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Abstract— Anomaly detection in a medical image is a
challenging yet essential task. It relies on learning pat-
terns/distributions from health data only, and no abnormal
samples are available during training. This study proposes a
novel self-supervised learning method to precisely detect and
localize anomalies in MRI medical images. We synthesize abnor-
mal images by overlaying random pseudo-outliers onto normal
samples and propose a discriminative model for anomaly
detection. Unlike prior arts that generate abnormalities with
pre-determined regular geometric shapes, we introduce a new
outlier synthesis strategy capable of generating random-shape
anomalies. By learning the disentanglement of pseudo-outliers
and normal regions in the synthesized images, our model can
capture natural anomalies in images at both the pixel level
and sample level. We present our empirical experimentation on
two publicly accessible datasets and demonstrate the proposed
method’s superiority over SOTA solutions on MRIs.

I. INTRODUCTION

Automatic detection of anomalies such as tumors in medi-
cal images is one of the essential tasks in computational med-
ical imaging. Initially, this task was tackled by supervised
learning with pairs of medical images with abnormalities
and corresponding manual annotations as their ground truth.
For instance, to localize tumors in brain MRI images, many
efforts required the manual annotation of tumors by radiol-
ogists for model training [1]. Although supervised learning-
based methods have delivered plausible results, their per-
formance heavily relies on the quality of annotated data. In
addition, the generalizability of supervised anomaly detection
models is in question on unseen lesions or abnormalities.
To overcome the foregoing problems, many studies propose
the use of unsupervised learning techniques for anomaly
detection. By learning from normal medical images from
healthy patients, a model is expected to discriminate any
abnormalities in query images.

Since annotation of abnormal samples is unavailable in
the setting of unsupervised anomaly detection, many efforts
tackle this problem through constructing self-supervision
tasks over the provided normal images. Particularly, learning
health features for normal image reconstruction is a plausible
way for this purpose. Recently, various generative models
such as Variational Auto-Encoders (VAE) [2] and Gener-
ative Adversarial Networks (GAN) [3] have demonstrated
powerful capabilities in image generation and been applied
to explore the healthy patterns in unsupervised anomaly
detection. In theory, since a generative model is exposed to
normal images only, it has limited capability to restore sam-
ples with abnormality from their low-dimensional encoding.
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Consequently, normal samples have smaller reconstruction
residues, whereas anomalous images lead to more significant
restoration errors. That is, image regions with large residues
are strong candidates to anomalies [5], [6], [4]. However,
the performance of such generative model-based anomaly
detection methods heavily depends on the quality of the
reconstructed samples and the generalization ability of the
models. It is observed that many generative models preserve
anomalous content in the restoration output when an abnor-
mal region is large in an image. This unexpected failure is
usually accompanied by a small restoration residue, which
may lead to anomaly misidentification.

Alternatively, several studies attempt to construct self-
supervision segmentation or image-filling tasks by synthesiz-
ing abnormalities in normal images. Learning the represen-
tation of unlabelled or single-class dataset by falsifying the
data is also defined as self-supervised learning [16]. Inspired
by the context encoders for image repair [13], Zimmerer
et al. proposed to mask a square region as anomalies in a
brain MRI and utilized a context-encoding VAE (ceVAE) to
restore the missing content [7]. Foreign patch interpolation
(FPI) [14] is another way to synthesize subtle defects for
anomaly detection on Brain MRIs. In contrast to anomaly
elimination with generative model, FPI is a discriminative
approach to directly detect synthetic anomalies. Originating
from FPI [14], Tan et al. introduced the PII strategy to
modify the content of an image patch in chest X-ray and
fetal ultrasound, which perturbs the spatial structures in the
original normal samples. By formulating anomaly detection
as a pseudo-supervised segmentation framework with this
PII strategy, an Encoder-Decoder model is optimized by
minimizing the pixel-level binary cross-entropy loss. We
argue that in addition to the random numerical variation,
the diversity of shapes of synthesized abnormal regions
is also important. Regular geometric shapes of synthetic
abnormalities in prior studies hinder the precision detection
of natural anomalies.

In this paper, we propose a novel self-supervised strategy
for anomaly detection in MRI images. To synthesize pseudo-
outliers with irregular shapes, we particularly introduce an
algorithm to generate random-shape masks. Three intuitive
abnormality synthesis functions are introduced. During train-
ing, a normal image is perturbed by a randomly generated
pseudo-outlier, and the combo loss [15] (i.e. combination
of Dice Loss and Binary Cross-Entropy loss) is used to
evaluate the agreement between the predicted anomaly score
map and corresponding mask. Our contributions in this
study are summarized as follows. First, we design a strategy
for generating random-shape outliers for anomaly detection.



Fig. 1. Diagram of the proposed solution, where a heatmap is used to visualize the degree of abnormality in an image. This study introduces a random-
shape pseudo-outlier synthesis strategy to blend artificial abnormalities into normal MRI images. We adopt the encoder-decoder architecture to estimate
anomaly scores at pixel level and sample level. During inference, a query image is directly passed to the anomaly scoring model for its anomaly score.

Second, we adopt the combo loss to train an anomaly scoring
model. Finally, we demonstrate the effectiveness of this
approach in anomaly detection on public medical imaging
datasets.

II. METHODOLOGY

Fig.1 depicts the diagram of the proposed anomaly de-
tection solution. Specifically, in the setting of anomaly
detection, there are no abnormal images available. There-
fore, we introduce an outlier synthesis strategy to construct
pseudo supervision data. Given a set of healthy images,
I = {I1, ..., IN}, we synthesize a new image set {Ĩ,M} =
{(̃I1,M1), ..., (̃IN ,MN )}, where Mi is the binary anomaly
mask used to generate anomalous synthesis Ĩi. In this paper,
we use boldface letters to represent matrices and vectors.
Taking the anomaly mask as the ground truth, we success-
fully convert the anomaly detection into a self-supervised
problem. That is, given the synthesis training set {Ĩ,M},
we train an anomaly scoring model fθ : Ĩ → M. The
sample-level anomaly score is calculated by averaging the
entire anomaly map. The rest of this section will elaborate
on our random-shape pseudo-outlier synthesis strategy and
anomaly scoring model.

A. Random-shape Pseudo-Outlier Synthesis

Synthetic anomalies in literature are usually constrained
within rectangular or square patches. However, most real
anomalies in medical images, for example, tumors, are in
irregular shapes. Fig. 3 shows examples of irregular-shape
anomalous regions in the BRATS MRI image set. To bridge
this gap, we propose a random-shape pseudo-outlier synthe-
sis strategy consisting of two modules: random-shape mask
generation and abnormality blend-in. A mask M defines the
shape, size, and location of a synthetic anomaly, and the
blend-in module focuses on abnormal image generation.

Our random-shape mask generation algorithm originated
from [9]. It utilizes multiple random lines to imitate a
paintbrush to mask regions in images. To obtain a compact,

solid mask for downstream anomaly blend-in, we improve
the original algorithm by introducing more constraints on
line directions and spacing. Briefly, our algorithm starts with
drawing a straight line of an arbitrary length, followed by
another straight line at a small angle toward the opposite
direction. We repeat the above procedure several times for a
random-shape mask. The specific mask generation algorithm
is presented in Algorithm.1.

Algorithm 1 : Random-shape mask generation
mask = zeros(image height, image width)
NumPoints = random.uniform(MinPoints,MaxPoints)
PointX = random.uniform(0, image height)
PointY = random.uniform(0, image width)
BrushWidth = random.uniform(MinWidth,MaxWidth)
angle = random.uniform(0, 2π)
for i = 0 to NumPoints do

if i%2 == 0 then
angle = angle+ (1 + σ)π

else
angle = angle− (1 + σ)π

end if
length = random.uniform(MinLength,MaxLength)
DrawLine(mask, (PointX, PointY ), BrushWidth,
angle, length)
PointX = PointX + length ∗ sin(angle
PointY = PointY + length ∗ cos(angle)
DrawCircle(mask, (PointX, PointY ), BrushWidth//2)

end for
mask = random.flipLeftRight(mask)
mask = random.flipLeftRight(mask)

With the obtained anomaly mask, we proceed to synthe-
size abnormal MRIs. We hypothesize that all normal MRI
slices follow similar healthy anatomical distributions and any
disturbance to the spatial structure may result in anomalies.
Therefore, we vary pixel values within a mask region and
blend the synthetic anomalies into the original normal MRI
image. In this study, we consider three transformations to



implement the interference:

İ =


g(I+N), N ∼ N (0, 1)

g(I+ c), c ∼ N (0, 1),

g(I+ I · c), c ∼ N (0, 1)

(1)

where g(·) represents a clip function that limits image values
in the range of [0, 1], N is a Gaussian noise image, and
c is constant scalar randomly drawn from the Gaussian
distribution N (0, 1). In practice, we regenerate any İ if
sup |İ− I| < ε. During training, we randomly select one of
these transformations for each feeding sample. The synthetic
abnormal image Ĩ is then generated by blending the pseudo-
outlier İ into its original sample I:

Ĩ = (1−M) · I+M · İ. (2)

Note that our aim in synthesising pseudo-outlier data is not
to estimate the true distribution of lesions. In contrast to
previous work [14], we focus on the utilizing the randomness
of synthetic data to guide the model to identify healthy image
regions. During the training process, the healthy region
samples are constant, while the synthetic regions consistently
vary randomly. To cope with unknown changes, the model
tends to identify healthy regions different from unknown
anomalies. We apply three transformations as random nu-
merical variations, which are related to noise, luminance
and contrast. We also propose the random-shape synthesis
to enhance the effect of anomaly localization.

B. Anomaly Scoring Model

To estimate pixel-level anomaly scores, we propose train-
ing a U-Net structured network on the synthesis dataset to
disentangle outliers and normal context. Fig.2 depicts the
specific network architecture in this study. In the downsam-
pling path, each module has two convolutional layers and
a MaxPooling layer. The bottleneck block is composed of
two convolutional layers. In the upsampling path, each block
consists of a deconvolutional layer and two convolutional
layers. In the output layer, a softmax function is used to
normalize the 2 × 128 × 128 logits into anomaly scores in
the range of [0, 1].

A good anomaly scoring model should (1) never miss
anomalies and (2) assign high scores to anomalous pixels.
In this regard, we propose to train our model fθ using the
combo loss to measure the agreement between the estimation
fθ (̃I) and the synthesis mask M :

Lce(fθ (̃I),M) = α · Ldice + (1− α) · Lbce, (3)

where α is a hyperparameter to balance the dice loss Ldice

and pixel-level binary cross-entropy loss (BCE) Lbce. Dice
loss measures the similarity between two regions, helping
the model localize abnormalities in an image precisely:

Ldice = 1− 2
∑

[fθ (̃I) ·M]∑
fθ (̃I) +

∑
M

. (4)

The BCE loss is a distribution-based loss over all pixels. It
measures the similarity between two distributions but without

Fig. 2. Our anomaly scoring model adopts the U-Net structure. There
are four downsampling layers, each consisting of two convolutional layers
and a maximum pooling layer. The bottleneck layer is two convolutional
layers. Correspondingly, the upsampling layer consists of two convolutional
layers and a deconvolutional layer. The number of output channels we
have chosen is [32, 64, 128, 256, 512, 256, 128, 64, 32]. The softmax layer
converts pixel-level logits from a final convolutional layer into anomaly
probability values in the range of [0, 1].

considering any spatial information in the score estimation.

Lbce = −
∑

[M·log(fθ (̃I))+(1−M)·log(1−fθ (̃I)]. (5)

In the inference stage, a query image is directly fed into
the network fθ for its anomaly score.

III. EXPERIMENTATION AND DISCUSSIONS

A. Implementation and evaluation details:

In random-shape mask generation, (MinPoints,
MaxPoints), (MinWidth, MaxWidth), and (MinLength,
MaxLength) are set to (8, 32), (4,16), and (8, 24),
respectively. Similar to conventional data augmentation,
our pseudo-outlier images are generated during the training
processing. We set α = 0.5 in the loss function and take
Adam as the optimizer for our anomaly scoring model, with
a learning rate of 1e-4. Our model are trained 10 epoches
with a batch size of 16.

We follow previous studies and use the Area Under
the Receiver Operating Characteristic curve (AUROC) and
Average Precision (AP) as evaluation metrics in both sample
level and pixel level.

B. Experiments on BRATS Brain MRI dataset

BRATS Brain MRI dataset: We follow the convention in
prior arts [4], [17], [7] and construct the anomaly detection
dataset from two public Brain MRI datasets: Human Con-
nectome Project Young Adult (HCP) [10] and Multimodal
Brain Tumor Image Segmentation benchmark (BRATS) 2020
[1]. Concretely, HCP provides 45 T2-weighted brain MRI
voxels collected from healthy patients. For each MRI voxel,
we extract 90 complete central slices. The entire 4050
normal MRI images obtained from the HCP dataset are
used for training. BRATS is a dataset providing pixel-level
tumor segmentation annotation. We extract 80 slices from
each T2-weighted Brain MRI voxel and its corresponding
segmentation ground truth. The 368 T2-weighted Brain MRI
voxels in BRATS result in 29440 images for testing. All
images are resized to 128 × 128 and we apply histogram
equalization to them to eliminate the inter-institute variations
between the two datasets.



TABLE I
EVALUATION RESULTS ON BRATS DATASET

Method Sample-level Pixel-level
AUROC AP AUROC AP

VQVAE [12] 0.66 0.82 0.75 0.22
ceVAE [7] 0.62 0.77 0.69 0.16
FPI [14] 0.70 0.84 0.71 0.32
Ours 0.79 0.86 0.97 0.56

Fig. 3. Anomaly detection examples on BRATS MRIs. The anomalous
regions are annotated with white contours; The red regions indicate signif-
icant abnormalities detected by our method.

Results and discussions: The quantitative results of
anomaly detectio on the BRATS data set are reported in Table
I. VQVAE [12] is an image reconstruction based method and
reported as the state-of-the-art solution. Both ceVAE [7] and
FPI [14] propose synthetic processing of the input data, so we
re-implemented both methods for performance comparison.
Fig. 3 shows several examples of anomaly detection by the
proposed method. The white borders represent abnormality
annotations provided in the BRATS set and red regions
indicate detected abnormal regions with high anomaly scores
by the proposed method.

Fig. 4. Performance comparison with regular shape masking (Circle and
Square) and random shape masking.

We further perform an ablation study on the effectiveness
of shape randomness in pseudo-outlier synthesis. Specifi-
cally, we apply square masking from ceVAE [7], circular
masking from FPI [14], and the proposed random-shape
masking to the proposed solution in Fig. 1. As shown in 4,

TABLE II
EVALUATION RESULTS ON MOOD DATASET

Method Sample-level Pixel-level
AUROC AP AUROC AP

Brain VQVAE [12] 0.97 0.92 0.99 0.81
track Ours 0.97 0.95 0.99 0.91
Abd. VQVAE [12] 0.83 0.73 0.98 0.57
track Ours 0.93 0.87 0.94 0.66

Fig. 5. Anomaly detection examples of the MOOD dataset. Please refer
to Fig. 3 for label details.

the random-shape pseudo-outlier synthesis strategy proposed
in this paper significantly outperforms these regular shapes.

C. Experiments on MOOD dataset

MOOD dataset: We follow the study in [12] and fur-
ther evaluate our method on the Medical out-of-distribution
(MOOD) analysis challenge dataset [19]. The MOOD set
provides 800 normal Brain MRI voxels (256 × 256 × 256)
in the task of brain anomaly detection and 550 normal
abdominal CT voxels (512 × 512 × 512) in the abdominal
track competition. The MOOD challenge provides 4 Brain
MRI voxels and 4 Abdominal CT voxels as well as their
abnormality ground truth for local, open evaluation.

Results and discussions: For the MOOD dataset, previous
work VQVAE [12] has shown excellent performance, so we
take it as our comparison baseline in this experiment. For
a fair comparison, we follow their procedure to prepare the
data and slice the MRI voxels into images. No further pre-
processing is performed. The numerical results on MOOD
images are reported in Table II, where the best performance
values are highlighted. Quantitatively, our method signifi-
cantly outperforms VQVAE [12] at both sample-level and
pixel-level.

IV. CONCLUSIONS

We presented a novel self-supervised learning solu-
tion to anomaly detection. The introduced random-shape
mask generation algorithm synthesized random-shape arti-
ficial outliers, which bridged the gap between irregular-
shape abnormalities in natural MRI images and synthetic
square/rectangular pseudo-anomalies in prior arts. With the
synthetic dataset, we formulated the anomaly detection
problem as a supervised anomaly scoring problem. Our
experimentation demonstrated the superiority of the proposed
methods on public medical imaging datasets.
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