations that would be very laborious.
Therefore, many researchers have attempted manual feature engi-
neering to eliminate the need for gesture annotation [13]. Manual
feature engineering is grouped into two main categories: descriptive
statistic analysis and predictive modeling-based methods [5]. De-
scriptive statistic analysis directly calculates clinically-meaningful
features as evaluation metrics [13] such as total distance traveled
[14], motion jerk [15], movement time [14, 15, 16], etc. In contrast
to descriptive analysis, predictive modeling-based methods extract
features and feed them into traditional classifiers or regression
models [17, 18]. It should be noted that these feature engineering-
based methods usually require specific domain knowledge and are
prone to be subjective, time-consuming, and expensive [6].

In recent years, due to the capability of deep learning models,
many researchers have used them for autonomous surgical skill
assessment. Some deep learning-based approaches take kinematic
data as input and use convolutional neural networks (CNNs) to
discover skill-related patterns [13]. For instance, Wang and Fey
proposed an analytical deep learning system for skill assessment
in surgical training. In their study, a deep CNN is used to map
multivariate time series data of the motion kinematics to individual
skill levels [5]. Moreover, a CNN was proposed by Fawaz et al. to
identify surgical skills by extracting latent patterns of kinematics

data in the motions of trainees performing robotic surgery tasks
[19]. Nguyen et al. presented an autonomous system with a
CNN-LSTM neural network model and inertial measurement
units (IMU) sensors to systematically classify various levels of
expertise in surgical training [20].

While some DL approaches take kinematic data, the majority
choose video data that can be captured effortlessly and provides
rich contextual details compared to instrument motion. Some video-
based deep learning methods formulate surgical skill assessment
into classification or regression problems [13]. For instance, Kim
et al. proposed a temporal CNN to objectively assess intraoperative
technical skills to predict a binary class label (expert/novice)
using videos of capsulorhexis [21]. Funke et al. proposed a
deep learning-based approach to assess technical surgical skills
using video data. For the task of surgical skill classification, they
adjusted a pre-trained 3D CNN on stacks of video frames and
optical flow fields using the temporal segmentation network
[6]. Liu et al. proposed a video-based neural network model
that is jointly trained with a supervised regression loss and an
unsupervised rank loss to predict users’ surgical skill level [22].

Some recent techniques devise a problem of pairwise ranking
and learn to characterize relative variation or similarity of skill
given a pair of surgeries [13]. For instance, Doughty et al.
presented a method that can predict the skill ranking for a set of
video data. They suggested a pairwise deep ranking model that
utilized both spatial and temporal streams to assess and rate skill
in conjunction with a novel loss function [23]. [24] presented a
new model to determine relative skill level by learnable temporal
attention modules from long videos. Li et al. proposed a spatial
attention-based approach for skill assessment from videos. They
presented a new recurrent neural network (RNN)-based spatial
attention model that takes into account accumulated attention state
from previous frames as well as high-level information about the
progress of an undergoing task [25].

In previous work, authors trained the whole network using an
end-to-end learning approach based on a particular dataset (e.g.,
JIGSAWS). In this paper, we implemented a different approach
that uses a pre-trained ResNet50 model to extract spatio-temporal
features in the sequence of video frames. Since our video feature
extraction procedure is unbiased and naive about our specific
dataset, it extracts the salient features contributing to the skill-
related behaviors of the user. Using such an unprejudiced approach
at the important stage of video feature extraction for a relatively
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Fig. 2. FFT plots of random trials of three different users with three different level of expertise (i.e., expert, intermediate, and novice) based on their working hours
experience with da Vinci Surgical Systems. Expert users typically have dominant lower frequency coefficients and negligible higher frequency activities (i.e., smoother
motions). Novice users have negligible low-frequency activities compared to expert and intermediate users. Intermediate users behave between expert and novice.

complicated and prone to bias skill evaluation task, makes our
model robust and generalized against an upcoming completely
new dataset.

III. METHODOLOGY

A. Framework overview

Fig. 1 presents the proposed architecture in this study.
Particularly, instead of using a large 3-D convolutional neural
network, we incorporate prior domain knowledge in the term of
Fast Fourier Transfer (FFT) into system design and decompose the
spatial-temporal feature learning into two phases: transfer-learning
based intra-frame local feature extraction and an end-to-end
inter-frame temporal feature learning model. This decomposition
helps to construct a lightweight 1-D convolutional model for
temporal features learning. The use of FFT explicitly incorporates
prior knowledge of robotic surgeries in model design. Basic
surgical tasks are inherently repetitive and sequential. Encoding
the time-series actions into the frequency domain essentially
facilitates retrieving information (e.g., smoothness, jittery motions,
abrupt movements, etc.) that differentiates skill levels of surgeons.
Additionally, with the prior domain knowledge on surgical activity
frequency range, FFT helps to address the issue that surgery
recording may have different frame lengths. We will elaborate on
the motivation of our design in this section.

Generally, there are two main challenges in skill assessment
using video recording data. First, depending on the nature of
the surgery, the length of video recording varies, which makes
it hard to design a deep learning model. Using methods such as
zero-padding or cropping may remove crucial information or adds
misleading data [26, 27]. Besides, reshaping in time scale means
interfering in the execution speed of the task that is a critical
factor in the skill evaluation of a user. Second, since we target to
design a task-independent skill assessment method, it is no-trivial
to learn the underlying numerical representation corresponding to
the nature of motion that meaningfully contributes to the dexterity
and level of expertise of the user.

Inspired by the fact that humans can perform tasks with bounded
frequency levels (i.e. between 0 and 20 Hz) [28], we observe
different statistical patterns among the FFT coefficients associated
with activities of surgeons in different skill levels. Intuitively,
as illustrated in Fig. 2, expert users typically have dominant
lower frequency coefficients and negligible higher frequency
activities (i.e., smoother motions). Novice users have negligible
low-frequency activities compared to expert and intermediate

users. Intermediate users behave between expert and novice.
In other words, lower FFT frequency coefficients in Fig.2 are
mainly due to the human-robot interaction, while the higher FFT
components are attributed to the noise of the robotic device. Based
on this fact, we argue that though the length of FFT sequence
varies with the length of video recording, usually the first m FFT
coefficients are most informative in surgeon skill assessment.

We incorporate FFT in the system to address the two challenges
fore-mentioned simultaneously, consequently decomposing
the spatial-temporal feature learning into two phases naturally.
Specifically, we first apply a pre-trained CNN, such as ResNet50
[29] in Fig. 1, to each video frame for inter-frame spatial features
extraction. Several works have shown the effectiveness of transfer
learning in image feature extraction [30, 31]. Taking the ResNet50
for example, after feeding a video with l frames, we get a 2048×l
feature tensor, where l represents the number of frames in the
video recording. To learn the inter-frame temporal features
associating with the surgeon’s gestures and maneuvers, we first
truncate the 2048×l FFT frequency tensor and keep the first m
FFT coefficients for every 2048 features. The new data tensor of
2048×m is then fed to a 1-D CNN model for temporal feature
learning. Note, instead of RNN models, we adopt CNN to process
the temporal data thanks to its capability of parallel computing.
Finally, the obtained deep representations of surgical dexterity
levels are passed to a classification head for skill assessment.

B. Model Specification

As shown in Fig. 1, the pre-trained ResNet50 on ImageNet
is transferred in the task of skill assessment. In the temporal
feature learning model, three 1-D convolutional layers are stacked
before the classification head. We construct each convolutional
layer following the order of stride 1D convolutional layer -
LeackyReLU - batch normalization (BN). All convolutional layers
use a kernel size of 3 and the number of filters for the first layer to
the third one are 32, 64, and 128 respectively. For the LeakyReLU
activation function, the slope of the leak is set to 0.03.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

In this study, we evaluate our proposed framework on the
public JIGSAWS dataset and compare its performance with
state-of-the-art video-based surgical skill assessment methods [23],
[6], [32], [21]. In addition, we perform an ablation study on our
model, to evaluate its sensitivity against various numbers of FFT
coefficients parameter m.
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Fig. 3. Study results for the 10-fold cross-validation. (a) The confusion matrix presents the statistics of 10 times 10-fold cross-validation with the mean accuracy of 97.27%.
(b) Ablation study on the effect of the number of FFT coefficients m on the model performance. The model has quite stable performance over a large range of m. The solid
blue line represents the average of the model accuracy. Green dashed line and red dotted line represent the higher and lower bound for the model accuracy, respectively.

Fig. 4. Sample frames of video data in the JIGSAWS dataset for three elementary
tasks (From left to right): knot-tying task, needle-passing task, and suturing task.

A. Dataset

In this study, we use the public JIGSAWS dataset [33] collected
from surgical activities in three different elementary tasks of
robot-assisted surgery (i.e., suturing, knot-tying, and needle-
passing). Eight right-handed surgeons in three different levels of
expertise (i.e., novice, intermediate, and expert) participated in this
study. The JIGSAWS consists of 76 dimensional kinematics data,
synchronized with two video recordings captured by the left and
right endoscopic cameras of the da Vinci Surgical System, with the
sampling frequency of 30Hz and the resolution of 640×480 pixels
(see Fig. 4). Although the dataset is collected under a simulated
environment and cannot exactly recover the real surgical scenes, it
demonstrates the axiom of surgical training scenarios very well and
thus is widely used by prior arts of surgical skill evaluation. In this
work, we only focus on the video data since it is easy to acquire
in almost all traditional and modern robot-assisted surgery tasks.

B. Evaluation Protocol and Training details

Since we applied the pre-trained ResNet50 to extract intra-frame
spatial features, all video frames were resized and prepossessed
accordingly. After applying FFT on the spatial feature tensor, the
first top m=50 FFT coefficients are feed into the temporal feature
learning network for the skill classifier network. Note, m=50 is
selected based on the ablation study presented in Fig. 3 (b). Briefly,
our model is not sensitive to the number of FFT parameters and is
able to generate good performance for any value greater than 20.

All weights in our model are initialized by the random uniform
distribution. During training, batch size is set to 4 and the Adadelta
optimizer is incorporated with the polynomial decay. To obtain
solid results, 10 times of 10-fold cross validation is deployed,
considering the relative small number of samples in the dataset.
Then all results are averaged and reported.

C. Results and Discussions

Fig. 3 (a) reports the model’s performance in the confusion
matrix, which records the statistics in the 10 trials of 10-fold cross-
validation. Briefly, the model can successfully classify expert and
intermediate surgeons, with the overall accuracy of 97.27 (±2.35).

Table I compares our proposed model to prior arts in terms
of classification accuracy and model size. It clearly shows that
our model has a smaller size but achieves the top performance.
Specifically, to make a fair comparison, 4-fold cross-validation
is also performed following the study in Doughty et al. [23].
Compared to the 10-fold cross-validation, the performance
degraded a little due to the relatively smaller training set. However,
the performance of our model is much better than the one
proposed in Doughty et al. [23]. One may notice that we use “-”
to indicate the performance of the model proposed by Funke et al.
in [6]. Instead of the task-independent skill evaluation approach,
Funke et al. [6] proposed to train three different models for each
task in the JIGSAWS dataset and reported their performance
separately. We argue that though our model and the task-specific
models in [6] achieves similar performance, our task-independent
model has a better generalization and wider range of application.
Besides, we list the performance of prior arts proposed by Lee et
al. [32] and Kim et al. [21] here for reference, though both works
evaluate their models using other/private datasets.

This study conducted the skill assessment in a retrospective
manner, focusing on applications of surgical skill evaluation such
as grading the skill levels of surgical trainees. However, this method
can be easily adopted in real-time skill assessment platforms. Our
recent studies suggest that a 20-second video clip is long enough
for the surgical skill assessment. Without any constraints on the
length of video data, our method can achieve real-time evaluation
by taking the sequence of short video clips of the whole operation
as input.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an autonomous deep learning-
based framework to objectively assess the level of expertise of
surgeons based on the chain of video data frames. To extract
the discriminative features for surgical skill assessment, an FFT
block was used in the proposed method that decomposes the
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TABLE I
COMPARISON BETWEEN DIFFERENT SURGICAL SKILL EVALUATION METHODS APPLIED ON THE VIDEO DATA.

Dataset Authors [year] Accuracy (%) model size (# para)

JIGSAWS

Our method (10-fold cv) 97.27 (±2.35) 220,000
Our method (4-fold cv) 94.23 (±2.56) 220,000

Doughty et al. (4-fold cv) [23] [2018] 76.5 (±6.5) 16,800,000
Funke et al. [6] [2019] - 25,000,000

JIGSAWS

Task-specific evaluation in Funke et al. [6] [2019]
Knot-tying task 95.8 (±1.6) 25,000,000

Needle-passing task 96.4 (±0) 25,000,000
Suturing task 100 (±0) 25,000,000

Private Lee et al. [32] [2020] 83 23,000,000
dataset Kim et al. [21] [2019] 84.8 26,000

spatio-temporal representation learning into spatio-feature learning
and temporal-feature learning. The two-stage learning in our
method reduced the learning complexity and led to a lightweight
model over 3-D CNNs and 2-D CNN+RNN models in prior arts.
We evaluated the proposed method over the JIGSAWS dataset
and achieved the skill classification accuracy of 97.27 (±2.35).
Experimentation indicated that our model outperformed state-of-
the-arts in terms of generalization and accuracy. Since our model
can extract the underlying skill-related features of human activities,
it can be used not only in skill assessment but also in other
prediction tasks. A good illustration of this is autism recognition.
The proposed model can be used to extract underlying features to
discriminate between children with autism and normal children.
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