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Abstract— Due to the high sensitivity and complexity of
robotic surgery tasks, acquiring appropriate skill levels by
trainee surgeons through an effective training process is very
important and affects the patient’s safety and the quality of
surgical outcomes. With the advanced deep learning technology
and the recent availability of surgical procedures data, intelli-
gent methods can be deployed to assess and transfer the skills of
an experienced surgeon (mentor) to a novice surgeon (trainee).
In this paper, we introduce a novel deep-learning-based skill
transfer scheme consisting of a deep convolutional model,
SkillNet, and a skill transfer algorithm for robotic surgery
training. The proposed SkillNet extracts skill-related features of
the mentor from different layers of the network. Then, trainee’s
maneuver is enhanced by the proposed skill transfer algorithm
while minimizing deviations from the trainee’s original intended
trajectory. For validation, the JIGSAWS dataset and also our
own experimental data were used to prove the generalizability
of SkillNet in capturing skill-related features. The capability
of the skill transfer algorithm in enhancing trainee trajectories
in terms of predictability, hand tremor reduction, and noise
cancellation were investigated separately. The obtained results
indicate that this approach can be used as a high-performance
filter that makes minor corrections to the input trajectory and
improves the skill level of the trainee’s trajectory in practice.

I. INTRODUCTION

In state-of-the-art robotic surgery systems, there is the
opportunity for an expert surgeon (mentor) to apply guid-
ance forces to the hands of a novice surgeon (trainee) to
correct his/her motion for training purposes. There is a
rich body of literature including papers from our research
group in the haptics and telerobotics domain that deals with
the mentor-trainee relationship in terms of expert-in-the-
loop and haptics-enabled training [1]–[3]. For instance, [4]
incorporated a trilateral dual-user shared control architecture
for surgical skills training. The framework consists of one
patient-side robot mutually controlled by two surgeon-side
robots, one for the mentor and one for the trainee with
a dominance factor that determines the authority level of
the trainee relative to that of the mentor. These methods
require the continuous presence of an expert surgeon during
the training program. To have increased opportunities for
surgical trainees to practice surgery while receiving haptic
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cues from a mentor, there is a motivation to use an automated
deep-learning-based method for robotic surgery training.

Incorporating skill-related knowledge through deep learn-
ing into collaborative robots in surgical training platforms not
only improves the opportunities for training but also does
not require the presence of an expert surgeon throughout
the training procedure. In this context, Artificial Intelligence
(AI) can contribute to enhancing the quality of Human-Robot
Interaction (HRI) and transferring the skills of a mentor
to a trainee through a smart collaboration with the robot
in a training program. This intelligent supervision is very
important in complex tasks (i.e., tasks that require more than
one training session to be mastered [5]).

Inspired by the advantages of AI-enabled surgical training,
Ershad et al. proposed a framework that detects the trainee’s
stylistic behavioral deficiencies and then produced near real-
time haptic cues to inform the trainee about his/her motional
mistakes [6]. However, the study does not provide guidance
for the trainee about how to improve his/her action.

Tan et al. in [7] developed a robot-assisted laparoscopy
training system that incorporates demonstrations from both
human experts and reinforcement learning to teach the sur-
gical tool manipulation task to the trainee. Various joint
position trajectories of an expert are locally stored in FPGA
resources to be replayed and regenerated by a generative
adversarial imitation learning agent. In the teaching phase,
the trainee can simply hold the device-handle and learn the
skillful position, velocity, and force patterns required for
performing the task. The limitation of this approach is that
it cannot adapt to new trajectories that the trainee may want
to implement.

Zahedi et. al in [8] presents a machine learning-based
guidance method for a virtual kinesthetic teaching environ-
ment that aims to transfer the skills of mentor to trainees.
Expert demonstrations develop a stiffness variation map of
different bone layers in the training phase. The motion
similarity estimator block measures the similarity of the
drilling motion pattern of the trainee to that of the mentor in
different bone layers. Based on the level of similarity and the
position error of the trainee relative to the recorded expert
trajectory, a resisting or assisting force will be applied to
the hand of the trainee to correct the novice behaviors in the
operational motions. In this work, the training obtained from
this specific task is not generalizable to other tasks. Similar to
[8], [9] developed a platform for training novice residents in
the orthopedic surgical drilling task by using a deep learning
method. In this paper, a recurrent neural network (RNN) with
a long short-term memory (LSTM) architecture has been



designed to extract the model of expert surgical behaviors
as a reference trajectory using the captured data.

Inspired by the above-mentioned limitations and recent
advancements in deep learning, we have developed an in-
telligent framework that extracts the skill-related features of
a mentor and injects those features into the activity of a
trainee. In this context, HRI will be controlled in such a
way that the resultant collaboration between the robot and
the trainee shows more skillful behavior and a higher level of
expertise compared to when the proposed method is not used.
The mentor’s extracted skill-related features are continuously
referenced by the AI algorithm and the trainee’s trajectories
are continuously improved accordingly. In this approach,
there is no limitation on the type of trainee’s activity and
there is no requirement for prior knowledge about the task,
environment, or human user. These features make our ap-
proach appropriate for skill transfer across different robotic
platforms and applications.

Note that the concept of transfer learning (i.e., using the
latent knowledge acquired from one AI model as the starting
point for developing another model on a different task) has
been adopted as skill transfer in HRI work [10]–[12]. Some
of this research is based on data gathered from an easy-to-
control robot in order to control another robot with a different
structure. Others take advantage of the dataset gathered from
a robotic simulation environment for real deployable robotic
applications. These papers are not transferring any skill
between human users of a robotic system to help the trainee
to gain the skillful behavior of the mentor.

The main contributions of this paper are:
• We propose SkillNet that extracts the skill-related fea-

tures from the kinematics data of a robot. The main
advantage of this network compared to prior research
in skill assessment that used all of the kinematics data
in the Hopkins University (JHU)-Intuitive Surgical Inc.
(ISI) Gesture and Skill Assessment Working Set (JIG-
SAWS) dataset [13]–[16] is that we only use Cartesian
motion data of the user (i.e., x, y, and z). Moreover,
despite prior research that used the entire data of the
whole experiment, SkillNet needs 20 seconds intervals
of the operational data. This feature enables SkillNet to
be deployed in real-time applications in future work.

• The generalizability of SkillNet in capturing spatio-
temporal features contributing to the skill levels of a
user makes it insensitive with the type of input motion
trajectory (i.e., there is no requirement for the motion
trajectory being periodic or coming from a particular
task or robot).

• The developed skill transfer algorithm can help to
transfer the skills of an expert surgeon to the trajectories
of a trainee. To the best of our knowledge, there is
no work in transferring the skills from a mentor to
another trainee that deploys this method with this level
of generality in the application.

The structure of this paper is organized as follows: Section
II provides the procedure of skill extraction, skill transfer,
and skill execution from a mentor to another novice trainee.

In Section III, qualitative and quantitative methods to eval-
uate the quality and performance of the outcome of the
proposed algorithm will be elaborated. In Section IV, exper-
imental results with Phantom Premium Haptic Device and
discussion about the results will be provided. Conclusions
and future work of this research are mentioned in Section
V.

II. METHODOLOGY

In this section, we will explain how skill-related features
are extracted by a deep convolutional neural network and
then transferred to a trainee through an optimization algo-
rithm. The main focus of this section is to introduce a novel
algorithm that improves the trajectory of the trainee in such
a way that it is more representative of skillful behavior. The
enhanced trajectory can be used as the reference for the
robotic surgery platform to generate the virtual fixture and
guide the user’s hand toward a more skillful behavior.

A. Skill extraction

The first and the most fundamental step of this work
is to extract skill-related features from the Cartesian space
motion of a user. Previous works have shown that deep
learning can be used to extract the numerical representa-
tion of temporal patterns in motions of a user and assess
his/her level of expertise in accomplishing a task [14]–[16].
These models were trained and evaluated based on given
annotated dataset, JIGSAW containing kinematics data of
several robotic surgery tasks with the corresponding labels
indicating the level of expertise of each user [13].

Inspired by prior research that a casual observer can
discover the skillful behavior of a surgeon by looking at
his/her hand motion patterns [17], we trained our network,
SkillNet just by using Cartesian motion data (i.e., x, y, and z)
of the hand of the surgeon. This feature makes the SkillNet
a lighter model, with more compatibility with other robotics
platforms, and an ideal choice for real-time skill processing
tasks. As we will see in Section III, SkillNet captures the
smoothness of the input trajectory as an important skill-
related feature from Cartesian motion data. Since smoothness
is a feature that is attributed to the velocity or acceleration
of the trajectory, it suggests that the SkillNet develops its
convolutional filters during the training process to capture
velocity/acceleration-related features in deeper layers of the
network based on x, y, and z motion inputs. Different from
prior works in skill assessment that need extensive data
of the entire experiment, SkillNet can extract skill-related
features based on data coming from shorter intervals of
task performance because the skill level of a task can be
determined by observing a short snapshot of the operational
data [18]. This feature makes our network different from
(and at some level, better than) other work in this area. A
brief description of designing and evaluation of the SkillNet
is provided in the following sections.

1) Model architecture: The input of the model is a T -
second interval of the task performance that has N data
points for each of x, y, and z axes. In Fig. 1, we take T=20
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Fig. 1. SkillNet architecture with 1D convolutional layers and residual topology. SkillNet classifies expert (E) and novice (N) users based on 600 sampled
points of their Cartesian motion data. Latent features f∈Rm and their probability distribution ρ can be extracted by passing 3×600 fft coefficients of x,
y, and z axes trajectories through convolutional layers. These features can be used as the skill representation of the input data in the skill assessment and
skill transfer algorithms.

seconds and N=600 as an example for illustration purpose.
Recent studies show that frequency features are good rep-
resentative of spatio-temporal features of user activity such
as smoothness and fluidity [19]. Cartesian space time-series
will be fed into the fft block and the resultant coefficients will
be used as input for the 1-D convolutional neural network.
Each convolutional block of Fig. 1 consists of a stack of
Batch Normalization and Conv1D with rectified linear unit
(ReLu) activation followed by dense layer. The first and the
second layers of the 1-D convolutional network have 4 filters,
with a kernel size of 3 and the ‘same’ padding. The third
convolutional layer has 8 filters, with the kernel size of 3
and a stride of 2 for dimensionality reduction.

The output of the first convolutional layer is added to
the output of the second convolutional layer (see Fig. 1).
Using such feedforward path (i.e., residual topology [20])
allows low-level information of the input trajectory to be
preserved in the depth of the network and be used in the
latent feature layer f (see Fig. 1). Extracted features from
the input trajectory will be mapped to the latent feature layer
f and then by a fully connected layer will determine the
level of expertise of the input trajectory. As illustrated in
Fig. 1, SkillNet maps the expert and novice input trajectories
to vectors fE∈Rm and fN∈Rm in the latent feature space,
respectively, where m is the number of neurons in the latent
feature layer.

2) Dataset: For training the SkillNet to capture the skill-
related features of the user motion, we use JIGSAWS dataset
[13]. This dataset consists of annotated surgical activity
data collected from eight right-handed surgeons with three
different levels of expertise (i.e., expert, intermediate, and
novice based on their experience of working with the da
Vinci Surgical System) performing three primary surgical
tasks: needle-passing, knot-tying, and suturing. The sampling
frequency for recording the trajectory of the user’s hand was
set to 30 Hz. JIGSAWS contains 76 dimensional kinematics
data, coming from four robots of the da Vinci surgical
system, two surgeon-side and two patient-side manipulator
robots.

Considering 20 seconds intervals of motional data are
long enough to let the network capture the temporal features
related to the level of expertise of subjects and at the same
time, is short enough to be used in a real-time processing

Fig. 2. Different representation of the same trajectory in two different
coordinate systems. The left coordinate system maps the right one first by
+90 deg rotation about the z axis, followed by a −90 deg rotation about
the moved x axis, and a final −90 deg rotation about the moved z axis.

system for future work. To make the SkillNet a suitable
feature extractor for the skill transfer algorithm, we do
not consider intermediate participants because we want to
train a network that purely classifies skillful and novice
behaviors from each other. Inspired by the same reason,
non-dominant (left) hand displacement data is prone to act
as outlier data in determining the true skill level of each
surgeon and has been neglected in the training stage of the
SkillNet. Accordingly, the first three kinematics data (i.e.,
the Cartesian displacement of the right hand) were used to
classify expert and novice surgeons.

To achieve a better generalization for the SkillNet, we can
expand the size of the training set by sliding over the time-
series of one surgical operation and create multiple samples
from one experiment. Moreover, if we arbitrarily rotate the
Cartesian motion trajectory of a subject, the level of expertise
of that trajectory does not change. A trivial example of
this idea is that if we input the [y z x]> vector instead of
[x y z]> to the skill classifier network, the output of the
network should remain the same (see Fig. 2). All of 3!=6
combinations of x, y, and z axes can be used to expand the
dataset volume 6 times larger than its original size.

B. Skill transfer

Inspired by the concept of image style transfer in the
field of computer vision [21], the goal of the skill transfer
algorithm is to synthesize enhanced combined trajectory ~C
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Fig. 3. Skill transfer algorithm. As shown on the left side, mentor’s and trainee’s trajectories are passed through the same SkillNet to extract and store
intention and skill representations fN and fE in the right and the left side of the figure, respectively. Then the algorithm tries to optimize the enhanced
combined trajectory ~C from the base novice trajectory ~N at the middle of the figure. The algorithm based on the latent feature vector fC, iteratively
updates ~C to simultaneously minimize the skill loss and intention loss of the combined trajectory ~C concerning the mentor’s trajectory ~E and the base
trainee’s trajectory ~N . The visualization of this method is shown on the right side of the figure. Enhanced trajectory ~C can be continuously used as the
reference trajectory for the trainee’s robot to provide minor correction forces to improve the performance of the task.

initialized by the novice user’s trajectory ~N in such a way
that ~C is more representative of skillful behavior with the
minimum deviation relative to its initial value ~N . This can
be achieved by minimizing two losses: the skill loss (i.e., the
difference between the probability distributions of the expert
and novice latent feature variables fE and fN , respectively)
and the intention loss (i.e., the Euclidean distance between
the latent feature variables of base trajectory fN and that of
the enhanced combined trajectory fC).

To transfer the skills of the mentor, we generate a new
trajectory based on the trainee’s input trajectory that matches
the user intention and skillful representation by jointly min-
imizing intention and skill losses

Ltotal=αLintention(~C, ~N)+βLskill( ~E, ~C) (1)

where α and β are positive weighting factors indicating how
much we care about the intention of the trainee and the
skill level of the outcome trajectory. For αβ�1 the algorithm
preserves the trajectory content more than improving the
skill (useful for very delicate tasks or when the trainee has
some level of expertise and is not completely novice). If
0<αβ<1, the algorithm strongly improves the skill level of
the trajectory with a sharp learning curve (useful for novice
surgical training purposes that there is no patient in the
loop). ~C is initialized by ~N and will be updated through
the gradient descent method with the learning rate of λ

~C := ~C−λ∂Ltotal

∂ ~C
. (2)

Note that if we define both Lintention and Lskill as differen-
tiable functions, the gradient of the total loss with respect to
~C exists. The algorithm and graphical representation of skill
transfer is demonstrated in Algorithm 1 and in the middle
part of Fig. 3, respectively.

1) Skill loss: Vector f contains features of multiple layers
and obtains both multi-scale and stationary representation,
contributing to the skill level, not the global arrangement
of the input trajectory. fE and fN are two samples from

mentor and trainee latent feature space, respectively. Squared
Maximum-Mean Discrepancy (MMD2) of fN and fE is
a statistic measure to calculate the difference between the
distributions of these two samples. Trainee’s input trajec-
tory can approach to the skillful behavior by minimizing
MMD2[fE,fN]. Minimizing the MMD2 measure by appro-
priate kernel function leads to matching means, variances,
and higher-order moments of two samples from two different
distributions [22]. Our method transfers the skill-related
features of a mentor to a trainee’s trajectory by minimizing
MMD2 loss.

It has been theoretically proven that matching Gram ma-
trices of two samples from two distributions is equivalent
to minimizing the MMD2 of those samples [23], where the
Gram matrix is the inner product between the vectorized
feature maps of fE and fN . If we start from the base
trainee’s trajectory ~N and make an improvement to create
the enhanced combined trajectory ~C, the skill loss can be
defined by the Euclidean distance between the Gram-based
representations of fC and fE

Lskill( ~E, ~C)=||GfE−GfC||2. (3)

The schematic representation and formulation of this concept
is shown on the left side of Fig. 3.

2) Intention loss: In the field of human-robot interaction,
especially for the minimally invasive surgery robots, increas-
ing the level of robot autonomy leads to regulatory, ethical,
and legal challenges [24]. The intention of the surgeon
presents itself in the trajectory and by minimally manipu-
lating the trajectory the surgeon is minimally deviating from
the goal. In this work, the network improves the user’s input
trajectory with the minimum deviation from his/her intention
by minimizing the intention loss (or trajectory content loss)

Lintention(~C, ~N)=||~C− ~N ||2. (4)

Minimizing this loss is equivalent to minimizing the Eu-
clidean distance between latent feature vector of the base



Algorithm 1: Skill Transfer.

Input: Expert trajectory ~E, Novice trajectory ~N ,
iteration, α, and β

Result: Enhanced trajectory ~C
fE = SkillNet( ~E)
fN = SkillNet( ~N )
~C = ~N
fC = fN

while iteration > 0 do
Lskill=||GfE−GfC||2
Lintention=||fC−fN||2
Ltotal=αLintention+βLskill
~C ← ~C−λ∂Ltotal

∂ ~C

fC ← SkillNet(~C)
iteration ← iteration−1

end
return ~C

novice trajectory fN and that of the enhanced combined
trajectory fC in the feedforward path of the SkillNet (see
Fig. 3). The intention loss can be expressed as

Lintention(~C, ~N)=||fC−fN||2. (5)

Equation (4) is the reconstruction loss of the user’s trajectory
and extremely constrains the exact sample values of the en-
hanced trajectory. On the other hand, Equation (5) preserves
higher-level features from higher layers in the network and
preserves the high-level content of the input trajectory during
the skill transfer algorithm. Both defined intention losses
can be useful based on the type of the operation, required
level of autonomy, and safety. In this work, both losses had
almost the same performance in enhancing the skill level of
the user. For novel situations or surgical tasks, Equation (4)
seems more secure option. The schematic representation and
formulation of this concept is shown on the right side of Fig.
3.

Empirically, it is preferred to improve the skill level of
the trainee up to about 20% to have a good balance between
intention and skill loss and get a reasonable result. Note that,
this behavior happens in real-world conventional training,
because a trainee cannot make huge improvement after one
session of practicing and only experiences small gradual
changes in his/her learning curve.

C. Skill execution

In real-time, SkillNet continuously injects the extracted
skill-related features into the trainee’s trajectory and returns
the enhanced combined trajectory, ~C along with the confi-
dence of the skill classification network, ε about the trainee’s
trajectory ~N (see Fig. 4). For simplicity, we use the last
two points of the enhanced trajectory, C[t] and C[t−1] to
estimate the next point Ĉ[t+1]:

Ĉ[t+1]≈C[t]+
∆T (C[t]−C[t−1])

∆T
=2C[t]−C[t−1] (6)

~Fh

~Fco

Ĉ[t+ 1]

C [t]
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ε

Collaborative
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...

1

Fig. 4. Skill transfer architecture, resulting from the cooperation of Skill-
Net, collaborative robot, and novice trainee. Intuitively, SkillNet manipulates
one end of a virtual spring toward enhanced trajectory (green solid line)
while the spring’s other end is virtually connected to the user’s hand. In this
approach, novice trajectory (red solid line) will be absorbed toward more
skillful behavior by offering mild and compliant guidance forces from the
skill execution platform.

where ∆T is the sampling time of the system. This rough
estimation is based on the assumption that in surgery tasks,
there is no sudden motion in the surgeon’s activity and veloc-
ity is almost the same between two sampling intervals with
the adequate sampling frequency. For more delicate tasks that
a smoother and more accurate estimation of the next point
Ĉ[t+1] is needed, a median filter over the last k trajectory
sample points can be incorporated as a better choice. As
illustrated in Fig. 4, the collaborative robot provides the user
with a mild correction force ~Fco to guide him/her toward the
estimated enhanced reference point Ĉ[t+1] using a variable
impedance controlling paradigm

~Fco=εK(Ĉ[t+1]−N [t]) (7)

where K=diag(kx,ky,kz) is the matrix of virtual compli-
ance coefficients in three directions of the Cartesian coordi-
nate system. The correction force increases when the distance
between the current point of the trainee’s trajectory N [t] and
the estimated enhanced reference point Ĉ[t+1] increases or
the network detects increased novice behavior in the past
600 samples of trainee’s motion. The effect of the increased
novice behavior is applied to the controller by multiplying
gain ε to the whole correction force. Parameter ε is the
adaptive term for the variation of compliance coefficient K
in the presented variable impedance paradigm.

III. EVALUATION METHODS

After training the SkillNet based on the JIGSAWS dataset,
the model reached the accuracy of about 98% over the test
dataset which makes it a reliable candidate to extract latent
patterns from kinematic data in the motions of the user. Due
to this result, SkillNet is used in the skill transfer algorithm
to improve the skill level of the trainee’s trajectory. In this
section, qualitative and quantitative methods to evaluate the
performance of SkillNet and the skill transfer algorithm will
be presented.

A. Qualitative Evaluation

The left column of Fig. 5 is showing two different mentor’s
trajectories performed by two different expert surgeons with



Fig. 5. Base trajectories (red lines) and their enhanced combined trajectories (blue lines) for three different trainees with different levels of expertise.
Trainees’ trajectories in the first row have been enhanced based on the skill features of Mentor I and those in the second row have been enhanced over
the skill features of Mentor II (different person with the different level of expertise).

different levels of expertise based on the confidence of the
classification network. SkillNet uses mentor’s trajectory as ~E
and injects extracted skillful behaviors of them into trainees’
trajectory shown in the right three columns of Fig. 5 in
one iteration by choosing α=β=10−3 and λ=0.1. Note that
decreasing the value of α

β in Equation (1) results in higher
skill enhancement during the skill transfer algorithm.

The network gives better enhancement for the trainee’s
trajectory when it injects the extracted skill behaviors from
a mentor with a higher level of expertise. In other word,
trainees will be trained better under the supervision of a more
experienced mentor. In Fig. 5, Mentor I has a higher level of
expertise and the enhanced trajectories of all three trainees
have better improvement when they are guided by Mentor
I rather than Mentor II. This achievement is because of the
fact that a more experienced mentor has a stronger effect on
the trajectory of a trainee while minimizing the total loss in
Equation 1.

Additionally, the suggested enhanced trajectory for each
trainee has the same correction pattern when that trajectory
is improved based on different mentors. Both enhanced tra-
jectories of three trainees in Fig. 5 have the same correction
patterns when they are guiding by different mentors. This
behavior of the network is aligned with our expectation. A
trainee should be trained in the same manner while being
supervised by different mentors. Using the deep neural skill
transfer approach instead of conventional training methods
can reduce the influence of mentor on training outcomes.
Another advantage of this behavior based on our observation
is that if we increase α or the iteration number for a less
experienced mentor, we get the same enhanced trajectory
~C resulting from the supervision of a highly experienced
mentor.

Another tangible attribute of skill transfer occurs when
the input of the algorithm is the trajectory from a more

expert trainee, i.e., a trainee that the classifier has higher
confidence about his/her level of expertise. The right column
of Fig. 5 shows the trajectory of Trainee 3 with higher skill
level (67.83% expert) relative to Trainee 1 and 2. Trainee 3
achieved higher skill enhancement (about 10%) without sig-
nificant deviation from the base trajectory ~N in comparison
with the other two trainees. It can be concluded that the more
skillful trainee will get higher skill enhancement with lower
intention loss, Lintention. In general, a more skillful trainee
has fewer fundamental mistakes in the way of becoming
classified as an expert and minor correction clues from the
mentor will impose significant improvement to the quality
of the outcome.

All of the above sensible qualitative findings are indicating
that the representation of skill is not case-dependent for a
specific trajectory and SkillNet is extracting fundamental
features related to the skill of the user. These results can be
attributed to the generalizability and accuracy of the network
in detecting skill-related features of the input trajectories.
Besides these qualitative evaluations, we incorporate other
quantitative measures to prove the performance of our ap-
proach in transferring skills from a mentor to another trainee.
These quantitative assessments can be classified into two
main groups: theoretical and practical evaluation methods.

B. Evaluation Metrics

In this section, we will introduce quantitative measures
for algorithm evaluation. Expert robotic surgeons tend to
perform more predictable and smoother motions relative to
novice surgeons. Predictability and smoothness of user’s
motion were incorporated in skill evaluation of surgical tasks
and yielded promising results [25]. Here, we demonstrate that
the enhanced trajectory generated from our proposed method
has increased predictability and smoothness compared to its
base trainee’s trajectory.



Approximate Entropy (ApEn) is a measure of complexity
and regularity of a system and has been widely used in action
quality assessment in a variety of tasks [25]. ApEn assigns
lower values for predictable and ordered time-series data and
higher values for unpredictable data with randomness in their
nature.

To investigate the smoothness improvement, we can cal-
culate the Euclidean norm of higher frequency coefficients
of the Fourier transform of the trajectory before and after
the enhancement procedure. The frequency range between
8 and 12 Hz is attributed to the hand tremor of the user
[26] and 13 Hz to higher frequencies are mainly related to
noise (i.e., measurement noises). We separately investigate
the effect of the skill transfer in hand tremor reduction and
noise cancellation.

By applying the skill transfer method under the supervi-
sion of mentor 1 in Fig. 5 over 30 different novice and less
expert trajectories in the JIGSAWS dataset, not only we had
improvement in the confidence of the classification network
about the level of expertise of the enhanced trajectory with a
negligible deviation of the user’s intended trajectory (at most
1 mm), but also we had improvement in the predictability
of motion, tremor reduction, and noise cancellation. The
percentage of skill enhancement, ApEn and hand tremor
reduction, and noise cancellations for the enhanced trajectory
with relative to the trainee’s original data are shown in Fig.
6 (b). Mean values (red lines) and distribution of data points
(blue data points) in each diagram of Fig. 6 (b) indicates a
considerable improvement in skill enhancement and the other
three quantitative criteria.

Close observation over more dexterous trainees, mainly
those with the level of expertise higher than 50% such as
Trainee 3 in the right side of Fig. 5 reveals that despite
the observation that these trainees gain a large amount of
improvement in their skill level during the skill transfer
procedure, their enhancement in ApEn and hand tremor
reduction is significantly lower compared to other more
novice users (noise cancellation is almost the same).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate SkillNet’s performance in practice, we used
completely different input trajectories to check the network’s
generalization when it is facing new data coming from new
subjects and a completely different robotic platform. Since
the input of the network is the Cartesian motion patterns
of the user and is completely indifferent to the structure
of the collaborative robot, we have a convenient procedure
of transfer learning from one robotic platform to another
one. As shown in Fig. 7, we used motion data resulting
from the collaboration of the user and Phantom Premium
1.5A Haptic Device, Geomagic Inc. The experiments were
approved by the University of Alberta Research Ethics and
Management Online under study ID Pro00055825. To circle
around the need for expert and novice users, we considered
dominant hand motion trajectories of the user as expert data
and trajectories coming from the other hand as novice data
in the task of tracking a squiggly line. Our dominant hand

Fig. 6. The percentage of confidence difference of network about dominant
hand skill level with respect to that of non-dominant hand (a), skill
enhancement, ApEn and hand tremor reduction, and noise cancellations for
the enhanced signal for the novice input data from 30 experiments from (b)
JIGSAWS dataset and (c) with Phantom Premium Haptic Device. Scattered
points represent experiments’ data and the red line in each diagram indicates
the mean value of 30 points.

Fig. 7. Using Phantom Premium 1.5A Haptic Device in the squiggly line
tracking task to test the generality of SkillNet and performance of the skill
transfer algorithm in practice with different user data and another robotic
platform.

during our lifetime had a lot of chance to be trained to
perform very delicate tasks such as writing and drawing and
has become more skillful in doing elaborate motions with
higher precision, lower hand tremor, and more predictable
behavior compared to non-dominant hand.

Five right-handed users performed the task of tracking
squiggly line in 6 trials. Each of them had the chance to
perform the task before the actual experiment with their
dominant hand (i.e., right hand) to increase their dexterity
over this specific task. The confidence of the network about
the dexterity level of the right hand in 29 out of 30 inputs
was higher than that of the left hand (see Fig. 6 (a) for the
confidence difference of right and left hands). This result
indicates that SkillNet has high accuracy and generalization
in capturing skill related features when facing completely
new data.



The skill transfer algorithm under the supervision of
Mentor I from the JIGSAWS dataset was applied over our
experimental data to generate more skillful trajectories. The
percentage of skill enhancement, ApEn and hand tremor
reduction, and noise cancellations for the enhanced trajectory
relative to the base trajectory (i.e., raw data coming from the
left hand) are shown in Fig. 6 (c). Mean values (red lines) and
data distribution of points (blue data points) in each diagram
of Fig. 6 (c) indicates a considerable improvement in the
skill enhancement and the other three quantitative criteria.

Due to the generality of SkillNet and based on the experi-
mental results, the skill transfer algorithm can be adopted as
a reference trajectory generator for robotic surgery training
programs to guide the trainee’s hand toward a better motion
with more skillful behavior while minimizing the deviation
from the intention of the user. The skill transfer algorithm
is similar to a high-performance filter that removes noises,
reduces hand tremors, improves the predictability and regu-
larity of the motion, and in general helps the user to perform
the surgical task in a more skillful manner.

V. CONCLUSIONS AND FUTURE WORK

In this work, we present a deep convolutional neural
network, SkillNet, for extracting the skill-related features
of a user working with da Vinci surgical system and in
general, teleoperated and collaborative robots. Extracted fea-
tures were used in skill transfer algorithm to generate a new
reference trajectory with minimum deviation from the base
trajectory and more skillful features. The enhanced trajectory
can be applied as a virtual fixture in the robotic platform to
guide the trainee’s hand toward more skillful behavior. The
SkillNet demonstrated a very good generalization in captur-
ing skill-related features of user’s motion over JIGSAWS
dataset and our own experimental data. The skill transfer
algorithm made considerable enhancement over the trainee’s
trajectory in terms of predictability of motion, hand tremor
reduction, and noise cancellation.

For future work, due to the generalization and light archi-
tecture of SkillNet, the skill transfer approach will be used
to continuously generate enhanced trajectories for training
purpose in a real-time platform. The proposed framework can
investigate how an inexperienced trainee will improve with
successive interactions with the framework (i.e., learning
curve studies). SkillNet can be improved to incorporate ob-
jective metrics such as economy of motion or task execution
time to have a more comprehensive representation of the skill
level of the input trajectory. This approach can be utilized in
other applications such as driver training and physical reha-
bilitation tasks by minor changes in the definition of mentor
and trainee (e.g., in physical rehabilitation, the mentor is an
intact human and the trainee is a person with disability using
an exoskeleton).
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