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Abstract—Adversarial training is an effective method to boost
model robustness to malicious, adversarial attacks. However,
such improvement in model robustness often leads to a sig-
nificant sacrifice of standard performance on clean images.
In many real-world applications such as health diagnosis and
autonomous surgical robotics, the standard performance is more
valued over model robustness against such extremely malicious
attacks. This leads us to the question: to what extent can we
improve the robustness of the model without sacrificing standard
performance? This work tackles this problem and proposes a
simple yet effective transfer learning based adversarial training
strategy that disentangles the negative effects of adversarial
samples on model’s standard performance. In addition, we
introduce a training-friendly adversarial attack algorithm, which
facilitates the boost of adversarial robustness without introducing
significant training complexity. Extensive experiments show that
the proposed approach outperforms previous adversarial training
algorithms with the following objective: to improve the robustness
of the model while preserving model’s standard accuracy on clean
data.

I. INTRODUCTION

Deep learning has been widely applied to real-world ap-
plications with excellent performance, such as autonomous
driving, efficient web search and facial recognition. However,
recent works have shown that most deep learning models,
including state-of-the-art deep neural networks (DNNs), are
vulnerable to adversarial attacks [1–4]. These adversarial
samples are carefully designed by adding small, human-
imperceptible noises to original images, but can lead a well-
trained classifier to wrong predictions. To improve model ad-
versarial robustness, many defense strategies, such as data aug-
mentation, gradient masking, adversarial example detection,
adversarial training, etc., have been proposed with the aim of
finding countermeasures to protect DNNs [4–7]. Particularly,
adversarial training is widely accepted as the most effective
solution. It incorporates adversarial data in model training and
helps build model robustness to adversarial attacks.

Despite its success in improving model robustness to adver-
sarial data, state-of-the-art (SOTA) adversarial training strate-
gies are observed to cause model performance degradation
[7–10]. For instance, SOTA adversarial training methods such
as TRADES [11] loses about 10% standard accuracy for a 50%
adversarial robustness improvement on CIFAR-10 image set.
This observation has led to a discussion of the relationship
between adversarial robustness and standard generalization
(e.g., classification accuracy), with a central debate on whether

accuracy and robustness are intrinsically in conflict. Some
studies, for example, the works by Tsipras et al. [12] and
Raghunathan et al. [13], claim that the trade-off of model
accuracy and adversarial robustness is unavoidable due to the
nature of DNNs. In contrast, Raghunathan et al. [14, 15] argue
that the robustness-accuracy trade-off could disappear with
unlimited data. Yang et al. [16] present a theoretical analysis,
as well as a proof-of-concept example, showing that this trade-
off is not inherent and arguing that the observed accuracy-
robustness trade-off is introduced by limitations in current
adversary training methods. More recently, Xie et al. [17]
leverage adversarial samples to improve model accuracy by
introducing an auxiliary batch normalization layer particularly
designed for adversarial samples. However, this study does
not discuss if the model robustness is improved or not.
To summarize, although adversarial training improves model
robustness against adversarial attacks, how to achieve this goal
without trading off model accuracy on clean data in adversarial
training is still an open question and remains under explored.

It should be noted that a big loss of standard perfor-
mance on clean data is unacceptable in many applications
that might cause severe consequences. Instead, the standard
performance is more valued than model robustness against
the extremely malicious adversarial attacks. Such applications
include medical diagnosis, autonomous surgical robotics, etc.
This leads to the question: To what extent can we boost
model robustness without sacrificing standard performance?
Unlike prior adversarial training works that allow model
performance degradation on clean data, we investigate if it
is feasible to improve adversarial performance without any
standard performance loss. Specifically, this paper proposes a
pre-train based adversarial training strategy, where adversarial
training is applied to clean-data (vanilla-trained) models. To
prevent model catastrophic forgetting in model refining, we
follow the replay-based strategy and maintain the 1:1 clean-
adversarial data ratio in model refinement. To further reduce
adversarial samples’ negative impacts on standard accuracy,
we incorporate novel dynamically regulated adversarial (DRA)
samples in model adversarial refinement. Unlike most adver-
sarial attacks that add adversarial noise to every image pixel,
DRA searches for highly stimulated adversarial features and
generates adversarial samples accordingly. Such strategy in
adversarial sample generation enforces the model refinement
to learn descriptive but non-robust features. Extensive experi-



mentation shows that the proposed adversarial training strategy
improves model adversarial robustness with a large margin, but
without standard performance loss. The contributions of this
study are summarized as follows.

• We propose a simple, yet generic adversarial training
strategy that improves adversarial robustness by a large
margin without sacrificing standard accuracy. We argue
that the proposed method is significant for applications
where standard performance is more valued than adver-
sarial robustness.

• We further introduce an unbounded adversarial attack
method, namely DRA. It introduces smaller image distor-
tions and facilitates the adversarial refinement to focus on
the learning of most descriptive but non-robust features.

• We show that our adversarially trained models exhibit
robustness not only to adversarial samples; but also
against naturally corrupted images, which suggests its
potential for real-world applications.

The rest of this paper is organized as follows. Section II
presents a brief review of related works. Section III formulates
the target problem and specifies our motivations. The technical
details of the proposed method are elaborated in Section IV.
Section V presents extensive experiments and discussions, then
followed by our conclusions in section VI.

II. RELATED WORKS

Adversarial attacks aim to add small, carefully-designed,
human-imperceptible noises to clean data to fool a machine
learning model. Depending on the availability of prior knowl-
edge of the target, adversarial attacks can be categorized into
two types: white box attacks and black box attacks. Since
adversarial samples are transferable, many white box attacks
follow the paradigm that exploits a surrogate white box model
to generate attack samples [6, 18, 19]. This section briefly
reviews the first-order white-box adversarial attacks, due to
their close relevance to this study.

Many white box attacks belong to first-order adversarial
methods. Fast Gradient Method (FGM) is an intuitive back-
propagation based method to generate adversarial samples [2,
20] and evolves into a better constraint method, namely
Fast Gradient Sign Method (FGSM) [3]. FGSM searches for
adversarial samples following the direction of the gradients of
current parameter values and projects them on images.

xadv = x+ ϵ · sign(∇xL(x, y; θ)), (1)

where ϵ is the noise constraint for projecting the attack noises
onto L∞ ball, x and y are the clean input samples and their
labels in dataset D and L(·) is the loss function.

Iterative Fast Gradient Sign Method (I-FGSM), also called
Basic Iterative Method (BIM) [21], is a multi-step variant
of FGSM. It provides stronger adversarial examples but
with more computational cost. Projected Gradient Descent
(PGD) [4] is another iterative variant of FGSM with a random
starting point.

xt
adv = ΠS [x

t−1
adv + ϵ · sign(∇xL(x

t−1
adv , y; θ)], (2)

where t denotes the number of iteration and ΠS is the clipping
function that forces the value to reside in a predetermined
range. PGD is widely agreed to be one of the strongest attacks
and often used to benchmark model robustness.

Adversarial training incorporates adversarial samples in
model optimization and is considered a very effective method
to boost model robustness. Particularly, Madry et al. [7] formu-
late adversarial training as a MinMax optimization problem,

L(θ) = E(x,y)∼D[max
δ∈S

L(x+ δ, y; θ)], (3)

Where δ is the perturbation superimposed on the input, and θ
represents network parameters. The inner maximization tries
to find adversarial samples that maximize the loss within the
allowed permutation range, while the outer minimization tries
to minimize the adversarial loss.

Since Madry’s MinMax optimization is prone to over-fit
adversarial samples, many adversarial training methods mix
clean data and adversarial data in training.

L(θ) = E(x,y)∼D[L(x, y; θ) + max
δ∈S

L(x+ δ, y; θ)]. (4)

Note, in (4), adversarial examples is leveraged to regularize
the vanilla training on clean data. Recently, Raghunathan et
al. [14] introduce robust self-training (RST) to balance the
vanilla and adversarial loss by a regularization parameter β >
0.

L(θ, β) = E(x,y)∼D[L(x, y; θ) + βmax
δ∈S

L(x+ δ, y; θ)]. (5)

Another regularized adversarial training strategy,
TRADES [11], is proposed to boost model robustness
following the Locally-Lipschitz smoothness constraint.

L(θ, λ) = E(x,y)∼D[L(fθ(x), y) (6)
+ 1/λ ·max

δ∈S
L(fθ(x+ δ), fθ(x))],

where fθ denotes the training model parameterized by θ. Un-
like RST computing a adversarial loss between the prediction
fθ(x+δ) and label y as the regularization term in (5), TRADE
regularizes the training by calculating L(fθ(x+δ), fθ(x)) from
a pair of clean sample x and its adversarial version x+δ. The
regularization parameter λ determines the trade-off between
accuracy and robustness in the overall optimization. It is worth
notice that small regularization parameter helps the model
emphasize more on accuracy over robustness which closely
align to our objective of adversarial training. However, we
show later in Section V that even very small value of λ−1

cannot guarantee models to achieve comparable accuracy to
vanilla trained models.

Pre-training is a popular training framework that can help
reduce training time or improve accuracy performance for fine-
tuning downstream tasks. Jeddi et al. [22] start with a clean
data pre-trained model and fine-tune with PGD adversarial
training with the aim of reducing the time cost and overfitting
issue [23]. Hendrycks et al. [24] adversarially pre-train their
model on a downsampled ImageNet and apply adversarial
fine-tuning which can significantly improve model robustness



TABLE I: Performance of adversarial training methods on MNIST
and CIFAR-10. Adversarial accuracy is evaluated with PGD attacks.

MNIST (ϵ = 0.3) CIFAR-10 (ϵ = 8/255)
Astd Arob Astd Arob

Vanilla 99.3% 0.3% 93.0 % 0.0%
Madry’s [7] 99.2% 95.6% 87.3% 47.0%

Trades(1/λ = 1) [11] 99.3% 94.1% 86.6% 44.3%
Trades(1/λ = 6) [11] 99.3% 96.0% 81.2% 53.5%

MART [28] 99.1% 96.2% 83.4% 52.8%

on CIFAR datasets compare with adversarial training from
scratch. Chen et al. [25] show that self-supervised pre-training
such as Selfie [26], Jigsaw [27], also lead to better robustness
than traditional adversarial training. In contrast to previous ad-
versarial pre-training strategies, our approach mainly focuses
on maintaining accuracy and treats adversarial robustness as
an added bonus. More specifically, we incorporate a novel
adversary generating method (DRA) to facilitate our goal by
reducing the learning complexity of adversarial training.

III. PRIMITIVES

A. Problem Formulation

In this study, we focus on improving model robustness to
imperceptible, in-distribution adversarial samples defined by
Fawzi et al. [29]. Briefly, assume that clean data follows a
distributing D, in-distribution adversarial samples (x′) can be
also roughly described within D.

To answer the question: to what extent can we boost
model robustness without sacrificing standard performance?
We formulate the problem as

L(θ) = E(x,y)∼D[max
δ∈S

L(x+ δ, y; θ)] (7)

s.t. E(x,y)∼D[L(x, y; θ)] ≤ E(x,y)∼D[L(x, y; θstd)],

where θstd = argmin
θ

E(x,y)∼D[L(x, y; θ)] represents the

model with parameter θstd that yields the minimized standard
loss. Comparing the new problem in (7) with previous adver-
sarisal training methods in (3-6), the new regularization term
in (7) explicitly defines the behavior of the model: to improve
adversarial robustness without the loss of model’s standard
performance.

B. Motivation

To tackle the question in (7), we re-examine SOTA adver-
sarial training strategies and obtain an interesting observation.
Yang et al. [16] show that many real image sets, such as
MNIST, CIFAR-10, SVHN and Restricted ImageNet, are r-
separated, with the smallest inter-category sample distance
being no smaller than 2r. Furthermore, their empirical sep-
aration distance is 3x-7x larger than the typical adversarial
perturbation constraint ϵ adopted in prior arts, i.e. ϵ < r. In
theory, any r-separated dataset has more than one classifier
that are both accurate and robust up to perturbations of size r.
This r-separated claim aligns well with adversarial robustness
experiments on the MNIST dataset in previous adversarial
training studies [7, 11, 28]. However, as summarized in Table I

Fig. 1: A conceptual demonstration of our adversarial fine-tune
method. Classifier 1 represents the clean data pre-trained classifier
which is accurate but not robust to adversarial samples. Our adversar-
ial fine-tune method seeking for both accurate and robust classifier by
pushing the classifier 2 out of the yellow adversarial regions defined
by δ ∈ S.

where the standard performance and adversarial performance
are denoted by Astd and Arob respectively, on CIFAR-10
which is a more complicated dataset, previous adversarial
training often leads to around 10% standard accuracy drop
for models to gain desired adversarial robustness.

From the above observation, we hypothesize that the ob-
served trade-off between adversarial robustness and standard
accuracy is due to the limitation of model capacity. The
problem of image classification on the MNIST dataset is
relatively easy and the models adopted in previous adversarial
training studies have enough capacity to jointly benefit from
standard and adversarial samples following (3-6). However,
for complex problems such as classification on CIFAR-10
dataset, conventional adversarial training in (3-6) increases the
difficulty in model optimization due to the noisy representation
of adversarial perturbations. In another word, learning both
standard features and adversarial features (i.e. those non-
robust, yet highly predictive patterns [30]) is beyond the
capacity of those models (e.g. ResNet-18, ResNet-50, etc.).

Under the hypothesis that model capacity is not enough
to simultaneously learn standard and adversarial features, we
value clean-data accuracy over adversarial robustness. Thus,
we made two modifications to existing adversarial training
strategies to tackle the problem formulated in (7). Briefly, we
propose a transfer learning based adversarial training strategy
that starts with a clean data pre-trained model which already
has strong generalizability on clean data. To further reduce the
learning complexity, we incorporate easy-to-learn adversarial
samples in the adversarial fine-tuning. Please refer to the next
section for details of the proposed method.

IV. METHODOLOGY

A. Transfer Adversarial Training

SOTA adversarial training methods usually train a robust
model from scratch using either adversarial data only in (3)
or a combination of clean and adversarial data following
(4-6). However, none of them guarantee that the standard
performance will be preserved. Indeed, due to the highly non-



Fig. 2: Systematic diagram of the proposed adversarial transfer adversarial training strategy, where we use various ResNets as the backbone.
From left to right: DRA, a proposed method to generate adversarial samples. It filters out negligible adversarial noises and reduces adversarial
training complexity. The orange block and green block represent standard training and robust training, respectively. in standard training, we
train a model with θstd on clean data that yields high standard performance. Then the robust training aims to find a better θ in the vicinity
of θstd to boost adversarial robustness without standard performance loss.

convex loss surface in model optimization, optimizing both
targets simultaneously may be at odds with each other [12].

To solve the primal conditioned optimization problem in (7),
we apply the Karush-Kuhn-Tucker (KKT) approach and obtain
a dual unconstrained optimization problem by introducing a
KKT coefficient λ,

L(θ, λ) = E(x,y)∼D[max
δ∈S

L(x+ δ, y; θ)] (8)

+ λE(x,y)∼D[L(x, y; θ)− L(x, y; θstd)]].

Therefore, the solution to the dual problem

min
θ

max
λ,λ>0

L(θ, λ) (9)

is identical to the solution of the primal problem in (7). Note
that to solve the problem in (9), we need the margin value
E(x,y)∼D[L(x, y; θstd)] which is fixed before the adversarial
training described in (9). That is, a model with θstd is already
obtained for high standard performance. Therefore, instead of
training a robust model with θ from scratch, we introduce a
transfer learning strategy to solve (9) and propose to search a
new θ from θstd, as the standard performance is unlikely to
change severely in the small vicinity of θstd. Fig. 1 visualize
the conceptual idea of the propose adversarial training strategy
on a r-separated dataset. Classifier 1 is vanilla-trained over
clean data. It is accurate but nor adversarial robustness. By
pushing the classification boundary out of the yellow adver-
sarial regions defined by δ ∈ S, the obtained classifier 2 has
the identical standard performance with improved adversarial
robustness.

We depict the detailed systematic diagram of the proposed
adversarial training strategy in Fig. 2. Specifically, the pro-
posed training strategy divides the training into two phases:
vanilla standard training and adversarial robust training. In
standard training, we exploits clean data to train an accurate

model, θstd = argmin
θ

E(x,y)∼D[L(x, y; θ)]. The standard

training has two benefits. First, it provides the margin value
E(x,y)∼D[L(x, y; θstd)] in (9). Second, due to inherent transfer
learning property, the downstream adversarial robust training
is more cost-efficient than SOTA adversarial training strategies
that often require large training loads and long training time
to handle the complexity introduced by adversarial features.

With the clean-data pre-trained model, adversarial samples
are incorporated in the model refinement phase. To prevent
model catastrophic forgetting in model fine-tuning, we follow
the replay-based strategy and let the network iteratively update
upon clean and adversarial samples. Note, unlike conventional
fine-tuning tends to unfreeze several outer layers to preserve
the knowledge learned from the source task, we argue that it
is important to update all parameters in robust training stage.
Briefly, adversarial noises propagate through each layer in
the model and aggregate into large prediction distortions. All
layers of a robust model must contribute to the defend against
adversarial attacks.

B. Dynamically Regulated Adversary in Adversarial Training

Adversarial training is usually referred to as the ”MinMax”
optimization game, where the adversarial samples are signif-
icant contributors. In fact, aggressive adversarial attacks are
preferred in adversarial training, because models trained on
aggressive adversarial attacks are more resistant to weaker
adversaries. Therefore previous studies have usually adopted
the PGD attack in adversarial training.

A good adversarial attack approach for adversarial training
should be aggressive but without greatly increasing training
complexity. Although PGD is an aggressive solution for intro-
ducing noise, we argue that PDG is not the best candidate for
adversarial training in the sense that it introduces excessive
noisy information in model robustness training. More specifi-



cally, PGD uses a Sign() clipping method to project adversarial
noises onto the L∞ ball. It treats all image pixels equally
and applies the same noise injection strategy to all pixels,
regardless of their contribution to the prediction results. We
argue that the treatment of adding adversarial noise to all
pixels in PGD significantly increases the training complexity.
We will show in the experimentation that the proposed DRA
attack is a better candidate than PGD in adversarial training
and facilitates various adversarial training.

This work introduces a novel gradient-based attack method,
namely DRA attack, in Algorithm 1. Unlike PGD, which treats
image pixels equally, DRA distinguishes important pixels from
others by aggressively modifying only those image features
that are highly predictive, but non-robust. In this way, DRA
adversaries enforce the robustness training by focusing more
on these predictive features, thus helping to improve model’s
robustness against adversarial attacks. Specifically, DRA quan-
tifies pixel significance by the gradient of the loss function
with respect to its pixel value. A large gradient value suggests
that the pixel contributes more to the image prediction. In
this regard, DRA abandons the Sign(·) method so that it can
smoothly search for the optimal adversarial samples along the
gradient. In addition, when generating adversarial samples,
DRA uses a more resilient distance metric L1 to bound the
adversarial noise instead of using the L∞ constraint.

Fig. 3 presents a visual comparison of the DRA and PGD
adversaries. Compared to PGD, DRA introduces stronger
noise in the ”cat” region, which is the most predictive pattern
in the image. We claim that the lower noise level in the image
background makes the learning more complex. We show in the
experimental section that DRA samples help various training
strategies achieve higher adversarial robustness than PDG for
the same adversarial aggressiveness.

Algorithm 1: DRA attack
Input : Clean-data pre-trained model f , loss function

L, clean training pairs (x, y), regulation term
ϵ, significant pixel percentage p, iteration T

Output: Adversarial sample x∗

1: α = ϵ/T ;
2: x∗

0 = x, t = 0;
3: if t < T then

Input x∗
t to f and obtain gradient ∇xL(x

∗
t , y);

update x∗
t+1 = x∗

t +
α·∇xL(x∗

t ,y)
∥∇xL(x∗

t ,y)∥1

end
4: Rank current pixel values based on ∇xL(x

∗
t , y) and

set threshold Th for the p most significant values;
5: if x∗

ij < Th then
x∗
ij = xij ;

end

V. EXPERIMENTS

In this section, we present extensive experiments to evaluate
the accuracy-robustness performance of the proposed adversar-

Pred = “cat”

Pred = “dog” Pred = “dog”

DRA noise PGD noise

Fig. 3: A visual comparison of PGD (left) and DRA (right) adver-
saries. They are both able to fool DNNs with imperceptible noises,
however, the overall noise budget of DRA is smaller. Furthermore,
DRA focuses on highly discriminate pixels (patterns that contribute
most to final prediction outcomes), where PGD equally distributes
adversarial noises over the whole image. As we can see from the
example, DRA noises align well with the salient map of the cat.

ial training strategy on MNIST and CIFAR-10 datasets.

A. Experimental Setup

In the proposed adversarial training strategy, we first train a
model on clean data only so that the model has high standard
performance. The model is then fine-tuned with clean and
DRA samples. In both training processes, we utilize image
augmentation including random cropping and random flipping.
In addition, the image batch size is set to 128, SGD with
momentum to 0.9 and weight decay to 2e − 4 for model
optimization.

On the MNIST dataset, we follow the TRADES study and
use a simple CNN model with 2 convolutional layers and 2
fully connected layers. We set ϵ = 0.1, p = 2/3 and iterate
20 times to generate DRA samples for 50 epochs of robust
fine-tuning.

On the CIFAR-10 dataset, we use ResNet as the backbone
model and perform 60 epochs of adversarial fine-tune in the
robust training phase. Adversarial samples used for our robust
training are generated in 5 iterations. The noise constraint is
linearly decayed from 2 to 0.5 in the first 50 epochs, and only
clean images are fine-tuned in the last 10 epochs.

For evaluation purposes, adversarial samples are generated
by PGD under various noise constraints (e.g. ϵ = 0.1, 0.3
out of 1 for MNIST images and ϵ = 2, 5, 8 out of 255
for CIFAR-10) in 20 iterations with step size ϵ/20, unless
otherwise specified. We compare our DRA fine-tuned model
with TRADES [11] on both datasets using relatively small
regularization parameter (1/λ). We find that this setting is
consistent with our objective, as the small regularization



TABLE II: Accuracy-Robustness performance against PGD attacks
on MNIST. Note, the target is to improve adversarial robustness
without sacrificing standard performance.

Model natural PGDϵ=0.1 PGDϵ=0.3

Vanilla trained 99.3% 88.3% 18.6%
Trades(1/λ = 1) 99.3% 98.4% 93.5%

Trades(1/λ = 0.5) 99.3% 97.9% 92.1%
Trades(1/λ = 0.1) 99.4% 97.2% 90.8%

Ours 99.3% 98.0% 95.9%

TABLE III: Accuracy-Robustness performance against PGD attacks
on CIFAR-10, with ResNet-50 as the backbone model.

Model natural PGDϵ=2 PGDϵ=5 PGDϵ=8

Vanilla trained 93.7% 45.0% 15.9% 5.6%
Trades(1/λ = 0.05) 91.4% 53.5% 25.8% 8.6%
Trades(1/λ = 0.01) 92.6% 49.4% 19.2% 6.3%

Ours 93.8% 64.9% 31.0% 10.9%

parameter intuitively enforces TRADES to primarily optimize
the clean data accuracy while ”trading off” a small amount of
adversarial robustness.

B. Accuracy-Robustness Performance

The numerical results on the MNIST are shown in Table II,
where ”natural” indicates the standard performance of the
model on clean data and ”vanilla trained” indicates that
the model is trained with clean data only. On the MNIST
dataset, both TRADES and our method maintain high stan-
dard accuracy while improving model’s adversarial robustness;
the proposed method obtains 2%-5% higher robustness than
TRADES with various settings.

For the more complex dataset, CIFAR-10, Table III shows
the results with ResNet-50 as the backbone. Unlike the MNIST
dataset, ResNet-50 with the proposed adversarial training strat-
egy significantly outperforms TRADES in terms of adversarial
robustness. Note that in our experiment, the maximal ϵ of DRA
in adversarial training is 2, which corresponds to ϵ = 4− 5 in
PDG attacks. We believe that training the model with a large
DRA ϵ would further improve the robustness.

In addition, we vary the backbone models for the CIFAR-10
experiments and report the accuracy-robustness performance
in Table IV. First, for clean CIFAR-10 image classification,
vanilla-trained models and our adversarial fine-tuned models
achieve comparable performance in all examined backbone
models. In particular, ResNet-50 and ResNet-101 can even
outperform their vanilla training counterparts in terms of clean
data accuracy. Second, to defend against PGD attacks, we
observe that models with larger capacity are able to boost
their adversarial robustness to a larger margin, which supports
our hypothesis discussed in section 3.

C. Effect of DRA on Adversarial Training

Generation of strong adversarial samples (with higher attack
success rates) is a critical factor in adversarial training. In
this experiment, we investigate the impact of different types
of adversarial samples in three different adversarial training
strategies: Madry’s [7], TRADES [11], and ours. Concretely,
we replace PGD samples with DRA data in Madry’s, and

TABLE IV: Accuracy-Robustness performance against PGD attacks
on CIFAR-10, with various backbone models.

Models natural PGDϵ=2 PGDϵ=5 PGDϵ=8

ResNet-18 (vanilla) 93.1% 44.1% 14.6% 5.8%
(-0.7%) (+16.3%) (+10.9%) (+2.7%)

ResNet-18 (ours) 92.4% 60.4% 25.5% 8.5%
ResNet-34 (vanilla) 93.3% 46.6% 15.3% 4.5%

(-0.4%) (+14.8%) (+12.6%) (+4.4%)
ResNet-34 (ours) 92.9% 61.4% 27.9% 8.9%

ResNet-50 (vanilla) 93.7% 45.0% 15.9% 5.6%
(+0.1%) (+19.9%) (+15.1%) (+5.3%)

ResNet-50 (ours) 93.8% 64.9% 31.0% +10.9%
ResNet-101 (vanilla) 93.7% 46.9% 15.9% 6.8%

(+0.1%) (+22.9%) (+16.3%) (+7.4%)
ResNet-101 (ours) 93.8% 69.8% 32.3% +14.2%

TABLE V: ResNet-50 trained with PGD Vs. DRA on CIFAR-10

Model Clean data PGDϵ=2 PGDϵ=5 PGDϵ=8

Madry’s + PGD 88.8% 66.1% 30.9% 11.0%
(+0.6%) (+0.6%) (+0.7%) (+1.5%)

Madry’s + DRA 89.4% 66.7% 31.6% 12.5%
TRADES + PGD 87.9% 65.0% 34.3% 12.1%

(-0.7%) (+3.3%) (+4.8%) (+1.8%)
TRADES + DRA 87.2% 68.3% 39.1% 13.9%

ours + PGD 90.6% 59.2% 27.0% 10.1%
(+0.7%) (+0.8%) (+1.9%) (-0.3%)

ours + DRA 91.3% 60.0% 28.9% 9.8%

TRADES. Similarly, we use PDG in the proposed method
and compare its performance with DRA. We note that DRA
is a stronger adversary than PGD for the same ϵ conditions
due to the presence of soft-bounded constraint. To make
a fair comparison, we choose different ϵ for them so that
DRA-generated samples and PGD-generated samples can have
similar attack strengths. Specifically, we set ϵ = 1 for DRA
and ϵ = 2.55 for PGD, as both settings resulted in a robust
accuracy of 44.5% on vanilla-trained ResNet-50.

Table. V reports CIFAR-10 classification performance with
ResNet-50 as the backbone model. We observe that in all three
settings, DRA is more beneficial for improving model robust-
ness. Furthermore, the clean data accuracy of DRA trained
models is higher than that of the PGD trained models using
Madry’s and our method. Since the loss function of TRADES
(Eqn.6) is essentially designed to improve robustness through
trading accuracy, we believe it is reasonable to assume that the
standard accuracy of the DRA trained model is slightly lower
than that of the model trained with PGD. In short, Table. V
with numerical results validate our hypothesis that DRA is a
better adversary that benefits model’s adversarial training.

D. Ablation on DRA Hyperparameter Setting

Our DRA attack algorithm filters out unimportant pixels by
a pre-fixed percentage and applies adversarial noises only to
important image features that contribute to the final prediction.
In this ablation study, we investigate the effect of hyperparam-
eter settings (e.g. the value of significant feature percentage
p and noise budget ϵ in Algorithm 1) on CIFAR-10 dataset.
Specifically, CIFAR-10 images are in size of 3× 32× 32. We
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Fig. 4: Ablation on DRA hyperparameter settings: DRA’s attack
success rates versus the significant feature percentage p on CIFAR-
10 vanilla-trained ResNet models. A marginal improvement on attack
success rate is observed when p > 1/3.

TABLE VI: Ablation on DRA hyperparameter settings: adversarial
training performance versus different threshold value p.

p natural PGDϵ=2 PGDϵ=5 PGDϵ=8

0 93.7% 45.0% 15.9% 5.6%
1/6 91.8% 58.5% 28.0% 9.2%
1/3 91.3% 60.0% 28.9% 9.8%
1/2 90.4% 61.4% 29.1% 10.0%
1 89.6% 61.9% 29.3% 10.1%

treat the values of red, green and blue independently and thus
obtain N = 3072 pixel values per image. To comprehensively
study this problem, we vary the values of p and ϵ and
report DRA’s attack success rates on CIFAR-10 vanilla-trained
ResNet-18, ResNet-34 and ResNet-50.

Fig. 4 reports adversarial attack success rate versus the per-
centage p out of the 3072 pixels. With the settings ϵ = 1, we
note that the successful attack rate of DRA grows linearly in
the most significant 500 (i.e. p = 1/6) pixels and saturates in
about 1000 (p = 1/3) pixels. For ϵ = 2, the successful attack
rate also almost saturates at approximately 1000 (p = 1/3)
pixels.

To further investigate the impact of DRA thresholds on the
overall adversarial training method, we train ResNet-50 with
different values of p and report the performance in Table. VI.
We notice that a higher threshold value p does contribute to
better model robustness, however, the improvement becomes
marginal as p > 1/3. In particular, increasing p from 1/2
to 1 only leads to less than 0.5% robustness increment for
PGD attacks, but causes the downgrade of natural accuracy
by 0.8%. These results also support our claim that introducing
too much unnecessary noise in the images complicates model
optimization and tends to lead to a standard performance loss.
Similar to the results in Fig. 4, Table VI indicates that p =
1/3−1/2 is a good setting for generating adversarial samples
in the proposed method.

E. Evaluation on Naturally Corrupted Images

Corrupted data with naturally occurring perturbations and
distributed shifts pose challenges to model generalization.
In this experiment, we explore the potential of DRA fine-
tuned models on corrupted data. In this experiment, we train
a ResNet-50 model with our adversarial fine-tuning strategy
and evaluate its performance on the corrupted CIFAR-10

Original

Gaussian 
noise

Fog

Snow

Fig. 5: Corrupted image samples in Cifar-10-C [31].

TABLE VII: The accuracy of DRA trained ResNet-50 vs. Vanilla
trained ResNet-50 over different corrupted types.

Corrupted Type ResNet-50 ResNet-50
(DRA Trained) (Vanilla trained)

Snow 85.37% 84.10%
Frost 84.4% 81.41%

Zoom blur 84.97% 82.13%
Motion blur 76.89% 74.08%

JPEG compression 89.51% 84.51%
Gaussian noise 75.85% 50.92%

dataset (CIFAR-10-C [31]). In CIFAR-10-C, the clean CIFAR-
10 data are processed to mimic various image distortions under
harsh conditions. Table VII presents classification accuracy
on the CIFAR-10-C dataset with the DRA refined model and
the vanilla trained model. Results show that the DRA fine-
tuned model exhibits stronger robustness to different types of
corruption.

VI. CONCLUSION

In this paper, we aim to tackle a unique problem in adversar-
ial training: improving the adversarial robustness of a model
without sacrificing the standard performance. We explicitly
formulate the problem and propose a cost-efficient adversarial
training strategy. It decomposes adversarial training into two
phases: standard training and robust training. In addition,
we introduce a training-friendly adversary to further benefit
adversarial training. Extensive experimentation on MNIST
and CIFAR-10 datasets suggests that the proposed adversarial
training strategy serves better for the target objective.
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