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Editorial on the Research Topic

Robotics, Autonomous Systems and AI for Nonurgent/Nonemergent Healthcare Delivery
During and After the COVID-19 Pandemic

In an emergency, all resources are dedicated to ensuring survival. This was also true of the COVID-19
pandemic, in which, in an effort to keep people safe, research was directed to understanding the virus
better and ensuring vaccines were developed. However, the vulnerability of our health care system
was also exposed when we saw nonurgent and nonemergent cases fall through the cracks while
resources were directed at addressing the emerging health crisis. This special issue aimed to capture
novel research directions and perspectives on technological advances that can be put in place to
support health care: from novel techniques for diagnosing and treating COVID-19 and preventing
spread, to tools and procedures that support other aspects of our health during and after the
pandemic. A total of 33 articles by 180 leading authors were accepted from around the world,
demonstrating a significant effort from the robotics and artificial intelligence (AI) communities to
help reduce the impact of the pandemic on our overall health. The articles have been divided into
general themes, as described below.

PREVENTION OF COMMUNITY SPREAD

The first line of defense in a pandemic is to prevent the spread of the virus within the community, and
a large component of prevention is proper cleaning and disinfection. Towards this end, the paper by
Nasirian et al. proposes an end-to-end coverage path planning (CPP) method using a novel graph
representation of the environment that can generate a continuous and uninterrupted collision-free
path for an autonomous mobile robot. The proposed method is able to generate an optimal path that
can reduce the disinfection task completion time and cost through shorter travel distances and a
smaller number of turns than other approaches.

Complementary to disinfection are other ways to prevent the spread of the virus. The work by
Michelin et al. aimed to prevent people from touching their faces. A convolutional neural network (CNN)
algorithm using data from an inertial measurement unit (IMU) at the wrist was able to predict when a
person was about to touch their face. The system then provided sensory feedback in various forms, with
vibrotactile feedback providing the fastest response, the best success rate, and the best user experience.
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Vicente et al. examine robotics and automation as an approach to
reducing the transmissibility of COVID-19 in healthcare
environments. Through modeling of temporal and spatial factors
in geriatric units, they present a view into how robotic integration at
key points in the care environment can have a large potential impact
on the spread of pathogens in these units. To demonstrate the
breadth of potential applications for robots to prevent viral spread, a
review paper by Onaizah et al. evaluated the needs and challenges of
designing robotic flexible endoscopes during a pandemic. Bymaking
a few minor adjustments to existing platforms, or by considering
platforms in development, authors argue that significant benefits can
be gained during infection control scenarios.

DIAGNOSTIC TECHNOLOGIES

Once the virus has spread, the second line of defense is to minimize
exposure of healthy individuals by identifying and isolating those who
are infected. For this purpose, a significant effort has been dedicated
by the research community to identify better ways of diagnosing
COVID-19 and the secondary effects that result from it. Given the
potential health hazards during traditional swab sampling, a
sensorized, self-administered oral swab is designed and fabricated
by Kumar et al. using a closed-loop kinematic chain and a kirigami-
based deployable telescopic tubular structure. Compared to
traditional swabbing procedures and robot-assisted swab system,
the proposed oral swab is simpler, less resource-intensive, and
more convenient for self-administration. Also for swab sampling,
Li et al. propose a flexible transoral robot in a teleoperated
configuration and with a flexible mechanism. The proposed
transoral robot realizes dexterous sampling and a tongue
depressor is used to prevent the tongue’s interference during the
sampling. In an experiment with a human phantom, the usability of
the robot is demonstrated. On the imaging side, the article by Deng
and Li provides a comprehensive review of published work related to
the use of AI and Deep Learning methods for segmentation,
detection, diagnosis, and severity assessment for COVID-19 from
X-RAY and computed tomography (CT) chest images. Ninety-six
published studies are reviewed, with a discussion of future directions
and thoughts on data fusion strategies for integrating multi-modality
image data for COVID-19 examination. In order to better allocate
clinical resources through early diagnosis, Heidarian et al. propose the
use of capsule-network-based deep learning algorithms for
interpreting CT data with increased spatial acuity, thanks in part
to their use of capsule networks in place of more standard
convolutional architectures. Their COVID-FACT framework was
shown to require less manual intervention by domain experts while
achieving accuracy, sensitivity, and specificity suitable for COVID-19
diagnosis. Similarly, in Tse et al., the authors survey the use of CT and
its enhancements through methods from the field of artificial
intelligence as an approach to COVID-19 diagnosis. They suggest
further ways that the automation of CT through advanced computing
technology can help combine with other existing approaches to
COVID-19 assessment and mitigate risk factors in the supply and
deployment of other gold-standard diagnostic approaches. Finally,
McDermott et al. examine how lung ultrasound (LUS) is being used
to diagnose COVID-19 and note difficulties in interpreting LUS by

non-specialized operators. The authors survey algorithms that could
potentially be used to automate the task of disease detection, severity
classification, and patient triage. A comprehensive and critical review
of image processing for lung ultrasound in the context of COVID-19
screening and diagnosis is presented.

COVID-19 PATIENT CARE

Once people are infected with the COVID-19 virus, treatment
focuses on symptom management while the body heals; however,
inmany cases, patients have become severely ill with respiratory tract
infections. When the respiratory illness is severe, some COVID-19
patients have required mechanical ventilation to support respiration
while healing. Three papers in this special issue were related to the
use of mechanical respirators. Mitros et al. presented the design of a
7-DOF robotic bronchoscope that allows accurate sampling of the
distal lung in critical care mechanically ventilated patients, in order
to improve diagnosis and treatment of lung disease. A prototype of a
continuum robot is presented, as well as its mathematical model
demonstrating high accuracy. In another paper by Xiao et al. a
flexible trans-oral mini-robotic system incorporating a robotic
needling technology is proposed to accurately access the cervical
trachea in mechanically ventilated patients. Using an “inside-out”
approach to the initial trachea puncture, the proposed system can
cause fewer complications on the patient’s neck and trachea. Finally,
considering that the large ventilators that currently exist in intensive
care units (ICU) cannot be controlled remotely, even for simple
setting adjustments, the work by Vagvolgyi et al. reports on the
development of a simple, low-cost telerobotic system to control
ventilators using a small Cartesian robot. Engineering system tests
and usability tests are reported as successful, and operation time was
reduced from 271 to 109 s in a preliminary evaluation.

Other areas of patient care could also be supported by robotic
technologies, although additional research is needed. Sierra Marín
et al. present a systematic analysis of the perception of healthcare
professionals regarding the benefits and uses of robotic systems at
various levels in medicine. The paper discusses the design of a
perception questionnaire to assess the acceptance and required
education for using robots at scale, in order to fight the COVID-
19 pandemic. The paper reports on the results obtained from a survey
of 41 healthcare professionals, exposing a low level of knowledge
about robots and their potential benefits. In addition, the survey
highlights that the concern of “being replaced by robots” remains in
the medical community. However, overall enthusiasm was reported
regarding the use of robots for a crisis such as a pandemic.

TRAINING OF MEDICAL PROFESSIONALS

A large impact of the pandemic was felt in areas of healthcare that
were not directly related to COVID-19. For example, teaching
and education in healthcare was another area that suffered
significantly as a result of closures and contact restrictions. For
example, Motaharifar et al. focus on the use of virtual reality
(VR), AI, and haptics for enhancing medical training during
pandemics such as COVID-19 while reducing physical contact.
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This paper specifically focuses on how such technologies can help
novice surgeons receive the needed medical training without the
need for in-person attendance, using VR, AI, and haptics. It also
provides a comprehensive survey describing recent technologies
that can be used for reducing physical contact in medical
institutes while keeping the quality of training at a high level.
Similarly, a deep learning solution for encoding the movement
behavior of expert surgeons to be used for rendering is presented
in Fekri et al. The work focuses on the development of
technologies for training novice residents in the orthopedic
surgical drilling procedure, and thus augmenting their
educational system through the development of a skill transfer
system. The proposed system uses virtual fixtures and haptic
guidance for novice surgeons in order to provide timely training
for clinicians whose education may be affected by COVID-19.
Cheng et al. identify serious challenges to dentistry education and
advanced training due to limitations to in-person learning as a
result of public health protective measures. As a possible solution,
they introduce DenTeach—a remote dental education solution in
portable suitcase format that allows dentistry schools to move
practical training content to a remote delivery format. They
illustrate the feasibility of DenTeach through case study
analysis and key performance indicator assessment of hands-
on learner interactions with their training device. Also related to
dentistry education, Maddahi et al. explore ethical considerations
in the use of simulation and robotics in healthcare education. The
authors illustrate the principles of “roboethics” with a case study
in self-guided dentistry education using such technologies. They
examine challenges related to cognitive, affective, and
psychomotor learning.

NEUROMUSCULAR REHABILITATION

Regarding medical care, challenges created by the pandemic were
particularly noticeable in neurorehabilitation, as the interruption
of treatment resulted in critical problems, as highlighted by
Lambercy et al. This paper presents the limitations in
neurorehabilitation that occurred when the COVID-19
pandemic started and rehabilitation moved to a home setting,
as well as some key directions to explore for providing
neurorehabilitation from a distance. These include
improvements in the usability of available technologies, the
development of scalable rehabilitation technologies to account
for the increasing number of patients, and clinically relevant and
transparent AI to increase patients’ trust in the technologies.
These ideas are supported by a review by Atashzar et al. on the
utility of intelligent robotic solutions for isolated adults with
neuro-musculoskeletal conditions. The authors argue that smart
robotics and wearable technology can play an important role in
the timely delivery of assistance and support to individuals when
it is most needed in their care pathway. They further support the
perspective that such approaches allow physical distancing and
other protective measures suitable for use during an ongoing
public health crisis, providing a sound argument for the use of
automation in the care of more isolated end users. Similarly, a
review paper by Manjunatha et al. focuses on in-home

rehabilitation robotics as a medium to deliver the needed
therapy during COVID-19, addressing an increasing concern
related to the need for rehabilitation therapy delivery during the
pandemic. Specifically, the paper focuses on the overloading of
the rehabilitation facilities by post-intensive-care patients (after
COVID-19 infection) who have developed neurological and
physical symptoms and require a wide range of rehabilitative
care. This paper conducts a literature review of various
telerehabilitation frameworks and robotic solutions that can be
used in a hybrid model for providing rehabilitation and
assessment. The paper also provides insight regarding the
social support and engagement of patients to further improve
the benefits of telerehabilitation systems. Finally, a perspective
article by Ahmed provides a brief review and the author’s
opinion—as a neurologist—on how several routine protocols
in healthcare may be improved using robotics and AI. The
author indicates that such technologies can be merged with
our home environments and various levels of healthcare
delivery (from ambulance services to hospitalization and
discharge) with a specific focus on how such technologies
could potentially help the healthcare system during a health
crisis such as the COVID-19 pandemic.

Various papers in this issue presented specific tools to aid
neurorehabilitation. For example, arguing that early
neurorehabilitation following a stroke cannot be delayed by
the increased safety precautions resulting from the pandemic,
Akbari et al. present a multi-agent framework for the
development of intelligent rehabilitation systems for home use.
They also provide a comprehensive review of existing devices that
could be integrated into this framework for upper and lower-limb
rehabilitation. The existing technologies for delivering
mechanical tactile feedback (i.e., vibration, stretch, pressure,
and mid-air stimulations) and those that can be integrated
into home-based telerehabilitation practice are the special
focus in a paper by Handelzalts et al. due to their low cost,
compact size, and light weight. The advantages, opportunities,
long-term challenges, and gaps with regard to practical
implementations are discussed. Neurorehabilitation of gait
using a social robot was presented in the work of Céspedes
et al. In this study, the social robot monitored the patient’s
posture and provided motivation and feedback, while
quantitative and qualitative metrics were collected. The results
show that significant progress was possible, as reflected in
improved spinal posture, while the technology allowed
physical distancing from caregivers.

Motivated by raising concerns regarding the negative effect of
COVID-19 on immobilization and lack of access to physical
therapy due to home confinements, isolation, or infections, Akbas
and Mummolo focus on balance control as an indicator of
corresponding movement disorders. In this work, a new
computational framework is proposed, which can be used for
the assessment of balance control in the homes of the users and
patients. The authors discussed the application of their technique
for home-care rehabilitation and assessment of balance exercises.
In a case report by Carriere et al., the authors examine the
opportunities that machine learning and machine intelligence
methods, specifically natural language processing, present for
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delivering timely and appropriate acute and chronic rehabilitative
care and assessment during an ongoing pandemic. As a concrete
example, they discuss the deployment of a telehealth service
called the Rehabilitation Advice Line (RAL) to address the
immediate rehabilitation needs of patients. They then
comment on how artificial intelligence and machine learning
can be used to both enhance services like RAL, and leverage the
data provided by such systems.

TELEMEDICINE AND REMOTE
INTERACTIONS

Other important methods and tools have been proposed to enable
remote interactions, particularly to reduce the risk of virus
transmission while maintaining patient care. Wazir et al. present a
proof of concept for an emergency, remote monitoring and control
system that can be used to retrofit dialysis machines with telerobotic
manipulators for safely supporting the treatment of patients with
acute kidney disease. The approach allows a human caregiver to
remotely control a dialysis session using existing dialysis equipment,
thus reducing the use of personal protective equipment (PPE) while
minimizing the risk of COVID-19 exposure for healthcare staff and
their patients. Grasse et al. investigate the use of a delivery robot for
reducing disease exposure to high-risk residents and staff within a
care facility. The system uses a voice interface to avoid hands-on
interactions and investigates the effects of face masks on speech
recognition quality and robustness. Meinhold et al. highlight the
accelerated rate of interest in telemedicine and telehealth and focus on
designing new technology, i.e., smart tendon hammer, which can be
used to remotely conduct deep tendon reflex exams, which is a critical
part of routing neurological assessments. The system is also able to
differentiate correct and incorrect tapping locations with high
accuracy, which is imperative as feedback for the user to provide
a high-quality assessment. The proposed technology can allow
novices to be also able to conduct the exam remotely, which can
be critically useful during shutdowns of medical facilities and
infrastructure due to pandemics such as COVID-19. Mehrdad
et al. provide a perspective into the role that networked wearable
technologies can play in remotely viewing and acting on the
unfolding symptoms and outcomes of individuals during a
continuing pandemic. They reinforce in their survey the idea that
a networked wearable device (Internet of Medical Things—IoMT)
can allow the acquisition of critical data for advancedmonitoring and
predictive disease mitigation, potentially enhancing policy making by
governments and global health regions. Finally, Work by Feizi et al.
showcases the potential of robotics and artificial intelligence for
teleoperation in surgical interventions and training during ongoing
COVID-19-related public healthmeasures. They specifically examine
intelligent robotics in the areas of robotics-assisted surgery, tele-
examination pre- and post-surgery, and surgical training. As one
important contribution of their perspective article, they illustrate the
role that smart teleoperation can play in reducing the potential for
virus transmission in a surgical setting.

Of important consideration during these trying times has been
the need for a more human approach to care delivery. Lima et al.
present the design, development, and testing of a multimodal

robotic framework for a more affective human-robot interaction
to support dementia patients using telemedicine. A hybrid face
robot design that combines digital facial expressions with static
3D facial features is reported, and a contextual virtual assistant is
introduced that enables the robot to adapt its facial expressions to
the user’s speech in real time.

CONCLUSION

Based on the contributions included in this special issue, a
comprehensive picture has emerged on the state of the art of
robotics and AI to address healthcare needs resulting from the
pandemic, highlighting new and impactful directions that may be
explored in future work. These research directions have aimed to
address several COVID-19 related issues, including techniques for
preventing the spread of the virus via cleaning, disinfection and
shielding; diagnostic technologies that include swabbing and new
image processing techniques; andmethods for improvingmechanical
ventilation of critically ill patients. Research has also aimed to address
issues not directly related to COVID-19, but that resulted from
closures and long periods of quarantine required throughout the
pandemic. These include technologies for teaching medical skills in
various disciplines, new advances that aim to address rehabilitation of
neuromuscular disorders, and other innovations in telemedicine.
Although new technologies and techniques have been developed,
further research and development is needed in order to fully exploit
the benefits of the field for supporting the healthcare system now and
in the years to come.
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COVID-19 can induce severe respiratory problems that need prolonged mechanical

ventilation in the intensive care unit. While Open Tracheostomy (OT) is the preferred

technique due to the excellent visualization of the surgical field and structures,

Percutaneous Tracheostomy (PT) has proven to be a feasible minimally invasive

alternative. However, PT’s limitation relates to the inability to precisely enter the cervical

trachea at the exact spot since the puncture is often performed based on crude

estimation from anatomical laryngeal surface landmarks. Besides, there is no absolute

control of the trajectory and force required to make the percutaneous puncture into

the trachea, resulting in inadvertent injury to the cricoid ring, cervical esophagus, and

vessels in the neck. Therefore, we hypothesize that a flexible mini-robotic system,

incorporating the robotic needling technology, can overcome these challenges by

allowing the trans-oral robotic instrument of the cervical trachea. This approach

promises to improve current PT technology by making the initial trachea puncture

from an “inside-out” approach, rather than an “outside-in” manner, fraught with several

technical uncertainties.

Keywords: tracheostomy, minimally invasive surgery, flexible mini-robotic system, robotic needling technology,

mechanical ventilation

1. INTRODUCTION

Tracheostomy, which creates an external opening to the trachea from the neck, is themost common
surgical procedure performed in patients with respiratory diseases (e.g., COVID-19) needing
prolonged mechanical ventilation (Hur et al., 2020; Mecham et al., 2020; Vargas et al., 2020). Other
patients requiring this procedure frequently suffer from blockages in the upper airway, which may
be due to the following reasons: subglottic stenosis, neck fractures, and presence of tumors in the
head and neck (Gill-Schuster, 2016; Mieth et al., 2016). Other tracheostomy applications include
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helping comatose patients expel secretions from their upper
respiratory tract or, in the long term, for patients with severe
chronic conditions, such as obstructive sleep apnea (Fray et al.,
2018). Currently, there are two methods of tracheostomy: Open
Tracheostomy (OT) and Percutaneous Tracheostomy (PT).

OT is also called a surgical tracheostomy, which involves
making a horizontal or vertical incision approximately half-way
between the cricoid cartilage and sternal notch. Dissection is
then carried down through the subcutaneous tissues and the
platysma muscles, creating a window between the second or
third tracheal ring to allow the insertion of a tracheostomy tube
for ventilation (Sanji et al., 2017; Kidane and Pierre, 2018). A
shoulder roll may also position the patient with an optimal
neck extension. Although OT allows excellent visualization of
the surgical field and structures, it results in a risk of infection
and bleeding, making it an unpopular choice among operators.
In surgical tracheostomy, the incidence of local hemorrhage or
stomal infection was around 37% (Cipriano et al., 2015; Hoseini
et al., 2018).

While OT is still considered the gold standard, PT has
proven to be a feasible minimally invasive alternative, gaining
attention in recent years (Kannan et al., 2017; Rashid and Islam,
2017). PT remains an attractive option because of the ease
of the procedure in carefully selected patients. It also avoids
the transfer of critically ill patients to the operating room,
implying stresses on the heavily utilized ICU setting resources.
PT typically makes a small incision through which a guiding wire
is advanced under direct bronchoscopic visualization, resulting
in lesser bleeding and infection. The incision is then dilated
using dilators until it is wide enough to fit the tracheostomy tube
(Sandor and Shapiro, 2016).

However, there are risks involved, and no consensus on
which techniques (OT or PT) minimizes complications in
critically ill patients (Johnson-Obaseki et al., 2016). Although
PT’s complication rate is lower than that of OT, PT is more likely
to cause serious and permanent complications (Guinot et al.,
2012; Simon et al., 2013). It is hard to locate the drilling position
as operators can only estimate from anatomical laryngeal surface
landmarks. Only 9 out of 20 of the catheters entered the trachea
in the correct space between the first and second cartilage rings
with external punctures done blindly. One-third of 20 catheters
punctured the thyroid, based on a study conducted on cadavers
(Dexter, 1995).

Percutaneous procedures posed significant clinical and
technical challenges due to the confined workspace, complex
surrounding anatomical structures, constrained access to the
surgical site, and incomplete exposure and visualization of the
surgical field. As a result, complications, such as perforation of
the esophagus, considerable vessel injury, the cricoid fracture
may be encountered in PT, whereas these complications are not
often in OT.

There remains an unmet need to develop novel percutaneous
procedures that improve safety outcomes and allows better
visualization for the primary puncture, though PTs are routine
procedures. Current challenges associated with the use of PT can
be summarized as below.

(1). A technician manually drives the introductory needle
through tissue and cartilage. By manually driving the
needle through tissue and cartilage, the technician risks
puncturing through the trachea and esophagus in case
of excessive force from the needle. This excessive force
may lead to inadvertent perforation of the posterior
trachea wall, and even the cervical esophagus, resulting in
pneumomediastinum (Khandelwal et al., 2017).

(2). No guiding of aligning mechanism as the needle actuates
through tissue. The absence of a guiding aligning
mechanismmay result in blood vessels being damaged and
causing fatal bleeding. Typically, the source of bleeding
is from the anterior jugular venous system, which, if
encountered, is ligated and divided. Small venous branches
can be a continued source of intraoperative and post-
operative bleeding (Pilarczyk et al., 2016; Kruit et al., 2018;
Sasane et al., 2020).

Besides, intubation and tracheotomy will produce an aerosol in
treating pneumonia, which poses a great cross-infection risk to
the medical staff.

The da Vinci surgical robot’s success has proved that robotic-
assisted minimally invasive surgery has great advantages over
traditional surgery, such as less trauma, fewer complications,
reduced hospital time, and improved surgical outcomes (Li et al.,
2020). During the last decade, many specialized surgery robots
with different functions have been developed. However, studies
on robot-assisted intubation and tracheotomy are rare (Gu et al.,
2019; Xiao et al., 2020). Hemmerling et al. (2012) presented the
first human testing of a robotic intubation system called the
Kepler intubation system for oral tracheal intubation. Do et al.
(2016) proposed a mechatronic tracheostomy tube for automated
tracheal suctioning.Wang et al. (2018) developed a remote robot-
assisted intubation system to improve the success rate of the
pre-hospital intubation and rescue model. Most of the studies
on the tracheotomy system localize the position between the
endotracheal tube and the carina. To the best of our knowledge,
there is no tracheotomy robot reported in the literature.

To improve the current PT procedures and to reduce the
infection risk of the medical staff in infectious disease unit,
we proposed a flexible mini-robotic system incorporating a
robotic needling technology, thereby allowing precise access to
the cervical trachea. By creating the first puncture using an
inside out technique, we believed the PT’s current challenges
could be potentially addressed. The proposed flexible mini-
robotic system will provide new capabilities in the following
areas: accurate identification of the proposed trachea puncture,
controlled force to the introductory drill, and precision robotic
needling puncturing technology as it actuates through tissue
into the neck. No device is currently available on the market
for performing internal-to-external (i.e., inside-out) punctures
through multiple layers of tissue and cartilage. Based on our
evaluation, there is presently no development of similar trans-
oral tracheotomy puncture systems. This method could provide
the basis for other percutaneous, for example, placement of
suprapubic catheters and nephrectomies and cholangiostomies.
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2. MATERIALS AND METHODS

Both endotracheal intubation and tracheostomy are used to
improve respiratory function and facilitate ventilation support
treatment. In endotracheal intubation, a flexible plastic tube
is placed into the trachea through the patient’s mouth. In
tracheostomy, an opening is created on the patient’s neck to place
a curved tube.

By designing a robotic system that drills the hole from within
the trachea and outwards, operators can see the drilling position
using a camera. This system can cause fewer complications on
the patient’s neck and tracheae, such as excessive bleeding and
the esophagus’s possible damage. The proposed procedure is
a combination of the endotracheal intubation and PT, which
improves the current PT.

The size of the endotracheal tube and tracheostomy tube
varies with age and gender. The commonly used measures for
adults are listed in Table 1. The length from mouth to the
trachea is about 21 and 23 cm long for female adults and male

TABLE 1 | Size of the endotracheal tube and tracheostomy tube.

Instrument Diameter (female/male mm) Length (cm)

Endotracheal tube 7.5/8.0 21–23

Tracheostomy tube 10/11 8

adults, respectively (Varshney et al., 2011). The trachea’s average
diameter for obese and non-obese adults is ∼2.1 and 2 cm,
respectively. The puncture should be performed between the
first and second or between the third and fourth tracheal rings
(Al-Ansari and Hijazi, 2006; Lerner and Yarmus, 2018). These
parameters provide a reference for our design.

2.1. Design of the Flexible Robotic
Needling System
A compact and miniature mechanism with variable curvature
should be designed to deploy the flexible drill through the mouth
to the trachea. The mechanism based on the traditional joint is
composed of too many parts, and the rigid structure is not the
first choice for safety consideration. Compliant mechanisms are
usually monolithic, which transmit motion and force through
the elastic deformation of the flexures (Xiao and Li, 2016; Xiao
et al., 2017). Combining the concept of compliant mechanism
with soft robot and continuum robot, we designed a flexible tube.
A flexible tube is designed. To realize the tans-oral tracheostomy
puncture, a flexible robotic needling system is proposed, as shown
in Figure 1. The flexible robotic needling system consists of a
linear displacement modular, a flexible tube, and an end tip.

The flexible tube has one bending degree of freedom (DoF);
it has an outer diameter of 14.8 mm, length of 180 mm, and 2
mm thickness. The uniformly arranged notches are adopted to
increase the tube’s compliance to be blended smoothly. Besides,
the notches can also let air into the trachea. At the end of the

FIGURE 1 | 3D model of the flexible robotic needling system.
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FIGURE 2 | FEA analysis of the flexible tube. (A) Strain results, (B) Displacement results.

tube, there is a rounded tip. The tip has five channels: flexible
drill channel, camera channel, and fiber optic/tendon channel,
respectively. The rests located on both sides are stabilization
balloon channels, which decrease the vibration induced by the
flexible drill. The tip’s end surface is parallel to the centerline of
the flexible tube so that the flexible drill can drill out vertically to
the trachea. To control the bending of the flexible tube, tendon-
driven is adopted. One end of the tendon is connected to the
round tip, and another end is connected with the slider of the
linear displacement modular.

FEA verification is carried out by using the Solidworks
Simulation add-ins to validate the flexible tube’s compliance. The
left side of the flexible tube is fixed, and a 1 N force is applied
at the right upper side of the flexible tube. The result is shown
in Figure 2, the strain distribution is illustrated in Figure 2A, it
can be observed that the strainmainly occurs around the notches.
This is due to the local stretch (bottom layer) and compression
(upper layer) during the bending. The displacement of the
flexible tube is shown in Figure 2B. The largest displacement is
5.033 mm. The compliance can be calculated as 5.033 mm/N and
used as a reference for choosing the tendon.

A 3D printed prototype of the flexible robotic needling
system is developed, as shown in Figure 3. NinjaFlex (NinjaTek,
Manheim, PA, USA) is chosen as the flexible tube material
due to its superior flexibility and longevity compared to other
non-polyurethane materials. The end tip is 3D printed with 3D
printed PLA (Poly Lactic Acid).

The flexible drill is a sharped flexible shaft (Hagitec Co Ltd.,
Tokyo, Japan). The flexible shaft is made of hard steel wires
adhesively coiling incrementally thicker steel around a central

rod in alternating directions. It can transmit adequate torque to
the drill tip. The flexible shaft’s helix coils can provide thrust force
like a screw when it is rotating.

Fiber optic/tendon (0.75 mm diameter) is introduced to bend
the tube and illuminate the visual field. The flexible drill, fiber
optic/tendon, and air supply silicone tubes are housed in the
flexible tube’s cavum. The ends are connected to a DC motor, the
linear displacement modular, and a DC mini electric air pump.

2.2. Overview of the Robotic-Assisted
Trans-oral Tracheostomy System
As shown in Figure 4, a prototype of the flexible mini-
robotic tracheostomy system, is developed. The proposed system
includes the following parts: a flexible robotic needling system,
a stepper motor actuated linear displacement modules, a motion
and control unit, DC power supply, and a manual test stand to
support them. The flexible robotic needling system is fixed on the
linear displacement module platform to pass through the curved
oral cavity to the trachea. The working states of the system are
demonstrated in Figures 4B,C.

The microcontroller used for our prototype is Arduino Due,
which will be responsible for controlling the linear displacement
module, two DC motors, and the air pump in controlling
the vertical linear displacement of the prototype, actuating the
tendon to achieve bending of the 3D printed notched tube,
the drilling of the flexible shaft, and inflating the stabilization
balloon, respectively.

The control diagram for the prototype, shown in Figure 5,
is made up of relatively independent modules, which primarily
guarantees the robustness and convenience of use. It can work
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FIGURE 3 | Prototype of the flexible robotic needling system.

FIGURE 4 | Overview of the robotic system. (A) System overview, (B) Working state without stabilization balloon, (C) Working state with stabilization balloon.

in a passive or automated driven way under compliance control.
Human visual feedback enables the closed-loop control of 3D
printed notched tubes in adjusting the flexible drilling shaft

position and orientation. The operator can control the puncture
speed. The fiber optic/tendon displacement is real-time recorded
by the linear displacement transducer (Teed KTM-V2-25 mm,
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FIGURE 5 | The control diagram of the prototype.

Dongguan Jingbiao Electronic Technology Co. Ltd, China) it will
not exceed the limit.

Our proposed design is to incorporate the following novel
solutions: (1) a flexible variable curvature tube with a flexible
drill; (2) an illumination source and a tendon mechanism to the
point of interest; and (3) stability in drilling. The illumination
incorporates an optic fiber, which also acts as a tendon in our
design. This illumination allowed us to pinpoint precisely the
drilling location as the optic fiber near the point of drilling. The
balloon stent mechanism is to provide stability when drilling. The
exact amount of air can be controlled, and the balloon’s pressure
can be controlled. Therefore, the amount of force exerted in
the trachea wall can be controlled to ensure the least amount
of discomfort.

3. RESULTS

3.1. Optic Fiber/Tendon Tensile Test
Tomeasure the ultimate tensile strength of the fiber optic/tendon
of the prototype, the monofilament/thread setup, shown in
Figure 6A, was used. In this test, the optic fiber was placed over
the center of the paper frame’s slot with one end temporarily fixed
with adhesive tape. Next, the same procedure was done to the
other end of the optic fiber. A drop of superglue was then applied
at both ends of the slots, which ensured that the optical fiber
bonds firmly with the paper frame. The optic fiber, together with
the frame, was then mounted onto the Instron machine. Before
any load was applied, both sides of the paper frame were cut or
burnt atmid-gauge (dotted line) with the paper frame unstrained.
As shown in Figure 6B, the maximum tensile load the optic
fiber could withstand, the tensile stress at full load experienced
by the optical fiber, and the tensile strain at maximum load

experienced by the optical fiber were 30.85 N, 120.88 MPa, and
0.05, respectively. According to the FEA analysis, the compliance
of the flexible tube is 5.033 mm/N. A displacement of 50.33
mm can be achieved when 10 N force is applied at the end tip.
Therefore, the fiber optic used was able to withstand the tension
required to produce the prototype’s bending motion.

3.2. Bending Without Load and With Load
The prototype was subject to bending without load, starting
from a fully extended bending angle/reference line, as shown in
Figure 7A. The fiber/optic tendon was controlled randomly in
an increasing fashion to see how it corresponded to the bending
angle. The slider is managed to pull the tendon to bend the
flexible tube. The linear displacement transducer records the
displacement of the slider. The displacement of the slide starts
from 0 to 20 mm with a 2 mm interval. A camera is positioned
perpendicularly to the experimental setup to capture the status of
the flexible tube. The images were then uploaded into ImageJ, an
open-source image processing program, and the bending angles
were measured. The displacements and bending angles were
plotted by MATLAB (MATLAB, The Mathworks Inc., Natick,
MA, USA). The prototype exhibited an approximately linear
relationship between the distance the tendon moved and the
bending angle, as shown in Figure 7B. According to this result,
we can obtain a certain bending angle by setting the tendon’s
movement. Next, the prototype was subjected to bending under
loads, from 0 to 60 g, starting from a fully extended bending
angle/reference line, as shown in Figure 7C. The loads were
loaded at the tip and added in intervals of 10 g. Like the
previous experiments, images were captured, analyzed by the
image processor, and plotted on a graph. As shown in Figure 7D,
it was observed that as the weights increase, the bending angle
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FIGURE 6 | Optic fiber tensile test. (A) Monofilament/thread tensile test setup. (B) Optic fiber tensile test graph.

FIGURE 7 | Bending tests. (A) Bending angle measurement without loading, (B) Bending angle graph without loading, (C) Bending angle measurement under

loading, (D) Bending angle graph under loading.

decreases. The relationship between the bending angle and the
number of weights loaded at the tip highlights the importance
of having the balloon stabilization method incorporated in our
prototype. The drilling will bring counterforce on the tip.

3.3. Balloon Stability Test
The experiment in Figure 8 involves inserting the prototype
into a 2.2 cm diameter 20 cm long PVC tube and measuring

the 3-dimensional forces produced by the balloon’s expansion
without drilling and during drilling. A tiny slot was made at the
bottom of the transparent PVC tube to fit a 3D force sensor
(Resolution: 2.5 mN, OMD-10-SE-10N, Optoforce Ltd.) and
to capture the maximum forces exerted by the balloon during
inflation. The maximum forces captured in the X-axis, Y-axis,
and Z-axis direction during drilling, shown in Figure 8B, were
2.189, 3.916, and 1.496 N, respectively. There was a gradual
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FIGURE 8 | Balloon stability test. (A) Balloon expansion force with drilling measurement method, (B) Balloon expansion force graph.

FIGURE 9 | Phantom tests. (A) Drilling through porcine lean meat, (B) Drilling through porcine lion, (C) Drilling through porcine smoked ear cartilage, (D) Drilling

through porcine raw ear cartilage.

decline in the balloon’s forces along time in the graphs, which
is due to loose sealing. However, the fluctuations of the measured
expansion forces during the drilling indicate the counterforce’s
existence. Therefore, a balloon to stabilize the drilling is necessary
since it can produce a more accurate drilling process.

3.4. Phantom Tests
The prototype can drill through various porcine parts to simulate
drilling through the human trachea using the same setup as
the previous experiment. The parts were porcine loin and lean
meat, shown in Figures 9A,B, respectively. Further validation
experiments were on the porcine ear cartilage. The human ear’s
cartilage shares similar cartilage to the pig ear as three parts of
the middle ear cavity in humans and pigs are broadly similar. Our

prototype can drill through porcine ear cartilage that was smoked
and raw, shown in Figures 9C,D, respectively. The prototype
was able to pierce through the porcine loin, lean meat, and ear
cartilage successfully. The porcine loin & lean meat was the least
sturdy, followed by the smoked ear cartilage and raw ear cartilage.
Our technology was able to drill through the ear cartilage, which
bears a close resemblance to the human trachea.

4. DISCUSSION

We had tested our prototype to satisfy the basic requirements
and mechanics of performing a trans-oral tracheostomy. The
prototype will potentially decrease the time and errors of novice
operators in reaching the target anatomical structures. However,
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as a robotic medical system, some areas could be further
optimized and improved. Currently, the control relies on human
visual feedback. In the next prototype, closed-loop control of
our prototype will be incorporated. Besides, shape and tip-tissue
contact force sensing will be introduced, as this will enable us
to introduce haptic feedback to the position, and orientate the
needle, reducing surgical risks.

The existing air supply tubes could allow the different
air entering the balloon, thus allowing our prototype to suit
the patients’ various applications and anatomical structures. A
peristaltic pump could enable the air to inflate and deflate
the balloon in a controlled manner and modulate the airflow.
Besides, there is no oxygen supply channel in the current
prototype, a channel to supply oxygen to the patient during the
procedure will be added.

The precision of skin entry from the inside-out approach will
be validated in comparative phantom and cadaver experiments.
The performance of the prototype performance against
conventional PT and OT will be evaluated. We plan to explore
imaging techniques, such as ultrasound (US) and computed
tomography (CT) imaging in our prototype. Additionally, we
will also incorporate needle navigation and trajectory planning

techniques into our prototype. These techniques are typically
used with image guidance technologies to improve accuracy and

efficiency and help preoperative planning and intraoperative
planning procedures.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

HR and CL conceived the project ideas and supervised the
project. XX and HP established the experimental hardware setup
and recorded the experimental results. MM, HR, CL, and XX
were involved in the discussion and manuscript revisions. All
authors carried out the experimental validations in the hospital
setups and co-wrote the manuscript.

FUNDING

This work was supported by the National Key Research and
Development Program, The Ministry of Science and Technology
(MOST) of China (No. 2018YFB1307703), NMRC Bedside &
Bench under grant R-397-000-245-511 awarded to HR, and
NHIC I-to-develop Grant awarded to CL and HR.

REFERENCES

Al-Ansari, M. A., and Hijazi, M. H. (2006). Clinical review: percutaneous

dilatational tracheostomy. Crit. Care 10, 202–202. doi: 10.1186/cc3900

Cipriano, A., Mao, M. L., Hon, H. H., Vazquez, D., Stawicki, S. P., Sharpe,

R. P., et al. (2015). An overview of complications associated with open

and percutaneous tracheostomy procedures. Int. J. Crit. Illness Injury Sci. 5,

179–188. doi: 10.4103/2229-5151.164994

Dexter, T. (1995). A cadaver study appraising accuracy of blind

placement of percutaneous tracheostomy. Anaesthesia 67, 863–864.

doi: 10.1111/j.1365-2044.1995.tb05852.x

Do, T. N., Seah, T. E. T., and Phee, S. J. (2016). Design and control of a mechatronic

tracheostomy tube for automated tracheal suctioning. IEEE Trans. Biomed. Eng.

63, 1229–1237. doi: 10.1109/TBME.2015.2491327

Fray, S., Biello, A., Kwan, J., Kram, Y. A., Lu, K., and Camacho, M. (2018).

Tracheostomy for paediatric obstructive sleep apnoea: a systematic review. J.

Laryngol. Otol. 132, 680–684. doi: 10.1017/S0022215118001160

Gill-Schuster, D. (2016). Airway management–tracheotomy revisited. Anasthesiol.

Intensiv. Notfallmed. Schmerzther. 51, 264–272. doi: 10.1055/s-0041-103154

Gu, X., Li, C., Xiao, X., Lim, C. M., and Ren, H. (2019). A compliant transoral

surgical robotic system based on a parallel flexible mechanism. Ann. Biomed.

Eng. 47, 1329–1344. doi: 10.1007/s10439-019-02241-0

Guinot, P.-G., Zogheib, E., Petiot, S., Marienne, J.-P., Guerin, A.-M., Monet, P.,

et al. (2012). Ultrasound-guided percutaneous tracheostomy in critically ill

obese patients. Crit. Care 16, 1–8. doi: 10.1186/cc11233

Hemmerling, T. M., Taddei, R., Wehbe, M., Zaouter, C., Cyr, S., and Morse, J.

(2012). First robotic tracheal intubations in humans using the kepler intubation

system. Br. J. Anaesth. 108, 1011–1016. doi: 10.1093/bja/aes034

Hoseini, F., Zarankesh, S. M. Z., Alijanpour, E., and Gerdrodbari, M. G. (2018).

Tracheostomy: complications and causes of complications. Asian J. Pharma.

12, 647–654. doi: 10.22377/ajp.v12i02.2410

Hur, K., Price, C. P. E., Gray, E. L., Gulati, R. K., Maksimoski, M., Racette, S.

D., et al. (2020). Factors associated with intubation and prolonged intubation

in hospitalized patients with COVID-19. Otolaryngol. Head Neck Surg. 163,

170–178. doi: 10.1177/0194599820929640

Johnson-Obaseki, S., Veljkovic, A., and Javidnia, H. (2016). Complication rates

of open surgical versus percutaneous tracheostomy in critically ill patients.

Laryngoscope 126, 2459–2467. doi: 10.1002/lary.26019

Kannan, D. S., Rajan, G. S., and Haridas, P. V. (2017). Comparative

study of percutaneous dilatational tracheostomy versus standard

operative tracheostomy. J. Evol. Med. Dental Sci. 6, 1066–1071.

doi: 10.14260/Jemds/2017/231

Khandelwal, A., Kapoor, I., Goyal, K., Singh, S., and Jena, B. R. (2017).

Pneumothorax during percutaneous tracheostomy–a brief review of literature

on attributable causes and preventable strategies. Anaesthesiol. Intensive Ther.

49, 317–319. doi: 10.5603/AIT.a2017.0050

Kidane, B., and Pierre, A. F. (2018). From open to bedside

percutaneous tracheostomy. Thorac. Surg. Clin. 28, 263–276.

doi: 10.1016/j.thorsurg.2018.03.001

Kruit, N., Valchanov, K., Blaudszun, G., Fowles, J.-A., and Vuylsteke, A. (2018).

Bleeding complications associated with percutaneous tracheostomy insertion

in patients supported with venovenous extracorporeal membrane oxygen

support: a 10-year institutional experience. J. Cardiothorac. Vasc. Anesth. 32,

1162–1166. doi: 10.1053/j.jvca.2017.08.010

Lerner, A. D., and Yarmus, L. (2018). Percutaneous dilational tracheostomy. Clin.

Chest Med. 39, 211–222. doi: 10.1016/j.ccm.2017.11.009

Li, C., Gu, X., Xiao, X., Lim, C. M., and Ren, H. (2020). Flexible robot with

variable stiffness in transoral surgery. IEEE/ASME Trans. Mechatron. 25, 1–10.

doi: 10.1109/TMECH.2019.2945525

Mecham, J. C., Thomas, O. J., Pirgousis, P., and Janus, J. R. (2020). Utility of

tracheostomy in patients with COVID-19 and other special considerations.

Laryngoscope 130, 2546–2549. doi: 10.1002/lary.28734

Mieth, M., Schellhaass, A., Huettner, F. J., Larmann, J.,

Weigand, M. A., and Buechler, M. W. (2016). Tracheostomy

techniques. Chirurg 87, 73–85. doi: 10.1007/s00104-015-

0116-7

Pilarczyk, K., Haake, N., Dudasova, M., Huschens, B., Wendt, D., Demircioglu,

E., et al. (2016). Risk factors for bleeding complications after percutaneous

dilatational tracheostomy: a ten-year institutional analysis. Anaesth. Intensive

Care 44, 227–236. doi: 10.1177/0310057X1604400209

Frontiers in Robotics and AI | www.frontiersin.org 9 November 2020 | Volume 7 | Article 57544518

https://doi.org/10.1186/cc3900
https://doi.org/10.4103/2229-5151.164994
https://doi.org/10.1111/j.1365-2044.1995.tb05852.x
https://doi.org/10.1109/TBME.2015.2491327
https://doi.org/10.1017/S0022215118001160
https://doi.org/10.1055/s-0041-103154
https://doi.org/10.1007/s10439-019-02241-0
https://doi.org/10.1186/cc11233
https://doi.org/10.1093/bja/aes034
https://doi.org/10.22377/ajp.v12i02.2410
https://doi.org/10.1177/0194599820929640
https://doi.org/10.1002/lary.26019
https://doi.org/10.14260/Jemds/2017/231
https://doi.org/10.5603/AIT.a2017.0050
https://doi.org/10.1016/j.thorsurg.2018.03.001
https://doi.org/10.1053/j.jvca.2017.08.010
https://doi.org/10.1016/j.ccm.2017.11.009
https://doi.org/10.1109/TMECH.2019.2945525
https://doi.org/10.1002/lary.28734
https://doi.org/10.1007/s00104-015-0116-7
https://doi.org/10.1177/0310057X1604400209
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Xiao et al. Trans-oral Robotic Tracheostomy

Rashid, A. O., and Islam, S. (2017). Percutaneous tracheostomy: a comprehensive

review. J. Thorac. Dis. 9, 1128–1138. doi: 10.21037/jtd.2017.09.33

Sandor, P. S., and Shapiro, D. S. (2016). Percutaneous Dilatational

Tracheostomy. Cham: Springer International Publishing. 67–79.

doi: 10.1007/978-3-319-25286-5_9

Sanji, R. R., Channegowda, C., and Patil, S. B. (2017). Comparison of

elective minimally invasive with conventional surgical tracheostomy in adults.

Indian J. Otolaryngol. Head Neck Surg. 69, 11–15. doi: 10.1007/s12070-016-

0983-3

Sasane, S. P., Telang, M. M., Alrais, Z. F., Alrahma, A. H. N. S., and

Khatib, K. I. (2020). Percutaneous tracheostomy in patients at high

risk of bleeding complications: a retrospective single-center experience.

Indian J. Crit. Care Med. 24, 90–94. doi: 10.5005/jp-journals-10071-

23341

Simon, M., Metschke, M., Braune, S. A., Püschel, K., and Kluge, S.

(2013). Death after percutaneous dilatational tracheostomy: a systematic

review and analysis of risk factors. Crit. Care 17, 1–9. doi: 10.1186/

cc13085

Vargas, M., Russo, G., Iacovazzo, C., and Servillo, G. (2020). Modified

percutaneous tracheostomy in COVID-19 critically ill patients. Head Neck 42,

1363–1366. doi: 10.1002/hed.26276

Varshney, M., Sharma, K., Kumar, R., and Varshney, P. G. (2011).

Appropriate depth of placement of oral endotracheal tube and its possible

determinants in indian adult patients. Indian J. Anaesth. 55, 488–493.

doi: 10.4103/0019-5049.89880

Wang, X., Tao, Y., Tao, X., Chen, J., Jin, Y., Shan, Z., et al. (2018). An

original design of remote robot-assisted intubation system. Sci. Rep. 8, 1–9.

doi: 10.1038/s41598-018-31607-y

Xiao, X., Gao, H., Li, C., Qiu, L., Kumar, K. S., Cai, C. J., et al.

(2020). Portable body-attached positioning mechanism toward robotic

needle intervention. IEEE/ASME Trans. Mechatron. 25, 1105–1116.

doi: 10.1109/TMECH.2020.2974760

Xiao, X., and Li, Y. (2016). Development of an electromagnetic actuated

microdisplacement module. IEEE/ASME Trans. Mechatron. 21, 1252–1261.

doi: 10.1109/TMECH.2015.2510450

Xiao, X., Li, Y., and Xiao, S. (2017). Development of a novel large stroke 2-

DOF micromanipulator for micro/nano manipulation. Microsyst. Technol. 23,

2993–3003. doi: 10.1007/s00542-016-2991-3

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xiao, Poon, Lim, Meng and Ren. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 10 November 2020 | Volume 7 | Article 57544519

https://doi.org/10.21037/jtd.2017.09.33
https://doi.org/10.1007/978-3-319-25286-5_9
https://doi.org/10.1007/s12070-016-0983-3
https://doi.org/10.5005/jp-journals-10071-23341
https://doi.org/10.1186/cc13085
https://doi.org/10.1002/hed.26276
https://doi.org/10.4103/0019-5049.89880
https://doi.org/10.1038/s41598-018-31607-y
https://doi.org/10.1109/TMECH.2020.2974760
https://doi.org/10.1109/TMECH.2015.2510450
https://doi.org/10.1007/s00542-016-2991-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 20 January 2021

doi: 10.3389/frobt.2020.586707

Frontiers in Robotics and AI | www.frontiersin.org 1 January 2021 | Volume 7 | Article 586707

Edited by:

S. Farokh Atashzar,

New York University, United States

Reviewed by:

Fabien Danieau,

InterDigital, France

Selene Tognarelli,

Sant’Anna School of Advanced

Studies, Italy

*Correspondence:

Pedram Fekri

p_fekri@encs.concordia.ca

Specialty section:

This article was submitted to

Biomedical Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 23 July 2020

Accepted: 05 November 2020

Published: 20 January 2021

Citation:

Fekri P, Dargahi J and Zadeh M (2021)

Deep Learning-Based Haptic

Guidance for Surgical Skills Transfer.

Front. Robot. AI 7:586707.

doi: 10.3389/frobt.2020.586707

Deep Learning-Based Haptic
Guidance for Surgical Skills Transfer

Pedram Fekri 1*, Javad Dargahi 1 and Mehrdad Zadeh 2

1Mehchanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, QC, Canada, 2 Electrical

and Computer Engineering Department, Kettering University, Flint, MI, United States

Having a trusted and useful system that helps to diminish the risk of medical errors and

facilitate the improvement of quality in themedical education is indispensable. Thousands

of surgical errors are occurred annually with high adverse event rate, despite inordinate

number of devised patients safety initiatives. Inadvertently or otherwise, surgeons play a

critical role in the aforementioned errors. Training surgeons is one of the most crucial and

delicate parts of medical education and needs more attention due to its practical intrinsic.

In contrast to engineering, dealing with mortal alive creatures provides a minuscule

chance of trial and error for trainees. Training in operative rooms, on the other hand,

is extremely expensive in terms of not only equipment but also hiring professional

trainers. In addition, the COVID-19 pandemic has caused to establish initiatives such

as social distancing in order to mitigate the rate of outbreak. This leads surgeons to

postpone some non-urgent surgeries or operate with restrictions in terms of safety.

Subsequently, educational systems are affected by the limitations due to the pandemic.

Skill transfer systems in cooperation with a virtual training environment is thought as a

solution to address aforesaid issues. This enables not only novice surgeons to enrich

their proficiency but also helps expert surgeons to be supervised during the operation.

This paper focuses on devising a solution based on deep leaning algorithms to model the

behavior of experts during the operation. In other words, the proposed solution is a skill

transfer method that learns professional demonstrations using different effective factors

from the body of experts. The trained model then provides a real-time haptic guidance

signal for either instructing trainees or supervising expert surgeons. A simulation is utilized

to emulate an operating room for femur drilling surgery, which is a common invasive

treatment for osteoporosis. This helps us with both collecting the essential data and

assessing the obtained models. Experimental results show that the proposed method is

capable of emitting guidance force haptic signal with an acceptable error rate.

Keywords: deep learning, recurrent neural network, LSTM, haptic, force feedback, bone drilling, surgical skill

transfer, COVID-19

1. INTRODUCTION

Lack of having an appropriate medical training system may cause errors with adverse effects on
patients. The practical intrinsic of medical education systems has led expert surgeons to transfer
their skill to trainees via trial and error methods in the actual operating rooms. Evidently, novice
surgeons have a minuscule chance of the repetition for improving their proficiency during the
operation. Complications through surgical procedures have considerably raised, which signifies
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young surgeons require to be more proficient. On the one hand,
achieving hands-on skills in an actual operation room is a tedious
and time-consuming process. On the other hand, training in
operative rooms is extremely expensive so that estimations reveal
a significant increase in operative time for training translated
into about $53 million dollars per year (de Montbrun and
MacRae, 2012). However, the National Health Service (NHS) has
recommended a restriction in working hours for trainees (from
30,000 working hours to around 7,000 h) to increase the effective
time of expert surgeons as well as improve the outcome of
surgeries (Tan and Sarker, 2011). The aforementioned limitations
accentuate the importance of having a proper educational system
for surgeons other than the traditional methods.

Apart from the above challenging issues, the circumstances
such as the recent global shutdown due to the COVID-19
pandemic cause a closure in the education system as well.
In this case, trainees find it tough to attend the in-person
sessions and operation rooms for educational purposes. On the
one hand, most of operations are deferred in order to reduce
the burden on the shoulders of hospitals’ staff. On the other
hand, enacting preventive rules and initiatives such as social
distancing brings about encountering with the limitation in using
surgical labs (Al-Jabir et al., 2020). To this end, in order to
maintain surgical skills, the demands for using simulations and
artificial intelligence methods have been soared. For instance,
neurosurgical residents in New Orleans have been encouraged to
utilize the aforementioned technologies so as to practice complex
surgical task during the COVID-19 pandemic. The same concern
has emerged from the community of orthopedics surgeons so that
they have tended to use surgical simulation for their residents.
Hence, it is necessary to equip the medical education system
in such a way that the remote working become conceivable
(Bernardi et al., 2020).

Although the above issues can be generalized to a wide range
of surgical operations, for the sake of simplicity, this work
exclusively concentrates on the hip fracture treatment. One of
the most common health issues is hip fracture that is seen in
elderly adults with a high mortality rate of 20 and 35% within
1 year (Goldacre et al., 2002; Thorngren, 2008). The cause, on
the other hand, chiefly stems from osteoporosis so that 2–8%
of males and 9–38% of females are diagnosed with this disease,
which accounts for overall 30 million women and 8 million men
around the United States and EU (Schapira and Schapira, 1992;
Svedbom et al., 2013; Wade et al., 2014; Willson et al., 2015).
Therefore, the hip fracture issue needs a precise and reliable
treatment regardless of patients’ gender.

Closed reduction percutaneous pinning (CRPP) is a typical
treatment for supporting hip fractures, in which surgeons
perform based on hands-on experiences in the operating room.
This type of treatment is invasive and needs professional
surgeons to do the task, thereby diminishing the presumable
complications. Since the probability of making inadvertent
mistakes is high, expert surgeons are mostly reluctant to operate
and instruct novices simultaneously.With this inmind, having an
auxiliary system is necessary so as to overcome the challenges and
reduce the risk of medical errors as well as simplify the training
in medical education systems. This leads to not only enhance the

novice hands-on skills but also supervise expert surgeons during
the surgery.

Skill transfer system is considered as a solution with the aim
of addressing the aforesaid complications. As a matter of fact, the
system models the performance of experts for a certain surgical
procedure that culminates to a trained medical robot for fulfilling
multiple goals such as more reliable assisting. An example of
medical assistant robot is the human–robot interaction system,
which has been introduced as a tool for improving human
performance (RamónMedina et al., 2012; Medina et al., 2015; Gil
et al., 2019; Pezent et al., 2019). In general, a haptic device along
with a simulation environment is deemed as an experimental
setup for the human–robot interaction system in the surgical
application. On the one hand, users manipulate the haptic device
to complete a surgical task via a collaborative environment. On
the other hand, haptic guidance signal is generated to correct or
elevate the users’ performance (Morris et al., 2006; Rozo et al.,
2013). This setup can be utilized for the purpose of skill transfer
in order to help experts to convey their knowledge in a safer
environment.

In addition to the mechanical setup, it needs to elicit
robust models from expert surgeons’ demonstrations based on
their dynamic and non-linear behaviors during the surgery.
These behaviors are categorized into kinesthetic and kinematic
demonstrations. Learning kinematic demonstrations is chiefly
regarded as the process of extracting positional body movements
of the expert during the operation (Abbott et al., 2007;
Chipalkatty et al., 2011; Zahedi et al., 2017). Kinesthetic
information can be obtained by a physical interaction between
robots and users so that a surgeon directly works with the robot
to perform a specified task (Rozo et al., 2013, 2016; Kronander
and Billard, 2014).

All in all, the system comprises a perceptual part in
conjunction with a robotic actuator in order to provide the
realistic sense of surgery. In other words, this solution is an
assistant human-in-the-loop system that consumes the data
corresponding to either kinesthetic or kinematic demonstrations.
The data are captured while the expert is manipulating the
haptic end-effector to accomplish a specific task through a virtual
environment. Then, the compiled dataset is used to train models
for extracting experts’ behaviors. Finally, the haptic guidance
signal, which is emitted from the trained model, is employed as
a reference signal for both trainees and experts. The trainees can
correct their movements based on the provided signal through
the virtual environment. The haptic guidance signal can be
utilized as a supervisor for experts during a real operation as well.

Since the data related to both kinematic and kinesthetic
demonstrations is time varying and also learning the
performance of experts depends on modeling the dynamic
behaviors over time, it is crucial to investigate the data with
respect to the temporal characteristic. Statistical algorithms such
as HMM and CRF have been used to extract the aforementioned
features (Reiley and Hager, 2009; Ramón Medina et al., 2012;
Tao et al., 2013; Zahedi et al., 2017, 2019). In addition, control
algorithms have been applied to the human-in-the-loop system
for guiding human via robots based on the model obtained
from dynamic data (Chipalkatty et al., 2011; Safavi and Zadeh,
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2015, 2017; Safavi et al., 2015). However, previous works have an
impressive progress in modeling the dynamic data in the skill
transfer system, advent of machine learning and deep learning
algorithms is thought as a gigantic step toward developing more
trustworthy predictive systems. For instance, a method has been
proposed based on deep learning to predict the haptic feedback
in percutaneous heart biopsy for decreasing delay in remote
operations (Khatami et al., 2017). The temporal facet of data can
help to enrich the throughput of the system whether in the data
compilation or in the inference phase.

In this work, we seek to advance a solution for training
novice residents in the orthopedic surgical drilling procedure by
developing a skill transfer system using a deep learning method.
The proposed system aims at contributing to the educational
system of orthopedic residents during the COVID-19 pandemic.
To this end, first, a simulation environment is used to visualize
all components of a real operation room. The simulation creates
a 3D visualization of the patient-specific bones from CT scan
data. Moreover, it calculates an approximation of both bones’
density and stiffness as physical properties of the tissue through
the layers. As discussed in the next section, having these features
helps to estimate the applied force feedback, when drill touches
the bone. Using provided features, the system captures the
essential data while expert surgeons perform a specific drilling
task via the haptic device and simulation. Second, the solution
aims to extract the model of expert surgeons’ behaviors as a
reference signal using the captured data. For this reason, a
recurrent neural network with an LSTM architecture has been
designed and implemented in order to be trained on force
demonstrations as well as kinematic features and other effective
data, which stems from either drill physics or bone tissues.

The main contributions of the proposed solution are
summarized as follows: it investigates the influence of a
deep recurrent neural network with an LSTM architecture on
enhancing the quality of transfer skills in orthopedic surgical
drilling. In contrast to the proposed solution in Khatami et al.
(2017), our method incorporates multiple effective features,
instead of utilizing force data solitary. In fact, in Khatami et al.
(2017) the solution anticipates forces of X and Y directions using
only the previously applied forces in the same directions and
it does not engage other effective parameters in the estimation
of force signals over time. Our proposed method, on the other
hands, extracts the temporal behavior of force feedback data by
fusing the data stemmed from multiple sources such as “bone’s
layer type,” “penetration depth,” “drill’s temperature,” and “drill’s
position.” As a sensor fusion model, it will learn how to regulate
the forces based on a fusion of data that impacts on the maneuver
of the surgeon. Helping trainees to sense the guidance signal
that stems from expert surgeons’ hands-on skills along with
other effective factors during surgery is another advantage of the
proposed method. Also, since the force sensor is not utilized
in this study, simulation aids to estimate forces as well as the
other data.

The rest of the paper is organized as follows: the general
explanation of proposed method along with experimental setup
and data gathering are presented in section 2. Section 3 explains
data preparation, computer experiments, result, and discussion.
The paper concludes in the final section.

2. DEEP HAPTIC GUIDANCE GENERATOR

The proposed system provides a solution based on a deep
learning algorithm for conveying experts’ hands-on proficiency
to novice surgeons, exclusively in orthopedic surgical drilling
with the purpose of treating hip fractures (Figure 1). This is
achieved by utilizing a simulation environment, which creates a
virtual shape of the intended patient’s bone using CT scan images.
This shape preserves the most principal features of the bone such
as stiffness of every layer. At the same time, a haptic device is
used by a user to drill a specified path through the bone. To
provide a realistic sense, physical features such as temperature
and rotation speed are considered, while the drill touches bone.
This setup has two main advantages for the proposed method:
First, it helps to capture the requisite data from expert surgeons
while accomplishing a predefined drilling task. Second, it aids to
exploit the trained model virtually.

Subsequently, a deep neural network is fed by the attained data
to generate models on the behaviors of experts in a predefined
task. As with the behavior modeling, learning gestures occurs
over time. With this in mind, a recurrent neural network
with an LSTM architecture is employed to extract a dynamic
model. The aforementioned network is trained by the data of
multiple sources (explained in detail in section 2.2) and then the
force feedback in three axes is expected in its output. In other
words, the proposed method with a modified LSTM architecture
attempts to identify the dynamic relationship between inputs
and their corresponding outputs in a supervised manner, while
they are not equal in terms of dimension size. Intuitively, the
significant objective is to investigate the impact of physical
properties emerged from the bone’s tissues or drill on the
performance of the skill transfer system. As a sensor fusion
system, however, this method outputs force feedback in three
axes, it combines multiple data such as drill temperature, the type
of bone’s layer, penetration depth, and drill position rather than
only force feedback as the network’s input.

It is worth noting that, because we do not utilize force
sensor, the corresponding data are estimated using the physical
properties of the patients’ bone obtained from CT images.
For simplicity, we call the proposed method “DHG” (Deep
Haptic Guidance). Figure 1 illustrates the structure of the DHG.
Experimental setup, data gathering, and DHG are explained in
the following sections.

2.1. Simulation and Experimental Setup for
Bone Drilling Surgery
An experimental setup is used so as to capture the required
data. It encompasses a haptic device (Phantom Omni, Geomagic
Touch, USA) and a virtual environment (VE). The haptic device
was set up on a movable and height adjustable table. The height
of the table can be adjusted with respect to the convenience of the
participants. The surgeons either experts or novices interact with
the simulation system via the haptic device, a keyboard, and a
computermouse. A virtual drill can bemanipulated to touch/drill
the femur bone’s shape through the stylus of the haptic device.
The haptic device records motions of the end-effector, while it
has been attached to a drill (Figure 2). It has 6 Degree of Freedom
(DOF) positional sensing and capable of providing the user with
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FIGURE 1 | The diagram depicts the structure of the Deep Haptic Guidance (DHG). The CT data corresponding to a patient enters for modeling, rendering, and

determining the stiffness of the bone. The data are captured while an expert is completing the task. The obtained data are converted to a compatible dataset for

training deep recurrent neural network. The trained model provides haptic force feedback based on the professional demonstrations. The guidance signal is generated

by the difference between the DHG’s prediction and force feedback of novice user. In fact, expert’s skill implies DHG’s prediction.

the force feedback in 3 DOF translational motions (the space
of force feedback data). The sampling frequency for compiling
data is 10 Hz. The estimation on stiffness of the bone’s layer is
updated every 20 ms. The tasks were completed by moving the
end-effector in order to drill and penetrate through the bone
along the pre-defined path.

In this setup, the simulation plays a crucial role in
capturing data. Generally, simulated and virtual reality (VR)
environments can be considered as an alternative of real
operation rooms (Seymour, 2008; Kho et al., 2015; Van Duren
et al., 2018). This enables trainers to define particular surgical task
and drilling path for each patient separately. Here, we simulated
attributes of the bone in order to gather data from experts during
a surgery. For more precise explanations, four main parts of a
required simulation, exclusively for bone drilling, are described
as follows:

First, as shown in Figure 1 it needs to simulate and render
a patient’s femur bone by considering physical properties. This
is obtained by using the patient’s specific CT images as the
input of the simulation (Figure 3). Since the goal is to model

the physical characteristics of the femur bone related to a
patient with femoral head necrosis, CT is more useful than MRI
images (Teo et al., 2006). Furthermore, as shown in Figure 4, a
segmentation method ascertains different layers such as cortical
bone, cancellous bone, and bone marrow in order to simulate
their thickness, stiffness, and physical traits while interacting with
a drill. The intensity values of the CT images are utilized to
segment the bone’s layers along with their mechanical properties.
Namely, the bright part of a CT image is cortical bone, whereas
the dark parts are cancellous bone.

Second, to make more actual sense of working with the
simulator, a method is employed to change the virtual shape of
the bone, whenever the drill touches or penetrates the tissue.
In other words, the method models stiffness of tissues based
on the bone’s depth and then assigns a specific value to every
voxel in each layer of the bone. Finding the relationship between
intensity of voxels and density of the bone in the images helps
the volume rendering operation to take an appropriate action. In
fact, the rendering operation decides to keep or remove a voxel
with respect to its density value and the drill status as well (Morris
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FIGURE 2 | Experimental setup: A volunteer is completing a required surgical drilling task while using a drill attached to the haptic device. It encompasses a haptic

device, a keyboard, and a computer mouse interacting with a simulation.

et al., 2004; Liu and Laycock, 2009; Sofronia et al., 2012; Bogoni
and Pinho, 2013).

Third, themechanical traits of the obtained layers are involved
to simulate haptic force feedback. As a result, cortical bone is
much more stiffer that cancellous bone (Compere, 1980). On
the other hand, the cancellous bone of the femur bone has
a wide range of density that affects drilling forces. In Brown
and Ferguson (1980), the distribution of stiffness and yield
strength have been investigated. Accordingly, we estimate the
force corresponding to each layer of the bone in order to
provide users with a tangible force, while penetrating through
the different layers. However, the acquired sense of the force is

not equal to the actual bone stiffness, and it makes the sense
of passing through the layers for users. It is worth to say that
the determined stiffness for the bone’s layers was limited to
the haptic device capability. Therefore, since the discrepancy of
estimated force feedback does not influence on the DHG, it can
be considered as the scaled stiffness of the real value.

Fourth, as shown in Figure 5, it needs to enable the user
to take X-ray images from different points of view. In other
words, in the real operation room, surgeons capture X-ray images
during a surgery to make sure whether the drill traverses through
the correct pre-defined path or not. With this in mind, the
simulation allows them to have the visualization of X-ray from
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FIGURE 3 | The image shows a rendered bone obtained from the CT data. The user is able to touch or drill the shape, visually by moving the object sticked the bone.

the bone, analogs to the real operation room, from three views:
the top, front, and the side. Eventually, a virtual environment
is built to simulate the actual process in the operation room.
Apart from provided facilities, the essential data are compiled
via the experimental setup. In fact, the simulation strives to
imitate real operation rooms as much as possible because it
leads expert surgeons to function naturally, thereby capturing
more meaningful data. It is good to say that the aforementioned
setup in conjunction with the simulation has contributed in other
studies in our research Lab at Kettering University (Safavi and
Zadeh, 2017; Zahedi et al., 2017, 2019).

2.2. Data Preparation
To train the DHG on experts’ behaviors, the aforesaid setup was
exploited and a drilling path was determined between two points
as a specific surgical task. The bone should be pierced from point
A to B in the straight direction. Since it was not possible to invite
surgeons, six engineering students who were familiar to the area
were asked to pretend as our experts’ reference and complete the
task using the experimental setup. They were required to pass
through all the layers of the bone and get to the target point.
The participants were guided to perform the task and instructed
to complete the task precisely and as quickly as possible. Every

subject had 5 min to get acquainted with the experimental setup
and then carry out the task. They were allowed to repeat the task
as many times as they preferred. Then the best completed task of
every attendee were selected based on his/her discretion. In the
process of collecting data, the force feedback in x, y, and z axes
as well as drill positions, drill penetration depth, the simulated
temperature of the drill, and the type of layers in the bone were
obtained in the format of a dataset. The data were collected with
the frequency of 10 Hz. Eventually, the time-varying data were
captured from six completed tasks and D ∈ Rn×9 constituted the
dataset, where n is the number of data records. It is noteworthy
that for the sake of preserving dynamic properties, the order of
records for every task of the dataset was retained.

2.3. Creating Models Using Deep Learning
Algorithm—DHG
By taking a closer look at the biological perception of human
in performing tasks, it is evident that the action taken in the
current time t has been concluded by the sequence of actions
that happened in the past. This fact can be generalized to the
current problem in such a way that “time” plays a significant
role in learning expert surgeons’ behaviors. On the other hand,
learning process evolves during the time by retrying experiences.
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FIGURE 4 | The surfaces corresponding to the bone’s layers extracted from CT data. From left to right: Cortical bone surface, bone marrow, and necrosis.

Accordingly, the DHG learns the experts’ demonstrations by
consuming the time-varying data, which has been gathered from
multiple duplicate tasks (section 2.2). The DHG employs a
recurrent neural network instead of a feed-forward one in order
to extract the dynamic temporal behaviors of data. In fact, it
models gestures of the surgeon in time t using a series of data
with a specified length. This type of network includes a feedback
signal as a loop to consider temporal effects of input data over
time. Moreover, the LSTM is a popular architecture for RNNs,
which has been proposed to address vanishing gradient problems
in Vanilla RNNs (Hochreiter and Schmidhuber, 1997; Hochreiter
et al., 2001). Figure 6 depicts the internal structure of LSTM.
The aforementioned architecture has been successfully applied in
different applications such as the vehicle trajectory prediction for
modeling temporal properties of data (Altché and de La Fortelle,
2018).

As mentioned in the previous section, the dataset D ∈ Rn×9

was prepared while surgeons were carrying out the task. Every
feature of the dataset is deemed as an independent data stream,
which has been emitted from a separate data source or sensor.
From another point of view, as a sensor fusion method, the
DHG receives a nine-dimensional vector of data and provides
the prediction on force feedback in a three-dimensional vector
in its output. Finally, the DHG uses an LSTM as the preferred
architecture for the deep recurrent neural network to model the
dynamic data.

The DHG is considered to have unequal inputs and outputs
size because of the sensor fusion concept. To this end, as
described in the following section, a partial modification was
applied in the original structure of the LSTM by adding a linear

layer (Equation 7). The LSTM’s basic is explained in detail,
although there are valuable sources in the literature as well.

As a recurrent neural network, the LSTM generates feedback
signals via a loop to exert the impact of previous data in the
current time instant t. Apart from the concept of hierarchical
layers in deep neural networks, every unit of the LSTM has four
exclusive layers (Figure 6). Cell state Ct keeps past experiences at
time t and gets updated over time. Forget gate ft removes data
from the memory by using both input xt and previous output
ht−1, while input gate it decides which value must be updated:

ft = σ (Wf xt + Uf ht−1 + bf ) (1)

it = σ (Wixt + Uiht−1 + bi) (2)

C̃ = tanh(Wc̃xt + Uc̃ht−1 + bc̃) (3)

where σ is a sigmoid activation function, Uf and Wf are weight
matrices, and bf denotes the bias vector. A hyperbolic tangent
layer calculates new values for update in cooperation with the
input gate and then replaces memory Ct with the new values
as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

where ∗ denotes the element-wise multiplication. Eventually, the
output ht is calculated by updated memory Ct and the previous
output via output gate ot as follows:

ot = σ (Woxt + Uoht−1 + bo) (5)
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FIGURE 5 | The simulation was equipped with X-ray view for providing users an environment more analogous to the real operating room. Similar to the real operation

room, it has three views: the top, front, and side.

ht = ot ∗ tanh(Ct) (6)

It is worth to say that, input xt ∈ Rn, weight matricesW ∈ Rh×h

and U ∈ Rh×h, and biases b ∈ Rh. n is the size of the input vector
and h is the size of the internal memory or cell state, which is
defined by designers.

Furthermore, the RNN should be unrolled to establish
feedback signals in the internal structure and use the advantages
of engaging previous input data in the current time t.

So, we assume that the LSTM unit output ht depends on
{xt−e, xt−e−1, . . . , xt−1} where e is the number of the dataset
record used for unrolling the DNN. In another way, the loop of
RNN is unrolled over e latest inputs. Thus, the prediction at time
t relies on 0.1× e previous seconds of surgeons’ behaviors. These
unrolled units are defined as the system time steps.

As noted earlier, the DHG fuses multiple features and outputs
only force feedback. With this in mind, the size of outputs in the
network must be equal to the size of haptic force feedback vector,

Frontiers in Robotics and AI | www.frontiersin.org 8 January 2021 | Volume 7 | Article 58670727

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Fekri et al. Deep Surgical Skills Transfer

whereas in the conventional LSTM both input and output vectors
are equal in size. To this end, we add a linear output flattening
layer with a linear activation function to map inputs into the
output space as follows:

a = Wah
l
t + ba (7)

By utilizing the above linear transition function, the output at
last time step in the last layer is transferred to the force feedback
output space. In contrast to classification problems, since the
system attempts to generate force values in the output, transition
from the feature space d ∈ R9 to force feedback space r

p
t ∈ R3

is accomplished by a linear regression, where r
p
t is the predicted

force value in time t acquired from e previous number of the data
records. Figure 7 depicts the designed architecture for the DHG.
In addition, RMSE is the objective function of the DNN, which

attempts to learn the expected output rext in a supervised manner
as follows:

e(r
p
t , r

ex
t ) =

√

∑d
i=1(r

p
t,i − rext,i )

d
(8)

To optimize the above objective function, different optimizer
algorithms such as ADAMoptimizer can be applied (Kingma and
Ba, 2014).

3. EVALUATION AND DISCUSSION

The target of this section is preparing the data, which has been
captured in section 2.2 for training models as well as assessing
the performance of the DHG in predicting haptic force feedback.
In section 3.1, we revise the format of the dataset (section 2.2)

FIGURE 6 | The LSTM unit contains forget, input, and output gates along with cell state (further details in section 2.3).

FIGURE 7 | The diagram shows the intended architecture for the DHG. The input is a tensor containing the data from different sources (section 2.2). The LSTM is

unrolled over e previously generated data. The cell state h is the input of its corresponding unrolled unit in the next layer. However, using the latest LSTM unit’s output,

the DHG squeezes the prediction vector through a dense layer. Finally, the output of the network is a vector with three elements corresponding to forces in x, y, and z

direction.
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and make it compatible with the DHG’s input. Finally, we
investigate the result in the last subsection. In this work, we did
not conduct a human factor study in experiments to examine
the performance of the DHG. Instead, we evaluate the DHG
based on common assessment methods such as RMSE to show
the accuracy of predictions on the reference input. Obviously,
haptic force feedback is the reference of the DHG model. It
should be noted that we aim to thoroughly analyze the DHGwith
human-included experiments in a separate study in the future.

3.1. Dataset Revision and Model
Configuration
As mentioned in the previous sections, we defined a drilling
path in the virtual environment and asked six volunteers
to drill through that path. As shown in Figure 8, haptic
force feedback (Figure 8A), positions (Figure 8B), bone’s layers
(Figure 8D), depth of penetration (Figure 8E), and drill’s
temperature (Figure 8F) are the features of the dataset; “Drill’s
status” (Figure 8C) has not been involved in the dataset, though
its correlation with drill temperature is comparable in the figure.
This figure represents a time window of captured data from
all sensors with 1,000 data records. The values corresponding
to force feedback (Figure 8A), positions (Figure 8B), and
penetration depth (Figure 8E) has been normalized; in other
subplots, 0 means “deactivated” and 1 indicates “activated.”

For better visualization, the subplot related to bone’s layers
(Figure 8D) illustrates the presence of the drill’s tip in different
layers within a sequence of data with 30 records.

ri ∈ R9 is defined as the ith record of the prepared dataset,
which is sorted by time. To convert the dataset records to a
compatible format for an unrolled network, a modification is
needed in such a way that every input in time instant t should
be a set of e previous data records. Accordingly, the new dataset
contains the records as follows:

nd = {rn1 = r1 : e, rn2 = r2 : e+1, . . . , rni = ri : e+i−1} (9)

where rni ∈ Re×n, e is the time step and t = ld − e + 1 (ld is
the length of dataset before conversion). It is worth to point that
every input sample rni that encompasses data corresponding to e
previous data should be mapped to the output space of e + 1. In
this work, the dataset explained in section 2.2 was converted to
the new format with the time step e = 20 with the aim of being
compatible with the training phase. In fact, the system produced
haptic force feedback in the current time using 20 previous data
samples. Eventually, the dataset was divided into training and test
sets without shuffling (Table 1).

3.2. Result and Discussion
We complied a dataset containing the demonstrations of six
volunteers during accomplishing a drilling task. These data

FIGURE 8 | The diagram shows the data captured from different sources in a window of 1,000 data samples. Panels (A,B) show the force feedback and positions,

receptively. They have been plotted in 3 dimension (x, y, and z). In addition, all values corresponding to force feedback, positions, drill’s temperature (F), and

penetration depth (E) have been normalized (between 0 and 1). Also, for both drilling status (C) and bone’s layers (D), 0 denotes “inactivated” and 1 means

“activated.” Panel (D) illustrates the layer of the bone, in which drill is located. For a better visualization in this subplot, the 30 first data corresponding to the

aforementioned window are plotted.
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TABLE 1 | The result obtained from different configurations of the DNN.

Configuration Input size Output size Time steps Layers Memory Training sample Test sample Batches RMSE

1 9 3 20 1 128 9,133 1,442 50 0.0551

2 9 3 20 2 256 9,133 1,442 50 0.0249

3 3 3 20 2 256 9,133 1,442 50 0.0335

4 9 9 20 2 256 9,133 1,442 50 0.0626

The configuration related to the sensor fusion is shown in the first and second row. Increasing both memory and layer of the network caused to improve the DHG’s performance. The

superiority of the DHG with a sensor fusion setup (second row) is obvious in comparison with the third and last row. The third setup is the reproduction of the LSTM configuration used

(Khatami et al., 2017).

are regarded as the reference behaviors for the input in the
training phase. The DHG is supposed to mimic the gestures
and act as a professional surgeon in that specific task. In other
words, the DHG predicts appropriate force feedback signals
in every time instant t. The more accurate prediction on the
force feedback causes to obtain the more authentic discrepancy
between the gestures of novices and experts (Figure 1). For
better clarification, there are two types of signal: haptic force
feedback and haptic guidance force. The DHG learns how to
anticipate the haptic force feedback in different situations. In fact,
it assumes that if the DHG is capable of imitating the reference
force feedback properly, then it is possible to make a meaningful
haptic guidance by extracting the difference between the output
of the DHG and the emitted force feedback, while a user (novice)
performs a task.

Hence, we set four different configurations of the DHG so as
to evaluate the performance of predictions. Table 1 represents
the throughput of models. Also, we reproduced the proposed
architecture of the LSTM in Khatami et al. (2017) in order to
compare the DHG with one of the latest work in the literature.
All configurations consumed a same training and test set and
the networks were unrolled in 20 time steps with 50 samples
of data in each data batch. The size of memory or neurons for
the LSTM units is listed for every configuration. Moreover, all
configurations were trained in 10,000 epochs and the learning
rate was 0.004.

Configuration 1 had 128 memory size through a one-layer
LSTM network. The aim of this setup was mapping the input
vector of size nine to an output vector with three elements related
to the haptic force feedback prediction. Configuration 2 is the
intended architecture for the DHG. This setup reached to the best
result in comparison with the others. Figure 7 demonstrates the
architecture of the DHG. The prepared data (section 3.1) is fed
to an LSTM, which is unrolled over e = 20. Every hidden state
of the unrolled unit enters to another LSTM unit in layer 2. In
this unit, only the output of the hidden state in time t goes to
a dense layer. Since the DHG aims at estimating the forces as a
regression problem, the activation function for the dense layer is
a linear one.

As mentioned earlier, to compare the influence of the sensor
fusion (DHG) with the conventional multi-dimensional time

series prediction in providing haptic force feedback, we set a
DNN to anticipate force values in three axes while receiving
the same feature vector (force feedback) solitary in the input.
Configuration 2 is the implementation of with the same dataset
and layers (Khatami et al., 2017). Comparing configurations 2
and 3 of Table 1, it can be seen that the sensor fusion setup has
had a positive impact on reducing the error of force-feedback
predictions. In fact, configuration 2 (Khatami et al., 2017) has
hypothesized that the applied forces in the past is the only
parameter, which influences on the currently yielded haptic force
feedback. From that perspective, some effective parameters in the
surgery such as time of completion, drilling speed, and tissue
layer types should be assumed as fixed values or in some way,
they have been overlooked.

In contrast, the DHG has attempted to include those
parameters in the process of force estimation so as to investigate
the effect related to not only physical properties of the bones but
also the status of the actuator and its workspace environment on
forces. In reality, the expert surgeons’ maneuver in time t not only
depends on the previously taken actions, but also is influenced
by the status of the drill and environment it pierces through.
The last row (configuration 4) shows the RMSE while the DHG
was configured to predict features as same as the input vector.
As mentioned before, this is the conventional multi-dimensional
time series. Although the output vector contains force feedback,
drill’s positions, temperature, bone’s layer, and penetration depth,
the RMSE was computed just by using the elements of output
vector related to the force feedback data. Finally, we showed
that not only a deep recurrent neural network is capable of
learning surgical gestures aptly but also having a sensor fusion
mechanism through the network structure can impact on the
prediction positively.

Figure 9 visualizes the performance of the DHG while using
second configuration in Table 1 to predict the unforeseen test
data. There are two types of signals in the plot: reference and
predicted. Every dimension of a force-feedback reference (x,
y, z) was normalized. The plot demonstrates the prediction of
the DHG for every reference of force-feedback dimensions in a
specific time window with 1,000 sample. In other words, it was
fed by 20 previous data samples for making anticipations on
force feedback in every time t. Although the reference signal in
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FIGURE 9 | The diagram depicts the performance of the DHG in a specified window with 1,000 data samples. Every dimension of force-feedback signals (x, y, and z)

has a reference and a predicted demonstration. The value of the references has been normalized and also the model has been trained by normalized training set as

well. The DHG makes predictions on force feedback in every time t using 20 previous data samples.

both test and training set was normalized, in some points the
prediction has exceeded above 1 because of generalization that
causes model to have margin around actual data and avoid facing
with over-fitting.

It is worth noting that to use predicted guidance signals
in the haptic device it should be denormalized regarding to
the minimum and maximum of the samples in the dataset
prior to dividing data into test and training sets. Estimating
force feedback values in the data preparation phase along with
normalization and denormalization process may cause to reduce
the accuracy of trained models in practice. However, having a
more precise guidance signal leads to effectively instruct trainees,
but using directions of the force regardless of its value can make
an acceptable feeling of haptic feedback, whenever a distraction
occurs. All in all, the DHG is a modified version of RNNs with an
LSTM architecture, which is a general solution for any problems
using time-varying data. Since most of surgical tasks are carried
out by surgeons’ movements and their corresponding data has
similar properties to our dataset, the DHG can be generalized to
other specific surgical tasks as well.

4. CONCLUSION

In this work, we presented a deep learning based system in
order to explore improvements in the performance of surgeons
in surgical drilling operations. The proposed system strives to
enhance the skill transfer system for instructing surgeons either
the experts or novices via generating haptic guidance signals

during the surgery. The system can address the limitations due
to especial circumstances such as the COVID-19 pandemic, in
which trainees cannot practice surgical tasks. This was achieved
by designing a deep recurrent neural network with an LSTM
architecture that models the behavior of experts. As a sensor
fusion method, the DNNwas trained using the data emitted from
different sources such as drill’s temperature, penetration depth,
and the type of bone’s layer. This led to have a robust model,
which predicts demonstrations precisely. Since the experimental
setup is not equippedwith a force sensor, the simulation estimates
different data values such as stiffness based on the physical
properties of simulated bones. Finally, the experimental result
showed that the proposed system was able to predict accurately
haptic force feedback. Although the proposed method performed
effectively in the evaluations, we did not apply the method in
a human factor study. In fact, the significant purpose of this
work was to inspect the possibility and performance, mostly by
regular machine learning methods. Therefore, as a future work,
we intend to exert the method in a practical experiment and
examine it by surgeons.
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A Corrigendum on

Deep Learning-Based Haptic Guidance for Surgical Skills Transfer
by Fekri, P., Dargahi, J., and Zadeh, M., (2021). Front. Robot. AI 7:586707. doi:10.3389/frobt.2020.
586707

In the original article, there was a mistake in Figure 7 as published. The figure included
“Dropout”, which was not used in our reported results but can be applied to the “Dense Layers”
before the output layer. Since we have not utilized “Dropout” in the reported results, the
corresponding information has been removed from the caption of Figure 7 and a correction has
been made to the Evaluation and Discussion section, subsection Result and Discussion,
Paragraph 3:

“Configuration 1 had 128 memory size through a one-layer LSTM network. The aim of this
setup was mapping the input vector of size nine to an output vector with three elements related
to the haptic force feedback prediction. Configuration 2 is the intended architecture for the
DHG. This setup reached to the best result in comparison with the others. Figure 7
demonstrates the architecture of the DHG. The prepared data (section 3.1) is fed to an
LSTM, which is unrolled over e � 20. Every hidden state of the unrolled unit enters to another
LSTM unit in layer 2. In this unit, only the output of the hidden state in time t goes to a dense
layer. Since the DHG aims at estimating the forces as a regression problem, the activation
function for the dense layer is a linear one.”

The corrected Figure 7 and caption appear below.
The authors apologize for this error and state that this does not change the scientific conclusions

of the article in any way. The original article has been updated.
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FIGURE 7 | The diagram shows the intended architecture for the DHG. The input is a tensor containing the data from different sources (section 2.2). The LSTM is
unrolled over e previously generated data. The cell state h is the input of its corresponding unrolled unit in the next layer. However, using the latest LSTM unit’s output, the
DHG squeezes the prediction vector through a dense layer. Finally, the output of the network is a vector with three elements corresponding to forces in x, y, and z
direction.
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Application of DenTeach in Remote
Dentistry Teaching and Learning
During the COVID-19 Pandemic:
A Case Study
Lingbo Cheng1,2, Maryam Kalvandi3, Sheri McKinstry4, Ali Maddahi5,6, Ambika Chaudhary7,
Yaser Maddahi6 and Mahdi Tavakoli 2*

1College of Control Science and Engineering, Zhejiang University, Zhejiang, China, 2Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB, Canada, 3Manitoba Dental Association, Winnipeg, MB, Canada, 4College of
Dentistry, University of Saskatchewan, Saskatchewan, SK, Canada, 5Rady Faculty of Health Sciences, University of Manitoba,
Winnipeg, MB, Canada, 6Department of Research and Development, Tactile Robotics, Winnipeg, MB, Canada, 7Dental Council
of India and Indian Dental Association, Mumbai, India

In December 2019, an outbreak of novel coronavirus pneumonia occurred, and
subsequently attracted worldwide attention when it bloomed into the COVID-19
pandemic. To limit the spread and transmission of the novel coronavirus,
governments, regulatory bodies, and health authorities across the globe strongly
enforced shut down of educational institutions including medical and dental schools.
The adverse effects of COVID-19 on dental education have been tremendous, including
difficulties in the delivery of practical courses such as restorative dentistry. As a solution to
help dental schools adapt to the pandemic, we have developed a compact and portable
teaching-learning platform called DenTeach. This platform is intended for remote teaching
and learning pertaining to dental schools at these unprecedented times. This device can
facilitate fully remote and physical-distancing-aware teaching and learning in dentistry.
DenTeach platform consists of an instructor workstation (DT-Performer), a student
workstation (DT-Student), advanced wireless networking technology, and cloud-based
data storage and retrieval. The platform procedurally synchronizes the instructor and the
student with real-time video, audio, feel, and posture (VAFP). To provide quantitative
feedback to instructors and students, the DT-Student workstation quantifies key
performance indices (KPIs) related to a given task to assess and improve various
aspects of the dental skills of the students. DenTeach has been developed for use in
teaching, shadowing, and practice modes. In the teachingmode, the device provides each
student with tactile feedback by processing the data measured and/or obtained from the
instructor’s workstation, which helps the student enhance their dental skills while inherently
learning from the instructor. In the shadowing mode, the student can download the
augmented videos and start watching, feeling, and repeating the tasks before entering the
practice mode. In the practice mode, students use the system to perform dental tasks and
have their dental performance skills automatically evaluated in terms of KPIs such that both
the student and the instructor are able to monitor student’s work. Most importantly, as
DenTeach is packaged in a small portable suitcase, it can be used anywhere by connecting
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to the cloud-based data storage network to retrieve procedures and performance metrics.
This paper also discusses the feasibility of the DenTeach device in the form of a case study.
It is demonstrated that a combination of the KPIs, video views, and graphical reports in
both teaching and shadowing modes effectively help the student understand which
aspects of their work needs further improvement. Moreover, the results of the practice
mode over 10 trials have shown significant improvement in terms of tool handling,
smoothness of motion, and steadiness of the operation.

Keywords: COVID-19, DenTeach, dental services, teaching and learning model, quantitative assessment

INTRODUCTION

The coronavirus disease 2019 (COVID-19) has been declared as a
global pandemic by the World Health Organization (WHO).
Globally, as of September 7, 2020, there have been 27,208,206
confirmed cases of COVID-19, including 889,989 deaths (WHO,
2020a). COVID-19 is estimated to have a mortality rate of
approximately 4.05%. To slow the spread of COVID-19 at
both national and community levels, various measures have
been implemented such as COVID-19 testing, contact-tracing
and quarantine, social and physical distancing, and international
travel bans.

Social and physical distancing measures aim to slow the spread
of COVID-19 by stopping chains of transmission of the SARS-
CoV-2 virus (WHO, 2020b). Physical distancing measures
include maintaining at least 2 m of physical distance between
people and the reduction of non-essential personal interactions
and reducing contact with potentially contaminated surfaces.
Social distancing measures for the general public include
flexible work arrangements such as teleworking, distance
learning, cancellation of public events to prevent crowding,
closure of non-essential facilities and services, local and
national movement restrictions, staying-at-home measures,
and coordinated reorganization of health care and social
services networks to protect hospitals. During the time of the
global pandemic, people are encouraged to sustain virtual social
connections within families and communities.

COVID-19 social distancing policies led to a widespread
lockdown of schools and universities, including dental
education institutions (UNESCO, 2020). To a large degree,
this has resulted in the extension of the study terms, and
deferral of exams and graduation dates. COVID-19 lockdown
has exhibited serious repercussions for dental education. While
theoretical courses have still been delivered online during the
COVID-19 pandemic, the delivery of hands-on courses such as
restorative dentistry has been challenging while instructors and
students self-isolate at home without access to dental equipment.
The duration of this teaching interruption is still uncertain, and
dental colleges must keep in mind the possibility of a second or
third wave of COVID-19. Hence, it is necessary for dental colleges
to look for a reliable and robust, yet inexpensive, solution to
ensure the continuation of practical skills in dental education
(Solana, 2020).

In this paper, we develop a novel portable teaching-learning
platform for remote teaching and learning in dentistry (Maddahi

et al., 2020). This new platform, DenTeach, provides an
opportunity for dental schools to continue teaching and
learning from a remote location (such as a home). This device
can fill the existing gap for fully remote or physical-distancing-
aware teaching and learning in dentistry. The DenTeach platform
consists of an instructor workstation (DT-Performer), a student
workstation (DT-Student), advanced wireless networking
technology, and cloud-based data storage and retrieval. This
platform has high efficiency and is able to procedurally
synchronize the instructor and the student with real-time
video, audio, feel, and posture (VAFP). As DenTeach is
packaged in a small portable suitcase, it can be used anywhere
by connecting to cloud-based data to retrieve procedures and
performance metrics.

In this paper, we describe the available training and learning
models, present the developed DenTeach platform, and
demonstrate the feasibility of the DenTeach platform through
a case study.

THE STATE OF DENTAL EDUCATION

In health sciences, the use of classroom and hands-on
instructions by experts has been a training mechanism of
choice for most educational programs. This training
mechanism is also called the traditional novice-expert
apprenticeship model (Collins et al., 1991). In this traditional
model, dental students acquire technical dental skills through
years of hands-on training in dental laboratories and clinics and
receive supervision and feedback on performance skills.
Specifically, mentors conduct a procedure that offers the
students the opportunity of observing, then assisting, and
finally performing that procedure under the supervision of
their mentor. Students learn the nuances of required skills
through working on artificial materials, cadaveric organs,
animals, and case observations, and receive qualitative
feedback on their performance from their mentor (Collins
et al., 1991).

However, the traditional novice-expert model cannot be
continued due to the continued lockdown of the dental school
in the age of the COVID-19 pandemic, as students always require
the presence of their mentor to practice and learn the key
operation skills in a classroom setting. Additionally, in the
field of dentistry, this traditional model is time-consuming,
and the training process is slow and lacks quantitative
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measures to assess aspects of technical skills. As a result, trial and
error often constitute a major part of learning psychomotor skills
for a student. To provide students with continued learning and
training education in times of unprecedented crisis like COVID-
19, decreased training hours, and increased training efficiency,
there is an increasing demand to develop a portable intelligent
teaching-learning platform capable of providing remote teaching
and learning delivery and quantitative evaluation of dental
performance.

Remote Teaching and Learning Delivery
The current teaching-learning method involves an instructor to
provide visual instructions at a central point in the classroom,
while students watch, listen, ask questions, and then imitate tasks.
As all dental pieces of equipment are placed in dental schools,
students do not have access to the equipment once they leave the
classroom. However, if practice units and tools at both the
instructor’s and students’ work areas are portable, the teaching
and learning can be performed remotely (i.e., while self-isolating
at home during the pandemic).

Dental Performance and Skills Assessment
In order to objectively assess technical dental skills (Schwibbe
et al., 2016), it is implicit that one must first be able to measure
and study essential aspects of dental performance. One important
aspect of instrument handling is the ability to use the instrument
(such as the dental handpiece) to effectively, yet safely,
accomplish the dental goal. There are several tactile skills that
should be understood and learned by students. Most importantly,
a student should know how to hold the dental handpiece
(orientation and position of the handpiece), comprehend how
fast the drill should rotate, perceive the level of vibration
produced by the handpiece during the performance of a dental
task (acceleration and jerk) and receive adequate alerts once a task
is performed improperly. The tactile skills listed above may vary
depending on the type of tooth, the region of the oral cavity, or
conducted tasks.

Dental Surgical Simulators
Understanding the tactile skills could be made possible through
the incorporation of sensory and actuation systems onto a
conventional tool such as a dental rotary handpiece in
restorative dentistry.

A device for teaching and training dental treatment techniques
has been developed that exerts a force on a tooth, preferably using
tools, in order to examine or treat this tooth (Riener and Burgkart,
2013). The mandible or a tooth is coupled to a force measuring
device in a manner that enables the forces applied to the tooth to
be represented. By using force sensors, the force applied by the
dentist is measured and used as a reference signal to be compared
with the force applied by the student. Moreover, audible signal
patterns are retrieved and audibly displayed utilizing an acoustic
display unit such as loudspeakers, which means that screams of
pain are played if the calculation shows that the tip of the drill
invades the area of the nerve’. Additionally, the position of the
force-application point of the tool is localized by means of a
navigation system, such as a camera and other optical systems.

In the work of Ranta et al. (2007), a training system has been
presented using haptic-enabled simulations of dental procedures
to provide the sensorimotor involvement needed for dental
training. To provide tactile feedback combined with a realistic
visual experience, the system integrates an off-the-shelf haptic
stylus interface for simulating the movement and feel of the
tooltip with a 3D stereoscopic display. The haptic stylus enables
the dental student to orient and to operate simulated dental
tools. Working on a virtual model viewed in a stereo display,
dental students can use a simulated pick to probe a tooth or a
simulated drill to prepare a tooth for cavity repair. The touch
feedback is simulated by representing these dental instruments as
force-to-a-point tools, which map to haptic simulation
procedures executed on a computer workstation that also
provides the visual display.

Hayka and Eytan (1997) invented a visual-audio-feeling
simulation system for dentistry that comprises a dental
handpiece with a drill for drilling a cavity in a tooth. A 3D
sensor, attached to the dental handpiece, provides the systemwith
the position and orientation of the drill whereas a data processing
unit and a display unit simulate the drill end. The system further
controls the flow of compressed air operating the drill, and thus
controls the drill’s speed. This imitates the sound and hand-
feeling associated when drilling through tooth layers of different
hardness.

Kuchenbecker et al. (2017) developed a simulator to educate
dental students in caries detection; the simulator allows dental
faculty to share, record, and replay the tactile vibrations felt
through a dental hand instrument. This simulation approach is
assessed by asking experienced dental educators to evaluate the
system’s real-time and video playback modes. The simulator uses
an accelerometer to sense instrument vibrations and a voice coil
actuator to reproduce these vibrations on another tool.

Additionally, the Iowa dental surgical simulator unit focuses
on tactile skill development (Johnson et al., 2000). The system
consists of three hardware components: a computer, a monitor,
and a force feedback device with software. Participants interact
with the computer by grasping a joystick or explorer handle
attached to the force feedback device. Teeth are displayed on the
monitor, and the student can manipulate the joystick or explorer
in such a way as to “feel” enamel, healthy dentin, and carious
dentin. Different haptic responses are received when the joystick
or explorer is manipulated over the appropriate areas of the tooth.

Virtual Reality and Augmented Reality
In addition to physical devices for dentistry training, some studies
(Gal et al., 2011; Bakr et al., 2013; Bakr et al., 2014) also exist on
the performance of available dental simulators that use the
mechanical properties of teeth to simulate the oral cavity on
which dental tasks are conducted. Among the developed dental
simulators, the concept of virtual reality (VR) is widely used. As
early as the 1990s, the concept of a VR dental training system was
introduced to practice cavity preparation (Ranta and Aviles,
1999).

Research has assessed the perception of academic staff
members on the realism of the Simodont® haptic 3D-VR
dental trainer (Bakr et al., 2013) (MOOG Industrial Group,
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Amsterdam). This simulator comprises a simulator unit, a panel,
a stereo projection, a SpaceMouse, a handpiece, and a projector.
The Simodont® courseware developed by the Academic Center
for Dentistry in Amsterdam allows a variety of operative dental
procedures to be practiced in a virtual oral and dental
environment with force feedback. PerioSim© was developed
for periodontal simulation, which can simulate three typical
operations including pocket probing, calculus detection, and
calculus removal (Kolesnikov et al., 2008; Luciano et al., 2009).
Forsslund Dental system was developed by Forsslund Systems AB
in 2008 to provide VR training for practicing dental drilling and
wisdom tooth extraction (Forsslund et al., 2009). Rhienmora et al.
(2011) designed a haptic VR crown preparation simulator, which
includes a VR environment with haptic feedback for students to
practice dental surgical skills, in the context of a crown
preparation procedure. An individual dental education
assistant (IDEA) used a PHANToM Omni haptic device that
allowed for six degrees of freedom (DOF) for position sensing and
generated three DOF for force feedback. The virtual dental
handpiece was locked to the position and orientation of the
haptic stylus (Gal et al., 2011).

A VR dental training system was presented to address
limitations and to introduce new techniques such as 1) flexible
learning with self-teaching not limited to formal training hours,
thus increasing students’ training time and reducing the overall
future costs; 2) providing students with the opportunity to gain
instant feedback and to practice assessment tasks using similar
criteria used by examiners; 3) presenting tooth data as a 3Dmulti-
resolution surface model, reconstructed from a patient’s
volumetric data to improve real-time performance; 4) collision
detection and collision response algorithms used to handle a non-
spherical tool such as a cylindrical one; 5) simulation of tooth
surface exploration and cutting with a cylindrical burr by utilizing
a surface displacement technique (Rhienmora et al., 2008).

Augmented reality (AR) haptic systems have also been used
for dental surgical skills training. In the work of Rhienmora et al.
(2010), a dental training simulator utilizing a haptic device was
developed based on AR and VR technologies. This simulation
utilizes volumetric force feedback computation and real-time
modification of the volumetric data to overlay 3D models of
the tooth operated on and tools used with the real-world view.
The image overlay is delivered through a transparent head-
mounted display, which is paired to a haptic device for
simulation of virtual dental tools. The system allows dentists
to practice using a probe to examine the surface of a tooth, to feel
its hardness, and to drill or cut the tooth.

Quantitative Evaluation
Although a variety of dental surgical simulators for teaching and
learning has been developed, the lack of quantitative key
performance indices (KPIs) to assess aspects of dental skills is
still a significant issue to be addressed. With decreasing operating
hours and training resources, there is an increasing demand to
improve training efficiency and to provide a quantitative
evaluation of dental performance using KPIs.

In order to objectively assess technical dental skills, it is
implicit that one must be able to measure and study essential

aspects of dental performance (described in Dental Surgical
Simulators) and quantify KPIs. Currently, in dental schools,
dental laboratories, and clinics, this knowledge is often
conveyed from the instructor to the apprentices through
qualitative instructions, such as “be gentle,” “go deeper” or
“push harder”. Quantitative vibrotactile data measured during
the performance of dental tasks on human teeth remain largely
unavailable. Therefore, in addition to developing advanced
intelligent dental simulators to reform the traditional novice-
expert apprenticeship model and improve teaching and learning
performance, there is a strong demand for systematic quantitative
evaluation of dental performance using KPIs. To this end, Wang
et al. (2011) developed a haptic-based dental simulator, and
preliminary user evaluations on its first-generation prototype
have been carried out. Based on the detailed requirement
analysis of periodontics procedures, a combined evaluation
method including qualitative and quantitative analysis was
designed.

Table 1 summarizes several existing commercial dental
surgical simulators for teaching and learning and their
characteristics. In comparison, the developed DenTeach
system in this paper is shown in Table 1 as well.

DenTeach System
The newly developed portable teaching-learning platform,
DenTeach, complements traditional methods and is based on
the latest industry technologies including smart sensors,
advanced robotics, big data analysis, 3D printing, AR, and
cloud-based computing. The system creates a real-life
traditional teaching-learning experience by synchronizing an
instructor and a student with real-time VAFP. The DenTeach
portable platform consisting of a DT-Performer (Instructor’s
software), a DT-Student software (Student’s software),
advanced wireless networking technology, and cloud-based
data storage and retrieval has been developed for use in
teaching, shadowing, and practice modes. The data storage
system stores VAFP data of the DT-Performer and the DT-
Students in both modes, as well as KPIs, defined for evaluating
students’ performance. Figure 1 provides an overall scheme of
the system. An instructor workstation comprises a commercially
available dental handpiece equipped with a wireless sensory
system and a video recording system while each student
workstation consists of a custom-made haptic-enabled dental
handpiece augmented by another sensory system and an
actuation system and a video recording system. There are
processing systems and display units at each workstation, and
a data transmission module to transfer commands between
workstations through the cloud.

Physical Setup
DenTeach complements the traditional instructor and student
working area by integrating into the existing working setup
(which consists of a tabletop, dental unit, and dental
instruments). For the instructor work area (Figure 2), the
DenTeach platform integrates into a standard instructor work
area and dental unit, and consists of DT-Performer software, DT-
Rightway Articulator, DT-RealFeel sensors, and four mini
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cameras. Specifically, the DT-Performer software provides a full
classroom view and selectable student profile and performance
index. The DT-Rightway Articulator shown in Figure 3 is a
custom-designed system that supports upper and lower
typodonts. The sensors are wirelessly attached to the standard
dental drills to measure quantitative performance data. Each
sensor is a state-of-the-art wireless sensor that records and
streams the instructor’s hand motion data to the cloud
(recorded data will then be imported to each student
workstation). DT-Performer interprets data in a real-time
fashion and provides advanced statistical data analysis to
quantitatively score students’ performance. During each test,
the orientation data and dynamic information are measured or
calculated that include roll (axial), pitch (back-to-front) and yaw
(side-to-side) angles, linear accelerations (3 DOFs), angular
accelerations (3 DOFs), angular velocity (3 DOFs), jerk
components (3 DOFs), and several KPIs.

To display and record the instructor’s hand operation during
teaching procedures, four mini cameras show the top view, two
side views, and inside view. All videos are transmitted
simultaneously onto the students’ workstations. Additionally,
DT-Performer software allows the instructor to select, record,

and play over 30 psychomotor performance metrics to objectively
measure effort, speed, accuracy, and learning curve.

For the student work area (Figure 4), the DT-Student consists
of a fully integrated system with four selectable instructor videos,
a student’s drill model superimposed over the videos of the
instructor’s drill to enable effective imitation or mimicking,
two typodonts affixed to the DT-Rightway Articulator, a
student DT-RealFeel Handpiece synchronized to the
instructor’s movements while in teaching mode, and a DT-
Student software that allows the student to select, record, and
play recordings that demonstrate over psychomotor performance
metrics to objectively measure effort, speed, accuracy and
learning curve. To be more specific, the custom-designed DT-
RealFeel Handpiece has a handle grip associated with its
components including an actuation system to generate a
vibrotactile feeling, a vibrator to apply an abrupt force to the
student’s hand as an alarm, and a set of sensory systems along
with the data communication system. Besides, the processing unit
of the Student’s workstation is arranged to calculate a plurality of
different performance indices in which each index is calculated
using one or more operating characteristics detected by the
sensory system of the DT-RealFeel Handpiece. Similar

TABLE 1 | Comparison of dental simulators.

Simulators Simodont® PerioSim® Forsslund IDEA DenTeach

Hardware -Two projectors
-Panel PC
-3D glasses
-Handpiece and mirror
connected to force feed-
back sensors

-Two computer monitors
with a haptic device
-Crystal eyes stereo glass-
es™ and a crystal eyes
workstation™
-A PHANToM haptic device
with 3 DOFs
- VR William’s periodontal
probe or periodontal
explorer

- Polhem haptic de-
vice
- Kobra oral surgery
simulator with two
screens
- 3D glasses

A stylus with six DOFs position sensor and
three DOFs force sensor attached to a
stand PHANToM omni

- Two computer mon-
itors with a haptic de-
vice
- Handpiece con-
nected to a custom-
designed sensor

Software Moog Simodont
®

dental
trainer courseware
software

Modified version of
Ghost™

Kobra simulation
software

ManualDexterity™, caries detection, scal-
ing and Root-Planning™, OralMed™ and
PreDenTouch™

DT-performer software

Ability to use off
campus

No Yes No Yes Yes

Feedback sen-
sory channels

Haptic-visual-auditory Haptic-visual-auditory Haptic-visual Haptic-visual Haptic-visual-auditory

Immediate
feedback

No No Yes Yes Yes

Display type 3D 3D/AR 3D/VR Monitor screen Monitor screen
Haptic device Moog haptic master PHANToM desktop PHANToM omni/

desktop
PHANToM omni Custom-designed DT-

RealFeel drill
Virtual drilling
control

Foot pedal No Foot pedal NA Foot pedal

Sensor Force sensor Force sensors NR Position and force sensors DT-RealFeel sensor
Automatic
evaluation

Yes Yes Yes Yes Yes

Direct transfer
data to tutor

Yes No No Yes Yes

Expert’s
database

No Yes Yes No Yes

Haptic-visual
collocation

Yes No Yes Yes Yes

Practice/test
simulation

Yes Yes Yes No Yes
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performance characteristics are calculated using the data from the
DT-Performer at the instructor’s station.

Education Modes
DenTeach allows learning activities in three modes namely
teaching, shadowing, and practice.

Teaching Mode
In the teaching mode, similar to a general traditional teaching and
learning mode, an instructor conducts dental tasks in the

instructor’s workstation and students mimic the tasks in the
students’ workstations. The main difference is that the DenTeach
device uses a data transmission system to provide each student
with tactile feedback by processing the data measured and/or
obtained from the dental tool of the instructor’s workstation. This
helps students understand and perceive how their instructor is
conducting the dental operation and tasks without their presence
at the instructor’s workplace. Moreover, the data storage system
saves information such as data of sensory systems from the
instructor and students’ workstations as well as audiovisual

Figure 1 | The overall scheme of the DenTeach system comprising an instructor workstation, a number of student workstations, a data transmission system, and a
data storage system along with the overall workflow of the main components of the device.

Figure 2 | Instructor workstation includes a dental unit, a rheostat, a processing unit, a tooth physical model, a dental handpiece, a set of sensory systems to
measure vibrotactile data of the dental handpiece, a sensor to measure rheostat data, an audiovisual recording system, a software, and a display.
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recordings taken from the instructor’s workstation. This
information can later be retrieved and used for various
purposes, for example by students in the practice mode or by
instructors for evaluation of student’s performance in both
teaching mode and practice mode.

A dental task is conducted by an instructor using a dental
tool on a DT-Rightway Articulator. The instructor processing
unit running DT-Performer software includes the main
processor responsible for: 1) receiving and analyzing
sensory systems data recorded during performance of a
dental task by the instructor; 2) recording video and audio
that are taken from the audiovisual recording system; 3)
communicating with the students’ workstations and the
data storage system via the data transmission system; and
4) providing the instructor with user-friendly software
designed for teaching different dental tasks that are
screened on the display (see Figure 5).

The DT-Performer software enables the instructor to choose
different options including the teaching session along with the
time and date as well as the type of the dental task. Each set of
students’KPIs is displayed graphically on the screen located at the
instructor’s workstation, which helps the instructor monitor
student performance during a teaching session (Figures 5A
and 5B). Additionally, the software can authenticate each
student’s access request when they enter the physical/online
classroom.

In Figure 6, different components used in students’
workstations are illustrated. A student holds a custom-
designed DT-RealFeel Drill on a DT-Rightway Articulator, the
same as the model used in the instructor’s workstation. The DT-
RealFeel Drill and DT-Rightway Articulator are mounted onto a
platform for initialization and registration purposes. The student
processing unit runs the DT-Performer software and provides
each student with a user-friendly interface designed for the
teaching mode.

In teaching mode, the student processing unit is responsible
for: 1) receiving and analyzing data of the sensory system

located inside the custom-designed training tool; 2)
communicating with both instructor’s workstation and the
data storage system via the data transmission system; 3)
generating control inputs for the vibrotactile actuation
system and the vibrator that are located inside the custom-
designed training tool, based on data received from the
instructor’s workstation through the data transmission
system; 4) displaying video and audio recordings, which
includes the instructor’s hand, tool and tooth physical model
received from the instructor’s workstation through the data
transmission system in real-time; 5) superimposing 3Dmodel of
the custom-designed training tool onto the video in an AR
environment screened on the display (see the inset in Figure 6),
and moving the 3D model using processed data of sensory
system; 6) calculating KPIs for evaluation of each apprentice’s
performance during the teaching session based on the data
taken from the sensory systems; 7) sending KPIs of each student
to the instructor’s workstation and data storage system via the
data transmission system.

The DT-Student software of the student workstation enables
each student to get access to data taken from the DT-Performer
during the dental operation. Moreover, the student software helps
the students monitor their own KPIs during the teaching session
and receive detailed statistical reports on how well they could
follow the dental task in teaching mode.

There are two factors that students can continuously monitor
during the teaching sessions; these factors are plotted in a real-
time fashion using 6-bar charts in DT-Performer, as seen in
Figure 6.

(1) Tool handling ability is determined by the acceptable
deviation set by the instructor. At the beginning of the
experiment, the instructor sets the acceptable amount of
the student’s deviation to be less than 15° for the roll (ϕ),
pitch (θ), and yaw (ψ) angles. Deviations are calculated by

Figure 3 | DT-Rightway Articulator and DT-RealFeel sensor attached to
a standard dental drill.

Figure 4 | The components of the DT-Student (apprentice workstation):
DT-Rightway Articulator, DT-RealFeel Drill, and a monitor.
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subtracting the angle of the student’s tool from the
corresponding angle of the instructor tool as follows:

Δϕ � ∣
∣
∣
∣ϕinstructor − ϕstudent

∣
∣
∣
∣

Δθ � |θinstructor − θstudent| (1)

Δψ � ∣
∣
∣
∣ψinstructor − ψstudent

∣
∣
∣
∣

(2) The smoothness of the motion or student’s ability to move
the tool at the same speed as the instructor, which is
defined as:

Figure 5 | The DT-Performer components and workflow in the teaching mode. (A) screenshot of the graphical user interface on the instructor’s display unit. Each
student can upload their photo to the system. Plotter is a feature that presents the KPIs in form of graphs (B) or tables (C).
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Δωx � ωx,instructor

ωx,student

Δωy � ωy,instructor

ωy,student
(2)

Δωz � ωz,instructor

ωz,student

where ωx , ωy , and ωz indicate the angular velocities about x, y,
and z, respectively. Note that when the student is not performing
the dental task as smoothly as the instructor (or moves the tool
faster than the instructor) the numerator becomes much smaller
than the denominator and the ratio will be close to zero, while the
ratio of one means that the student is able to handle the tool as
smoothly as the instructor.

Shadowing Mode
In shadowing mode, a student can download augmented videos
(4 videos from the class session along with signals of sensory
systems and values of KPIs) and start watching, feeling, and
repeating the task before entering the practice mode. In the
shadowing mode, a student uses the DT-RealFeel handpiece to

shadow dental tasks taught by the instructor. In this operating
mode, the video of the dental task - that has already been
performed by the instructor–is displayed on the DT-Student
monitor while superimposing a 3D model of the training tool
(DT-RealFeel handpiece) onto the video, in an AR environment,
when rehearsing the dental task.

Practice Mode
In practice mode, the setup components for a student are the
same as the ones described in Figure 6 except the training tool,
which is the same as the dental tool used by the instructor in the
teaching mode instead of the DT-RealFeel Handpiece. In practice
mode, a student processing unit is responsible for: 1) receiving
and analyzing data of sensory systems; 2) communicating with
the data storage system via data transmission system and
receiving sensory data already stored by the instructor during
the teaching session and 3) calculating student’s KPIs based on
both data taken from sensory systems and data from instructor’s
workstation.

While a student is performing a dental task in practice mode,
the DenTeach software displays KPIs of a student graphically.
The software also generates statistical and graphical performance
reports for dental tasks performed by a student in practice mode.

Figure 6 | The DT-Student components and workflow for teaching purposes. In addition to plotting the performance indices, the DT-Student allows students to
switch between the four views streaming from the instructor workstation and choose the most discernable view to learn. A 3D model of the student’s handpiece (DT-
RealFeel Handpiece) is superimposed to the videos streaming from the instructor workstation and allows each student to visually monitor their tool handling. If the
student’smovement is not within the acceptable range of motion, in addition to the bar charts, the alarm inside the DT-RealFeel Handpiece will start vibrating to help
the student to stay on track.
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These performance reports are uploaded to the data storage
system via the data transmission system, and are made
available to the instructor for evaluation purposes.

KPIs
In addition to the qualitative assessment of dental skills
conducted by an instructor, the performance of each student
is assessed quantitatively individually and comparatively. For
quantitative evaluation, two sets of KPIs are used.

Table 2 shows the signals that are recorded and shown during
the performance of the dental task that enable the student and the
instructor to assess the performance of the student throughout
teaching (24 KPI signals), shadowing (24 KPI signals), and
practice modes (48 KPI signals). Each KPI signal is meant to
assess a specific skill of the student that includes: 1) assessment of
the effort put in by the student; 2) assessment of the smoothness
factor of the student’s tool handling skill; 3) assessment of haptic
feeling, i.e., pressure applied to the tooth; and 4) assessment of the
steadiness factor of the student’s tool handling skill. Table 3 lists
the second set of KPIs summarizes statistical indices of the signals
presented in Table 2 in an enumerative manner. Using the
information provided by this set of KPIs, each student (and
the instructor) can have an inclusive summary of the student’s
dental skills during teaching (40 PKIs), shadowing (40 PKIs), or
practice (82 PKIs) modes. These numbers are also calculated for a
task conducted during every trial; therefore, the student is able to
monitor their progress over multiple trials.

CASE STUDY

Experimental Setup
DenTeach was used to measure the KPIs and the ability of the
system to help an instructor and students teach and learn more

effectively compared to existing traditional techniques. Plastic
teeth were mounted onto the typodonts inside the DT-Rightway
Dental Articulator. Three common dental tasks were completed
by an experienced dentist as the instructor (MK), while a student
(AM) mimicked the performance of dental tasks at the student
workstation. The instructor used the sensor modified dental
handpiece to perform a Class I, II, or V composite preparation,
which involves different lesion sizes and caries, over an interval of
active practicing on a plastic tooth that is characterized by rheostat
engagement and drill operation. More detailed information on the
procedures is given in Tam’s work (Tam, 2020). A screenshot of the
tasks is shown in Figure 7.

Teaching Mode
During the experiments, the outputs of the DT-Performer and
DT-Student software were exported in this section. The software
recorded, analyzed, and plotted real-time data from the
instructor’s dental handpiece. Figure 8 depicts three Euler
angles of the handpiece held by the instructor and the student
as well as the deviations between their angulations, for Task 1. As
observed in Figure 8, the instructor’s motion was followed
reasonably well by the student that held the DT-RealFeel
Handpiece, as the student’s motion deviations are within a
range expected by the instructor (15 degrees of deviation). The
amount of the deviation could change once the students become
more experienced or if the instructor changes the deviation range.
For this typical interval, the amount of angle deviation for roll
angle was within the acceptable interval set by the instructor for
most parts of the performance of the task, as depicted in Figure 9.
However, a deviation of more than 15° was recorded 3 times
during the teaching mode, one for the yaw angle and two for the
pitch angle that accordingly received an excessive vibration signal
reminding the student to keep the handpiece within the allowable
zone. The number of deviations for Task 2 and 3 were 2 and 4,

TABLE 2 | Performance measures and KPI signals.

Mode KPI signal Student Instructor Difference Assessment purpose

Practice
(48)

Teach and
shadow
(24)

Tool handling angulation
• Axial rotation of the tool
• Side-to-side rotation of the tool
• Back-to-front rotation of the tool
• Overall tool handling skill

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the effort put by the student
12 KPI signals in total

Tool handling smoothness
• Axial speed of the tool
• Side-to-side speed of the tool
• Back-to-front speed of the tool
• Overall smoothness in tool handling

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the smoothness of student’s tool handling skill
12 KPI signals in total

Haptic sensation
• Longitudinal haptic feeling
• Lateral haptic feeling
• Vertical haptic feeling
• Spatial haptic feeling

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of haptic feeling, i.e., the pressure applied to the
tooth
12 KPI signals in total

Tool handling steadiness
• Longitudinal jerk index of the tool
• Lateral jerk index of the tool
• Vertical jerk index of the tool
• Spatial smoothness in tool
handling

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the steadiness of student’s tool handling skill
12 KPI signals in total
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TABLE 3 | Performance measures and KPI numbers.

Mode Characteristics Minimum Maximum Range Average Standard
deviation

Purpose

Practice
(82)

Teach
and
shadow
(40)

Tool handling angula-
tion
• Axial rotation of the
tool
• Side-to-side rotation
of the tool
• Back-to-front rota-
tion of the tool
• Overall tool handling
skill

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the effort put
by the student
20 KPIs in total

Tool handling smooth-
ness
• Axial speed of the
tool
• Side-to-side speed
of the tool
• Back-to-front speed
of the tool
• Overall smoothness
in tool handling

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the smooth-
ness of student’s tool han-
dling skill
20 KPIs in total

Haptic sensation
• Longitudinal haptic
feeling
• Lateral haptic feeling
• Vertical haptic feeling
• Spatial haptic feeling

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of haptic feeling,
i.e., the pressure applied to
the tooth
20 KPIs in total

Tool handling steadi-
ness
• Longitudinal jerk in-
dex of the tool
• Lateral jerk index of
the tool
• Vertical jerk index of
the tool
• Spatial smoothness
in tool handling

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

√
√
√
√

Assessment of the steadi-
ness of student’s tool han-
dling skill
20 KPIs in total

Task completion time √ (1 index) Performance time
1 KPI
in total

Interruption index √ (1 index) Continuous motion
1 KPI
in total

Figure 7 | Screenshots of the dental tasks - (A) Task 1: Class I composite preparation on tooth #46; (B) Task 2: Class II composite preparation on tooth number 45;
(C) Task 3: Class V composite preparation on tooth number 46.
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respectively. The student took the handpiece back to the allowable
range once the excessive signal was generated by the RealFeel
handpiece. We expect to observe a decreased amount of deviation
once the student is familiar with dental tasks, as shown in
experiments.

Tables 4–6 show the values of select KPIs that are reported for
the instructor and the student after the completion of Tasks 1, 2,

3, respectively. A combination of the KPIs, video views and
graphical reports in both teaching and shadowing modes help
the student understands which aspects of the work need further
improvement. For example, in all KPIs reported, the standard
deviation of the student is larger than the instructor’s indicating
that the student is required to work on the skill of tool handling
(axial rotation, back-front motion, and side to side motion) and

Figure 8 | Angulations of the instructor (blue line - solid) and the student’s (black line - dashed) handpiece while performing task 1 over a typical time interval of 60 s -
roll (ϕ), pitch (θ), and yaw (ψ).

Figure 9 | Deviation of the student’s tool handling from the instructor (roll: Δϕ, pitch: Δθ and yaw: Δψ) while performing Task 1 over a typical time interval of 60 s.
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the speed of tool handling (axial rotation steadiness, back-front
motion steadiness, side to side motion steadiness, and overall
motion steadiness). The shaded cells in Table 5 show that the
student was out of range in terms of the tool handling and an
alarming signal was applied to the handpiece to bring the hand
back on the track.

Shadowing Mode
In shadowing mode, the student used the RealFeel handpiece to
review the tasks taught by the instructor. In addition to acquiring
more quantitative feedback on the tasks, this mode helps the
student become confident and prepare for the practice mode to
get hands-on practice with the actual dental handpiece. One
advantage of the shadowing mode is to save material and time,
with minimal supervision. Therefore, the student is not restricted

to academic labs for extended hours, as the portable and compact
unit can be used anywhere to practice dental operations over the
Internet.

In this case study, the student performed five trials of task 1 in
shadowing mode. This was assessed in terms of the three ϕ, θ, ψ
angles and possible deviations from the instructor’s angulation
were monitored as well as the amount of the pressure to be
exerted on the tooth 46. The results of the KPIs are presented in
Table 6 for trial 1 and trial 5. As observed, the range of motion in
the last trials (#5) with respect to the first trial (#1) along axial,
side-to-side, and back-to-front rotations decreased by 52.4%,
25.9%, and 74.9%, respectively. Moreover, the standard
deviations in both angulation and speed components were
reduced from trial 1 to trial 5, which shows that the
improvement in student’s ability to handle the tool in a more

TABLE 4 | Student and instructor KPIs while performing Task 1 in teaching mode.

Characteristics Student Instructor

Min Max Ran Ave Std Min Max Ran Ave Std

• Axial rotation of the tool (ϕ) - deg 24.12 48.87 24.75 42.59 3.50 24.11 52.02 27.92 47.62 3.81
• Side-to-side rotation of the tool (ψ) - deg −39.44 −14.75 24.69 −29.91 4.70 −38.31 −20.39 17.92 −23.42 2.48
• Back-to-front rotation of the tool (θ) - deg 30.97 45.72 14.75 41.91 3.53 31.73 51.01 19.28 48.10 3.17
• Axial speed of the tool ( _ϕ) - deg/s 0.05 13.33 13.28 2.16 1.58 −3.36 2.22 5.58 −0.23 3.47
• Side-to-side speed of the tool ( _ψ) - deg/s 0.02 7.75 7.73 1.45 1.03 −1.75 1.64 3.39 −0.31 1.61
• Back-to-front speed of the tool ( _θ) - deg/s 0.01 15.20 15.19 1.64 1.91 −1.34 1.38 2.72 0.15 1.77

TABLE 5 | Deviation of the student’s KPIs from the instructor’s KPIs while performing Tasks 1, 2, and 3 in teaching mode.

Characteristics Task 1 Task 2 Task 3

Min Max Ran Ave Std Min Max Ran Ave Std Min Max Ran Ave Std

Tool handling angulation
• Axial rotation of the tool (Δϕ) - deg −0.56 8.54 9.10 5.03 2.02 −0.76 2.13 2.90 2.01 2.12 −0.58 1.37 1.94 1.83 2.06
• Side-to-side rotation of the tool (Δψ)

- deg
−7.38 16.82 24.19 6.49 4.02 −1.84 33.63 35.47 5.19 3.24 −0.18 17.17 17.36 5.31 1.77

• Back-to-front rotation of the tool (Δθ)
- deg

0.77 15.80 15.04 6.20 2.28 0.19 4.74 4.55 10.22 2.16 0.22 2.13 1.91 17.38 1.84

Tool handling smoothness
• Axial speed of the tool (Δϕ) - deg/s 0.05 13.33 13.28 2.16 1.58 0.04 8.53 8.49 1.19 1.91 0.05 12.88 12.83 0.83 3.05
• Side-to-side speed of the tool (Δ _ψ) -

deg/s
0.02 7.75 7.73 1.45 1.03 0.03 3.33 3.31 1.71 1.47 0.04 1.43 1.39 0.84 0.72

• Back-to-front speed of the tool (Δ _θ) -
deg/s

0.01 15.20 15.19 1.64 1.91 0.00 13.83 13.83 1.68 2.95 0.01 12.17 12.17 2.44 3.74

TABLE 6 | Student’s KPIs quantified while performing Task 1 in shadowing mode over trials 1 and 5.

Characteristics Trial 1 Trial 5

Min Max Ran Ave Std Min Max Ran Ave Std

Tool handling angulation
• Axial rotation of the tool (ϕ) - deg 25.81 53.51 27.70 44.93 3.63 23.73 36.90 13.18 36.89 3.24
• Side-to-side rotation of the tool (ψ) - deg −43.19 −14.90 28.29 −31.40 4.82 −34.58 −13.62 20.96 −24.48 4.64
• Back-to-front rotation of the tool (θ) - deg 31.28 45.95 14.67 42.96 3.56 31.17 29.01 2.16 40.95 3.39

Tool handling smoothness
• Axial speed of the tool ( _ϕ) - deg/s 0.05 13.53 13.48 2.18 1.72 0.05 12.79 12.74 2.20 1.29
• Side-to-side speed of the tool ( _ψ) - deg/s 0.02 8.02 8.00 1.52 1.04 0.02 5.31 5.29 1.22 0.96
• Back-to-front speed of the tool ( _θ) - deg/s 0.01 15.28 15.27 1.69 1.95 0.01 10.03 10.03 1.74 1.50
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limited workspace and a smoother manner using the DenTeach
setup. For example, the standard deviation of axial rotation
changed from 3.63 to 3.24.

Practice Mode
In practice mode, the student used the actual dental handpiece to
practice the three tasks. For this mode, a wireless sensory system
that is identical to the sensors used by the instructor is used to
measure the signals used for calculating the KPIs. The sensory
system and camera then recorded and communicated the
audiovisual vibrotactile information to the database to be
compared with those of the instructor. Therefore, the student
is able to submit the results of each trial to the instructor along
with the audiovisual signals at the end of each trial. The KPIs of
the first (#1) and last (#10) practice trials are listed in Table 7. As
observed, the student improved the scores in most of the KPIs
including the haptic jerk index that is used for assessing the
steadiness of tool handling. Specifically, the maximum value of
longitudinal, lateral, and vertical jerk indices decreased by 1.3%,

64.8%, and 25.8%, respectively, indicating the increase in the
steadiness of hand’s motion from the first trial to the last trial.

Figure 10 shows the variations of the task completion time
and the interruption index (the number of rheostat engagements
and disengagements). As observed, after 10 trials, the student
could complete the task 25.5% faster than the first trial; however,
the interruption index was improved by 43.7% showing that the
student was more confident in handling the handpiece in the last
trial compared to the first trial. The task completion time showed
a mean ± standard deviation (std) of 109.13 + 8.88 and the
interruption indices had a mean ± std of 11.7 + 2.26.

CONCLUSION

The COVID-19 pandemic response has resulted in remote and
physical distancing restrictions to limit the spread and
transmission of the novel coronavirus. This has caused
significant adverse effects on dental education (i.e. difficulties

TABLE 7 | KPIs quantified while performing Task 1 in practice mode over the first and the last trials (1 and 10).

Characteristics Trial 1 Trial 10

Min Max Ran Ave Std Min Max Ran Ave Std

Tool handling angulation
• Axial rotation of the tool (ϕ) - deg 22.67 79.16 56.49 22.67 79.16 24.72 51.06 26.34 24.72 51.06
• Side-to-side rotation of the tool (ψ) - deg −63.11 −15.93 47.17 −63.11 −15.93 −41.22 −15.34 25.87 −41.22 −15.34
• Back-to-front rotation of the tool (θ) - deg 30.25 72.24 41.99 30.25 72.24 31.90 47.78 15.88 31.90 47.78

Tool handling smoothness
• Axial speed of the tool ( _ϕ) - deg/s 0.06 16.80 16.74 0.06 16.80 0.05 13.66 13.62 0.05 13.66
• Side-to-side speed of the tool ( _ψ) - deg/s 0.03 13.18 13.14 0.03 13.18 0.02 7.83 7.81 0.02 7.83
• Back-to-front speed of the tool ( _θ) - deg/s 0.01 23.10 23.10 0.01 23.10 0.01 15.43 15.42 0.01 15.43

Haptic sensation
• Longitudinal haptic feeling - deg/s2 9.36 −5.80 15.16 0.16 7.73 9.11 −6.40 15.51 −0.74 7.18
• Lateral haptic feeling - deg/s2 −1.12 −8.88 7.76 0.18 5.20 −2.12 −8.98 6.86 0.03 4.20
• Vertical haptic feeling - deg/s2 −1.12 −5.80 4.68 −3.27 0.81 −1.47 −6.05 4.58 −3.77 −0.04

Tool handling steadiness
• Longitudinal jerk index of the tool - deg/s3 −7.14 7.63 14.77 0.02 1.01 −6.39 7.53 13.92 −1.63 0.64
• Lateral jerk index of the tool - deg/s3 −2.61 2.16 4.77 0.00 0.59 −1.81 0.76 2.57 −1.20 0.40
• Vertical jerk index of the tool - deg/s3 −2.75 2.52 5.27 0.00 0.10 −1.55 0.32 1.87 −0.80 −0.06
Task completion time - s 125 95.56
Interruption index 16 9

Figure 10 | Variations of the task completion time and the interruption index over 10 trials in the practice mode. The mean values and standard deviations of task
completion time and interruption indices are 109.13 + 8.88 and 11.7 + 2.26, respectively.
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in the delivery of practical courses such as restorative dentistry
and deferral of exams). To help dental institutions continue
delivering education remotely, a compact and portable
teaching-learning platform, DenTeach, has been developed for
remote teaching and learning. The platform includes an
instructor workstation (DT-Performer), a student workstation
(DT-Student), advanced wireless networking technology, and
cloud-based data storage and retrieval. By providing real-time
video, audio, feel, and posture (VAFP) information, the platform
synchronizes the operations of the instructor and the student. Besides,
the platform can provide quantitative KPIs of the student to both the
instructor and the student to evaluate the student’s skill level.

DenTeach follows and expands on the traditional novice-
expert apprenticeship model of instruction to enhance dental
training programs. It has been developed for use in teaching,
shadowing, and practice modes. In teaching mode, the student
can perceive how the instructor is conducting the dental
operation through tactile feedback obtained from the dental
tool of the instructor’s workstation. In shadowing mode, the
student can watch, feel, and repeat the tasks alone by
downloading the augmented videos. In practice mode,
students can use the system to perform dental tasks and have
their dental performance skills automatically evaluated in terms
of KPIs. A case study was performed to demonstrate the
feasibility of the device, and the results show that a
combination of KPIs, video views, and graphical reports in
both teaching and shadowing modes can effectively help the
student understand which aspects of their work need further
improvement.

DenTeach is a useful invention for pedagogical and
professional purposes, which can be used for training and
educating students in both clinical/laboratory and remote (i.e.,
home) settings due to its compact and portable size. This device
facilitates both fully remote and physical-distancing aware
teaching and learning in dentistry. Additionally, the DenTeach
platform can be useful during the pandemic recovery phase, when
dental schools are allowed to return to normal operations. Once
dental schools are reopened, there will be a surge in teaching,
practicing, and exams. DenTeach can be used to increase the
efficiency of the training process, thus allowing dental schools to
clear the backlog of activities faster. Before the second wave of
COVID-19 hits, decision-makers at dental colleges may want to
ensure they have adequate resources to continue teaching and
testing from a remote location and minimize the backlog of
deferred activities. DenTeach can be used as an effective remote
training tool. Moreover, the application of DenTeach could be
further extended to other fields of health sciences such as general
surgery and neurosurgery where a drill is used to conduct a task.
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Case Report: Utilizing AI and NLP to
Assist with Healthcare and
Rehabilitation During the COVID-19
Pandemic
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Chester Ho3,6 and Mahdi Tavakoli 1*
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The COVID-19 pandemic has profoundly affected healthcare systems and healthcare
delivery worldwide. Policy makers are utilizing social distancing and isolation policies to
reduce the risk of transmission and spread of COVID-19, while the research, development,
and testing of antiviral treatments and vaccines are ongoing. As part of these isolation
policies, in-person healthcare delivery has been reduced, or eliminated, to avoid the risk of
COVID-19 infection in high-risk and vulnerable populations, particularly those with
comorbidities. Clinicians, occupational therapists, and physiotherapists have
traditionally relied on in-person diagnosis and treatment of acute and chronic
musculoskeletal (MSK) and neurological conditions and illnesses. The assessment and
rehabilitation of persons with acute and chronic conditions has, therefore, been particularly
impacted during the pandemic. This article presents a perspective on how Artificial
Intelligence and Machine Learning (AI/ML) technologies, such as Natural Language
Processing (NLP), can be used to assist with assessment and rehabilitation for acute
and chronic conditions.

Keywords: COVID-19, artificial intelligence, natural language processing, smart health, neuromusculoskeletal
rehabilitation

1 INTRODUCTION

At the time this article was published, there were over 33 million confirmed COVID-19 patients
globally, with 1million deaths being reported (Johns Hopkins University, 2020) in over 188 countries
and territories. The COVID-19 pandemic has had a profound effect on societies and healthcare
systems worldwide. To address the pandemic, governments and healthcare providers have had to
rethink how healthcare is delivered. COVID-19 spreads rapidly from direct or close human-to-
human contact, and around 15–30% of infected individuals are asymptomatic with a large percentage
of people having only mild symptoms (He et al., 2020; Tuli et al., 2020). Without a COVID-19
vaccine or proven antiviral treatment, public health policy has focused on social distancing to prevent
and contain the spread of COVID-19. Healthcare systems have been forced to take drastic actions to
mitigate the risk of infection and to ensure adequate healthcare system capacity. In-person treatment
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and healthcare delivery has therefore been reduced, or canceled,
for high-risk and vulnerable populations, particularly those with
comorbidities.

This change in healthcare policies and priorities caused the
treatment of non-emergent (chronic or non-life-threatening)
conditions to be deferred into the future. While this shift has
allowed for focusing healthcare resources to address the
immediate needs of the pandemic, healthcare systems had to
delay and defer non-emergent treatments to mitigate or reduce
the risk of COVID-19 infection to vulnerable populations in
healthcare settings. Some of the vulnerable populations, who have
been identified as a high-risk category for developing more severe
and life-threatening COVID-19 infections, include the elderly,
those with disabilities, or multiple comorbidities (Bartolo et al.,
2020). The COVID-19 pandemic forced healthcare providers and
healthcare systems worldwide to reduce or limit less-urgent
healthcare services, such as rehabilitation services for people
with acute and chronic diseases and disorders (Prvu Bettger
et al., 2020). For some patients, this delay in treatment is
inconvenient but not substantially detrimental. For other
patients, a delay or pause in treatment can significantly impair
recovery and reduce effectiveness.

The deferral of rehabilitation therapies is undesirable due to
diminished patient physical and psychological outcomes, and
increases the burden on the healthcare system in the future to
address this growing backlog (Prvu Bettger et al., 2020; Tavakoli
et al., 2020). During the COVID-19 pandemic, rehabilitation has
gained significant importance. Rehabilitation is required to
address the needs of those with acute and chronic conditions
and to support recovery for individuals who have had severe
COVID-19 infections requiring long-term intensive care and
respiration support. Rehabilitation for post-COVID patients
has been shown to be taxing on healthcare systems, with the
average cost of rehabilitation services for post-COVID patients
being roughly twice the cost of rehabilitation services for non-
COVID conditions (Iannaccone et al., 2020).

In this time, when healthcare resources are being strained due
to the pandemic, artificial intelligence (AI) and machine learning
(ML) methods can be utilized to assist healthcare workers and
healthcare delivery (Tavakoli et al., 2020). This article will provide
a brief review and perspective on the use of AI/ML technologies
and systems that can aid in the assessment and treatment of acute
and chronic musculoskeletal, neurological and other conditions.
These AI/ML technologies can be used to complement in-person
appointments with clinicians, occupational therapists, and
physiotherapists. As an example of such a system, a case-study
outline of our work on an AI/ML and Natural Language
Processing (NLP) system for a telephone-based Rehabilitation
Advice Line will also be presented. With future waves of the
COVID-19 pandemic expected, these technologies can also
provide continuity of care when in-person appointments
present too much of a risk. Additionally, beyond the
immediate needs of the pandemic, the deployment of these
systems will continue to be of benefit for providing care for
remote and rural populations.

This paper is laid out as follows. Section 2 will cover an
overview of AI andML systems that have been applied to assisting

with healthcare, including systems developed to address the
COVID-19 pandemic. Section 3 discusses the use of AI/ML
methods, particularly natural language processing (NLP), for
assisting with rehabilitation assessment and treatment. Section
4 introduces our work using a combined ML-NLP system to
analyze clinical data collected by a phone-based rehabilitation
advice line during the pandemic. Section 5 presents a brief
decision about the utility and concerns when using AI/ML
systems within healthcare, with concluding remarks given in
Section 6.

2 ARTIFICIAL INTELLIGENCE FOR
HEALTHCARE AND COVID-19

AI/ML techniques have been widely researched and deployed
before the pandemic to aid clinicians, nurses, and healthcare
workers in various healthcare tasks. Assisting with medical image
based diagnosis and assessment is one such task that AI/ML
technologies have been extensively researched and developed for.
During the pandemic, existing and novel systems have been
developed and deployed to address the particular challenges of
COVID-19. These systems can provide predictions about the
growth and spread of COVID-19 using AI/ML methods to assist
with prevention/containment measures and can include the use
of advanced robotic technologies (Tavakoli et al., 2020). Figure 1
shows the relationship between clinical data that can be processed
by AI/ML systems and example use cases for AI/ML systems
during the COVID-19 pandemic.

2.1 Medical Image Processing
AI/ML algorithms have been widely used to aid in medical image
processing. Several reviews in the literature, written before the
pandemic, show the widespread interest, research, and adoption
of AI/ML technologies for medical image processing for a variety
of imaging modalities (Shen et al., 2017; Maier et al., 2019). Deep
learning and deep neural network (DNN) methods have been
explored to assist with segmentation of anatomical features (or
areas of interest) in x-ray, CT, MR (Lundervold and Lundervold,
2019), and other medical imaging modalities. These segmented
anatomical features can create and train diagnosis and health-
outcome prediction systems for a large number of patient
conditions.

AI/ML technologies can enhance medical images, giving
physicians and healthcare workers superhuman vision by
allowing them to detect patterns or small features in medical
images, which would otherwise be imperceptible (Shen et al.,
2017; Maier et al., 2019). AI/ML image enhancement tools can
highlight or provide clearer visualization of diagnostically
relevant structures in medical images. Assisting with
interpretation of medical images, particularly for diagnostic
purposes, obviously benefits the healthcare system. To address
the need for rapid diagnosis of COVID-19 patients and to gauge
the impact and severity of a patients’ infection, these ML-based
image enhancement and segmentation techniques were used to
detect the presence of COVID-19 lung infections in x-ray and CT
images (Panwar et al., 2020). By analyzing patterns and minute
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differences in a large dataset of patient images, patterns can be
found. These patterns could provide an early warning system for
those coronavirus cases that will become the most serious.

2.2 COVID-19 Modeling, Prediction,
and Tracking
Knowledge of the growth and trends of a pandemic are required
for prevention and containment. AI/ML methods can
intelligently use official data (such as from COVID-19 task
forces) or indirect data (such as from wearable fitness
trackers) to predict cases in different administrative regions.

Punn et al. (2020) used COVID-19 data from the John
Hopkins database to train a predictive ML model. The dataset
consisted of daily case reports and daily time series summary
tables. Predictions were made about total cases for the next
10 days from attributes such as province/state, country/region,
last update, last known confirmed cases, recovered cases, and
deaths. The prediction will allow decision making based on
transmission growth, such as increasing the period or extent
of lockdown, executing sanitation procedures, or providing
additional healthcare resources.

Aside from direct detection of COVID-19 infections using
tests, it is known that acute infections can cause a measurable
change to an individual’s vital signs. For instance, resting heart
rate trends in the population can indicate the presence of
infection. (Radin et al., 2020) evaluated if population trends of
seasonal respiratory infections, such as influenza, could be
identified through wearable sensors (Fitbit) that collect resting
heart rate and sleep data. Sensor data from Fitbit users in 5 US
states was shown able to estimate the level of influenza-like illness
rates at the state level (as reported by the CDC), using binomial
and autoregressive models. The samemethodology can be used to
predict the spread of COVID-19 and future pandemics.

3 ARTIFICIAL INTELLIGENCE FOR
REHABILITATION ASSESSMENT AND
TREATMENT
There are a few modalities under which rehabilitation and
assessment can be undertaken while allowing for adequate
isolation and social-distancing. One of the primary advantages
of these technologies is that they allow for hands-off treatment
and assessment of persons with acute and chronic conditions,

which is paramount with the social isolation restrictions during
COVID-19.

3.1 Rehabilitation Robotics
One modality that has been explored in the literature is to use
robotics for assisting with assessment and rehabilitation. The area
of robotics for rehabilitation has seen significant development
over the past three decades. Robots are able to provide the
repetitive, high-intensity, interactions with patients necessary
for rehabilitation (Voelker, 2005), without being subject to
stress, fatigue, or injury like human beings. Robotic
rehabilitation systems are highly sensorized, providing
occupational and physiotherapists with high-quality objective
data to assess the extent of a person’s condition, disability, or
monitor rehabilitation progress. A significant amount of research
has been done on robotic rehabilitation systems to make them
safe and provide effective and efficient rehabilitation.

Robotic systems for rehabilitation therapy were initially
explored in the late 1980s (Voelker, 2005; Van der Loos et al.,
2016). Robotic rehabilitation systems have been used to assist
with upper-limb and lower-limb rehabilitation and assessment.
(Khalili and Zomlefer, 1988) used two double-link planar robots
that were coupled with a patient’s lower limb to provide
continuous passive motion for rehabilitation. In 1988, (Hogan
et al., 1992) developed the MIT-MANUS, an upper-limb
rehabilitation device for shoulder-and-elbow therapy.
Development of upper-limb rehabilitation systems continued
with devices such as the Mirror-Image Movement Enabler
(MIME) robotic device, which improved muscle movements
through mirror-image training (Lum et al., 2004), and the
Assisted Rehabilitation and Measurement (ARM) Guide,
which functions both as an assessment and rehabilitative tool
(Reinkensmeyer et al., 2014). More general robotic rehabilitation
systems, not limited to just upper-limb or lower-limb
rehabilitation, began to emerge in the 2000s. These robotic
devices allowed rehabilitation for areas such as the wrist
(Williams et al., 2001), hand, and finger Worsnopp et al.
(2007) for the upper-limb, and gait and ankle training
(Colombo et al., 2000; Deutsch et al., 2001) for the lower limb.
More recently, robots designed for training patients to perform
activities of daily living (ADLs) have been developed (Guidali
et al., 2011; Mehrholz et al., 2012). Newer work on robotic
rehabilitation systems has focused on incorporating AI/ML
technologies into these robotic systems to automatically tune
the amount of assistance or resistance they provide during

FIGURE 1 | Examples of clinical information that can be processed by AI algorithms and example AI use cases within healthcare.
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rehabilitation therapy. (Najafi et al., 2020; Tao et al., 2020) used
AI/ML technologies to provide more effective robotic
rehabilitation by learning, and replicating, the amount of
assistance a physiotherapist provides for an individual patient.
The work of (Fong et al., 2020) incorporated machine learning to
perform functional capacity evaluation and provide
rehabilitation.

3.2 Natural Language Processing in
Healthcare
Natural language processing (NLP) is the branch of ML focused
on obtaining information representations by analyzing text and
speech data. NLP, or speech processing and speech
understanding technologies, have become ubiquitous in
consumer products, particularly cell phones and smart
speakers. Recent achievements of NLP include automatic
speech recognition, information extraction, and image
captioning (Esteva et al., 2019). These recent achievements are
being applied to develop clinical voice assistants to transcribe
patient visit information into their electronic health records
(EHR). This technology is designed to reduce the amount of
time a clinician spends on documentation, which can increase the
time and capacity of a clinician to work with patients directly
during the pandemic.

Another increasingly popular use is of NLP pipelines that
preprocess EHR and then find and classify disease-relevant
keywords for early detection of various diseases, most notably
cancer, neural and cardiac ailments (Meystre and Haug, 2006;
Jiang et al., 2017). ML is used to predict and analyze the
performance of alternate treatment options for stroke patients
and to predict the likely outcome for each patient given their
medical history. (Melton and Hripcsak, 2005) used the NLP
system MedLEE to analyze discharge summaries. This analysis
predicted if a patient was likely to suffer from adverse effects, and
this prediction was compared to the New York Patient
Occurrence Reporting and Tracking System (NYPORTS). The
system processed all inpatient cases with electronic discharge
summaries for two years and was shown to outperform the
traditional reporting system. Similarly, another NLP search
approach was used to identify postoperative surgical
complications from a comprehensive EHR containing clinical
notes, microbiology reports, and discharge summaries at six
Veteran Health Administration centers from 1999 to 2006
(Murff et al., 2011). NLP-based methods provide an additional
surveillance opportunity, but utilizing information already
present in clinical notes and discharge summaries. Using the
same principle of clinical assistants, IntelliDoctor, an AI-based
medical assistant android app, develops a profile of the user based
on symptoms and medical history to predict future medical
concerns (Gandhi et al., 2019). This concept is being extended
to develop a comprehensive clinical assistant that can provide
initial screening before referring patients to doctors to reduce
patient-doctor interactions during the pandemic (Jensen et al.,
2012). NLP methods can be employed to provide
recommendations for specialized healthcare to those most at
risk during pandemics using the text and information in their

medical records. These predictions help increase the capacity of
healthcare systems and can identify populations most at risk
during the pandemic. An example of such a system was
demonstrated by DeCaprio et al. (2020) utilizing existing
medical datasets (e.g., pneumonia, influenza, acute bronchitis,
upper respiratory infections) as COVID-19 proxies.

To further improve the accuracy of these clinical assistants,
work has been done to reduce biomedical text ambiguity, through
the use of context, such as in (Liu et al., 2001; Schuemie et al.,
2005). Information extraction systems, when applied to EHRs,
can consist of a tokenizer, sentence bound detector, POS tagger,
morphological analyzer, shallow parser, deep parser, gazetteer,
named entity recognizer, discourse module, template extractor
and template combiner (Meystre et al., 2008). Using the same
principle of clinical assistants, IntelliDoctor, an AI-based medical
assistant android app, develops a profile of the user based on
symptoms and medical history to predict future medical
concerns.

4 REHABILITATION ADVICE LINE:
DISCUSSION OF A CASE-STUDY

Alberta Health Services (the healthcare authority for the province
of Alberta, Canada), has launched a novel telehealth service to
address the rehabilitation needs of those with acute and chronic
musculoskeletal, neurological, and other conditions impacted by
the pandemic. This Rehabilitation Advice Line (RAL) is a
telephone service that allows patients and caregivers to speak
directly with rehabilitation clinicians and professionals. The RAL
is the first of its kind in Canada, was launched on May 12, 2020,
and is a free service for all Albertians over the age of 18.

The RAL is staffed by occupational therapists and
physiotherapists to assist and assess persons remotely, and
provides improved access and continuity of care during these
uncertain times. Assistance provided by the RAL includes helping
patients locate appropriate services in their geographical area,
provide condition specific exercises, self management advice, or
education to address their rehabilitation needs. This wayfinding is
particularly helpful for individuals who had their rehabilitation
treatment stopped due to COVID-19, or to individuals who were
unable to start rehabilitation therapy due to the pandemic. The
RAL system allows the clinicians to share referrals and clinical
advice with other members of the person’s healthcare team (e.g.,
primary care physicians). The RAL forms a part of a broader
Health Link telephone service which provides free advice and
health information within Alberta. The phone infrastructure and
data storage for the RAL provided by Health Link.

While the RAL was implemented to address the immediate
needs of patients with rehabilitation needs during the COVID-19
pandemic, the RAL aims to remain in place post-COVID. Long-
term, the RAL will continue to act as a resource for patients to
access immediate rehabilitation advice and guidance. Patients
phoning the RAL will also be provided with referrals to available
rehabilitation providers and services which are open for in-
person and/or virtual visits. The RAL will continue to serve as
an important resource post-COVID, particularly for the remote
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assistance it offers for patients in rural areas in Alberta and small
urban centers with limited access to rehabilitation services.

4.1 Natural Language Processing
Processing of RAL Clinical Notes
When a patient or caregiver phones into the RAL, clinical notes
are entered into an online charting platform by the occupational
and physiotherapists. These clinical notes contain key
information about the patients, such as their age, location, and
gender along detailing the patient’s rehabilitation concerns. We
propose the use of NLP and ML technologies to assist with
analyzing the information contained in these clinical notes
(after anonymization). The call notes consist of unstructured
data that can be classified into three categories: History including
previous patient diagnoses, medications, and existing symptoms;
Action taken by the RAL advisor during the call including
discussion of current symptoms (including pain, weakness, or
difficulty performing ADLs, etc.), subjective over-the-phone
assessment, and cause of the condition (if it was caused
through injury); Disposition detailing the advice provided or
service referrals given to the patient. By capturing this
information, the RAL provides a means of monitoring and
providing assistance to individual patients.

An NLP-ML system has been designed as a case-study to
analyze the public health impact of the RAL, user engagement
with the RAL, and to provide public health monitoring and
prediction of future healthcare resource needs. Along with
traditional rehabilitation assessment metrics that have been
collected during patient calls and surveys, our NLP-ML system
will provide deeper insight into the data collected by the RAL.
This insight will include: automatically capturing demographic
data; categorizing the reason for the call as resulting from
musculoskeletal, neurological, COVID, or other conditions;

analysis of the disposition to better understand the patient
care plan; and predictive modeling of areas where
rehabilitation services will be needed in the future. As shown
in Figure 2, the NLP-ML system consists of two main
components: the NLP-based preprocessing of clinical notes
and an AI/ML-based system for modeling and analyzing the
collected data. Apache cTakes (Savova et al., 2010) is being used
for NLP processing of the clinical notes to convert them to a
machine-readable format. cTAKES is able to process and provide
context from these notes, including highlighting the patient’s
condition and medical history (including any injuries or
medications), subjective assessment results, and the advice
provided to them. Preliminary work has shown that the NLP
system is capable can correctly identify salient keywords within
the clinical notes (e.g., total knee replacement, multiple sclerosis,
fractures, etc.). Our work on developing a ML system to distil
salient public health information using a large set of these
analyzed clinical notes is ongoing.

5 DISCUSSION AND FUTURE RESEARCH

We have provided a number of examples that show the utility of
AI/ML systems, in theory, for assisting with healthcare. In
practice however, there are a number of factors which must be
addressed in the future to enable the adoption of AI/ML systems
outside of research environments. One set of factors that should
be addressed, are the safety and accuracy when using AI/ML
systems for healthcare data analysis. For some healthcare tasks,
such as medical image analysis, AI/ML systems have been widely
explored and have become increasingly accurate, performing
nearly as well as human clinicians (Shen et al., 2017;
Lundervold and Lundervold, 2019; Maier et al., 2019). The
success of AI/ML in the image analysis domain can be

FIGURE 2 | Proposed NLP-ML processing pipeline for rehab advice line call records.
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attributed to the wide availability of high quality, comprehensive,
and extensively annotated datasets. In other domains, such as
NLP processing of electronic health records, there is an absence of
publically available annotated datasets which can be used to
develop and validate NLP systems (Kersloot et al., 2020). Due
to this, there is limited information about the accuracy of NLP
healthcare data analysis systems within the literature and it is
difficult to compare the existing systems within the research
(Kersloot et al., 2020). The development of publicly available
challenge NLP healthcare datasets and better metrics for
analyzing the accuracy of such systems is an area which
should be worked on by researchers in the future.

In addition to the accuracy and safety of AI/ML systems, one
other set of factors which should be carefully considered and
discussed by researchers in the future are the ethics, privacy, and
security when using AI/ML for healthcare data analysis. These
factors are critical to consider when developing systems which
work on identifying healthcare data, NLP systems for example.
New technologies, like wearable/phone sensors, provide a
wealth of new data which can be used to augment traditional
clinical patient assessments, providing new insights into the
day-to-day activities and symptoms of patients. The privacy and
ethical use of this data needs to be discussed and addressed when
developing novel healthcare AI/ML solutions. Within the
COVID-19 pandemic, the balance between ethical/privacy
concerns and public health assistance was a critical
consideration for the various smartphone COVID-19
notification apps deployed across the world (Bradford et al.,
2020).

6 CONCLUDING REMARKS

Healthcare systems and healthcare delivery have been
significantly affected by the COVID-19 pandemic. With social
distancing and isolation policies to continue until new treatment
options and vaccines are widely deployed, there is a need to
discuss how new and existing technologies can assist healthcare
systems during this challenging time. In this perspective paper we
have discussed the use of AI/ML technologies to assist with the
assessment, diagnosis, and treatment of acute and chronic

musculoskeletal, neurological, and other conditions during
the COVID-19 pandemic. We have provided examples of AI/
ML technologies applied to areas such as medical image
analysis, robotic rehabilitation and assessment, and NLP
systems which allow for remote, hands-off, treatment and
assessment of persons with acute and chronic conditions. We
have also provided an overview of our ongoing work to help the
healthcare system better analyze, quantify, and understand
information recorded during calls to a Rehabilitation Advice
Line. As further waves of the pandemic are expected, it is
important to highlight how using AL/ML technologies can be
deployed to provide new public health insights using existing
medical history data and new data captured during remote
healthcare sessions during the pandemic.
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The COVID-19 pandemic has highlighted the need for advancing the development and

implementation of novel means for home-based telerehabilitation in order to enable

remote assessment and training for individuals with disabling conditions in need of

therapy. While somatosensory input is essential for motor function, to date, most

telerehabilitation therapies and technologies focus on assessing and training motor

impairments, while the somatosensorial aspect is largely neglected. The integration of

tactile devices into home-based rehabilitation practice has the potential to enhance the

recovery of sensorimotor impairments and to promote functional gains through practice

in an enriched environment with augmented tactile feedback and haptic interactions. In

the current review, we outline the clinical approaches for stimulating somatosensation

in home-based telerehabilitation and review the existing technologies for conveying

mechanical tactile feedback (i.e., vibration, stretch, pressure, and mid-air stimulations).

We focus on tactile feedback technologies that can be integrated into home-based

practice due to their relatively low cost, compact size, and lightweight. The advantages

and opportunities, as well as the long-term challenges and gaps with regards to

implementing these technologies into home-based telerehabilitation, are discussed.

Keywords: haptic, training, stroke, neurorehabiliation, somatosensory, assessment

INTRODUCTION

The COVID-19 pandemic highlights the need to accelerate the development and implementation
of innovative approaches for home-based rehabilitation (Simpson and Robinson, 2020). While in
normal, non-pandemic times many individuals in need of rehabilitation services do not receive
sufficient therapy due to difficulties posed by the need to travel to the location where the therapy is
provided, a shortage of regional rehabilitation care, and poor adherence to assignments (Cramer
et al., 2019), the COVID-19 pandemic is presenting new challenges to rehabilitation services.
The restrictions imposed to contain the spread of infection further limit access to rehabilitation
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services (Chaler et al., 2020) and challenge societal well-being.
This may lead to long-term negative consequences by increasing
functional impairments, and reducing participation and quality
of life (Boldrini et al., 2020b). Telerehabilitation from home
may partially mitigate these challenges, but state of the art
telerehabilitation systems often only use visual or/and auditory
feedback and lack somatosensory feedback (Navarro et al., 2018).

Somatosensory input is essential for accurate motor control
and interactions with the external world (Pearson, 2000; Perez
et al., 2003; Borich et al., 2015). The somatosensory impairment
that is observed in many neurological disorders such as stroke,
traumatic brain injury, and spinal cord injury can lead to
impairments in adjusting the amount of force applied during
grasping and fine manipulation of objects (Sullivan and Hedman,
2008; Doyle et al., 2010, 2014; Connell et al., 2014; Hill et al., 2014)
and in performing tasks that require rapid dextrous movements
(Goebl and Palmer, 2008), as well as in controlling more gross
functions such as gait and posture (Maki and McIlroy, 1997;
Horak, 2006).

In in-person rehabilitation intervention therapists frequently
use touch to assist, and to provide and perceive information, as
well as to comfort and encourage patients (Roger et al., 2002).
In a survey regarding satisfaction with telerehabilitation during
the COVID-19 pandemic, the absence of touch was reported by
patients as a limitation (Tenforde et al., 2020). The current review
focuses on tactile technologies that can be used as innovative
solutions to support home-based telerehabilitation and addresses
some challenges that have become more salient during the
COVID-19 pandemic.

Previous reviews discussed telerehabilitation and wearable
haptic devices; however, none has provided a comprehensive
perspective on the variety of tactile stimulation technologies
and the ways to exploit them for home-based telerehabilitation.
An overview on tactile displays was conducted by Jones and
Sarter (2008); however, since then significant developments
in tactile technology have been presented. Culbertson et al.
(2018b) reviewed the design, control, and general applications of
haptic devices, but did not focus on rehabilitation applications.
Several reviews focused on wearable technologies (not necessarily
haptics) that can be used for remote monitoring of physiological
and kinematic measurements, with a brief overview on the
applications for home-based rehabilitation (Patel et al., 2012;
Wang et al., 2017). Navarro et al. (2018) proposed features related
to adaptive, multisensorial, physiological and social aspects that
should be considered in the development process of the next
generation of telerehabilitation systems. A systematic review of
virtual reality technologies for rehabilitation examined the effect
of haptic feedback on motor performance (Rose et al., 2018).
Another review (Shull and Damian, 2015) examined wearable
haptic applications for a variety of sensory impairments; however,
the focus of that review was on stimulations to enhance motor
performance. A previous narrative review focused on tactile
technologies for hand rehabilitation in central nervous system
disorders (Demain et al., 2013). In this work, we extend previous
reviews by covering the development in tactile technologies
over the last decade with an emphasis on wearable devices that
potentially could be utilized at home. We also expand the scope

to include the assessment of somatosensory deficits, in addition
to various rehabilitative applications, and address the recent
developments in mediation of social interaction. Specifically, we
review: (1) clinical approaches for stimulating somatosensation
in home-based rehabilitation, (2) tactile technologies that can be
integrated into home-based rehabilitation, and (3) the challenges
and gaps, as well as the opportunities, in this field.

CLINICAL APPROACHES FOR
STIMULATING SOMATOSENSATION IN
HOME-BASED NEUROREHABILITATION

Providing Tactile Augmented Feedback to
Enhance Motor Control Performance and
Learning
Somatosensory augmented feedback provides additional sensory
cues that complement and/or replace native sensory input from
the somatosensory, visual, and/or vestibular systems (Bach-y-
Rita and Kercel, 2003). Tactile cues can guide patients on how
to improve their movements (Bark et al., 2015) and may assist
them in achieving their goals more quickly and/or more easily
(Magill, 2004). A promising application of tactile feedback is
to provide patients with guidance on how to improve their
movements without the constant presence of a therapist (Bark
et al., 2015; Bao et al., 2018), including when practicing on
their own. The augmented feedback can be triggered by the
participant’s motor performance and can provide information
continuously during the action or at specified times (Ferris and
Sarter, 2011; Galambos, 2012; Kaul and Rohs, 2017). Compared
with visual feedback, real time tactile feedback makes it possible
for patients to receive information regarding movement errors
without the need to shift visual attention, thus affording a more
“natural” movement (Bark et al., 2015).

Tactile stimulation can also be beneficial even if it does
not provide any information. For instance, subthreshold tactile
stimulations (i.e., below the level at which a person can
perceive the stimulation) add noise to proprioceptive signals
and might help these signals to overcome the threshold of
specific neural circuits. This phenomenon, also known as the
stochastic resonance theory (Gammaitoni, 1995; Gammaitoni
et al., 1998; Moss et al., 2004), facilitates more efficient detection
of somatosensory information, and improves sensorimotor
performance (Collins et al., 1996, 2003). As such, it could be used
in the rehabilitation of individuals with sensorimotor deficits
to improve motor functions (e.g., grasp, object manipulation,
balance and gait) and tactile sensation (Enders et al., 2013; Seo
et al., 2014, 2019).

Applying Tactile Stimulations to
Improve/Restore Cutaneous
Somatosensation
Somatosensory impairment is considered to have a negative
prognostic impact on rehabilitation interventions and overall
motor function recovery (Bowerman et al., 2012; Dietz and
Fouad, 2014; Zandvliet et al., 2020). Although the current
literature in this field is limited, a recent systematic review
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and meta-analysis indicated positive effects in improving
somatosensory impairments (Serrada et al., 2019). Specifically,
sensory discrimination training by repeated practice to
distinguish textures and localize tactile stimuli can influence the
sensory system and drive recovery (Carey et al., 1993; Yekutiel
and Guttman, 1993; Turville et al., 2019).

Presenting Tactile Feedback in Virtual
Reality Environments
Telerehabilitation is often based on virtual reality systems and
interactive video games that aim to facilitate repetitions of
movements and to make the repetitive exercises more engaging,
enjoyable and motivating (Standen et al., 2015). The virtual
experience can be further enhanced by using tactile devices that
can convey haptic interactions between the user and the virtual
objects (Galambos, 2012; Culbertson et al., 2018b).

Conveying Social Tactile Interaction
Haptic feedback plays a critical role in emotional and social
communication (Strong and Gaver, 1996; Brave and Dahley,
1997). During in-person rehabilitation sessions therapists often
use touch to comfort and encourage patients (Roger et al., 2002).
Recent developments in wearable tactile devices demonstrate
very promising results in conveying sensations such as comfort
and affection (Culbertson et al., 2018a; Nunez et al., 2019, 2020),
attention (Baumann et al., 2010), playfulness (Mullenbach et al.,
2014), or social presence (Baldi et al., 2020). The integration of
social tactile aspects into telerehabilitation systems would open
new possibilities for remote therapist-patient communication
andmay facilitate wider adoption of telerehabilitation from home
by patients.

Assessing Tactile Impairments
In addition to the above training strategies, the use of measures
to quantify somatosensory deficits could help therapists to
understand patients’ impairments beyond motor and functional
status and assist in targeting appropriate interventions.
The assessment of somatosensory functions, including
proprioception and sensitivity to light touch, pressure, and
temperature, cannot be done remotely in the traditional way
where the therapist applies the stimulation and evaluates the
performance using scales. Portable, and often wearable devices
that apply multimodal stimulations have the potential to provide
reliable and quantitative information regarding somatosensory
impairments in a home-based setting (Rinderknecht et al., 2015,
2019). Such portable devices have already been used in some
virtual reality systems for baseline measurements of activity and
kinematics and for tracking changes over time (Patel et al., 2012;
Chen et al., 2015; Bortone et al., 2018).

TACTILE STIMULATION TECHNOLOGIES

Over the last few decades, technologies that can provide versatile
tactile stimulations have become very popular and many new
devices continue to be developed. These devices can be integrated
into wearable technologies and utilized for telerehabilitation
due to their low cost, compact size, and lightweight. From

the technological point of view, there is a variety of ways to
apply tactile stimulation. These can be categorized according
to the mechanism evoking the tactile sensation: mechanical,
electrotactile, and thermal. In order to provide an in depth
review of the technology and its applications, in this review
we focus on mechanical tactile stimulations. However, it should
be noted that electrotactile stimulation is also used for various
assistive technologies and rehabilitation applications such as for
people with visual (Bliss et al., 1970; Kajimoto et al., 2001) and
auditory impairments (Weisenberger et al., 1989), as well as in
prostheses, orthoses (Schweisfurth et al., 2016; Svensson et al.,
2017) and stroke rehabilitation (for a review see Laufer and
Elboim-Gabyzon, 2011).

Mechanical tactile stimulations can be further divided
into vibration, skin deformation, and mid-air stimulations.
Recently the idea of wearable tactile devices that combine
vibration, stretch, and pressure for conveying multimodal haptic
information was introduced (Aggravi et al., 2018; Sullivan et al.,
2019; Dunkelberger et al., 2020), highlighting the importance of
understanding the unique properties of each stimulation type and
harnessing the advantages of each to design devices that are more
than the sum of their parts. In the remainder of this section,
we review the state of the art in mechanical tactile stimulation
devices. For each type of device we review the technology,
its applications for healthy and patient populations, and its
advantages and disadvantages. The different devices and studies
are summarized in Tables 1, 2. Table 1 summarizes the devices
by stimulation type, actuator type, technological maturity level,
and application. We rank the technological maturity level based
on how extensively testing of the device has been reported in the
literature, with the following levels: prototype demonstration (N
< 10); healthy user studies (N = 10–100); extensive healthy user
studies (N > 100); patient user studies (N = 10–100); extensive
patient user studies (N > 100). Table 2 summarizes the studies
that were reviewed here that were tested on patient populations
for different rehabilitation applications.

Vibration
Vibration is the simplest and most common tactile stimulation
technology that has become ubiquitous and is used in a
wide variety of devices such as phones, watches, games,
and home appliances (Culbertson et al., 2018b). Typically,
the actuators used in wearable devices produce vibration
at frequencies above 100Hz, which activates the Pacinian
corpuscles mechanoreceptors (Culbertson et al., 2018b). The
most common locations for applying the vibrotactile stimulation
are the arm (Bark et al., 2008; Huisman et al., 2013; Krueger
et al., 2017; Shah et al., 2018; Risi et al., 2019) and the torso
(Van Erp et al., 2005; Lee et al., 2012; Ballardini et al., 2020).
Other locations for stimulation include the hand (Jiang et al.,
2009; Wan et al., 2016) and different locations on the lower limb
(Chen B. et al., 2016; Shi et al., 2019). The design of the device
and the stimulation patterns (e.g., frequency and amplitude of
the vibration) need to take into account the targeted dermatomes
and the density and size of the mechanoreceptors’ receptive fields
which vary across the body (Jones and Sarter, 2008; Johansson
and Flanagan, 2009; Shah et al., 2019) and across the skin type
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TABLE 1 | Tactile stimulation devices by type, maturity level, and applications in healthy individuals.

Stimulation type Device type Device maturity level Applications Commercial availability

Vibration Single actuator Extensive healthy and patient user

studies

Improve walking pattern (Janssen et al., 2009) BalanceFreedom of SwayStar system

https://www.b2i.info/web/index.htm

Improve force control accuracy (Ahmaniemi, 2012)

Convey proprioceptive information (Bark et al., 2008)

Multiple actuators Extensive healthy and patient user

studies

Enhance motor learning and performance (Lieberman and Breazeal,

2007; Bark et al., 2015; Kaul and Rohs, 2017; Van Breda et al., 2017;

Shah et al., 2018)

Guide movement direction (Van Erp et al., 2005; Krueger et al., 2017;

Risi et al., 2019)

Improve standing balance (Lee et al., 2012; Ma and Lee, 2017;

Ballardini et al., 2020)

Vertiguard RT https://zeisberg.net/

posturographie.html

Improve walking pattern (Chen B. et al., 2016; Wan et al., 2016;

Muijzer-Witteveen et al., 2017; Xu et al., 2017)

Convey various types of information (Ferris and Sarter, 2011; Cobus

et al., 2018)

Convey affective touch (Israr and Abnousi, 2018)

Assess somatosensory impairments (Tommerdahl et al., 2019) Brain Gauge https://www.

corticalmetrics.com/howitworks

Multiple actuators on a

glove

Healthy and patient user studies Convey virtual objects information (Muramatsu et al., 2012) CyberTouch http://www.

cyberglovesystems.com/cybertouch2

Convey force information (Galambos, 2012)

Assess somatosensory impairments (Rinderknecht et al., 2015, 2019)

Single actuator with

multiple probes

Healthy user studies Assess somatosensory impairments (Holden et al., 2012; Puts et al.,

2013; Mikkelsen et al., 2020)

Skin

deformation—tangential

and stretch

Tactor Extensive healthy user studies and

patient studies

Alter mechanical properties of virtual objects (Sylvester and

Provancher, 2007; Quek et al., 2013, 2014b; Schorr et al., 2013;

Farajian et al., 2020a,b)

Convey direction information (Bark et al., 2010; Guinan et al., 2012,

2013a,b; Norman et al., 2014; Chinello et al., 2018; Kanjanapas et al.,

2019)

Convey information about curvature (Frisoli et al., 2008; Prattichizzo

et al., 2013), weight (Kato et al., 2016; Choi et al., 2017), and virtual

objects information (Yem and Kajimoto, 2017; Wang et al., 2020)

Improve object manipulation (Leonardis et al., 2017; Schorr and

Okamura, 2017b; Bortone et al., 2018), tracking (Quek et al., 2014b),

insertion (Quek et al., 2015b), palpation (Schorr et al., 2015) and

grasping (Westebring van der Putten et al., 2010; Kim and Colgate,

2012; Quek et al., 2015a; Choi et al., 2017; Stephens-Fripp et al.,

2018; Avraham and Nisky, 2020; Bitton et al., 2020; Farajian et al.,

2020b)

Guide movement direction (Bark et al., 2010; Guinan et al., 2012,

2013a,b; Norman et al., 2014; Chinello et al., 2018)

Improve standing balance (Hur et al., 2019)

(Continued)
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TABLE 1 | Continued

Stimulation type Device type Device maturity level Applications Commercial availability

Convey affective touch (Nunez et al., 2019)

Assess somatosensory impairments (Ballardini et al., 2018)

Adhesive rings Healthy user studies Convey affective touch (Haynes et al., 2019)

Belt/Vest Healthy user studies Substitute and augment force and torque feedback (Pacchierotti et al.,

2016), convey sensation of mass (Minamizawa et al., 2007), and

sensation of virtual objects (Minamizawa et al., 2008),

Convey direction information (Bianchi, 2016)

Provide feedback about grasping force (Casini et al., 2015)

Guide movement direction (Stanley and Kuchenbecker, 2012; Pezent

et al., 2019; Smith et al., 2020) and convey path information (Kumar

et al., 2017)

General tactile stimulation (Nakamura and Jones, 2003; Wu et al.,

2010)

Rocker and roller Healthy user studies Enhance virtual object manipulation (Provancher et al., 2005)

Convey proprioceptive information (Battaglia et al., 2017 and 2019;

Colella et al., 2019) (Clark et al., 2018)

Mechanical cranks Healthy user studies General tactile stimulation (Stephens-Fripp et al., 2018)

Skin

deformation—pressure

Indentator Healthy and patient user studies General tactile stimulations (Chinello et al., 2015)

Convey sensations of softness (Frediani and Carpi, 2020), and holding

a virtual object (Merrett et al., 2011)

Convey direction information (Raitor et al., 2017; Agharese et al., 2018)

Render shape information of remote and virtual objects (Chinello et al.,

2019)

Convey affective touch (Culbertson et al., 2018a)

Assess somatosensory impairments (Jacobs et al., 2000)

Belt Prototype demonstration Convey affective touch (Prattichizzo et al., 2010)

Pin array Healthy and patient user studies Create 2D and 3D graphic display (Shimizu et al., 1993; Leo et al.,

2016; Brayda et al., 2018)

General tactile stimulations (Caldwell et al., 1999),

Convey sensations of roughness (Kim et al., 2009), and texture

(Sarakoglou et al., 2005; Kyung and Park, 2007; Garcia-Hernandez

et al., 2011)

Skin deformation or

vibration ultrasound

Mid-air technology using

phased arrays

Extensive healthy user studies Create 3D haptic shapes (Long et al., 2014; Vo and Brewster, 2015;

Makino et al., 2016)

UltraLeap https://www.ultraleap.com/

Convey affective touch (Shakeri et al., 2017, 2018)

Maturity level is ranked by the following levels: prototype demonstration (N < 10); healthy user studies (N = 10–100); extensive healthy user studies (N > 100); patient user studies (N = 10–100); extensive patient user studies (N > 100).

Note that the applications column refers to studies in healthy individuals; for types of devices that were also tested on patients please refer to Table 2 for more detailed information about the specific studies. Commercial availability of

devices that were reviewed in the current paper and tested either on healthy or patient populations.
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TABLE 2 | Tactile device applications for rehabilitation.

Application Population Tested in a home

setting (Yes/No)

Type of stimulation Type of device Wearable/

Non-wearable

References

Enhance upper extremity

function

Multiple Sclerosis (N = 24) No Vibration Multiple actuators Wearable Jiang et al., 2009

Stroke (N = 12) No Subthreshold vibration Single actuator, (TheraBracelet) Wearable Seo et al., 2019

Enhance gait and balance

control

Stroke (N = 8) No Vibration Multiple actuators Wearable Afzal et al., 2019

Stroke (N = 17) No Vibration Multiple actuators Wearable Yasuda et al., 2017

Stroke (N = 3) No Vibration Platform (The Rutgers Ankle

Haptic Interface)

Non-wearable Boian et al., 2003

Stroke (N = 20) No Vibration Multiple actuators Wearable Jaffe et al., 2004

Parkinson’s disease (N = 43) No Vibration Single actuator (VibroGait) Wearable Fino and Mancini, 2020

Parkinson’s disease (N = 20) No Vibration Multiple actuators

(BalanceFreedom)

Wearable Nanhoe-Mahabier et al., 2012

Parkinson’s disease (N = 16) No Pressure Steel stick Non-wearable Barbic et al., 2014

Parkinson’s disease (N = 10) No Vibration Multiple actuators (Vertiguard) Wearable Rossi-Izquierdo et al., 2013

Parkinson’s disease (N = 9) and older adults at high

risk for falls (N = 8) and older adults (N = 10)

No Vibration Multiple actuators Wearable High et al., 2018

Parkinson’s disease (N = 9) and older adults (N = 9) No Vibration Multiple actuators Wearable Lee et al., 2018

Older adults (N= 12) Yes Vibration Multiple actuators Wearable Bao et al., 2018

Peripheral Neuropathy (N = 4) No Pressure Ballon arrays Wearable McKinney et al., 2014

Vestibular disorder (N = 6) No Vibration Multiple actuators Wearable Sienko et al., 2012

Vestibular disorder (N = 7) No Vibration Multiple actuators Wearable Sienko et al., 2013

Vestibular disorder (N = 13) No Vibration Multiple actuators (Vertiguard) Wearable Brugnera et al., 2015

Vestibular disorder (N = 8) No Vibration Multiple actuators Wearable Bao et al., 2019

Vestibular disorder (N = 105) No Vibration Multiple actuators, (Vertiguard) Wearable Basta et al., 2011

Enhance tactile sensation Stroke (N = 5), diabetic neuropathy (N = 8) and

older adults (N = 12)

No Subthreshold vibration Single actuator Non-wearable Liu et al., 2002

Stroke (N = 10) No Subthreshold vibration Single actuator Wearable Enders et al., 2013

Stroke (N = 16) Yes Vibration Multiple actuators on a glove Wearable Seim et al., 2020b

Digital nerve injuries (N = 49) No Pressure Rotating disk and a card Non-wearable Cheng, 2000

Chronic pain (N = 13) No Pressure Probe Non-wearable Moseley et al., 2008

Spinal cord injury (N = 7) Yes Vibration Multiple actuators on a glove

(Mobile Music Touch)

Wearable Estes et al., 2015

Somatosensory

assessment

Stroke (N= 2) No Vibration Multiple actuators on a glove

(ReHaptic Glove)

Wearable Rinderknecht et al., 2019

Stroke (N = 3) No Skin stretch Tactor Non-wearable Ballardini et al., 2018

Brain injury (N = 1) No Vibration Multiple actuators (Brain Gauge) Non-wearable King et al., 2018

Enhance interaction realism

in virtual reality environment

Children with neuromotor impairments (N = 20) No Skin stretch and

pressure

Tactor Wearable Bortone et al., 2018

Spinal cord injury (N = 9) No Vibration Multiple actuators on a glove

(CyberTouch)

Wearable Dimbwadyo-Terrer et al., 2016
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(e.g., hairy skin has a reduced number of Pacinian corpuscles
compared to glabrous skin) (Colgate and Brown, 1994; Ackerley
et al., 2014). Skin type can also influence the quality of stimulation
via its mechanical properties and its physical propagation of the
vibration (Dandu et al., 2019; Hachisu and Suzuki, 2019).

Technology
Vibrotactile feedback can be conveyed by a single actuator,
or by an array of actuators that create an oscillating
movement. The choice of the actuator affects the size,
shape, cost, availability, robustness, speed of response, input
requirements, and power consumption of the device (Choi and
Kuchenbecker, 2013). An overview of the different actuators
can be found in Choi and Kuchenbecker (2013) and Kern
(2009).

The stimulation patterns can be divided into two fundamental
categories: (1) binary on-off state, and (2) continuous vibration,
created by changing parameters of the vibration signals such
as amplitude, frequency, duration, rhythm, and waveform
(Brewster and Brown, 2004; Jones and Sarter, 2008). Binary
feedback is not continuously provided but is triggered by specific
events such as an alarm or event-cue related information (Ferris
and Sarter, 2011; Galambos, 2012; Kaul and Rohs, 2017). The
vibration intensity can be constant or may vary according to the
event (Cobus et al., 2018). Continuous vibrotactile stimulation
is used to convey various types of information to the users,
including: (1) state feedback, encoding position and/or velocity
of limbs (Ferris and Sarter, 2011; Krueger et al., 2017; Shah et al.,
2018; Risi et al., 2019), (2) force feedback, encoding the amount
of force exerted (Ahmaniemi, 2012), and (3) error feedback,
encoding information regarding the goal of the task and the
state of the end-effector (Wall et al., 2001; Cuppone et al., 2016;
Krueger et al., 2017).

By controlling the shape and timing of the signals from
multiple static actuators, it is also possible to display illusions of
movement that can enrich the design space of tactile stimulation.
Prominent examples are: (1) phi (or beta) movement, where a
smooth apparent motion of a single stimulus is created by the
periodic activation of two spatially separated stimuli (Sherrick
and Rogers, 1966; Lederman and Klatzky, 2009), (2) saltatory
(or rabbit) illusion, i.e., illusory sweeping movement of discrete
taps that occur by activating actuators in sequence (Geldard and
Sherrick, 1972; Lederman and Klatzky, 2009), and (3) the tendons
vibration illusion, which is an illusory perception of movement
that can be evoked by triggering the muscle spindle afferents
through vibrations applied to the tendon (Goodwin et al., 1972;
Taylor et al., 2017).

Applications for Enhancing Sensorimotor

Performance and Learning
In healthy individuals, vibrotactile feedback is used to enhance
motor control and learning (Lieberman and Breazeal, 2007; Van
Breda et al., 2017; Shah et al., 2018). It has been demonstrated that
state feedback regarding the force exerted improved the accuracy
of force repetition (Ahmaniemi, 2012). Other studies used state
and/or error feedback to guide upper limb reaching movements
in the absence of visual information (Krueger et al., 2017; Shah

et al., 2018; Risi et al., 2019) and to reach accuracy levels beyond
the limits of natural proprioception (Risi et al., 2019). Results
from a meta-analysis indicated that vibrotactile feedback was
effective in reducing task completion times, but neither forces
nor errors were significantly reduced (Nitsch and Färber, 2012).
In addition, vibration feedback encoding center of mass or center
of pressure motion was used to improve standing balance (Lee
et al., 2012; Ma and Lee, 2017; Ballardini et al., 2020) and walking
patterns (Janssen et al., 2009; Muijzer-Witteveen et al., 2017; Xu
et al., 2017). Vibrotactile feedback based on stochastic resonance
was applied for improving visuomotor temporal integration
in hand control (Nobusako et al., 2019) and balance control
(Magalhães and Kohn, 2011). Vibrations that informed the users
about collisions with virtual objects in a virtual reality context
added realism and improved performance (Galambos, 2012; Kaul
and Rohs, 2017). Also, a vibrotactile glove interface has been used
to convey sensations of virtual objects (Muramatsu et al., 2012).

Applications in Rehabilitation
In persons with multiple sclerosis, vibrotactile feedback applied
to the fingernails of the contralateral hand improved the
performance of a grasping and lifting task of the more impaired
hand (Jiang et al., 2009). In addition, real time state vibrotactile
cues reduced postural sway during standing balance tasks and
improved gait parameters after stroke (Yasuda et al., 2017;
Afzal et al., 2019), in people with Parkinson’s disease (Nanhoe-
Mahabier et al., 2012; High et al., 2018; Lee et al., 2018; Fino
and Mancini, 2020) and with vestibular disorders (Sienko et al.,
2012, 2013). However, in all of these studies improvements were
observed during trials, and long-term effects were not tested.
Vibrotactile stimulations were also used to enhance interaction
realism in a rehabilitation system based on virtual reality (Boian
et al., 2003; Dimbwadyo-Terrer et al., 2016), and to avoid
collisions during walking in stroke survivors (Jaffe et al., 2004).

Several randomized controlled trials (RCTs) with small
cohorts tested the effect of balance training programs with
vibrotactile stimulations. Following a 2-week training program
using vibrotactile feedback, individuals with Parkinson’s disease
improved their balance control parameters and performance-
based measures and retained improvements 3 months after
training (Rossi-Izquierdo et al., 2013). Additionally, adults with
vestibular disorders improved their balance performance and felt
more confident regarding their balance while performing daily
activities after a training protocol with vibrotactile stimulations
compared with a control group that trained without stimulations
(Brugnera et al., 2015; Bao et al., 2019). Furthermore, balance
improvements were retained at 6-month follow-up assessments
(Bao et al., 2019). Also, reduced body sway and improved
clinical outcome measures [e.g., Sensory Organization Test
(SOT) (Franchignoni et al., 2010) and Dizziness Handicap
Inventory (Jacobson and Newman, 1990)] were observed in a
study with a large cohort of participants with vestibular disorders
(n = 105) who trained with vibrotactile stimulations over 2-
weeks (i.e., ten-sessions) compared with a control group that
trained with a sham device (Basta et al., 2011).

Subthreshold vibrotactile stimulation improved
somatosensation and motor function in persons with
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sensorimotor impairments: stimulations applied at the wrist
and dorsal hand improved the immediate fingertips light-touch
sensation and grip ability of the paretic hand in stroke survivors
(Enders et al., 2013). In addition, the vibrotactile detection
threshold (i.e., the minimum level of vibration amplitude to
be detected) at the tip of the middle finger in persons with
diabetic neuropathy and stroke survivors was decreased (Liu
et al., 2002). In persons with diabetic neuropathy the threshold
was decreased at the foot as well (Liu et al., 2002; Khaodhiar
et al., 2003). In a pilot randomized controlled trial, subthreshold
vibratory stimulation was applied to the paretic wrist of stroke
survivors during upper extremity task training (a total of 6
sessions provided in 2 weeks). The treatment group showed a
significant improvement in hand motor function at the end of
therapy, which was sustained 19 days after therapy, whereas
the control group that practiced without stimulation did not
improve from baseline performance (Seo et al., 2019).

While these studies were conducted in laboratory settings, few
studies provided participants with vibrotactile devices to practice
at home. Bao et al. (2018) tested the effect of long-term home-
based balance training with vibrotactile sensory augmentation
among community-dwelling healthy older adults. Participants
were trained in static and dynamic standing and gait exercises
for 8 weeks (3 sessions per week, 45-min each) using smartphone
balance trainers that provided guidance while monitoring trunk
sway. The experimental group received directional vibrotactile
cues via actuators that were aligned around the torso in case the
activation signal exceeded a pre-set threshold, while the control
group practiced without supplemental feedback. Participants
in the experimental group demonstrated significantly higher
improvements in their SOT (Franchignoni et al., 2010) and
Mini Balance Evaluation Systems Test scores (Clendaniel, 2000)
compared with the control group at post training assessment.
Seim et al. (2020a) designed a glove that provides subthreshold
vibrotactile stimulation for stroke survivors to use at home
and demonstrated the feasibility of wearing the glove for 3 h

daily for 8 weeks. Also, in a double-blind RCT, chronic stroke
survivors with impaired tactile sensation in the hand were
given a glove to take home and asked to wear it during
their normal daily routine (i.e., 3 h daily for 8 weeks) (Seim
et al., 2020b). One group received a glove which provided
vibrotactile stimulation to the hand and another group received
a glove with the vibration disabled. Participants receiving tactile
stimulations demonstrated significant improvement in tactile
perception (assessed with monofilaments) in the affected hand.
In another study, improvement in hand sensation was observed
in participants with spinal cord injury after training with a glove
providing vibration stimulations compared with participants
who trained without stimulations (Estes et al., 2015). Vibration
stimulations were applied during active practice sessions of
playing piano in in-lab sessions (3 times a week for 30min a
session for 8 weeks) and during passive practice at home (2 h a
day, 5 times a week). An illustration of a vibrotactile stimulation
device is presented in Figure 1.

Applications for Conveying Social Tactile Cues
Gentle stroking touches resembling those of soft calming and
caressing sensations are considered highly relevant in social
interactions (Huisman et al., 2016). Using artificial means
to convey such touches might enhance social presence in
telecommunication or in virtual settings. Israr and Abnousi
(2018), developed a vibrotactile device worn on the forearm
that delivers stimuli which resemble caressing and calming
sensations. Participants rated low frequency stimuli (<40Hz)
as pleasant sensations that feel like massaging and noted that
they would be even more realistic with context. Huisman et al.
(2013) developed a virtual agent setup that incorporates an
augmented reality screen and a vibrotactile sleeve worn on the
user’s forearm. In this setup the forearm was placed under a
tablet, thus allowing the user to see his/her forearm “through”
the tablet. The vibrotactile stimulation combined with the visual

FIGURE 1 | Vibrotactile stimulation devices. The smartphone-based balance trainer used in Bao et al. (2018). The sensing unit is attached to an elastic belt worn

around the torso to measure trunk sway. The four tactors are aligned over the anterior, posterior, and right and left sides of the torso to provide directional

vibrotactile cues.
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representation of a hand touching the user created a more
realistic touching illusion.

Assessment of Tactile Impairments
Vibrotactile simulation can be used for assessment applications.
In clinical settings the duration of vibration sensation and the
perception threshold are commonly measured using a tuning
fork (Perkins et al., 2001; Alanazy et al., 2018). However, results
regarding its reliability are variable across studies (O’Neill et al.,
2006; Lai et al., 2014; Lanting et al., 2020), and, most importantly,
the assessment does not quantitatively provide the degree of
dysfunction and depends on the level of clinical experience
(Lanting et al., 2020).

To address limitations of clinical assessments, an automated
approach to quantify topesthesia (i.e., the ability to recognize the
location of a tactile stimulus) was developed (Rinderknecht et al.,
2015). The system consists of two wearable gloves that can apply
vibrations on the hand at 24 possible locations and a touchscreen
to directly indicate with the non-tested hand the precise location
of perception on the tested hand. The assessment provides a
standardized, repeatable measurement as well as continuous
outcome measures on ratio scales (Rinderknecht et al., 2015). It
was tested on healthy individuals (Rinderknecht et al., 2015) and
on stroke survivors (Rinderknecht et al., 2019).

In addition, a portable vibrotactile stimulator device was
used to probe tactile function through a battery of tests
assessing reaction time (“press the button when you feel
the vibrotactile stimulation”), threshold detection (the weakest
detectable stimulus), amplitude and frequency discrimination
(discriminating between two stimuli that are simultaneously
applied and discriminating between the frequency of two
sequentially applied stimuli). The battery targets different
mechanisms of somatosensory processing (Holden et al., 2012;
Puts et al., 2013; King et al., 2018; Tommerdahl et al., 2019;
Mikkelsen et al., 2020). These tests were used on healthy adults
and children (Puts et al., 2013) for monitoring recovery from
concussion (King et al., 2018) as well as a wide range of
neurological disorders (Tommerdahl et al., 2019). There are also
other specific tests that aim to independently evaluate only one of
the aspects investigated by this paradigm; an overview of the tests
assessing vibrotactile perception in healthy subjects can be found
in Jones and Sarter (2008).

Advantages and Disadvantages
A major advantage of vibrotactile devices is that the actuators
can be easily integrated into wearable devices because they
are small, lightweight, low- power, and low-cost (Alahakone
and Senanayake, 2009). On the other hand, disadvantages
of vibrotactile feedback stem from the properties of the
mechanoreceptors activated by vibration. First, it is difficult to
accurately locate the source of the stimulations if they are placed
close together, because of the propagation of the vibration (Sofia
and Jones, 2013; Shah et al., 2019) and the large size of the
mechanoreceptors’ receptive fields (Johnson et al., 2000). Second,
it is difficult to convey directional information, unless several
actuators are used in a spatially and/or temporally coordinated

mode (Rotella et al., 2012). Third, it has been suggested that
the feedback coding of some vibrotactile devices may be less
effective than of others in reducing applied forces i.e., if the
vibration frequency or location varies, vibrotactile feedback
may be less effective in conveying information on intensity or
direction than a uniform signal that alerts the user of a required
response (Nitsch and Färber, 2012). Fourth, prolonged exposure
to continuous vibratory stimulation could result in an unpleasant
sensation (Bark et al., 2008) and has been associated with long-
term nerve and tissue damage (Takeuchi et al., 1986). Also,
choosing the right type, number, and target location of the
actuators for patients with possible degradation of perception due
to aging or disease might be challenging (Jones and Sarter, 2008).

SKIN DEFORMATION

Tangential Force and Skin Stretch
Tangential skin deformation is evoked by pressure of the skin
against a device, combined with a lateral movement of the
entire device or a small part of it. Such deformation occurs
naturally when touched by a therapist, when interacting with
a real object, or when a device applies forces on a user, but
it may also be elicited by technological solutions specifically
designed to provide tactile stimulation (Bark et al., 2009; Quek
et al., 2014b; Pan et al., 2017). The stimulation is detected by
the Ruffini corpuscles which are slow adapting SA-II tactile
afferents in the skin that are sensitive to tangential shear strain
as well as the Meissner’s corpuscles which are rapid adapting RA-
I tactile afferents that are sensitive to dynamic skin deformation
(Johansson and Flanagan, 2009). The detection resolution of the
skin stretch at the fingertip is 0.1–0.2mm, while the direction of
the stretch can be accurately perceived with less than 1.0mm of
movement (Gould et al., 1979; Greenspan and Bolanowski, 1996).

Technology
There are different methods to render tangential and stretch
forces, e.g., a roller (Provancher et al., 2005), a belt (Minamizawa
et al., 2007), or a moving tactor (Quek et al., 2013). The most
common location for applying the stimulation is the finger pad
(Pasquero and Hayward, 2003; Drewing et al., 2005; Gleeson
et al., 2010a; Solazzi et al., 2011; Tsetserukou et al., 2014), as
it contains a very high density of mechanoreceptors (Abraira
and Ginty, 2013). Other locations include the palm (Guzererler
et al., 2016; Ballardini et al., 2018), the forearm (Bark et al., 2008;
Kuniyasu et al., 2012; Chinello et al., 2016), the arm (Casini et al.,
2015; Battaglia et al., 2017), and different locations on the lower
limb (Chen D. K. Y. et al., 2016; Omori et al., 2019; Wang et al.,
2020). Themechanism and actuation of the device can be tailored
to the desired application (see Pacchierotti et al., 2017 for a review
on wearable devices). By changing the magnitude and direction
of the tactile stimulations it is possible to convey different types
of information such as forces and directional guidance (Biggs and
Srinivasan, 2002; Paré et al., 2002; Provancher et al., 2005; Guinan
et al., 2014; Bianchi, 2016; Leonardis et al., 2017; Kanjanapas
et al., 2019; Bitton et al., 2020).
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Applications for Enhancing Sensorimotor

Performance and Learning
Adding a skin stretch to force feedback has been shown to
affect stiffness (Quek et al., 2013, 2014a,b; Schorr et al., 2013;
Farajian et al., 2020a,b) and friction (Sylvester and Provancher,
2007; Provancher and Sylvester, 2009) perception. In addition,
concurrent tangential and normal skin deformation can be used
to substitute and/or augment upper extremity force and torque
feedback in navigation, tracking, insertion and palpation tasks
(Quek et al., 2014b, 2015b; Schorr et al., 2015; Pacchierotti
et al., 2016; Clark et al., 2018), generating a high fidelity haptic
feedback for the sensation of mass (Minamizawa et al., 2007; Kato
et al., 2016) and virtual objects (Minamizawa et al., 2008). It can
also be used to enhance perception and performance in object
manipulation tasks (Leonardis et al., 2017; Schorr and Okamura,
2017b), and to deliver grasp force information (Casini et al.,
2015).

Skin stretch feedback providing position information
improved the movement accuracy of healthy participants who
controlled the movement of a virtual arm (Bark et al., 2008).
Compared with vibrotactile stimulation, skin stretch feedback
provided superior results, particularly when the virtual arm
was in a low-inertia configuration and at low velocity (Bark
et al., 2008). Gleeson et al. demonstrated the ability of healthy
participants to accurately identify the direction of tangential
skin deformation at the fingertip, and highlighted the potential
of using skin stretch cues to aid patients with balance control
impairments (Gleeson et al., 2010b). Skin stretch stimulation
was also found to be effective for improving performance in a
curvature discrimination task (Frisoli et al., 2008; Prattichizzo
et al., 2013).

Stretching the skin can affect not only perception, but also
forces that are applied by the user for stabilization. Westebring
van der Putten et al. (2010) explored the influence of skin
stretch and tangential deformation feedback on grasp control and
demonstrated a significant improvement in pinch force control
for participants who received augmented tactile feedback. Bitton
et al. (2020) showed that applying tactile stimulation of the
fingertips increases grip force, even in a static force maintenance
task. In addition, adding an artificial skin stretch to the finger
pads in the same direction as force applied by a virtual object
or a haptic device increased the applied grip force (Quek et al.,
2015a; Avraham andNisky, 2020; Farajian et al., 2020b), although
this effect was not seen in Quek et al. (2015b), or in the case of
skin-stretch that is in the opposite direction to the external force
(Avraham and Nisky, 2020).

In addition, studies have shown the ability of participants
to accurately produce motion according to haptic stimuli
provided by a skin stretch device (Bark et al., 2010; Stanley
and Kuchenbecker, 2012; Guinan et al., 2013b; Norman et al.,
2014; Chinello et al., 2018; Pezent et al., 2019; Smith et al.,
2020), including in gaming applications (Guinan et al., 2012,
2013a). Skin stretch feedback encoding the velocity of postural
sway along the anterior-posterior direction enhanced standing
balance with perturbed sensory systems (removed vision and
unreliable vestibular systems) in healthy young adults compared
with conditions without skin stretch feedback (Hur et al., 2019).

In virtual reality systems, skin stretch feedback has been
applied at different body locations to simulate rich physical
properties during the interaction with virtual environments and
objects (Minamizawa et al., 2007, 2008; Choi et al., 2017; Yem
and Kajimoto, 2017; Wang et al., 2020). For example, a leg-
worn device that applies varied skin stretch profiles to induce
an illusory force improved the realism and enjoyment of virtual
reality applications (Wang et al., 2020).

Applications in Rehabilitation
To date, most applications of skin stretch stimulation were
demonstrated in the context of prostheses or assistive devices.
For example, a multimodal tactile stimulation device helped
to improve the grip force control of an electromyographic-
controlled virtual prosthetic hand that was operated by
targeted reinnervation amputees (Kim and Colgate, 2012). Other
examples conveyed proprioceptive (Battaglia et al., 2017, 2019;
Colella et al., 2019), grasp force and position information to users
of prosthetic hands (Casini et al., 2015; Stephens-Fripp et al.,
2018), or path information to users of a powered-wheelchair
(Kumar et al., 2017). Although it has not yet been tested
directly in rehabilitation protocols for neurological populations,
these technologies could potentially be used for tasks such as
restoration of fine object manipulation. An example of such
an application was demonstrated on children with neuromotor
impairments who trained in performing upper limb movements,
including reach to grasp, path tracking, and hand orientation,
with a wearable haptic device rendering contact forces by
deformation of the fingerpad (Bortone et al., 2018).

Applications for Conveying Social Tactile Cues
Recently, wearable devices that can generate pleasant tactile
sensations have been developed (Haynes et al., 2019; Nunez et al.,
2019). A skin slip technology was used to generate an illusory
sensation of continuous lateral motion that could be used to
convey social touch cues, such as comfort and affection, in which
stroking motions are used (Nunez et al., 2019). The stimulation
was perceived as pleasant when the speed was closer to 10 cm/s
and applied on the volar side of the forearm.

Assessment of Tactile Impairments
The assessment of tactile directional sensitivity (i.e., the ability
to identify the direction of an object’s motion across the skin)
is considered to be a sensitive screening test of sensory function
after injuries in the central or peripheral nervous system (Wall
and Noordenbos, 1977; Bender et al., 1982; Hankey and Edis,
1989; Norrsell and Olausson, 1992). However, to our knowledge,
assessment properties (e.g., reliability) were not tested. Recently,
a skin stretch device was developed to assess somatosensory
impairments at different body areas (Ballardini et al., 2018). The
system offers quantitative and reliable measures of tactile acuity
(i.e., testing discrimination of the direction and amplitude of skin
stretch stimuli) and was validated in healthy participants and in a
small cohort of stroke survivors.

Advantages and Disadvantages
There are many advantages to skin stretch deformation. This
stimulation provides a strong, quick, and accurate response to
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changes in skin strain (Edin, 2004). In addition, skin stretch
at low frequencies is attractive for wearable devices as it does
not require much power (Bark et al., 2008). It can also convey
direction even with a single actuator, does not suffer from
adaptation effects, and is effective even at low velocities and
with small movements (Bark et al., 2008). Moreover, skin
stretch feedback is effective in inducing the perception of virtual
textures and illusory forces and can be used to convey intuitive
proprioceptive feedback (Chossat et al., 2019). Nevertheless, skin
stretch stimulation has some disadvantages. The amount of skin
deformation depends on the mechanical properties of the skin
and the strength of the normal forces against the actuator, and
thus partial or full slippage may occur. These and other factors
contribute to large inter-participant variability in the perceptual
effects of skin stretch (Quek et al., 2014b; Farajian et al., 2020b),
while some individuals are not at all sensitive to stretch effects
(Quek et al., 2014b). Also, this type of stimulation is commonly
applied at the finger pad where there is a limited area for applying
the stretch. Finally, although skin stretch devices are usually
safe, when developing the device, one should carefully consider
unpleasant sensations and abrasion. Illustrations of tangential
and stretch stimulation devices are presented in Figure 2.

Pressure
Pressure triggers a response in the low frequency range of
the slow adapting afferents SA-I, innervating the Merkel cells
(Johansson and Flanagan, 2009). Technologies that provide this
type of feedback deliver forces that cause deformation, and
the strength of the stimulus is determined based on sensitivity
thresholds, which vary across the body.

Technology
Pressure stimulation is commonly provided by devices that
contact the skin with a single end-effector that can: (1) change
its properties, such as the shape in soft actuators (Koehler et al.,
2020) or the viscosity in electrorheological ormagnetorheological
fluids (Taylor et al., 1997; Jungmann and Schlaak, 2002; Jansen
et al., 2010; Yang et al., 2010; Kim et al., 2016), (2) tighten a band
around a body location, like the fingertip (Merrett et al., 2011),
wrist (Stanley and Kuchenbecker, 2012) or forearm (Meli et al.,
2018), and (3) press on the skin with a servomotor (Quek et al.,
2015b; Schorr and Okamura, 2017a) or a hydraulic, or pneumatic
actuator (Franks et al., 2008; Yem et al., 2015; Talhan and Jeon,
2018). For the latter solution, it is also possible to enlarge the
area of stimulation by increasing the number of end-effectors
in contact with the skin using a pin array matrix, i.e., a matrix
of actuators that can be activated separately. In order to provide
efficient tactile stimulation it is also important to consider the size
and density of the contact points, since these will affect the cost
and weight of the device, as well as its perceptual effect.

Applications for Enhancing Sensorimotor

Performance and Learning
Using force indentation at different orientations makes it possible
to display contact forces for multiple applications. Already in
1993, the technology was used to produce 2D and 3D graphic
display for haptic recognition of familiar objects and was tested

in blind and sighted participants (Shimizu et al., 1993; Leo et al.,
2016; Brayda et al., 2018). Since then, multiple tactile devices
with lightweight and compact mechanisms have been developed
to produce pressure stimulation, thereby providing a range of
tactile sensations including natural touch (Caldwell et al., 1999;
Chinello et al., 2015; Culbertson et al., 2018a), roughness (Kim
et al., 2009), softness (Frediani and Carpi, 2020), and texture
(Sarakoglou et al., 2005; Kyung and Park, 2007; Kim et al., 2009;
Garcia-Hernandez et al., 2011). In addition, pressure stimulation
was used for conveying directional cues (Raitor et al., 2017;
Agharese et al., 2018), and for rendering shape in virtual and
remote environments (Chinello et al., 2019).

Applications in Rehabilitation
In patients with digital nerve injury, stroking, and pressing
a pocket tactile stimulator and contacting the rotating
disc of a tactile stimulator improved functional sensitivity
measured by the smallest perceivable force using Semmes-
Weinstein monofilaments (Semmes et al., 1960), and the
shortest perceivable distance using a standardized two-point
discrimination test instrument (Dellon et al., 1987; Cheng, 2000).
In patients with complex regional pain syndrome of one limb,
tactile stimulation was shown to decrease pain and increase
tactile acuity when patients were required to discriminate
between the type and location of tactile stimuli (Moseley et al.,
2008). Skin pressure stimulation at the hallux and first metatarsal
joint of the feet applied to participants with Parkinson’s disease
increased step length and gait velocity and reduced cadence
compared with baseline measurements (Barbic et al., 2014). A
wearable tactile feedback system that was originally developed
for sensory augmentation of prosthetic limbs has been adapted
for individuals with bilateral peripheral neuropathy (McKinney
et al., 2014). Using thigh cuffs (one per leg) with silicone
balloons for conveying sensory information specific to each foot,
participants could modify their gait in real time (i.e., increase
walking speed, step cadence and step length). Although not
tested in populations undergoing rehabilitation, tactile vests
worn on the torso have been shown to create a variety of tactile
stimuli that could potentially be useful in applications such
as balance control training (Nakamura and Jones, 2003; Wu
et al., 2010). Also, pressure applied simultaneously to the thumb
and index fingers generated a perception of holding an object,
exhibiting the potential to provide a realistic haptic sensation in
virtual reality based rehabilitation (Merrett et al., 2011).

Applications for Conveying Social Tactile Cues
Culbertson et al. developed a device that creates a stroking
sensation using a linear array of voice coil actuators embedded
in a fabric sleeve worn around the arm. The voice coils were
controlled to indent the skin in a linear pattern to create
the sensation of a stroking motion even though only normal
force was applied (Culbertson et al., 2018a). As indicated
from participants’ ratings, to create a continuous and pleasant
sensation the device should be controlled with a short delay
and long pulse width (800ms, 12.5% delay). Another system,
the RemoTouch (Prattichizzo et al., 2010), was designed to
provide experiences of remote touch. The user perceives force
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FIGURE 2 | Skin deformation—tangential and stretch stimulation devices. (A) A wearable device that is comprised of pneumatic actuators to guide motion direction

(Kanjanapas et al., 2019). (B) The Rice Haptic Rocker that was designed to convey proprioceptive information to users of prostheses (Battaglia et al., 2019). (C) A

wearable device that was used to render virtual environment forces (Schorr and Okamura, 2017b). (D) An aperture and tactor skin-stretch device that was used to

study the contribution of tactile stimulation of the fingertips to motor adaptation (Avraham and Nisky, 2020). (E) The Tactile-STAR, a skin brushing stimulator (top right)

and a recorder (top left) that were used to assess and train tactile perception acuity. The device was specifically designed to be appropriate for use with stroke

survivors who may have difficulty in maintaining contact with an aperture and tactor type of a device (Ballardini et al., 2018).

feedback recorded by a human that wears a glove equipped
with force sensors. The measured contact force at the remote
interaction is fed back to the user through wearable tactile
displays for each finger. Preliminary tests show that the
realism of this remote experience largely improved with the
tactile feedback.

Assessment of Tactile Impairments
Sensitivity to pressure is often used as a measure of absolute
tactile sensitivity (for more details see Demain et al., 2013). The
most commonly used method to assess pressure sensation is the
Semmes–Weinstein monofilaments that are calibrated to apply
predetermined forces to the skin (Semmes et al., 1960; Bell-
Krotoski, 1984). Jacobs et al., suggested another approach for
examining the psychophysical detection threshold of pressure
stimulation of a prosthetic and a normal limb (Jacobs et al.,
2000). Stimulations were applied using a computer connected to
a probe and to a remote control that was operated by the patient.
The patient could control the amplitude of the pushing force by
pressing the remote control. To measure the detection threshold
the up-down method was used (i.e., the amplitude of the pushing
force was decreased until the patient did not feel the stimulation
and stopped pressing the remote control). Then, the amplitude
was increased until 16 reversals were obtained. This setup can be
modified for home-based assessment, possibly by using a smaller
controller instead of the computer.

Advantages and Disadvantages
Pressure stimulation enables rendering perceptual properties
such as shape, curvature, orientation, and texture (Gabardi et al.,
2016). However, sensitivity to pressure is largely dependent
on the area of stimulation (Stevens, 1982). In addition, while
multiple actuation approaches are available for applying pressure
to the skin, each approach is suitable for a different application.
Therefore, one should carefully consider the specifications of the
design that would be appropriate for the desired application.
Illustrations of pressure stimulation devices are presented
in Figure 3.

Mid-air
All the technologies described above require physical contact
between the device and the body to provide somatosensory
feedback, and the energy produced by the actuators is transferred
to the skin through a solid medium. This allows efficient energy
transduction, creating natural haptic sensations with the aid
of appropriate contactors to the skin. However, these solutions
present some limitations: (1) they do not exploit arbitrary body
locations, i.e., can deliver feedback only at a location close to
the device’s end effector, (2) they may cause undesired effects
due to the continuous contact between the skin and the devices,
and (3) if used by different individuals, they require cleaning
and disinfecting, especially in light of the recent COVID-19
related recommendations (Thomas et al., 2020). Several recent
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FIGURE 3 | Skin deformation—pressure stimulation devices. (A) A wearable finger device that was designed and tested in virtual reality applications (Chinello et al.,

2019). (B) The RemoTouch system that provides experience of remote touch (Prattichizzo et al., 2010).

developments address these limitations by proposing mid-air
technologies. They transmit the energy of the stimulus through
air, avoiding the direct contact with the skin.

Technology
One of the main approaches to creating mid-air stimulation
relies on ultrasonic waves, typically at 40 or 70 kHz frequencies
(for survey see Rakkolainen et al., 2019). In this type of mid-
air tactile stimulation the sensation is caused by a non-linear
effect of focused ultrasound called acoustic radiation force, which
induces a shear wave in the skin, creating a displacement,
which triggers themechanoreceptors within the skin and evoking
mainly a pressure sensation (Gavrilov and Tsirulnikov, 2002).
Most ultrasound haptic systems targeting the hand trigger the

Lamellar corpuscles (Rakkolainen et al., 2019). In other body
locations ultrasound can trigger other mechanoreceptors, such
as Meissner corpuscles on the face (Gil et al., 2018), and Ruffini
corpuscles orMerkel disks on the upper limb (Suzuki et al., 2018).

The most widely used technological solution to evoke
tactile sensation with ultrasound is based on phased arrays of
transducers, i.e., multiple transducers whose phase and intensity
can be controlled individually, with a defined timing. In this way,
the focused ultrasound waves can generate one or more localized
regions of pressure in the 3D space, called focal points, without
moving or turning the device. These focal points cannot be fully
singular because of secondary peaks and wavelength limitations
(Rakkolainen et al., 2019). However, several focal points can be
controlled together to create shapes (Long et al., 2014) or textures
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(Monnai et al., 2015; Freeman et al., 2017). If the radiation force
is modulated at the 1–1 kHz range the ultrasound waves can also
evoke a vibratory sensation in addition to the pressure sensation
(Hasegawa and Shinoda, 2013; Howard et al., 2020; Rutten et al.,
2020).

Applications for Enhancing Sensorimotor

Performance and Learning
The use of focused ultrasound as a non-invasive method of
stimulation has been studied since the early 1970s (Gavrilov
et al., 1977). Recently, this technology was used for several
proof-of-concept applications, including creating floating 2D
icons (Gavrilov, 2008) and 3D haptic shapes (Long et al., 2014;
Monnai et al., 2014; Vo and Brewster, 2015; Makino et al.,
2016), interacting in a virtual reality environment (Romanus
et al., 2019; Howard et al., 2020), and gesture interaction (Shakeri
et al., 2017, 2018). To the best of our knowledge, mid-air haptic
devices have not yet been used for rehabilitative purposes or for
somatosensory assessment.

Applications for Conveying Social Tactile Cues
The communication of emotions through a haptic system that
uses tactile stimulation in mid-air communication was explored
by Obrist et al. and showed promising results of interpretability
of emotions (Obrist et al., 2015). Despite these promising results
the application of ultrasound devices for conveying emotions and
social interaction has not yet been extensively investigated.

Advantages and Disadvantages
The major advantage of this emerging technology is its not
requiring contact with the body, while easily and efficiently
creating static or dynamic textures and volumetric shapes.
Another important advantage is that commercial devices are
available that use this technology, even at this early stage. In
its current state, this technology has some inherent limitations
that may have an impact on potential applications, including
the size and the weight of the transducers (Rakkolainen et al.,
2019) and the low intensity of the force conveyed to the user,
which is at most 160 mN (Tsalamlal et al., 2013), and so
does not allow the rendering of real-word interaction forces.
Nevertheless, we anticipate that mid-air solutions will develop in
the next few years, and we foresee that they will be designed for
rehabilitation purposes and clinical assessments. Illustrations of
mid-air stimulation devices are presented in Figure 4.

DISCUSSION

The COVID-19 pandemic is currently placing significant
pressure on health services including rehabilitation services,
worldwide. The reduced access to rehabilitation care due to
restrictions as well as the reduction in rehabilitation services as
a consequence of reassignment of rehabilitation professionals to
acute care and the transformation of rehabilitation facilities into
makeshift inpatient wards (Boldrini et al., 2020a; Chaler et al.,
2020) are expected to lead to long-lasting negative consequences
for individuals with disabilities (Boldrini et al., 2020b). In fact,
these are only the tip of the iceberg when considering the
long-standing and more severe problem of limited resources in

hospital care together with the rising number of individuals with
chronic diseases (Koh et al., 2015; Steihaug et al., 2016; Dodakian
et al., 2017).

Remote communication technologies, as well as technologies
developed for home-based telerehabilitation, have the potential
to support neurorehabilitation care and make breakthroughs
in treatment by facilitating continuous and intensive training.
The emerging technological solutions reviewed in the current
paper highlight the promise of wearable tactile stimulation
devices to enhance home-based rehabilitation training gains
by the provision of tactile feedback and haptic interactions.
These technologies seem propitious and attractive for home-
based rehabilitation: the devices are wearable, portable, and
relatively low cost (estimated cost between tens and hundreds
of dollars). Moreover, some of these technologies can easily be
integrated into virtual/telerehabilitation environments (Feintuch
et al., 2006; Bortone et al., 2018; Wang et al., 2020).

However, despite technological advantages and great potential
for home-based practice, to date, tactile feedback devices have
not yet evolved into common solutions for rehabilitation. There
are still challenges that need to be met in a joint effort between
sensorimotor neuroscientists, technology developers and
clinicians in order to successfully integrate tactile technologies
into neurorehabilitation programs. We review these challenges
in the remainder of this section.

Testing Training Effects on Large Patient
Populations
Most tactile device prototypes were tested on healthy individuals
or on small cohorts of patients and their effects need to be
further examined: (1) on larger patient populations, ideally in
randomized controlled trials, (2) over longer training periods,
and with long-term follow up assessments to evaluate whether
improvements observed immediately post training have been
retained after training is completed and (3) with respect
to outcome measures relevant to the daily life function of
the patients. Studies conducted on healthy individuals often
focus on laboratory parameters, while in patients undergoing
rehabilitation exploring whether training effects have transferred
to daily life activities is of clinical significance. As was
demonstrated above, few such examples exist in the literature;
however, these are the exception and not the rule, and more
studies are needed. Several factors contribute to the difficulty
of overcoming this challenge. First, the lack of collaborations
between technology developers, researchers, clinicians, and
rehabilitation facilities. Second, it is difficult to secure funding
for such large-scale studies. Third, the facts that most tactile
devices are not commercially available and do not have medical
device safety approval limits the ability to easily test them on
patient populations.

Translation Into Clinical Practice
To integrate tactile stimulations into rehabilitation training it is
critical to identify the optimal method to provide the feedback
and the patients that would benefit from such training. The
feedback provided by some common devices might be difficult
to interpret and integrate. Also, the tactile stimuli patterns might
not be intuitive or might be too complex for the user, due to
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FIGURE 4 | Mid-air devices. (A) The Ultraleap device (https://www.ultraleap.com/). (B) Its application to interaction with a virtual reality environment (Howard et al.,

2020).

either the number of tactile motors forcing the user to process
a redundant set of signals, or to the encoding methods that may
require specific attention (Brewster and Brown, 2004; Ballardini
et al., 2020). This is especially important for patients undergoing
rehabilitation training, who are often at the initial stages of
learning that already require a relatively high degree of cognitive
effort and attention (Fitts and Posner, 1967). Moreover, some
neurological patients suffer from cognitive and attention deficits,
and hence, to benefit from added information, the feedback
must be simple (Van Vliet and Wulf, 2006). Additionally, the
cognitive load of interpreting tactile cues in applications where
the patient’s attention is divided among multiple tasks, and how
this might reduce the saliency of the cues, should be further
explored (Gleeson et al., 2010b; Shah et al., 2018).

The optimal timing of providing somatosensory feedback also
needs to be examined. For example, providing feedback for the
entire duration of training can improve short term performance,
but may limit motor learning. Conversely, providing feedback
for only portions of training might produce poor initial
performance, but improve motor skill retention (Winstein
and Schmidt, 1990). Moreover, the conditions under which
tactile feedback is most effective at improving task performance
should be examined (e.g., whether it is most effective when
supplementing another modality), as well as the temporal and
spatial patterns and the location for applying the stimulation.

In addition, affective haptic feedback, used to render realistic
feelings, has the potential to enhance remote patient-therapist
communication. It can also be applied to reinvigorate the
patient’s interest when he/she is bored or frustrated during
practice (Eid and Al Osman, 2015). While wearable haptic
devices were designed to replicate a specific interaction or gesture
such as comfort and affection (Culbertson et al., 2018a; Nunez
et al., 2019, 2020), attention (Baumann et al., 2010) or social
presence (Baldi et al., 2020), further exploration is needed in
order to gain a better understanding of how to create realistic
sensations, how to display them in complete synchronization
with other display modalities (i.e., visual, auditory, olfactory,
etc.), and how to integrate them in the right context during
remote rehabilitation sessions. Other important challenges relate
to touch etiquette in social interaction and how to incorporate

social, cultural and individual differences with respect to the
acceptance and meaning of affective touch (Eid and Al Osman,
2015).

Using the Technology at Home
Although the devices seem promising for home use and some
have already been tested in at-home practice (Bao et al., 2018;
Seim et al., 2020a,b) some gaps still need to be bridged in
this regard. First, further studies are needed to explore the
feasibility of using tactile devices by patients undergoing home-
based telerehabilitation: whether patients can correctly wear and
operate the device without assistance, whether the form of the
device is compatible for patients with different impairments,
the adherence of using or wearing the device (Seim et al.,
2020a), and safety and technical problems that may arise when
using it during the training period (Seo et al., 2020). Second,
tactile devices need to be integrated into already existing or
new telerehabilitation/virtual reality systems to provide the whole
framework of sensorimotor training (Feintuch et al., 2006).

Rehabilitation platforms that are capable of intelligent,
adaptable tactile feedback configurations, adjustable in terms
of difficulty level, capable of measuring performance and
progression and of providing exercises relevant to daily living
activities as well as motivating the user’s engagement could
provide a more tailored training intervention to maximize
improvements (Shull and Damian, 2015; Navarro et al.,
2018). Additionally, there are other important issues related
to telerehabilitation in general, such as web communication
between the therapist and the patient, information security, and
data storing that are beyond the technical-clinical outlook of
our review.

CONCLUSIONS

The COVID-19 pandemic has highlighted the need for
home-based telerehabilitation and at the same time has
accelerated the adoption of a digital culture worldwide.
Exploiting this opportunity together with the rapid developments
in wearable haptic technologies offers a time window to advance
sensorimotor neurorehabilitation, elevating it to innovative
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solutions for home-based therapies. Although there remain
gaps and challenges that still need to be addressed jointly by
scientists, technology developers and clinicians, wearable haptic
devices, if correctly adapted, could potentially turn into cost-
effective medical devices for use at home by individuals in need
of rehabilitation treatments. The integration of tactile devices
into home-based telerehabilitation practice has the potential to
enhance patients’ functional gains and quality of life through
practice in an enriched environment with augmented tactile
feedback and tactile interactions.
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COVID-19 pandemic has affected the population worldwide, evidencing new challenges

and opportunities for several kinds of emergent and existing technologies. Social

Assistive Robotics could be a potential tool to support clinical care areas, promoting

physical distancing, and reducing the contagion rate. In this context, this paper presents

a long-term evaluation of a social robotic platform for gait neurorehabilitation. The robot’s

primary roles are monitoring physiological progress and promoting social interaction with

human distancing during the sessions. A clinical validation with ten patients during 15

sessions were conducted in a rehabilitation center located in Colombia. Results showed

that the robot’s support improves the patients’ physiological progress by reducing their

unhealthy spinal posture time, with positive acceptance. 65% of patients described the

platform as helpful and secure. Regarding the robot’s role within the therapy, the health

care staff agreed (>95%) that this tool can promote physical distancing and it is highly

useful to support neurorehabilitation throughout the pandemic. These outcomes suggest

the benefits of this tool to be further implemented in the pandemic.

Keywords: COVID-19, gait rehabilitation, Lokomat, long-term human-robot interaction, biofeedback, socially

assistive robotics

1. INTRODUCTION

In light of the rapid spread of COVID-19, several healthcare services are looking for strategies to
promote physical distancing and enhance healthcare procedures. Physical distancing and isolation
measures are adopted worldwide (WHO, 2020). Studies highlight the importance of these actions
to decrease the transmission rate (Jarvis et al., 2020), reduce the peak incidence, delay the epidemic
(Zhang et al., 2020), and minimize the intrahospital interactions (Aymerich-Franch, 2020). For
instance, there is a concern to seek adaptive strategies to continue offering neurorehabilitation
services during the COVID-19 pandemic, as the people with disabilities and chronic progressive
diseases require constant monitoring and care (Leocani et al., 2020; Russo and Trabacca, 2020). the
exploration of new technologies to support the general population’s health is studied (Sakel et al.,
2020).

In this context, Social Assistive Robotics (SAR) can play a critical role in real environments,
mainly to promote physical distancing and support the rehabilitation’s continuity. SAR shares
with Assistive Robotics (AR), not only the goal of providing physical assistance to patients, but
also to aid users through cognitive support, and social interaction. Thus, social robots need to
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https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.612034
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.612034&domain=pdf&date_stamp=2021-02-23
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlos.cifuentes@escuelaing.edu.co
https://doi.org/10.3389/fnbot.2021.612034
https://www.frontiersin.org/articles/10.3389/fnbot.2021.612034/full


Céspedes et al. Social Robots to Support the Pandemic

perform high degree autonomy tasks to achieve natural
interaction (Duffy et al., 1999; Feil-Seifer and Mataric, 2011).
SAR based applications have been developed in multiple clinics
(Cifuentes et al., 2020), home-based (Campa and Campa, 2016),
and educational (Heerink et al., 2016) areas. The outcomes
of these studies show positive effects regarding the motivation
(Winkle et al., 2018), adherence to medical treatments (Fasola
and Matarić, 2010; Heerink et al., 2016), social interaction
(Agrigoroaie and Tapus, 2016), among others. Within the
COVID-19 pandemic, several researchers highlight the use of
SAR through two main tasks: (i) monitoring the patients, and
(ii) connecting doctors (who are exposed to a high risk of
contagion) with patients using teleoperation (Aymerich-Franch,
2020; Hollander and Carr, 2020). Scassellati and Vázquez (2020)
proposed using SAR to sustain social distancing and serve as
health monitoring tools in high-risk areas. Khaleghi et al. (2020)
remarked on social robots’ opportunities to provide services
remotely and aid the healthcare staff. Furthermore, some studies
proposed SAR to interact in hospital environments and deal with
mental health and well-being (Tavakoli et al., 2020).

In this study, a social robotic platform for neurorehabilitation
with Lokomat for during and after the COVID-19 pandemic
is presented. Lokomat is a device that combines a bodyweight
support system and a robotic orthosis to assist the gait using
repetitive specific tasks and the principle of neuroplasticity
(Swinnen et al., 2017). This platform allows the measurement
of different parameters: the patients’ strength, mechanical
stiffness, and the range of motion during the walking. These
parameters enable the physiotherapist to straighten the therapy
according to the objective of each patient (Gittler M, 2018).
However, some parameters not detected by the Lokomat
are essential during the rehabilitation (e.g., heart rate, the
patient’s posture, and the patient’s fatigue level). In this sense,
clinicians measure those parameters directly using external
equipment (heart rate), visually (posture), and asking the
patient (level of fatigue) verbally. Monitoring the heart rate
enables the observation of the physical progress in terms of
cardiovascular functioning, and correcting the spinal posture
to maintain it healthy, promotes back health, allows muscles
to work correctly, and decrease muscle fatigue (Sante, 2012;
Daroff, 2016; Weaver and Ferg, 2020). Thus, SAR can be a
complementary tool to automatize these parameters, provide
feedback, interact with the patients during the therapy, and
promote physical distancing.

This paper presents the long-term evaluation of a social
robotic platform in neurorehabilitation with Lokomat. The
patients performed a repeated measures study (due to the
heterogeneity of the pathologies) during 15 sessions, where
two conditions were established (i.e., control and robot-
assisted therapy). The robot’s primary roles were to assist the
patient through physiological parameter feedback (e.g., posture
correction and heart rate and perceived exertionmonitoring) and
motivational approaches. Furthermore, the platform’s assessment
seeks to observe the patient’s progress through the therapies and
their perception toward the robot. This platform can represent an
opportunity to provide rehabilitation safely during and after the
COVID-19 pandemic.

This paper is organized as follows. Section 2 presents
the related work of social robotic platforms implemented in
healthcare and rehabilitation areas. Section 3 describes the social
robotic platform and the assessment methods used to evaluate its
functionality and effectiveness in a neurorehabilitation scenario.
Section 4 introduces the long-term results observed during the
session regarding the physiological parameters and the patients’
perception of social robots. Finally, the results and conclusions
are presented at the end of this paper.

2. RELATED WORK

Although robot-assisted therapies as Lokomat are successful,
cognitive approaches to enhance the treatment are also essential
to provide care and physical assistance. SAR is currently being
used in different areas (Yang et al., 2015; Heerink et al., 2016;
Peleka et al., 2018). In healthcare, several studies are focused
on measure the effects of social robots during rehabilitation
procedures in terms of adherence to the treatments, assistance
and perception (Matarić et al., 2007; Casas et al., 2019).

Different studies show the capabilities of SAR in post-
stroke patients to support rehabilitation procedures regarding the
cognitive approach. Robinson et al. (2013), proposed a social care
robotic platform to aid post-stroke patients through contactless
assistance. The system was tested in a pilot study, where the
mobile robot supports the therapy through encouragement and
reminders. The researchers found that welfare robots were well-
received by stroke survivors and positively impacted willingness
to undergo rehabilitation plans. In Libin and Libin (2004), a
social robot was designed to create a relationship with the user
using extroversion and introversion techniques. The robot also
offers an adaptive behavior, capable of adjusting social interaction
(e.g., interaction/proxemic distances, personalized speed, and
vocal content) based on the users’ personality traits and task
performance. The reported results provide evidence of the user’s
preference for the personality matching robot and its benefits
over rehabilitation performance. Currently, Polak and Levy-
Tzedek (2020) presented a Pepper robot aimed at supporting
upperlimb rehabilitation in a long-term study. The design of
SAR based therapy considered the clinician’s experience and
perception. The robot was capable of promoting different skills
and gives the patients trust to perform the games.

In contrast, social robots can also assist patients in employing
physiological parameters monitoring and providing feedback.
For instance, Kozyavkin et al. (2014) use a humanoid robot to
help cerebral palsy patients during motor training activities. The
primary role of the robot was supporting the children. The results
indicate that patients like to interact with the robot and even
suggest integrating them in other rehabilitation scenarios. The
outcomes also show that the social robot has a positive effect
on the patients regarding their motivation and their willingness
to complete the health procedures. Similarly, in pediatric
rehabilitation, researchers have highlighted the potential use
of robots to actively engage the children to the rehabilitation
and increase the commitment to perform the exercises (Carrillo
et al., 2017; Pulido et al., 2017). Martín et al. (2020) developed
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a physical therapy assisted by a humanoid robot to guide the
patients through imitation of several postures. Depending on
the patients’ performance, the robot congratulates or corrects
the users. The system was implemented in real environment set-
ups, showing that the system was reliable and could improve the
therapist’s and patient’s tasks during rehabilitation procedures.

Furthermore, social robots are being used in alternative
rehabilitation areas. For instance, in cardiac rehabilitation, a
humanoid robot was implemented to monitor and support
patients with cardiovascular diseases (Casas et al., 2020). The
robot gives the clinicians alerts to warn emergency events,
provide motivation and correct the patient’s physical activity
performance. The outcomes highlight the robot’s potential in this
scenario and the positive effects on cardiovascular physiology.

Finally, in our previous work (Cespedes et al., 2020), the
development of a SAR interface was presented. The social robot’s
roles were to support and encourage patients with neurological
diseases during gait rehabilitation with Lokomat. These patients
perform two sessions (one assisted by the robot and one
conventional therapy). Preliminary findings show that patients
tend to improve their posture with the use of the robot. Overall,
the results regarding social robots in rehabilitation are positive.
However, few studies assess SAR’s effects in long-term periods,
avoiding the fact that the novelty effect can decrease with time
(Kasap and Magnenat-Thalmann, 2012), and social interaction
could be affected. Most of these studies also integrate social
robotics in conventional therapies rather than robot-assisted
therapies as Lokomat rehabilitation. In this context, it is crucial
to assess the effects of a complementary tool (SAR) that support
rehabilitation from other approaches.

3. METHODOLOGY

This section describes the methodology carried out to
evaluate the social robot effect during a long-term study in
neurorehabilitation with Lokomat. Within the method, three
steps were followed: (i) social robotic platform architecture, (ii)
the experimental protocol, and (iii) data analysis.

3.1. Social Robotic Platform Architecture
Figure 1, shows the architecture of the social robotic platform
proposed for neurorehabilitation with the Lokomat Scenario.
The system is composed of three main modules: (i) the sensory
module, which allows the acquisition and processing of the
physiological data, (ii) the social robot module, in charge of the
social interaction and the assistance of the patients, and (iii) the
graphical user interface used to visualize the parameters of the
parameters and control the therapy flow.

Sensory module: As mentioned previously in the sensory
module, the physiological data are acquired and processed.
The system’s physiological parameters are the spinal posture
(thoracic and cervical posture), the heart rate, and the Borg
scale. The interface performs downsampling (1 Hz) to obtain
simultaneous data from the sensors, then the data are stored
on the database. Cervical and Thoracic postures are measured
by an IMU BNO055 (Adafruit, USA), and inclination angles
in the sagittal, coronal and traversal planes are obtained. A

Zephyr HxM sensor (Medtronic, New Zealand) measures the
heart rate. The sensor is located in the patient’s chest to monitor
cardiovascular functioning. Finally, the Borg Scale is a subjective
measurement commonly used in rehabilitation to measure the
patients’ perceived exertion during the exercise (Compagnant
et al., 2017). The robot asks the scale in a frequency of 5 min
across the session. The therapist records the scale in the database.

Social robot module: A NAO V6 robot (Softbank Robotics,
France) was used to achieve the interaction. The primary robot’s
role is to provide feedback to the patient of physiological
parameters (i.e., cervical and thoracic posture, heart rate) and
motivate them during therapy development. Additionally, the
robot supports the therapists while they perform other tasks
during the session. The robot is located in front of the patient
during the exercise, guiding their performance by imitating
healthy postures (Figure 2). Thus, the platform enables the
physical distancing between the clinicians and the patient. The
feedback given by the robot includes non-verbal and verbal
gestures. Three feedback categories are proposed: (i) Heart
rate feedback, provide alerts regarding the patient’s high heart
rate during the gait rehabilitation. (ii) Posture feedback, where
the robot uses a verbal phrase to indicate the patient the
performance of an unhealthy posture, and body gestures to
show the patient how to correct and maintain a proper posture.
This type of feedback is given to correct cervical and thoracic
spinal postures. Finally, (iii) motivational feedback supports the
patients through encouraging phrases. The non-verbal gestures
and the conversation scheme designed for the robot is developed
with a rule-based algorithm. This algorithm depends on the
events triggered during the sessions and the types of feedback
presented previously. For instance, the motivational phrases are
performed when the patient accomplish a healthy posture. The
conversation contents include a set of phrases (e.g., “you are doing
ok,” “We almost finished the sessions,” “Great!, you are improving
the posture”) that are performed randomly.

Graphical User Interface: This interface is in charge of
visualizing the therapy’s data and control the session flow
(Figure 3). A tablet Surface Pro (Windows, USA) was used to
display the interface. This tool also allows therapists to interact
with the patient and manage the session.

3.2. Experimental Protocol
A total of 10 patients were recruited during the study. These
patients performed actively Neurological Rehabilitation with
Lokomat at Mobility Group Rehabilitation Center located in
Bogota, Colombia. These patients voluntarily agreed to perform
the rehabilitation assisted by the robot during 15 sessions (
approx. 5 months, where 1 session was conducted per week1, the
sessions lasted between 40 and 60 min) (Bickmore and Picard,
2005; Sabelli et al., 2011). However, within this study, only 60% of
the patients finished rehabilitation with Lokomat. Table 1 shows
the demographic data of the patients and their pathologies.

1Some patients begun 3 weeks after the study beginning due the recruitment in the

rehabilitation center.
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FIGURE 1 | Social robotic platform architecture for neurological rehabilitation with Lokomat.

FIGURE 2 | Robot’s behaviors regarding the posture feedback provided to the patient during Lokomat sessions.

3.2.1. Experimental Design
Due to the patient’s heterogeneity, a repeated measures study was
performed to evaluate the patient’s progress during neurological
Rehabilitation with Lokomat. Two conditions were established: a
control condition and a robot condition (Figure 4); during both
conditions the patients also received support from the healthcare
staff. Figure 5 shows the design of the study. Test sessions are

performed at the beginning, in the middle, and at the end of the
study. Within these Test sessions, only physiological parameters
were measured and were taken as a baseline. Then, the patients
were assigned randomly to start with one condition (either
control or robot) during six sessions (one session per week).
Finally, considering the start condition, the patients changed the
scenario during another six sessions (one session per week).
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FIGURE 3 | Graphical user interface for neurological rehabilitation with Lokomat. The visualization area contains labels that show physiological parameters and

patients’ information. The control flow area has buttons to start and stop the therapy.

TABLE 1 | Demographic data of the patients within the study.

Patients’ data

Participants 10

Gender 3 females 7 males

Age (years), mean ± SD 35.5 ± 9.98

Weight (Kg), mean ± SD 71.7 ± 7.60

Pathology (%)
Stroke (60%)

Spinal cord injury (40%)

FIGURE 4 | The diagram illustrates the robot condition performed in the

experimental design.

Control Condition: Within this condition, the participants
performed a conventional session of neurological rehabilitation
with Lokomat. However, to measure the physiological data
and compare them to the other conditions, the patients were

monitored through the sensory module. The patients received
assistance and assessment from the healthcare staff.

Robot Condition: Within this condition, the participants
performed the sessions assisted by the social robot. As was
explained in the section that describes the architecture, the
robot’s role was focused on providing motivational feedback
and support patients’ rehabilitation throughout the monitoring
of physiological parameters (e.g., cervical, thoracic posture, and
heart rate). Furthermore, the healthcare staff was supervising the
therapy and gave additional feedback to the patient (e.g., ankle
gait patterns correction).

3.2.2. Experimental Criteria
Inclusion Criteria: The patients considered in this study were
those who actively perform neurorehabilitation therapies with
Lokomat. Overall, the patients had to be able to understand
and follow the robot instructions. The pathologies considered
in the study were: spinal cord injury (hemiplegia, paraplegia)
and stroke.

Exclusion Criteria: Patients with neurodegenerative diseases
such asMultiple sclerosis, Alzheimer’s Parkinson’s, among others,
were not included in the study. Additionally, patients who had
invasive electronic devices (e.g., pacemakers) cannot perform the
study due to the interference that can cause the system’s sensors.

3.3. Data Analysis
Two types of variables were analyzed to evaluate the robot
assistance: on the one hand, quantitative variables included the
unhealthy posture time, the Borg scale, and the heart rate at
training. On the other hand, qualitative variables integrate the
UTAUT questionnaire to observe the patient’s perceptions of the
robot’s role.

PPt [%]: This value describe the time during which the
patient presents an unhealthy spinal posture (i.e., thoracic and
cervical posture) in the Lokomat sessions. First the values
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FIGURE 5 | The diagram illustrates the experimental design. Test sessions and six therapy sessions are developed to evaluate the robot’s effects over the patients.

FIGURE 6 | The patient’s physiological progress starts with the control condition. (A) Cervical PPt (sagittal plane), (B) Cervical PPt (coronal plane), (C) Thoracic PPt
(sagittal plane), (D) Thoracic PPt (coronal plane).

considered as a healthy posture were calibrated for each patient
to measure this parameter. With these values, a threshold was
determined to calculate the unhealthy posture (i.e., 10 degrees
over/under the threshold). Finally, the time of this event was
calculated and normalized with the test sessions. Equation
(1), where PPtnorm, is the time of unhealthy spinal posture;
PPtn−session is the time of unhealthy spinal posture in the current
session, and PPttest−session is the time of unhealthy spinal posture
in the test session.

PPtnorm =

(PPtn−session − PPttest−session)

PPttest−session
∗ 100 (1)

Heart Rate [Bpm]: This parameter corresponds to the heart
rate acquired during the rehabilitation. The parameter was
averaged in each session.

Borg Scale: This parameter corresponds to the exertion
perceived during the exercise. The scale used in the rehabilitation
center varies between 0 (i.e., rest) and 10 (i.e., exertion perceived
as high). This value was averaged in each session.

UTAUT questionnaire: A UTAUT questionnaire was applied
at the end of the rehabilitation to measure the clinicians’
perception and attitudes to the social robot. This measurement
is based on the Almere model (Heerink et al., 2010), which
evaluates the perception through different constructs: Social
Presence (SP), Perceived Sociability (PS), Perceived Trust (PT),
Ease of Use (EU), Safety (S), Perceived Utility (PU), and
Usefulness (U). A total of 26 closed questions (answered by
a Likert scale) and two open items were implemented in the
questionnaire (Supplementary Table 1).

COVID-related questionnaire: A short-questionnaire was
implemented to the clinicians’ to measure their perception
toward the robot during the pandemic. For instance, the
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questions were related to the usability of the robot in the
pandemic and how it can be a tool to support neurorehabilitation
(Supplementary Table 2). The questionnaire was composed of
six closed questions and three open questions.

A Wilcoxon Signed-Rank test was applied to compare the
patient’s progress in both conditions. The Wilcoxon Signed
Rank is a non-parametric test used to compare two related
samples (i.e., in this case compare the robot and control
condition performed by the same patient) to assess whether their
population mean rank differ (Wilcoxon, 1945). A descriptive
analysis was performed for the closed questions in the qualitative
parameters, and a textual data analysis test was performed for the
open items.

FIGURE 7 | The physiological progress of a patient that starts with the control

condition. (A) Heart rate and (B) Borg scale.

4. RESULTS

As mentioned in the methodology section, two types of variables
were observed (i.e., qualitative and quantitative). This section
presents the results of patients who participated in the study
during 15 sessions of neurorehabilitation with Lokomat.

Figures 6–9 show the patient’s physiological progress
regarding the cervical and thoracic posture, the heart rate,
and the Borg scale. Figure 6 shows one patient’s physiological
parameter that starts the study with the control condition. In
the cervical posture (Figures 6A,B), for both planes (sagittal
and coronal) the percentage of PPt decreases when the patient
performs the session with the robot. The same result can be
seen for the thoracic posture (Figures 6C,D). Moreover, the
heart rate was maintained in a healthy range considering the
exercise performed during the session. Also, the Borg scale was
at low-perceived level (Figure 7).

On the other hand, Figure 8 presents one patient’s
physiological data who started the study with the robot.
The cervical PPt (sagittal and coronal planes) was lower with
the social robot-assisted therapy (Figures 8A,B). An impressive
result is that the patient tends to maintain the posture after
the robot intervention (Figure 8A). This result could initially
indicate that the patient learns how to control the cervical
posture on the sagittal plane. This task corresponds to looking
straight while performing the gait therapy with the Lokomat.
In the case of thoracic posture (Figures 8C,D), it can be seen
that the percentage of PPt in this area was lower when using
the robot. Finally, both the heart rate and the Borg scale were
performed in healthy ranges (Figure 9).

Table 2 shows the p-values obtained after applied the
Wilcoxon Signed-Rank test to the physiological data (i.e., PPt).
There is a significant difference between the control and the
robot condition regarding the PPt for sagittal and coronal plane
in both spinal areas. For instance, in the robot condition the
percentages where the patients maintain an unhealthy posture
are lower than the control condition (Figure 10). This outcome

FIGURE 8 | The patient’s physiological progress who starts with the robot condition. (A) Cervical PPt (sagittal plane), (B) Cervical PPt (coronal plane), (C) Thoracic PPt
(sagittal plane), (D) Thoracic PPt (coronal plane).
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demonstrates the positive impact of the robot during the sessions,
this effect could be related to the constant feedback provided
to the patients and their willingness to achieve and maintain a
healthy posture during the sessions. Furthermore, the heart rate
and the Borg scale parameters, do not show differences between
groups. This result can be due to the high dependence of the heart
rate and the Borg scale of the patient’s exercise during the therapy
with Lokomat.

The qualitative data analysis was performed to measure
patient’s interaction and attitudes toward the robot role during
Lokomat therapy. Figure 11 shows the percentage on the Likert
scale regarding each construct. It can be observed, that the
patients have a positive perception of the robot in most of the
constructs (U, PU, S, EU, and PT). In contrast, for the social
presence (SP) construct a negative perception was elucidated by
the participants.

Two open questions were analyzed using the frequency of the
answers regarding the essential social robot’s aspects (Figure 12).
Question 1, reflects the clinicians’ perceptions regarding the

FIGURE 9 | The physiological progress of a patient starts with the robot

condition. (A) Heart rate and (B) Borg scale.

social robot. The answer elucidates the platform produces
feelings of help (28.32%) and trust (36.47%) to the participants.
The patients also use the words posture (15.42%) and motivation
(21.46%) to describe the robot. Question 2 is focused on
evaluating which factors could be improved in the therapy
assisted by the robot; 68.21% of the patients’ answer that the
robot’s dialogues could be less repetitive and 33.17% recommend
inserting more sensors to improve reliability.

Furthermore, Figure 13 shows the results of the clinicians’
perception regarding the robot’s role in neurorehabilitation
during the pandemic. In general, the healthcare personnel will
agree (50%) and totally agree to use the robot during the
pandemic, and recommend the robot to other colleagues to
use the robot (Question 6). On the other hand, most clinicians
agree with the fact that the robot can promote the physical
distancing between the healthcare personnel and the patients.
Within Question 4, a small percentage of clinicians answer that
they disagree with the capability of the robot to support all
of the tasks during the pandemic carried out in rehabilitation
procedures. This result can be due to the limitations of the
robot and highlighted in the open questions of the UTAUT
questionnaire (Figure 12).

In the case of the open questions, the clinicians remarked
on several advantages of the robot during the pandemic
(e.g., “ During the pandemic using robots could promote the
distancing, the visual and hearing feedback,” “ Continuous
feedback andmotivation,” “ It allows distancing, greater interaction
of the patients, the robot does not condition the answers.’). As
disadvantages the health care commentaries were: “ There are
limitations regarding some verbal feedback of the robot,” and “ If
the robot does not coordinate properly with the team’s feedback,
it can generate dispersion of attention, confusion in the orders of
the therapist and the team.” Finally, as additional features the
therapists suggest to increase the robot’s mobility in the scenario,
and add the robot’s behaviors at the end of the session to give
some recommendations regarding the COVID-19 pandemic.

5. DISCUSSION

This article presents a long-term study that involves ten
patients who perform actively in Lokomat gait rehabilitation.

TABLE 2 | Wilcoxon ranked signed test results.

Measurement p-value

PPt Mean

control condition

[%]

PPt SD

Control condition

[%]

PPt Mean

Robot condition

[%]

PPt SD

Robot condition

[%]

Cervical PPt

(sagittal plane)
0.01 39.18 23.05 20.41 13.18

Cervical PPt

(coronal plane)
p<0.01 36.56 22.61 23.01 15.29

Thoracic PPt

(sagittal plane)
p<0.01 39.31 18.70 29.10 14.39

Thoracic PPt

(coronal plane)
p<0.01 46.9 19.71 30.8 17.88

Robot and control conditions comparison for intra-subject analysis. Bold values are the p-values obtained after the Wilcoxon Signed-Rank test. They are bolding as they show significant

differences between the conditions applied.
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FIGURE 10 | General patient’s physiological progress. (A) Cervical PPt (sagittal plane), (B) Cervical PPt (coronal plane), (C) Thoracic PPt (sagittal plane), (D) Thoracic

PPt (coronal plane).

FIGURE 11 | Chart of the percentage of the number of responses for each category. Social Presence (SP), Perceived Sociability (PS), Perceived Trust (PT), Ease of

Use (EU), Safety (S), Perceived Utility (PU), and Usefulness (U).
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FIGURE 12 | Results regarding the open questions of the UTAUT questionnaires. Attitudes toward the robot’s role in neurorehabilitation and functionalities to improve

were assessed.

FIGURE 13 | Results regarding the closed questions of the COVID related questionnaire. The usability of the robot in a rehabilitation scenario was assessed.

A social robot supported these patients. The roles were to
provide feedback and monitor the physiological progress of the
patient. Two main variables were included in the study: (i)
quantitative variables to measure the physiological progress, and
(ii) qualitative variables to measure the interaction and patient’s
perception of the patients toward the robot.

The results show that the posture improves with the robot’s
assistance in the thoracic and cervical areas. Also, there is a
statistical difference between the robot and the control condition.
These results are very encouraging, as they show the robot’s
positive impact on the patient’s physiological behavior. The
feedback provided by the robot allows the patient to maintain a
healthy posture and promote full gait rehabilitation. Moreover,
the medical team also benefits from the robot’s support, as the
patient is continuously monitored and their ability to perform
other tasks during the session increases. Within the study it was
observed that the clinicians do not interfere with the robot’s work
and trust in the platform. Hence, in the COVID-19 pandemic,
this tool could be handy as it allows the clinicians to complete the
rehabilitation sustaining the social distancing with the patients,
and decrease the contagion rate.

On the other hand, the system enables continuous monitoring
of the patient. For instance, the heart rate is not measured

in conventional therapies. With the system and the robot’s
interaction the clinicians could be warned by the robot and
take action during the therapy if the patient has a high heart
rate. Additionally, at the end of the rehabilitation, the clinicians
could evaluate the patient progress, not only in the gait behavior
but also in their cardiovascular functioning and the exertion
perceived during each session. Through the questionnaire,
the clinicians highlight that they trust in the system as a
complementary tool in rehabilitation. Regarding the robot’s
role during the COVID-19 pandemic, the clinicians have a
positive perception of the robot to use it as a tool to manage
the rehabilitation procedures. Most of the healthcare personnel
will use the robot during the pandemic, as they consider this
tool can promote physical distancing and it is a secure device
to carry out the healthcare protocol. Also, another encouraging
result is that the clinicians will recommend the robot to other
colleagues and institutions to support rehabilitation during the
COVID-19 pandemic.

The qualitative results highlight the positive patient’s
perception and acceptance of the social robot. The patients
perceived that the robot helped give feedback on the physiological
parameters and maintain their healthy posture. Additionally,
they considered that the system was very safe and secure as
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they were continuously monitored. Within the conventional
Lokomat sessions, the cardiovascular response is not measured.
In this case, the clinicians and patients consider this parameter
fundamental to perform a safe therapy. In contrast, the patients
have a neutral perception of the social presence and robot
sociability. This result can be due to the repeatability of
the dialogues and the robot’s behaviors during the session.
The patient’s commentaries suggest that a fluid speech and
conversation with the robot could improve the patient-robot
interaction and sociability. This limitation could be enhanced
by implementing strategies (e.g., face recognition and speech
recognition) in subsequent studies. For example, in Libin and
Libin (2004) the use of adaptive behaviors regarding the user
personality increases motivation and quality of the interaction.
Furthermore, the clinicians remark to add behaviors at the end
of the session where the robot can make recommendations to the
patients over the COVID-19 pandemic. For instance, washing
hand protocols, correct use of the mask, among others.

Although the robot’s sociability was perceived as lower, the
patients highlight the platform’s potential in Lokomat therapy.
At the end of the sessions, most of the patients suggest using
the robot with other patients, due to its reliability and help
during the rehabilitation procedures. Also, some patients answer
that the robot could enhance the health personnel tasks, and
consequently, their trust in the sessions was higher.

6. CONCLUSIONS AND FUTURE WORK

This paper presents the evaluation of a social robotic platform
for neurorehabilitation with Lokomat. A total of 10 patients were
evaluated during 15 sessions. The patients perform conventional
and robot-assisted therapy starting the conditions randomly, to
assess their performance in both scenarios.

Overall, the results evidence a positive effect of the social
robot in the patient’s physiological progress and interaction. The
study’s primary outcomes show that the patients improved their
spinal posture (cervical and thoracic) when the social robot
assisted them. The platform also allowed the on-line monitoring
of patients’ gait performance and cardiovascular functioning.

Regarding the perception, most of the patients highlight the
platform’s capability to aid their rehabilitation procedures and
enhance the therapy for the patients and the clinicians. In
contrast, they suggest that the sociability of the robot could
increase using communicative and speech techniques. Thus, in
future works a system that includes strategies to promote long-
term interaction will be implemented. On the other hand, most
of the assistive platforms as Lokomat are focused on assist the
patients in a physiological way, however, the cognitive support
it is essential to achieve a comprehensive procedure and adhere

the patients to the treatment. In this way, SAR can be a potential
tool to offer a cognitive approach and support clinicians in their
tasks. These outcomes became more relevant with the COVID-
19 pandemic, where clinicians need tools to assist patients in a
safer manner; and the continuity of the rehabilitation is essential
to maintain the patient’s quality of life.
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Guidelines for Robotic Flexible
Endoscopy at the Time of COVID-19
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1School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom, 2Leeds Institute of Medical
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Flexible endoscopy involves the insertion of a long narrow flexible tube into the body for
diagnostic and therapeutic procedures. In the gastrointestinal (GI) tract, flexible
endoscopy plays a major role in cancer screening, surveillance, and treatment
programs. As a result of gas insufflation during the procedure, both upper and lower
GI endoscopy procedures have been classified as aerosol generating by the guidelines
issued by the respective societies during the COVID-19 pandemic—although no
quantifiable data on aerosol generation currently exists. Due to the risk of COVID-19
transmission to healthcare workers, most societies halted non-emergency and
diagnostic procedures during the lockdown. The long-term implications of stoppage
in cancer diagnoses and treatment is predicted to lead to a large increase in preventable
deaths. Robotics may play a major role in this field by allowing healthcare operators to
control the flexible endoscope from a safe distance and pave a path for protecting
healthcare workers through minimizing the risk of virus transmission without reducing
diagnostic and therapeutic capacities. This review focuses on the needs and challenges
associated with the design of robotic flexible endoscopes for use during a pandemic. The
authors propose that a few minor changes to existing platforms or considerations for
platforms in development could lead to significant benefits for use during infection control
scenarios.

Keywords: robotic flexible endoscopy, endoscopes, gastrointestinal, infection control, aerosol generating
procedure, COVID-19

ENDOSCOPY DURING COVID-19

COVID-19
On March 11th, the WHO (World Health Organization) declared COVID-19 caused by the
SARS-CoV-2 virus a pandemic. There have been over 94 million cases reported and over two
million fatalities worldwide (Johns Hopkins University Coronavirus Center, 2020) as of
January 2021. The main symptoms include fever, cough, change in smell or taste,
breathlessness, and weakness with many people also reporting gastrointestinal symptoms
such as abdominal pain, diarrhoea and vomiting. A small percentage develop acute respiratory
distress syndrome (ARDS) which can be fatal. Human-to-human transmission primarily occurs
through direct contact or droplets (Repici et al., 2020), with smaller droplets (often called
aerosols) having the potential to remain airborne for an extended period of time and thus travel
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much larger distances. This means they cannot be tackled
simply by physical distancing measures employed whereas
larger particles are immediately pulled down due to gravity
and risks can be mitigated with physical distancing measures.

Endoscopy is considered a high-risk procedure due to the
proximity of health care workers (HCW) to patients and the
potential for aerosol generation. Recent work has shown that
endoscopists without proper face protection such as a face visor
could be at an increased risk to bacterial pathogens (Johnston
et al., 2019). Many studies have since shown that a face visor is
also not adequate face protection from droplets (Akagi et al.,
2020). Studies from the SARS-CoV-2 outbreak have shown that
droplets could easily reach 6 ft (∼2 m) from an infected patient
thereby putting HCW in endoscopy units at risk (Wong et al.,
2004).

Conventional Endoscopy
Endoscopy is a procedure where organs and tissues inside the
body can be imaged and monitored using an endoscope. An
endoscope is a thin tube with a light source and camera, often
with additional tools, for example ultrasound or a working
channel for introduction of biopsy forceps or therapeutic
equipment. Endoscopy can be used for diagnostic
(visualisation and sampling) and therapeutic purposes such as
removing cancer tissue. An endoscope can be either rigid or
flexible; with flexible endoscopes offering a multitude of
advantages for navigation to target sites. Endoscopes can be
inserted through natural orifices like the mouth, anus or
urethra or via incisions made in the body. Flexible endoscopy
is often used as a diagnostic tool for many types of cancer and
diseases and thus plays a vital role in the management of multiple
malignancies. There are many different types of endoscopy from
bronchoscopy (monitoring the lungs) to hysteroscopy
(monitoring the uterus) and cystoscopy (monitoring the
bladder); however, for the purposes of this review we will limit
our focus to flexible gastrointestinal (GI) endoscopy. There are a
range of flexible GI endoscopies including
esophagogastroduodenoscopy (EGD–for assessing esophagus,
stomach, and duodenum), colonoscopy (for assessing the large
bowel), sigmoidoscopy (for the rectum and sigmoid colon),
endoscopic retrograde cholangiopancreatography (ERCP–for
assessing the biliary tree and pancreatic ducts), and
enteroscopy (for assessing the small intestine).

Colorectal cancer is the third most common cancer in the
world in terms of mortality and fourth most common in terms of
incidence reaching nearly two million cases and one million
fatalities in 2018 according to some projections (Rawla et al.,
2019). Colonoscopy can detect and remove pre-cancerous tissue
in the colon, thus preventing the development of colorectal
cancers. GI endoscopies are also the gold standard
investigative method in the diagnosis and surveillance of a
large variety of conditions such as celiac disease, and
inflammatory bowel diseases. In 2014, it was projected that
there will be over 75 million gastrointestinal endoscopic
procedures performed by 2020 in Europe and the
United States alone (Lau, 2014). There were more than two
million total GI procedures in the United Kingdom in 2019

(Ravindran et al., 2020) and over 17 million total GI
procedures in the United States in 2013 (Peery et al., 2019).

Conventional endoscopy uses a semi-rigid tube and
manoeuvring the endoscope is performed manually by
rotation of a set of wheels on the handle and by pushing,
pulling, and torqueing the insertion tube of the endoscope.
Many procedures are uncomfortable or painful, requiring
analgesia and sedation. A typical GI endoscopy process
requires multiple HCW inside the room–an endoscopist, an
assistant/technician, and a nurse to monitor the patient. For
general anaesthetic and fluoroscopic procedures, this could
potentially include anaesthesiologists and radiographers.
Typical pre-pandemic personal protective equipment (PPE) for
these processes consisted of gloves, gown/apron, and eye
protection.

COVID-19 Related Risks During Flexible GI
Endoscopy
Some endoscopic procedures are considered aerosol generating
procedures (AGPs). Aerosols are small particles/droplets below
5 µm that can remain airborne for an extended period of time.
One of the postulated sources of aerosol generation during
endoscopy procedures is related to gas insufflation. Positive
insufflation is used to visualize the lumen and create space to
move the instrument forward. The potential generation of
aerosols during endoscopy could pose a risk to HCW.

Evidence of aerosols generated during different endoscopic
procedures varies and there is no homogeneity of evidence.
Endoscopic procedures such as bronchoscopy have been
shown to be aerosol generating along with several other
patient care and operating room procedures (Mittal et al.,
2020; Thamboo et al., 2020; Wahidi et al., 2020). However, for
GI endoscopic procedures, no current evidence exists of aerosol
generation and advice from respective societies around infection
control (IC) is based on expert opinion (Chai et al., 2020;
Mahadev et al., 2020; Repici et al., 2020; Tse et al., 2020). A
well-designed study is needed to address this knowledge gap in
the field that would allow tailored advice for specific endoscopic
procedures.

Upper GI procedures are considered a greater risk during the
current pandemic because the virus has been shown to be
transmissible through airway secretions. The risk for lower GI
procedures (e.g. colonoscopy and sigmoidoscopy) is less clear,
although SARS studies have shown the presence of coronavirus in
stool samples and in intestinal biopsy samples (Isakbaeva et al.,
2004; Pan et al., 2020) and there is some data regarding the
dispersion of microorganisms throughout an endoscopy suite
during colonoscopy (Vavricka et al., 2010). There has also been
some focus on identifying a COVID-19 outbreak through
wastewater at several institutions in the United States, which
would suggest either the presence of the virus or viral RNA in
stool samples (Cahill andMorris, 2020). For now, most guidelines
from gastroenterology societies have classified all GI endoscopic
procedures as AGPs (Chai et al., 2020; Mahadev et al., 2020;
Repici et al., 2020; Tse et al., 2020). Therefore, PPE has been
enhanced during the COVID-19 pandemic to include a full sleeve
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gown, an FFP3/N95 mask, gloves, face visor or goggles, shoe
covers, and a surgical hair cap.

Potential for Innovation
Despite significant advances in the imaging capabilities of
endoscopes, the controls remain largely unchanged in the last
60 years. The rear steering approach of conventional colonoscopy
for example stretches the bowel and surround mesentery which
makes it uncomfortable and often requires sedation or analgesia.
While many new devices are being developed to attempt to
address the shortfalls of conventional endoscopy (Table 1),
COVID-19 has further highlighted the need for innovation in
the field of flexible endoscopy. One such improvement is the use
of disposable endoscopes that have already gained popularity due
to concerns around duodenoscope related infection and infected
biofilm in endoscope channels (Rauwers et al., 2018; Balan et al.,
2019). There is also a considerable argument for a single use
endoscope in reducing the running costs of departments by
preventing the need for costly decontamination facilities and
supplies (Larsen et al., 2020). The current pandemic has increased
the awareness of IC, and the time has come to explore single use
endoscopes further.

Another avenue of improvement in endoscopy is through
robotic advancements, which have the potential to reduce pain
and widen the availability of procedures as they often place a
lower cognitive and physical (improved ergonomics) burden on
the operator and thus require less training. Robotic flexible

endoscopy (RFE) can offer many advantages in general and
specifically when dealing with IC related to aerosol generation.
During the time of COVID-19, these include introducing physical
distancing between HCW and patients (enabled as a result of
teleoperation) as well as reduce the number of HCW in the
endoscopy suite. In this review, we explore the impact of COVID-
19 on GI endoscopy processes and how robotic flexible
endoscopic platforms can be designed to minimize these
impacts and improve IC mechanisms.

IMPACT OF COVID-19 ON FLEXIBLE GI
ENDOSCOPY
Reduction of GI Endoscopic Capacity and
Its Long-Term Implication
Due to COVID-19 guidance, endoscopic procedures were
significantly reduced during the pandemic to acute, urgent
cases. In Europe, the volume of these procedures fell to 15%
of previous capacity between February to May 2020 during the
peak of the pandemic, while in North America, these levels were
at 10% (Parasa et al., 2020). The National Endoscopy Database
(The National Endoscopy Database, 2020) shows that endoscopic
procedures fell to about 5% of normal levels in the
United Kingdom. They were down from about 35,000
reported procedures per week to 1,700 for the week ending
April 13th, 2020. When compared to 2019 levels in the

TABLE 1 | Examples of robotic flexible endoscopy (RFE) platforms.

Device Actuation and features Outcome
of clinical studies

Aer-O-Scope system (GI view, ramat Gan, Israel)
(Pfeffer et al. (2006); Gluck et al. (2016))

Two cameras, one front viewing and second giving a 360°

panoramic view that can see behind folds, disposable,
tip-pulling locomotion, computer aided control, no
steering or instrument channel

Cecal intubation was successful in 55/56 recruited
patients (98.2%). System detected 87.6% of polyps.
No mucosal damage or adverse events were reported.
Available on the market.

Neo-guide endoscopy system (NeoGuide endoscopy
system Inc., Los Gatos, CA, United States) (Eickhoff
et al. (2007))

Electromechanical actuation of 2 independent 2 DOF
segments to achieve snake - like motion, shape retention,
instrument channel, 3D map of the device, computer-
aided control, reusable so requires cleaning, large
diameter

Cecal intubation was successful in 10 patients in the
time range 24–60 min.
No longer available on the market.

Invedosacope TMSC40 (Invendo medical GmbH,
Weinheim, Germany and AMBU A/S, Copenhagen,
Denmark) (Rosch et al. (2008); Groth et al. (2011);
Yeung et al. (2019))

Disposable colonoscope (10 mm in diameter, with a 3.1-
mm working channel), controlled electro-hydraulically by
actuators placed outside the patient, operator controlled
with a joystick interface, disposable, instrument channel,
diameter similar to a colonoscope

Cecal intubation was successful in 98.4%, reported to
be painless in 92% of patients.
No longer available on the market.

Endotics (ERA endoscopy SRL, Peccioli, Italy)
(Cosentino et al. (2009); Tumino et al. (2010); Tumino
et al. (2017))

Inchworm movements, disposable, steerable tip with
integrated camera and light source, computer-aided
control, thin tip, no instrument channel, and procedure
times longer than colonoscopy

Significantly lower patient discomfort and was also able
to complete 93% of colonoscopies that were left
incomplete through conventional colonoscopy
Available on the market.

Consis medical (Beer’Sheva, Israel) (Yeung et al.
(2019))

Consists of an inverted sleeve that self-propels through
the colon using hydraulic aided propulsion. The sleeve is
disposable, while the device head is a capsule that can be
sterilised.

No available clinical studies

NaviCam
®
(Ankon technologies co, Ltd. Wuhan,

Shanghai, China) (Liao et al. (2016))
A wireless capsule endoscope that can be actuated
internally by an external magnetic field.

Mean duration of examination was 25 ± 7 min. Anxiety,
discomfort and pain scores (worst-best � 0–10) were
1 ± 0, 1.3 ± 0.6, and 1 ± 0 respectively.

Magnetic flexible endoscope (MFE)(STORM Lab,
Leeds, United Kingdom/Nashville, TN, United States)
(Martin et al. (2020))

Relies on actuation using a permanent magnet
manipulated by a robot that is external to the patient; no
push activation, instrument channel, large one-time robot
cost and complexities around magnetic control

Currently undergoing human trials
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United Kingdom, 51% more people were waiting for
colonoscopies, 46% more for flexible sigmoidoscopies and 44%
more patients were waiting for gastroscopies as of July 2020
(Cancer Research UK, 2020). While these numbers are
specifically focused on the United Kingdom, a similar trend
was seen worldwide in almost every national healthcare
system. The statistics in this review are sometimes focused on
the United Kingdom and United States as these are just a result of
easily accessible data. It is estimated that for every week that
screening is paused, 7,000 people are not being referred for
further tests and 380 cancers are not being diagnosed through
screening programs in the United Kingdom (Roberts, 2020).

Avoidable deaths due to suspended screening and treatment
are expected to rise significantly with an estimated increase of
more than 6,000 excess deaths in the United Kingdom and more
than 33,000 excess deaths in the US (Lai et al., 2020). Endoscopic
capacity has still not been restored to pre-pandemic levels (at 80%
in September 2020) and with a second wave imminent, it becomes
important to set the scene for future IC measures and to
understand how RFE can service this need.

Current endoscopic procedures rely on PPE (enhanced during
COVID-19), comprehensive room and equipment cleaning and of
course air circulation (Garbey et al., 2020) which can vary for
endoscopy suites. Despite concerns around patient exposure to the
virus due to contaminated endoscopes, evidence suggests that
reprocessing agents with viricidal activity will remove the SARS-
CoV-2 virus (Kampf et al., 2020; Rai, 2020). In the past, certain
bacteria were not successfully removed from duodenoscopes
(Rauwers et al., 2018; Balan et al., 2019), starting a push for
disposable endoscopes. There is some evidence of bronchoscope
contamination (Ofstead et al., 2020), and therefore single-use
endoscopes are considered safer, with potential cost savings in the
long run from not having large-scale cleaning facilities on premises.

Other Infection Control Measures
Another IC technique has been to adapt the current facilities such
as the endoscopy suite to increase safety during the COVID-19
pandemic. Modified face masks or boxes have been developed as
mechanical barriers (Narwani et al., 2020; Tsui, 2020). Paired with
CO2 extractors or suction mechanism, they create negative
pressure zones with the potential of eliminating (or significantly
reducing) aerosols escaping the procedure site and travelling
around the suite. None of the mentioned risk minimizing
techniques have been quantified and the evidence around
aerosol dispersion while using these methods has not been
published. There is a clinical need to quantify aerosol
generation during standard flexible endoscopic procedures as
well as robot assisted approaches. Apart from that, there is a
need for evaluation of mechanical barriers and extractors currently
employed in the hospitals to provide best and uniform guidelines
for clinicians working during a pandemic. Air filtration is another
key aspect in reducing HCW exposure to any potential aerosols
(Garbey et al., 2020).

The Ideal RFE
A flexible robotic endoscopic platform must be able to meet
certain needs during COVID-19. A teleoperated platform would

allow physical distancing between the patient and HCW. A
simple and easy to use robotic platform could reduce the
number of people in the room allowing reallocation of staff at
a crucial time and putting fewer HCW at risk during each
procedure. A less painful procedure which does not require
sedation would also reduce the number of people in the room.
More intuitive navigation will reduce training times for future
endoscopists. A RFE platform would preferably have higher
degrees-of-freedom (DOF) than current commercial platforms
and improved control. In addition, AI systems can be used for
improved navigation and localization of endoscopes using data
from both imaging and on-board sensing. This increased control
and better visibility of the intestine would improve detection rates
while allowing procedures such as tissue sampling and cancer
removal to be performed. By reducing the force and torque
exerted on the luminal wall, patient discomfort can be reduced
in addition to sedation requirements thus lowering risk and
recovery times. Finally, it is important to consider the
environmental impacts of single-use endoscopes and using
recyclable materials would be beneficial for future platforms.

ROBOTIC FLEXIBLE GI ENDOSCOPY

The motivation for developing robotic platforms in endoscopy is
similar to the motivation in other biomedical areas such as
robotically assisted surgery. These robotic platforms allow
HCW to overcome the current limitations of standard
endoscopic devices for diagnostic and therapeutic procedures.
These platforms can be used to improve the precision and safety
of the tools thus making them more reliable and effective
(Boškoski and Costamagna, 2019). The challenges for these
platforms are around locomotion of endoscopes and
instrument control as well as their applicability to a wide
variety of clinical applications. RFE has the potential to
increase safety of procedures by lowering risk of tissue damage
due to human error and lower the rates of complications.

RFE has the potential to meet the needs of enhanced IC
measures during COVID-19 and future pandemics. Remotely
controlled devices increase the distance between patient and
operator, hence less aerosol and droplet contact and reduced
infection risk for HCW (Wong et al., 2004). Easy to operate
robotic platforms could also help to reduce the HCWs in the
room and reduce training times. It could also be extremely useful
in cases where precise finemotor skills are required and cannot be
met by normal human dexterity by improving the control and
precision of endoscopes in robotic platforms (Lucarini et al.,
2015). This will improve the speed and accuracy of procedures
which will reduce adverse effects and discomfort during the
procedure. Both will result in patients spending less time in
the endoscopy suite.

Advantages of RFE
With the potential advantage of lowering discomfort for patients,
RFE can be used in cases where the patient is unable to tolerate
conventional endoscopy or in cases where frailty and co-
morbidity rule out the use of sedation during conventional
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endoscopy procedures. This will be achieved by having precise
control over the force and torque applied to the luminal walls
through force feedback. It will be hugely beneficial in cases where
patients require repeated and regular procedures (e.g. surveillance
in those with inflammatory bowel disease, or hereditary colorectal
cancer) where using a less painful procedure will enhance
surveillance uptake. It can also help to improve detection rates
as more control and more comfort means better visibility.
Another gap that RFE could fill is in cases where conventional
endoscopes are unable to complete an examination.

While RFE is a potential solution for diagnostic endoscopy
and therapeutic procedures in the GI tract, challenges remain due
to the limited DOF of such platforms. Therefore, current RFE
research focuses on increasing the manoeuvrability and control of
the tools to enable more complex and varied interventions.
Flexible endoscope manipulations common to most systems
are shaft insertion and tip steering. These complex movements
add difficulty in developing robot-assisted flexible endoscopes.

Examples of RFE
Over the years many researchers have developed RFE platforms
focused on various actuation and control approaches. There are
several recent reviews (Li et al., 2007; Ciuti et al., 2016; Tapia-Siles
et al., 2016; Li and Chiu, 2018; Boskoski and Costamagna, 2019;
Ciuti et al., 2020; Visconti et al., 2020) that cover these
technologies and other cutting-edge platforms in depth which
is not the remit of this paper. A selection of them are listed in
Table 1. The Bellowscope is another promising device not
included in the table since it is not strictly a robotic platform
but is a low-cost disposable endoscope. Its working principle is
based on pistons and bellow actuators which are controlled by
multi-DOF handheld controller (Garbin et al., 2018a; Garbin
et al., 2018b; Garbin et al., 2019; Chandler et al., 2020).

Wireless endoscopes (capsules) are a great tool for diagnostic
purposes and providing painless inspection of the GI tract.
Introduction through the mouth and lack of wiring makes
them ideal for diagnostic applications (Liao et al., 2016). The
less invasive a procedure is; the less risk it carries, more so in the
current climate. Currently available capsules can visualize the
small bowel (such as the PillCam (Li et al., 2007)) and therefore
have good diagnostic capabilities but lack therapeutic capabilities.
Capsules for upper GI tract are more difficult but some devices
with handheld magnetic control have shown some promise, again
solely for diagnostic use. The best technical solution at the
moment is the NaviCam® (Ankon Technologies Co, Ltd.
Wuhan, Shanghai, China), with a wireless capsule endoscope
steered magnetically inside the stomach filled with water (Jiang
et al., 2019). This can be classified as a robotic solution as there is a
robotic arm moving the magnetic field generator. This is in use in
almost every large hospital in China. The colon capsule, however,
is less successful. Without the ability to clean the stool coating the
mucosa the views are limited. In addition, up to 50% of people
will have a pathology requiring biopsy and therefore, many end
up requiring conventional colonoscopy anyway. While capsule
endoscopes would have major advantages in the case of
aerosolized particles (Slawinski et al., 2015; Ciuti et al., 2016);
they still have severe limitations for GI endoscopy. They lack the

ability to take biopsy samples or perform therapeutic procedures.
The requirements for a perfect capsule would include enhanced
locomotion, location, vision, telemetry, energy, and diagnostic
and therapeutic tools. A further limitation is including all these
technologies in a capsule that is small enough to safely traverse
the GI tract (Kwack and Lim, 2016; Singeap et al., 2016).

CHALLENGES FOR ROBOTIC FLEXIBLE GI
ENDOSCOPY TO OVERCOME DURING
COVID-19
RFE can introduce physical distancing into the endoscopy units.
However, one of the main challenges is related to feeding and
manoeuvring the flexible endoscope. Endoscopists can be
severely limited due to a lack of manoeuvrability when
manually operating the endoscopes during both diagnostic and
therapeutic procedures. It has been documented that during the
removal of abnormal tissue (polyps) during colonoscopies, even
well-experienced endoscopists can miss up to 20% of the tissue
(van Rijn et al., 2006). Robotic platforms use various actuation
mechanisms for endoscopes with varying levels of
manoeuvrability. In fact, in many review papers, robotic
endoscopes are classified based on their actuation principles
which typically fall into one of the following categories: 1)
magnetic, 2) electric or 3) hydraulic or pneumatic with many
devices using a combination of these principles. For example: a
legged robotic endoscope has recently been developed (Lee et al.,
2017; Lee et al., 2019) that can be operated with an electric motor
connected to reel-based mechanism that is both simple and
reliable. By using soft materials for the legs, a high degree of
manoeuvrability was achieved with no scratches or perforations
on a porcine tissue. This is just one example of how robotic
endoscopes in development can solve some of the current
challenges.

Another challenge is related to operating an endoscopic
instrument through the working channel, making sure that no
aerosols come back from that channel. The working channel of
the endoscopes can be responsible for releasing aerosols or
droplets into the suite during standard operating procedure
(Vavricka et al., 2010). However, very little quantifiable data
exists around whether this is an issue and how big of a challenge it
could be. A study that measures the aerosol levels in GI
endoscopy suites during procedures would be a welcome
addition to the field as well as a follow-up comparison with
robotic platforms.

Introducing robotic platforms to endoscopic systems
simplifies the procedure. Teleoperation allows clinicians to
control the endoscope from a safe distance or/and behind
mechanical barriers, with reduced need for direct contact with
the patient. Reduced discomfort means less monitoring is
required and no need for additional anaesthesiologists or
nursing staff, thus reducing the risk to HCW as can be seen in
Figure 1.

Following evidence of transmission of infection despite
decontamination, via infected biofilm in endoscopes (Rauwers
et al., 2018; Balan et al., 2019), single use endoscopes are
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gaining popularity (Pfeffer et al., 2006; Rosch et al., 2008; Cosentino
et al., 2009; Tumino et al., 2010; Groth et al., 2011; Gluck et al.,
2016; Tumino et al., 2017; Yeung et al., 2019). For example: the
Aer-O-Scope proposes RFE with disposable rectal introducer and
supply cables for colonoscopy (Pfeffer et al., 2006; Gluck et al.,
2016). Research on fully disposable endoscopes with robotic
platforms should be prioritized to implement these solutions in
hospitals during the COVID-19 pandemic or future airborne virus
pandemics. Single use conventional endoscopes are becoming
commercially available. An alternative to disposable endoscopes
is tool protection (e.g. protective sheet) which can be disposed of
after the procedure, followed by routine sterilisation of the
remaining part. However, decontamination of endoscopy
equipment is costly, and additionally places more HCW at risk
of contraction of infections such as coronavirus during the
decontamination process. There is evidence that some tools,
such as bronchoscopes (Ofstead et al., 2020) and
duodenoscopes (Rauwers et al., 2018; Balan et al., 2019), might
still be contaminated with bacteria after routine sterilization.
Recurrent passing of instruments down the working channel of
the scope leads to damage, that damage leads to accumulation of
biofilm which can become infected (Alfa and Singh, 2020; Bouiller
et al., 2020; Santos et al., 2020).

DISCUSSION

RFE procedures have the potential to be completed with increased
speed and without sedation and fewer complications, leading to a
shorter recovery time, freeing space in endoscopy suites at a
crucial time where endoscopic capacity has still not recovered to
pre-pandemic levels. GI endoscopic procedures have been
deemed high risk of contact and droplet formation with the
potential to be aerosol generating. Despite little evidence as of
now as to the true aerosol generating potential of GI endoscopic
procedures, enhanced IC measures are likely to continue.

The ideal RFE during COVID-19 would combine
teleoperation, single-use endoscopes and mechanical barriers/
seals. Teleoperation allows for physical distancing between
patients and HCW, single-use endoscopes would reduce the
risk of contaminated scopes. A mobile device would also be
extremely useful at a time when the endoscopy suite capacity
is limited to make space for COVID-19 patients. RFE has
significant potential in diagnostic and therapeutic endoscopy,
but some challenges remain to developing the ideal pandemic-
secure RFE. There is a significant need for a study to define the
aerosol generation during GI endoscopy in order to tailor future
guidance for both patients and HCW and maintaining capacity
levels in order to avoid devastating long term implications. Even
with the hope of a successful vaccine rollout, we have learned that
healthcare technologies should be resilient to pandemics in
general, so we believe this review will still be relevant in the future.
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Swabbing tests have proved to be an effective method of diagnosis for a wide range of
diseases. Potential occupational health hazards and reliance on healthcare workers during
traditional swabbing procedures can be mitigated by self-administered swabs. Hence, we
report possiblemethods to apply closed kinematic chain theory to develop a self-administered
viral swab to collect respiratory specimens. The proposed sensorized swab models utilizing
hollow polypropylene tubes possess mechanical compliance, simple construction, and
inexpensive components. In detail, the adaptation of the slider-crank mechanism
combined with concepts of a deployable telescopic tubular mechanical system is explored
through four different oral swab designs. A closed kinematic chain on suitable material to
create a developable surface allows the translation of simple two-dimensional motion into
more complex multi-dimensional motion. These foldable telescopic straws with multiple
kirigami cuts minimize components involved in the system as the characteristics are built
directly into the material. Further, it offers a possibility to include soft stretchable sensors for
realtime performance monitoring. A variety of features were constructed and tested using the
concepts above, including 1) tongue depressor and cough/gag reflex deflector; 2) changing
the position and orientation of the oral swab when sample collection is in the process; 3)
protective cover for the swabbing bud; 4) a combination of the features mentioned above.

Keywords: COVID-19, swab, self-administered, oropharangeal swab, low-cost, tongue depressor, stretchable sensors

INTRODUCTION

With the spread of the COVID-19 pandemic throughout the world, mass testing of the population
has proved to be an effective method to contain and control the disease. The testing of the patient
involves the collection of respiratory specimens through two modes of swab tests – a nasopharyngeal
swab and an oropharyngeal swab (Petruzzi et al., 2020). Between the twomodes, the oropharyngeal is
often preferred by patients as it causes less pain or discomfort (Wyllie et al., 2020). The procedure of
oropharyngeal swab is as follows: 1) a tongue depressor used to depress the tongue, allowing
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examination of the throat and suppress gag reflex; 2) a swab
directed towards the rear wall of the oropharynx near the tonsils
and is rotated a few times before removal. Due to the complexity
of hand-eye coordination in the swabbing process, the
oropharyngeal swab is carried out mainly by healthcare
workers at present. However, this practice limits the testing
capacity based on access to swabs, workforce availability,
increased rate of infection risks, psychological distress, and
workload to healthcare workers (Greenberg et al., 2020; World
Health Organization, 2020; Schwartz et al., 2020; Shechter et al.,
2020).

Currently, the most common solution to counter this issue
is to adopt a robotics system to replace healthcare workers
during the swabbing process (Yang et al., 2020). This system
prevents cross-infection and collects the patient’s respiratory
samples through automation or remote-controlled actuation
(Hunt et al., 2008; Li et al., 2020; Robotics, 2020). These
designs, while being novel and effective in a modern testing
facility, are still rather resource-intensive for applications
such as at-home sample collection or testing in remote,
rural areas. Hence, it is important to develop a simple and
effective self-administered oropharyngeal swab for the
particular group of patients with the difficulty of
oropharynx exposure.

Herein, we explore new designs of the oral swab equipped with
stretchable sensors which are more suitable for self-administered
compared to the rigid and inflexible traditional swabbing
methods. At the same time, it is also simpler and less
resource-intensive compared to a robot-assisted swab system.
In particular, we are interested in swabs that are: 1) "cooperative"
(i.e., safe to operate in contact with humans); 2) simple to
construct, inexpensive (suitable for the single-use purpose); 3)
intuitive to use (to be self-administered by patients); 4) effective
(despite natural reaction such as cough, sneeze, and gag by the
patient). Without resorting to complex systems, the simplest
method to achieve cooperativity is to embed this characteristic
straight into the material property of the swab by constructing
them out of lightweight materials that are mechanically

compliant to external forces (Hartenberg and Danavit, 1964;
Gaiser et al., 2012). We also seek to achieve cooperativity by
focusing on applying deployable telescopic tubular techniques to
create a complaint mechanism with closed kinematic chains.

MATERIALS AND METHODS

Actuation Mechanism
To develop a suitable design for an oral swab, deployable and
foldable telescopic tubular mechanical designs were explored to
fabricate a slider-crank linkage. A traditional in-line slider-crank
mechanism consists of one sliding pair and three revolute pairs. It
allows the translation of linear sliding motion to rotatory motion
or vice versa (Nemiroski et al., 2017). In the proposed designs, an
inversion of the closed slider-crank chain is utilized, similar to a
reciprocating-engine mechanism except that link 1 is fixed
(Figure 1A). The four links in this mechanism are connected
by 3 revolute joints and 1 prismatic joint with 1 degree of freedom
(DoF) each. Traditionally, slider-crank linkage comprises rigid
bodies made from a hard material which is rather bulky and un-
cooperative. To address this, we achieved a slider-crank
mechanism by applying kirigami techniques to a soft material
(polypropylene tube) to alter its material property directly. A
kirigami-based mechanical system allows us to create
sophisticated three-dimensional (3D) motion from a 2D
surface (Felton et al., 2014). A kirigami-based compliant
mechanism also has a compact mechanical footprint and
volumes while having high cooperativity with humans (Nelson
et al., 2019).

To fabricate a compliant slider-crank linkage from deployable
telescopic tubes, kirigami cuts of size ∼2.3–5 mm, are made to
form the hinges/joints (Figure 1B). The type of cut determines
the compliance of the bending motion. To ensure the motion of
the links and joints follow the desired path, diamond shape
opening has been cut to promote either inward or outward
folding as seen in (Figure 2). Through experiments, it is
realized that a curvilinear cut retains its structural rigidity

FIGURE 1 |Combination of slider-crank linkage and kirigami-based deployable telescopic tubular mechanical designs (A) Variation of slider-crank mechanism with
link 1 grounded; (B) Replication of joints on polypropylene tubes with simple cuts.
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ptduring bending motion, making it controlled and smooth. Also,
the load-bearing capacity is higher with the curvilinear cut than a
simple linear cut for joints. The continuum sliding pair is fabricated
by inserting two straws of different diameters. Rigid links are formed
using adhesive tapes. These slider-crank linkages are attractive as the
basis for a new design of self-administered oral swab for three
reasons; 1) easily accomplished joint/link to a structure by cutting a
notch at the desired point of flexure, 2) complex actuation such as
multi-directional or rotatory motion achieved by simple linear
translational sliding, 3) placements of constraints through links
and joints allowing precise control of equipment in operation.

Straw Swab Designs
Bistable Swab With Tongue Depressor (BSTD)
Bistable swab with tongue depressor (BSTD) and its components
are shown in Figure 3A. The construction of three revolute joints
to a slider-crank mechanism allows developing a monostable
swab with a tongue depressor. This design contains four linkages
with 2 DoF. The Linear translation motion of link 4 deploys links
2 and 3 in the Y-axis. However, this structure has a possibility of
retraction upon resultant force from the tongue. By adding an
extra link and joint, a bistable system can be produced to create a
planar closed kinematic chain. The closed kinematic chain has 5
links and 5 lower pairs, giving it 2 DoF. Linear translation motion
of link 5 deploys link 3. By additional DoF to the system, link 3
deploys vertically (Y-axis) while remaining parallel to the main
body axis. This allows link 3 to act as an effective tongue
depressor and remains compact.

Figure 3B demonstrates the motions of the linkages from
initiation to motion to finish. While in operation, BSTD can be
placed in the patient mouth with the undeployed depressor facing
downward toward the tongue. Once placed in the desired
position, the depressor can be activated by sliding the control
handle, causing the closed kinematic chain to pop down. Once
activated in the patient mouth, the collection swab can be
controlled with 2 DoF – sliding and rolling. Upon completion,
the tongue depressor can be brought back to the idle state by
retracting the control handle.

Side Swab Actuator (SSA)
Side swab actuator (SSA) takes another approach where the
closed kinematic chain is used to change the direction of the

motion of the swabbing bud. Figure 4 demonstrates SSA at a
different stage of its motion. Similar to the monostable design,
three revolute joints are added to the slider-crank mechanism.
Additionally, link 3 is extended with a T-tip to accommodate for
the swab bud, normal to the slider. The linear sliding motion of
link 4 is translated into rotating motion through the one DoF
closed kinematic chain. This SSA design allows the patient to hold
the swab perpendicularly to their mouth, instead of parallel. They
are thus providing a more convenient hand position for the user.
Also, this swab design, when operated by healthcare workers,
allow them to stand facing away from the patients while still being
able to collect the sample effectively.

Rotational Swab With Tongue Depressor (RSTD)
Rotational swab with tongue depressor (RSTD) has four linkages, the
main shaft to hold the swab bud, T-tip for rotational motion control,

FIGURE 2 | Detailed schematic of the design of the kirigami cuts to promote inward and outward folding.

FIGURE 3 | Bistable swab with tongue depressor (BSTD); (A)
Annotations of the links and various components of the BSTD design, (B)
BSTD at different stages of actuation.
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and a tongue depressor to minimize gag reflex (Figure 5). RSTD
possesses 2 DoF; 1) sway in medial-lateral axis translated from the
slidingmotion of link 4 through the slider-crank linkage, 2)X-axis roll
of the main shaft of the swab through the T-tip attached to link 4.
During operation, this design allows the user to adjust the angle of the
swab bud in the lateral axis through the slider. Once the desired angle
is obtained, the swab bud can be rotated to facilitate the swabbing
process.

Tendon-Driven Swab With Tongue Depressor (TSTD)
In the Tendon-driven Swab with Tongue Depressor (TSTD) design,
the 1 DoF slider-crank linkage is equipped with four features: tongue
depressor, swab cover, stretchable elastomer, and tendon at the
proximal end. Figure 6 shows the swab at a relaxed state where
the tongue depressor is deactivated, and the swab bud is enclosed in
the swab cover. The swab device can be actuated by retracting the
tendon that runs through links 2,3, and 4. Upon actuation, the swab
moves linearly towards the proximal end, exposing the swab bud. This
linear motion also activates links 3 and 4 to be deployed as a tongue
depressor. After the sample is collected, the depressor is retracted, and
the cover is closed simultaneously by applying pressure on link 4.
Alternatively, the storage elasticity in the stretchable elastomer
between links 2 and 4 allows automatic retraction.

Sensorization
Self-administered swabs pose a potential for injuries as the user is
not a trained professional like a healthcare worker. Besides, most

of the swabs rely on direct vision to understand the placement or
orientation of the swab. The actuation in a constrained
environment thereby restricts the visualization of the swab.
Others depend on their hand guidance to approximately sense
the alignment of the swab. This efficiency of sensing is gained
through experience and practice. However, in most cases, self-
administered swabbing is performed for the first time by the user
without prior experience. Hence, it is important to make self-
administered swabs more intuitive and provide full information
to the user during the process. This sensing information creates
more awareness and provides a sense of control and confidence to
the user. Therefore, a means of feedback would provide accurate
identification of the deployment stage, improve the control,
employ safety with better precision, and enhance the
effectiveness of the swabbing process.

Directly mounting sensors on the self-administered swabs can
help to evaluate their dynamic actuation. However, the sensors
are required to possess goodmechanical compliance that does not
hinder the actuation mechanism. Hence, soft stretchable strain
sensors hold the potential for this application. Hydrogel-based
stretchable strain sensors possess good mechanical compliance,
biocompatibility, and sensitivity. The sensor responds to tensile
strains (ε) in the longitudinal direction by reflecting a change in
electrical resistance(ΔR), acting on a piezoresistive principle. Its

FIGURE 5 | Rotational swab with tongue depressor (RSTD); (A)
Annotations of the links, various components, and rotational function of the
RSTD design, (B) RSTD at different stages of actuation.

FIGURE 4 | Side swab actuator (SSA); (A) Annotations of the links and
various components of the SSA design, (B) SSA at different stages of
actuation.
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sensitivity can be represented through gauge factor (GF) where
GF � (ΔR/R0)/ε, R0 is the initial resistance. The hydrogel-based
strain sensor has a GF of 1.96 for strains up to 150%, as displayed
in Figure 7.

Further, these sensors have the potential to behave as a
restoring spring. The stored elastic energy upon stretching can
be used as a medium of actuation, making them multi-purpose.
This property is demonstrated in the TSTD design (Figure 6).

RESULTS

Experiments were conducted to understand the trajectory,
complete workspace, amount of force required to actuate the
swabs, force applied by the tongue depressor in each design,
realtime performance monitoring using soft stretchable sensors,
and the performance of the swabs on a human phantom.

Motion and Workspace Analysis
The behaviour of the swab designs is investigated using the
simulation of the computer-aided design (CAD) models. The
trajectories and workspace are analyzed for all 4 swab designs as
the manipulators are driven to their limit positions (Figure 8).
For the BSTD design, since link 3 is responsible for the gag
deflecting feature, trajectories of the joint connected to it (link 2
and 4) are examined. The motion of link 5 (control handle-slider)

is also recorded to compare the input linear sliding motion to the
vertical output displacement of link 3. The trajectories in 3D
space are shown in Figure 8A. Overall, it is observed that with an
input of 31.2 mm linear sliding displacement in the –X-axis, a
vertical displacement of 15.6 mm in the +Y-axis is achieved. For
SSA design, the point of interest in motion analysis is at the tip of
the swab bud and joint between link 2-3. The trajectories and
workspace are recorded (Figure 8B) as the control handle is
linearly displaced for 14 mm. Overall, an angular displacement of
17.7° in the +Y-axis is attained for the swab bud with the 14 mm
linear displacement input.

To examine the movement and evaluate the workspace of the
swab for RSTD design, motion analysis is performed (Figure 8C).
A constraint is placed on the rotary motion to limit the roll axis to
90° (45° in the +Z-axis and – Z-axis) and a linear sliding distance
of 11 mm. These boundaries are chosen to set a realistic range of
motion for the 3D model based on the oral cavity. The trajectory
of the slider and the swab bud are presented in Figure 8C. At
extreme points, it is observed that an 11 mm linear displacement
in the –X-axis of the slider results in a 14.7° angular displacement
in the –Y-axis of the swab bud. The entire workspace of the swab
bud is also displayed in Figure 8C. In the TSTD design, to
understand the simultaneous motion between the tongue
depressor and the swab cover, link 2 and the joint between
link 1 and link 4 are focused for investigation. The trajectories
and workspace of these two subjects can be seen in Figure 8D. It
is observed that a 13 mm linear displacement of the swab cover in
the + X-axis is translated to a 7.5-degree angular displacement
between link 1 and link 4 in the –Y-axis, which is responsible for
the actuation of the tongue depressor.

Force Analysis
The force required to actuate the straw mechanisms to perform
swabbing is measured. The applied force depends on the

FIGURE 7 | Strain profile of soft stretchable hydrogel-based strain
sensor for strains up to 150%.

FIGURE 6 | Tendon-driven swab with tongue depressor (TSTD); (A)
Annotations of the links and various components of the TSTD design, (B)
TSTD at different stages of actuation.
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functional capability of the mechanisms, resistance between the
polypropylene tubes, and the opposing force from the tongue
depressor as it comes in contact with the tongue. The forces are
measured using a semi-spherical 3axis force sensor (OMD-10-
SE-10N, Optoforce Ltd.) with a sensing head (D � 10 mm) and
resolution of 200mN. The sensor is placed in a plane normal to
the swab models. For BSTD design (Figure 9A), an incremental
force of 0.9N is required to initiate the actuation and land in a
monostable position. A higher force ∼2.8N is required to deploy
completely due to the resistance from the tongue on link 3.

Further, during the relaxation phase, two peaks occur as the
process is done in two phases, monostable and bistable. The first
peak occurs at 1.43N, and the second peak occurs while relaxing the
slider-crank linkage at about 0.97N. Activating the mechanism on
average requires much higher force than deactivating it.

The SSA design requires an average force of 1.35N to activate
and deactivate the mechanism (Figure 9B). This value is similar
to the maximum force required to initiate the slider-crank
mechanism using the polypropylene tubes. Similar to BSTD,
the RSTD design is operated with a constraint mimicking the
tongue. The force profile gradually increases from the idle state to
a fully actuated state, reaching a maximum value of 2.19N
(Figure 9C), which is lower than the BSTD maximum force as
the tongue depressor is isolated from the swab deploying
mechanism. The force analysis for this design is done in 2
separate cases similar to design 1 due to the presence of a
tongue depressor. When operating without external influence,
the force profile gradually increases from the idle state to fully
actuated until reaching a maximum value of 3N when the device
is fully actuated. The second peak is received while relaxing the

FIGURE 8 | Trajectories and workspace analysis of the oral swab designs (A) BSTD, (B) SSA, (C) RSTD), (D) TSTD.
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device at about 1.5N. It is observed that the force needed to relax
the mechanism is approximately half of the force needed to
actuate it. The retracting force is similar to the SSA design
of ∼1.5N.

Further, the TSTD design creates a different force profile
(Figure 9D). Force is applied for the deployment of the
tongue depressor and removal of the swab cover
simultaneously. During which, the stretchable elastomer
stretches to its maximum. Summing to a maximum force of
2.64N, including the opposing force from the tongue constrain
and the stored elasticity of the stretchable elastomer. This force
has to be retained during the swabbing process, and a decline in
the force allows automatic retraction due to the storage elasticity
of the stretchable elastomer.

The most conventional way to depress the tongue is by using a
simple wooden flat stick (tongue depressor). When using the
wooden tongue depressor, a common technique to prevent
unconscious tongue slippage is by applying pressure on the

tongue through the tip/frontal areas of the stick. Likewise, the
tongue depressor proposed can be used. The amount of force/
pressure applied on the tongue by the tongue depressor for each
design is quantified using the semi-spherical 3axis force sensor
(OMD-10-SE-10N, Optoforce Ltd.). The minimum and
maximum force applied by the swabs is plotted in Figure 10.
In most cases, the initial force of the tongue depressor is due to the
deployment mechanism. However, the maximum force is still
controlled by the user during the self-administered swabbing
process. The maximum force applied by the BSTD design is
3.28N, whereas the RSTD design can apply 3.9N as the control is
still with the user. The TSTD design applies a force of 2.98N upon
deployment. It is essential to apply enough pressure to suppress
the tongue. It is also advisable to avoid applying too much
pressure, damaging the tissues {Ponraj, 2018 #22}. The
amount of force that can be applied by the proposed tongue
depressors are in the ranges of ∼2.9–3.9 N. Unconscious motion
of the tongue will be restricted by this amount of force. Moreover,

FIGURE 9 | Force analysis of (A) BSTD, (B) SSA, (C) RSTD, (D) TSTD.
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in the case of tongue slipping into the throat, the ultimate control
lies with the user as it is self-administered swabbing. It is thereby
enabling the user to stabilize the swab immediately.

Realtime Performance Monitoring
The determination of strategic locations for sensor placement is
by identifying the prominent links with maximum movements.
For the BSTD, SSA, and RSTD design, the diagonal length

between the links upon actuation is smaller than the point-to-
point length in the idle state. Hence, the stretchable strain sensors
are mounted at a fully actuated state. The RSTD design of the
sensor is mounted between link 2, and link 3 is shown in
Figure 11A. However, the initial distance between the link 2
and link 4 for the TSTD design is smaller. Hence the sensors are
mounted in an idle state. The sensor’s elastic storage property
helps to relax the TSTD design from the fully actuated stage to the
idle stage. The sensor response is exclusive to each swab design,
which requires one-time calibration using the optical tracker
before realtime monitoring for each swab design. The two
orange points on the sensor are used to visually track the
strains evolved to cross-validate the sensor performance with
the angles. The optical tracking software (Tracker 5.0 (Douglas
Brown©) is utilized for the same. The strains experienced by the
stretchable sensor at various deployment stages are presented in
Figure 11B. Further, the ΔR/R0 response of the sensor to various
strains allows the determination of the change of angles between
the mentioned links Figure 11C. Combining the data from the
tracker software, strains of the sensors, and ΔR/R0 values, the
deployment stages and angles between the links of the swab
designs are determined in Figure 11D.

Demonstration on Human Phantom
The self-administered swabbing process is demonstrated on a
human phantom for all the four proposed swab designs, as
shown in Figure 12. An endoscope (OVS1 Video System
Portable Hysteroscopy System, Olive Medical Corporation) is
mounted on the swab designs to validate the maximum reach of
the swab towards the rear wall of the oropharynx near the tonsils.
The effect of cough or sneeze during swabbing procedures are tested
on the human phantom. During cough or sneeze, an impact is

FIGURE 10 | Force applied on tongue by the tongue depressor in the
swab designs

FIGURE 11 | Realtime performance monitoring (A) Stretchable sensor placement on the swab design, (B) Strains experienced on sensors at various deployment
stages, (C) ΔR/R0 response of the sensor and the determined angle between the links, (D) Angles formed between the links at various deployment stages.
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generated from the throat towards the oral opening and air is
forcefully expelled. This impact applied an angular force on the
swab which immediately reverts it to its more complaint partially
actuated position.

DISCUSSION

A simple strategy to design and fabricate a sensorized self-
administered oral swab using a closed-loop kinematic chain and
kirigami-based deployable telescopic tubular structure is presented
to address the potential occupational health hazard and reduce the
workload to healthcare workers during the swabbing process. The
central idea lies in the adaptation of the slider-crank mechanism to
employ on a mechanically compliant structure. The combination of
the tongue depressor with the swab aims to make this swabbing
process compact, simpler, faster, and minimize gagging or choking
of the patient. The four proposed designs demonstrate the
opportunity to fulfil the three criteria set out for a self-
administered swab 1) simple and inexpensive. They can be easily
fabricated using readily availablematerials, suitable for the single-use
nature of the oral swab. 2) designs equipped with sufficient features
to offset potential hindrance such as natural response to oral swab
and ensure the effectiveness of the collection of respiratory
specimens. 3) cooperative designs (suitable to use with a human)
made of soft materials. Additionally, the swab designs show the
potential to be sensorized using soft stretchable strain sensors,
allowing realtime monitoring of the swab performance and
intuitive control. However, the future work is steered towards
developing a golden ratio for the swab designs that could

accommodate various dimension changes between the users.
Also, the development of home-based swabbing kits could be a
wise way to spend the resources.
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FIGURE 12 | Demonstration of the proposed swab designs on the human phantom in the sagittal plane and endoscopic view (A)Monostable swab with a tongue
depressor, (B) Bistable swabwith tongue depressor (BSTD), (C) Side swab actuator (SSA), (D) Rotational swab with tongue depressor (RSTD), (E) Tendon-driven swab
with tongue depressor (TSTD).
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Sonographic Diagnosis of COVID-19:
A Review of Image Processing for
Lung Ultrasound
Conor McDermott 1, Maciej Łącki 1, Ben Sainsbury2, Jessica Henry2, Mihail Filippov2 and
Carlos Rossa1*

1Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada, 2Marion Surgical, Toronto, ON,
Canada

The sustained increase in new cases of COVID-19 across the world and potential for
subsequent outbreaks call for new tools to assist health professionals with early diagnosis
and patient monitoring. Growing evidence around the world is showing that lung
ultrasound examination can detect manifestations of COVID-19 infection. Ultrasound
imaging has several characteristics that make it ideally suited for routine use: small
hand-held systems can be contained inside a protective sheath, making it easier to
disinfect than X-ray or computed tomography equipment; lung ultrasound allows triage of
patients in long term care homes, tents or other areas outside of the hospital where other
imaging modalities are not available; and it can determine lung involvement during the early
phases of the disease and monitor affected patients at bedside on a daily basis. However,
some challenges still remain with routine use of lung ultrasound. Namely, current
examination practices and image interpretation are quite challenging, especially for
unspecialized personnel. This paper reviews how lung ultrasound (LUS) imaging can
be used for COVID-19 diagnosis and explores different image processing methods that
have the potential to detect manifestations of COVID-19 in LUS images. Then, the paper
reviews how general lung ultrasound examinations are performed before addressing how
COVID-19 manifests itself in the images. This will provide the basis to study contemporary
methods for both segmentation and classification of lung ultrasound images. The paper
concludes with a discussion regarding practical considerations of lung ultrasound image
processing use and draws parallels between different methods to allow researchers to
decide which particular method may be best considering their needs. With the deficit of
trained sonographers who are working to diagnose the thousands of people afflicted by
COVID-19, a partially or totally automated lung ultrasound detection and diagnosis tool
would be a major asset to fight the pandemic at the front lines.

Keywords: COVID-19, lung ultrasound, image processing, machine learning, diagnosis, segmentation, classification

1 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 is the third pathogenic human coronavirus to be
identified with a predilection for causing severe pneumonia in 15–20% of infected individuals and
5–10% of all cases requiring critical care. First emerged inWuhan, China, it has quickly spread across
the world Buonsenso et al. (2020). Severe forms of the infection are commonly characterized by
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pneumonia, lymphopenia, exhausted lymphocytes, and a
cytokine release syndrome. As the COVID-19 epidemic
develops, there is a strong desire for fast and accurate
methods to assist in diagnosis and decision making Huang
et al. (2020), Born et al. (2020a). The outward symptoms are
similar to that of influenza and thus laboratory testing is required
for diagnosis. The most common techniques that have been
employed include ribonucleic acid analysis from sputum or
nasopharyngeal swab alongside chest radiographs. However,
these tests are not always able to detect this disease.

COVID-19 preparedness and response critically rely upon
rapid diagnosis and contact tracking to prevent further spread of
the infection. With a surge in new cases, particularly those
requiring critical care, monitoring the disease can help
healthcare professionals make important management
decisions. While CT is a proven tool for diagnosing COVID-
19, it has limitations that make routine use impractical: CT is not
widely available, turnaround times are long, and it requires
patients to be moved outside of their unit Hope et al. (2020)
and reported sensitivities vary, as per Hope et al. (2020). Safely
using CT machines during the pandemic is logistically
challenging and can overwhelm available resources. Even with
proper cleaning protocols, CT scanners could become a source of
infection to other patients who require imaging.

Amidst the rush to use CT scans and develop image processing
algorithms to detect COVID-19 in CT images, researchers seem
to have given little attention to a much more convenient and
simpler imaging method: Lung ultrasound (LUS), Buonsenso
et al. (2020). LUS has been used for decades for diagnoses and
patient monitoring in a variety of respiratory diseases including
pneumonia and acute respiratory distress syndrome, as per Staub
et al. (2018) and Lichtenstein (2009). Very recently, it has been
proven to also have the ability to detect manifestations of
COVID-19 in the images when the examination is performed
accurately as shown by Huang et al. (2020), Thomas et al. (2020),
and Buonsenso et al. (2020). LUS has many appealing features
that make its application to COVID-19 diagnosis and monitoring
quite advantageous. It uses basic technology available at a much
larger volume than CT scans and is free of ionizing radiation. It is
also non-invasive, repeatable, cost-effective, and unlike CT-scan,
LUS can be performed at a patient’s bedside. Furthermore, the
issue of viral cross-contamination with LUS machines is nearly
nonexistent. Sterilizing ultrasonography equipment is quite easy
and is currently done hundreds if not thousands of times per week
in a single hospital. More subtly, thanks to the prompt availability
of LUS, patients may benefit from a lower threshold for
performing LUS examination than what is required for CT
tests. Thus, earlier and more frequent lung examinations can
be offered, even in COVID-19 assessment centers outside of
hospitals. Furthermore, infected but discharged patients could be
evaluated with lung imaging directly in their homes. This is
particularly important with respect to long-term care homes and
in regions experiencing a deficit of available hospital beds.

With the completion of a reliable diagnostic algorithm and
handheld tool, it will be possible to diagnose patients where there
is an absence or limited number of practitioners, such as in rural
and isolated communities. This can assist in better managing

medical resources by providing a quick and reliable way to triage
patients.

Early diagnosis allows for timely infection prevention and
control measures. Patients with mild disease do not require
hospitalization, unless there is concern for rapid deterioration.
Thus, in the short term, a more systematic way to help healthcare
professionals identify cases and assess the risk of progression to
severe or critical conditions, or from acute to subacute conditions,
can help better manage scarce resources in hospitals. Thus,
routine use of LUS can help the fight against COVID-19 in
several ways:

• LUS offers a supplementary screening tool available in any
healthcare center. It can allow for a first screening to
discriminate between low and high-risk patients. Routine
LUS is much easier to implement as a screening tool than
other imaging methods and thus earlier and more frequent
lung examinations can be offered, even directly in COVID-
19 assessment centers outside of hospitals.

• In the absence of sufficient COVID-19 testing kit
availability, LUS can assist in diagnosing patients;

• LUS images can be obtained directly at bedside reducing the
number of health workers potentially exposed to the patient.
Currently, the use of chest X-Ray or CT scan requires the
patient to be moved to the radiology unit, potentially
exposing several people to the virus. With LUS, the same
clinician can visit the patient and perform all required tests.
This is a primary point since recent data shows that in
severely affected countries about 3–10% of infected patients
are health workers, worsening the serious problem of health
professionals’ shortage Buonsenso et al. (2020);

• Discharged patients can be actively monitored with LUS
imaging directly in their homes. This is crucial in long-term
care homes and in regions with saturation of admission in
hospital beds;

• Portable ultrasound machines are easier to sterilize due to
smaller surface areas than CT scans;

• LUS is radiation free and can be performed every 12–24 h,
allowing close monitoring of clinical conditions and also
detecting very early change in lung involvement;

• LUS can be easily performed in the outpatient setting by
general practitioners. This would also allow a better pre-
triage to determine which patients should be sent to a
hospital;

• Lastly, LUS is an inexpensive instrument and can be easily
deployed in resource-deprived settings. In case of a massive
spread, traditional imaging such as CT scan is much more
difficult to be performed compared to LUS.

A database of LUS ultrasound images is being collected by
researchers worldwide Born et al. (2020a), Roy et al. (2020).
Reports issued from this data have identified common structures
seen in LUS on patients with confirmed cases of COVID-19. The
data has revealed trends in LUS images that provide markers for
the disease. However, these indicators have also been seen in
other respiratory infections, but COVID-19 has some unique
distinguishing features. Some of these investigations have drawn
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from limited datasets: 1 case in Thomas et al. (2020) and 20 in
Huang et al. (2020), to over 60,000 images in Soldati et al. (2020).
Although there is strong evidence that LUS can diagnose and
monitor COVID-19, it is important to acknowledge that there is a
spectrum of clinical manifestations of the virus in LUS images
during the clinical course of the infection. Even though image-
based patterns are intuitively recognisable, they may be mistaken
with manifestations of other respiratory diseases. Furthermore,
according to the standardized protocol for point-of-care LUS and
grading score system proposed in Italy by Soldati et al. (2020), a
lung examination requires multiple LUS scans obtained at
different locations on the chest. It becomes hard to reconstruct
a mental map of a required set of up to 14 scans, and image
quality and interpretation are largely operator-dependent. These
issues suggest that LUS diagnosis would benefit from a
standardized approach, common language, and uniform
training, which may not be feasible in the time of pandemic.
Thus, there is an urgent need to develop computer-aided methods
to assist with sonographic diagnosis of COVID-19.

This paper provides a review of contemporary methods for
both the segmentation and classification of LUS and is
organized as follows: The next section provides a review of
existing manual diagnostic techniques currently being
employed around the world. Section 3 delivers a narrative
on proven techniques on LUS image segmentation found in
literature. Section 4 does the same but with classification.
Lastly, the paper discusses parallels between different methods
and allow readers to decide which particular method may be
best for their needs. With the deficit of trained sonographers
who are working to diagnose the thousands of people afflicted
by COVID-19, a partially or totally automated LUS detection
and diagnosis tool can have a tremendous impact in the battle
against COVID-19. Let us start with narrative on how
conventionally COVID-19 and other lung diseases are
examined and diagnosed using LUS. It is important to note,
however, that not all of the methods presented in this paper
have been specifically used as a diagnostic tool for COVID-19,
but they have the potential to be used as such. As COVID-19 is
a new virus, little work has been done to develop detection
tools. This paper is meant to act as a guide for methods that
have been proven to diagnose pneumonia and other
respiratory pathologys indicative of COVID-19.

2 THE BASES OF LUNG ULTRASOUND
DIAGNOSIS OF COVID-19

Since the end goal is to at least partially automate the process of
LUS diagnosis, an understanding of how LUS images are acquired
is necessary.

2.1 LUS Examination Protocol
Before moving any further, it is important to outline the basic
principles of LUS and how it is being applied to COVID-19. LUS
images offer real-time insight into the state of eration of the lung,
i.e., the air to fluid ratio in the lung, which distinguishes normal
eration from respiratory illnesses.

Normally erated lung: Since ultrasonic energy is rapidly
dissipated in the air, in a normally erated lung the only
detectable structure is the pleura, observed as a
hyperechoic horizontal line (see Figure 1, green lines).
The pleural line moves synchronously with
respiration—this is called lung sliding. In addition,
successive hyperechoic horizontal lines appear below the
pleural: the A-lines (blue). These artifacts along with lung
sliding represent a sign of normal content of air in the lung by
Gargani and Volpicelli (2014). See Figure 1A.

Interstitial lung disease: When the state of eration decreases
due to the accumulation of fluid or cells, the ultrasound beam
travels deeper in the lung. This phenomenon creates vertical
reverberation lines known as B-lines (comet-tail artifacts outlined
by yellow lines in Figure 1A). Hyperechoic B-lines start at the
pleural line, extend to the bottom of the image without fading,
and move with lung sliding. The lower the air content in the lung,
the more B-lines are visible in the image. Multiple B-lines in
certain regions indicate lung interstitial syndrome.

Lung consolidation: When the air content further decreases to
the point of absence of air, with some abuse of terminology, the
lung becomes a continuous medium where ultrasound waves
cannot reverberate. The LUS image appears as a solid
parenchyma, like the liver or the spleen. Consolidation is the
result of an infectious process, a pulmonary embolism,
obstructive atelectasis, or a contusion in thoracic trauma.
Additional sonographic signs are needed to determine the
cause of the consolidation in order to attribute it to COVID-
19 such as the quality of the deep margins or the presence of air or
fluid bronchogram Huang et al. (2020). In Figure 1A,
consolidation is indicated by the presence of the C-lines
highlighted in red.

The recommended acquisition protocol for COVID-19, as
proposed by Soldati et al. (2020), screening includes 14 intercostal
scans in 3 posterior, 2 lateral, and 2 anterior areas, currently
considered “hot areas” for COVID-19 (Figure 1B). Each scan is
10 s long so that lung sliding can be visualized. For patients who
are not able to maintain the sitting position the echographic
assessment may start from landmark number 7, as per Soldati
et al. (2020). Once the images are acquired, each scan is analyzed
and classified following the 3-point score summarized below
Huang et al. (2020). Practically, the device to do this would
need to be robust, cheap, and easily cleanable. The software would
need to be able to be used by non-professional sonographers
(i.e., nurses, etc.).

Specific manifestations of COVID-19 include:

• COVID-19 foci are mainly observed in the posterior fields in
both lungs, especially in the posterior lower fields;

• Fused B lines and waterfall signs are visible under the pleura.
The B lines are in fixed position;

• The pleural line is unsmooth, discontinuous and
interrupted;

• The subpleural lesions show patchy, strip, and nodule
consolidation;

• Air bronchogram sign or air bronchiologram sign can be
seen in the consolidation; and
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• The involved interstitial tissues have localized thickening
and edema, and there is localized pleural effusion around
the lesions;

2.2 Diagnosis
After the images are taken from the 14 intercostal positions, they
can be analyzed to determine the presence of COVID-19
pneumonia. Depending on the results from the sonographer, a
score is assigned to the LUS images to indicate the severity of the
disease present, if any. The score is from 0 to 3, 0 indicating a
healthy lung and 3 indicating a heavily diseased lung.

• Score 0: The pleural line is continuous and A-lines are
present indicating a normally erated lung;

• Score 1: The pleural line is indented and below the indent
B-lines are visible. These are due to the replacement of
volumes previously occupied by air in favor of intercostal
tissue;

• Score 2: The pleural line is severely broken and consolidated
areas appear below the breaking point (C-lines and darker
areas). The C-lines signal the loss of eration and the
transition;

• Score 3: The scanned area shows dense and largely extended
white lung with or without C-lines. At the end of the
procedure, the clinician classifies each area according to
the highest score obtained. Huang et al. (2020) further
suggests that COVID-19 has other specific manifestations

in LUS, mainly observed in the posterior area: Fused B-lines;
the pleural line is unsmooth, discontinuous or interrupted;
and the subpleural lesions show patchy, strip, and nodule
consolidation in which air bronchogram can be seen. The
interstitial tissues show obvious thickening and edema, the
pleura shows localized thickening, and there is localized
pleural effusion around the lesions.

There are numerous methods, presented in the following
sections, which give medical researchers the tools required to
pre-process, segment, and classify LUS images (Figure 2).

3 SEGMENTATION OF COVID-19
MANIFESTATIONS IN LUS

Segmentation divides an LUS image into smaller classifiable
sections. This means identifying the pleuralline and the
presence of A-lines, B-lines, or consolidated regions of the
image. Thus, segmentation plays the role of interpreting what
manifestations are held within the LUS image. Pre-processing is
necessary as raw LUS images can be noisy and difficult to
interpret.

3.1 Image Pre-Processing
Ultrasound images are noisy, often lack contrast, and contain
artifacts such as attenuation speckles, shadows, and signal

FIGURE 1 | (A): Shows the four types of lines found in LUS images. A-lines are shown in blue, B-lines are yellow, C-lines red, and the pleural line is green. (B): 14
anatomical scanning locations for LUS diagnosis. From left to right are scanning locations on the back [with the vertical paravertebral line, spine of shoulder blade (upper
horizontal line) and interior angle of shoulder blade (lower horizontal line)], sides (showing themid-axillary lines on the left and right sides and internipple line), and front of a
torso (showing the internipple line).
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dropouts [Noble and Boukerroui (2006)], making image
segmentation a difficult task. Furthermore, images collected
using an ultrasound machine will differ between different
models and types of probes. Pre-processing is almost always
done on LUS images to enhance their quality and prepare them
for further processing. One of the most common pre-processing
operations is binarization. It converts pixels in a gray scale image
into a black and white image (with pixels either on or off) based
on the intensity of the pixel and a threshold value Correa et al.
(2018). The choice of the threshold value changes the features
that will be visible in the processed image.

Image normalization is required to offset any scaling
differences between different images caused by gain
adjustments on the ultrasound device. In case the gain settings
are not known, Brattain et al. (2013) propose the use of the image
peak approach for enhancing the image which minimizes the
potential for differences in gain during the recording process
from affecting the algorithm. Image reformatting may be
necessary depending on the method used. In Cristiana et al.
(2020), all images were reformatted to be in a consistent
rectilinear format so no matter what transducer was used in
order to take the images, they could be processed in the same way.
Brattain et al. (2013) performs a similar operation where each
frame in a video was reformatted and normalized so that
difference in gain setting during the original recording was
reduced. This further minimizes discrepancies between data sets.

3.2 Pleural Line Detection
The first set of segmentation methods focuses on the detection of
the pleural. This first step is typically to exclude the area above the
pleural (e.g.,: noise from the rib bones) from segmentation as it
has no diagnostic importance aside from acting as a
reference point.

The method presented in Moshavegh et al. (2016) and
Moshavegh et al. (2018) employs the random walk technique
to automatically detect the pleural line. A classical random walk
algorithm, introduced by Grady (2006), is a method for image

segmentation that can be either interactive or automatic. In this
method a set of pixels called seeds is selected and given a label.
Random walkers are then used to identify regions containing the
labeled seeds. The method was adapted to ultrasound imaging in
Karamalis et al. (2012). Since the ultrasound images contains
artifacts and noise, the walkers are constrained using a confidence
map constructed based on the image quality. This simple method
is easy to implement as it uses a well-known image segmentation
technique. One notable consideration is that a starting point must
be chosen carefully Moshavegh et al. (2016), Moshavegh et al.
(2018). Additionally, it remains unknown if this method is
suitable for identifying the pleuralline in patients with score
greater than 2, as in severe cases where the pleuralline can be
discontinuous.

In Moshavegh et al. (2016) random walk is combined with
alternate sequential filtering to detect the presence of pleurallines.
A similar approach was proposed by Carrer et al. (2020) but
instead of random walk, the method uses Hidden Markov Model
(HMM) and Viterbi Algorithm (VA). It can detect discontinuous
pleural lines, which is a direct advantage over the random walk
method. Based on experimental evaluation, the algorithm can
detect the pleuralline in a heterogeneous data set collected from
various sources. Another method proposed in Correa et al. (2018)
finds the pleuralline using in two steps. First, the image is
binarized and divided into narrow vertical slices. Each slice is
then divided in half by a line, which is moved such that the
number of on pixels is equal above and below it. A curve is then
fitted along to the points on each of the lines such giving the
approximate location of the pleuralline.

One of the most common methods for line detection is the
Radon transform, which projects the density of an object in an
angular coordinate system Anantrasirichai et al. (2016),
Anantrasirichai et al. (2017). The Radon transform can be
used to identify the pleuralline by searching for the brightest
horizontal line which they define as one with the 90+ ± 20+. An
improved version of this method presented in Karakus et al.
(2020) was tested in LUS images of COVID-19 patients. One of

FIGURE 2 | A flow chart representing a normal work flow for LUS images processing. The flowchart has two parallel components, illustrating that typically the
stages of image collection, processing, segmentation, and classifications are performed in a linear fashion. However, the parallel component is to illustrate that some
neural network methods can be trained in order to handle the entire process (from collection to classification) as one black-box solution.
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the main advantages of this method is its simplicity. The
pleuralline can be easily identified as it is always the brightest
object in the image. As a major shortcoming, detectable lines are
straight, meaning that this method can only approximate the
actual position of the pleuralline and is more suitable for
detecting A and B lines.

3.3 A and B Line Detection
Finding pleurallines is an important aspect of LUS imaging,
however often times medical professionals are more interested
in locating and segmenting the A and B lines that are
characteristic of healthy and unhealthy lung conditions. This
section describes some of these methods.

In a Radon transform A-lines can be identified as horizontal
lines, ones with an angle 90+ ± 20+, with a lower brightness than
that of the pleuralline. Similarly, B-lines can be identified by
searching for horizontal lines with angle 0+ ± 20+.
Anantrasirichai et al. (2016) and Anantrasirichai et al. (2017)
proved that using such a method can indeed differentiate between
these different lines.

Brattain et al. (2013) presented one of the first methods used to
identify B-lines in LUS. The method converts the conic
ultrasound image into a rectangle and divides it into columns.
The B-lines are identified by finding columns through analyzing
the brightness profile of each column, and searching for columns
with a high, uniform intensity, spanning the length of the column.
This method, though simple, requires the detection parameters to
be tuned depending on the model of the ultrasound machine and
the probe used to detect images. This method was later improved
upon by applying a series of morphological operations and filters
to the image tomore accurately segment B-lines. Moshavegh et al.
(2016), Moshavegh et al. (2018), and Brusasco et al. (2019) all
used alternate sequential filtering1 (ASF) with an axial-line
structuring element to consolidate regions containing
disjointed elements of the B-lines into continuous vertical
shapes. Moshavegh et al. (2016) applied the Top-Hat filter to
distinguish between connected B-lines, while Brusasco et al.
(2019) scans the image laterally in search of long columns that
contain mostly bright pixels. The location of the B-Lines can be
adjusted using Gaussian model fitting method, as shown in
Moshavegh et al. (2018).

A similar approach in Correa et al. (2018) has been shown to
aid in the identification of A-lines. Like in the previous methods,
only the region below the pleuralline is considered. A procedure
named close method is applied to the image to emphasize the
shape of regions possibly containing A-lines. A-lines are
identified by adding the brightness values of each row.

3.4 C-Lines (Consolidations)
There presently are no methods provided in literature specifically
tailored for segmenting lung consolidations for LUS. However,
there is potential for doing so. In Nazerian et al. (2015), a method
for manually imaging pneumonia consolidations in LUS was

presented. In this paper, recommendations for what to look for
are included. The consolidations due to pneumonia usually
contain dynamic echogenic structures that move with
breathing. They may also contain multiple hyperechogenic
spots, due to air trapped in the small airways, with associated
focal B-lines. This is typically characterized by a large dark spot in
the LUS, caused by pleura breakdown, as shown by Volpicelli
et al. (2010). Lung consolidations are superficial and relatively
easy to spot by lung ultrasound, as per Lichtenstein (2015). The
methods presented by Correa et al. (2018) or Brattain et al. (2013)
could potentially be applied to properly segment LUS images with
lung consolidations present. A tool for identifying lung
consolidations is important as C-lines are required for LUS
diagnoses.

3.5 Neural Networks Based Segmentation
A more modern approach to segmenting LUS images involves
using neural networks and deep learning. Convolutional Neural
networks (CNNs) are a type of neural network (NN) specifically
designed for processing, identifying, and detecting features in
images or sounds tracks. These networks use deep learning
methods and require hundreds or thousands of images with
features labeled. To this end, large datasets are required for
training and testing of CNNs. To this date, there are mainly
two datasets of LUS images of COVID-19 patients. First, Roy et al.
(2020) presented the Italian COVID-19 LUS DataBase (ICLUS-
DB) composed of 277 LUS videos from 35 patients, 17 of whom
were diagnosed with COVID-19, four were suspected, and 14
were healthy, with a total of 58,924 frames. Each image was
labeled using the scoring system proposed by Soldati et al. (2020),
seen earlier in Section 2.2. Second, the lung point-of-care
ultrasound (POCUS), Born et al. (2020b) dataset Born et al.
(2020a) contains 39 videos of COVID-19 patients, 14 videos of
patients with bacterial pneumonia, and 11 healthy individuals for
a total of 64 videos and 1,103 images. Both data sets were collected
using a variety of ultrasound scanners and probes by
sonographers in multiple different hospitals. The dataset
includes ultrasound images of patients with bacterial
pneumonia which is an important distinction when attempting
to diagnose a patient with COVID-19. On the other hand,
ICLUS-DB does only consider COVID-19 patients, but the
data is labeled with the severity of the infection.

CNNs have been used previously to detect B-lines in patients
with pneumonia. One weakly-supervized network built to detect
B-lines in real-time was proposed by van Sloun and Demi (2019).
The CNN uses 12 convolutional layers and incorporates a
gradient-weight class-activation mapping (grad-CAM) which
identifies the regions where B-lines are located. More
importantly, the network learns how to identify B-lines based
on data labels that only indicate if B-lines are present. Since the
network does not need a labeled dataset for training, it is easy to
implement and use. Note, however, that this network is not able
to count the number of B-lines in an image, though the number of
lines is an indication of the state of eration of the lung. Due to
layer pooling, the output map highlighting the regions containing
B-lines has low resolution. Wang et al. (2019) presents a four
layer, semi-supervized CNN capable of measuring the number of

1A sequence of two morphological operations, opening and closing, that closes
small gaps, see Sternberg (1986) for details.
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B-lines in the images. The network was trained on dataset labeled
with only the number of visible B-lines without specifying their
location. The network can count the number of B-lines, but it is
not able to identify their location. A similar approach is used to
analyze brightness profiles from LUS data with artificial neural
networks (ANN) in Barrientos et al. (2016), Correa et al. (2018).

Another CNN-based method that does not share the
limitations described earlier has been proposed by Kulhare
et al. (2018), who uses a Single Shot Detector (SSD) to
identify the locations of the pleural, A, B, and C-lines. SSDs,
introduced by Liu et al. (2016), are a fast and accurate method
used to identify objects in pictures. The method uses feature maps
generated by a 16 layer CNN presented in Simonyan and
Zisserman (2014) to fit bounding boxes around the features.
The network training requires training data with ultrasound
images with target features locations fully annotated. This
supervised algorithm has a sensitivity of 85% on animal
specimens but cannot be used for COVID-19 until the two
available datasets are annotated.

In contrast, the approach presented by Roy et al. (2020) uses a
CNN with a Spatial Transform Network proposed by Jaderberg
et al. (2015). It applies linear transformations to the feature maps
of the image allowing features to be identified in any orientation.
This enables the network to identify the regions of interest by
itself. As a result, the network can provide feature localization
without great level of supervision. Based on experimental
validation, Roy et al. (2020) claim that this approach
outperforms the one proposed in van Sloun and Demi (2019).

4 IMAGE CLASSIFICATION

After LUS images have been segmented, they must be classified to
provide diagnosis. Using the presence of B-lines, consolidation,
etc., a classifier can assign a label to the previously segmented
images which can then be used as a basis for diagnosis and
prognosis Correa et al. (2018). There are two main methods of
classifying LUS images: 1) Feature-based classification where
segmented features are analyzed stochastically, and 2)
learning-based methods such as NN’s which act more as a
black box solution. They are trained to classify images based
on geometric patterns that are present in certain diseases in the
LUS images. This section discusses some available methods for
segmented LUS image classification.

4.1 Neural Network Classification
There are mainly two NN methods used to classify images, firstly
using pre-segmented images, where regions of interest are
segmented by an expert and then fed into a NN, or secondly,
a NN may be trained to do both segmentation and classification.
Some of the networks discussed in Section 3.5 are CNN’s focused
on finding and segmenting features in LUS images.

An interesting manipulation of data is the brightness profile of
vectors method presented by Correa et al. (2018). In this method,
LUS images of healthy lungs and with pneumonia are
distinguished from one another by the brightness profile of
the raw LUS data. The brightness profile being the profile that

represents a single vector of ultrasound data as strong reflected
ultrasound waves are interpreted as “bright”. The brightness
profile of healthy lung tissue is characterized by smooth,
exponentially decaying brightness, whereas unhealthy lung
tissue has erratic brightness and non-exponential decay. Rib
bones have an abrupt drop on brightness right below the
pleuralline.

Cristiana et al. (2020) proposed a direct improvement to
Correa et al. (2018) where a secondary NN was trained using
softmax activation as a multiclass classifier. The method classifies
whether B-lines are present and the multiclass classification
network scores the images based on the scoring system
presented by Soldati et al. (2020). The two models, binary and
multiclass, were trained separate from one another. The binary
classifier had a sensitivity of 93% and a specificity of 96%2 as
compared to a medical expert classifying the same images.
Agreement between the multiclass severity scoring system and
a medical expert was 93% ± 1.

Similarly, Born et al. (2020a) presents POCOVID-Net, the first
CNN for identifying COVID-19 through LUS, which uses VGG-
16, as established CNN, pre-trained on ImageNet (Krizhevsky et
al., 2012) for image feature extraction. It uses a pre-trained 16
layer CNN from Simonyan and Zisserman (2014) to extract lower
level features such as textures and shapes. The last three layers of
the network were further trained using POCUS dataset to
differentiate between patients who were diagnosed with
COVID-19, bacterial pneumonia, and healthy individuals. The
network uses softmax activation to classify images and had an
overall accuracy of 89%. It’s sensitivity and specificity for
detecting COVID-19 in particular was 96 and 79%. van Sloun
and Demi (2019) outline a method for CNN’s to segment and
classify LUS images for B-lines. This method is one of the few
which is capable of real time classification by exploiting GPU
acceleration. It had an in-vitro accuracy of 91.7%, and an in-vivo
accuracy of 83.9 when using the ULA-Op transducer, a research
platform, and 89.2% using a Toshiba transducer. The network,
with six layers, used softmax activation, just as Correa et al. (2018)
and Cristiana et al. (2020). The greater accuracy in in-vitro data
was due to analyzing in-vitro images, while the in-vivo data were
videos as the videos are more complex and variable than the
images to analyze as even the breathing of a patient is enough to
make B-lines more difficult to detect. Further the presence of
intercostal tissue, not present in the in-vitro data further
complicates its processing. Therefore, a loss of resolution and
classification accuracy is expected. van Sloun and Demi (2019)
used imagenet a popular CNN architecture, as a basis for their
pre-trained neural network, therein easier to train to perform
particular tasks.

In Kulhare et al. (2018) a binary classifier, indicating presence
or lack thereof, based off the Inception V3 SSD Convolutional
Neural Network architecture. The system was trained to classify
LUS images with A, B, and pleural lines as well as lung tissue

2Specificity is defined as true negatives/(true negatives + false positives), sensitivity
is defined as true positive/(true positive + false negative), accuracy is defined as
(true positive + true negative)/(all positives + all negatives).
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consolidation. Overall, its pleuralline classification was 89%
accurate.

Despite the suitability of NN’s for LUS image classification,
they are often computationally heavier and require greater
training sets than other methods. Stochastic methods provide
a lighter option which are just as accurate which may be better
suited for a portable LUS device.

4.2 Stochastic Classification
Stochastic classifiers are purpose-built classifiers which use
statistical regression and image filtering to analyze the
segmented images which are fed to them and then classify the
image contents.

Brusasco et al. (2019) proposed an off-line method to
segment and classify the quantity of B-lines, similar to the
CNN model proposed by Wang et al. (2019), in LUS images.
The end goal was to create an automated method of
determining extravascular lung water. The algorithm scored
the segmented gray-scale LUS images. B-lines are classified
when the filtered images are scanned and white pixels are
measured to make up ¿50% of the total vertical length of the
image. Using statistical regression on the segmented LUS
images, the total number of B-lines present can be
quantified. However, classifying images when many B-lines
are present is difficult as they coalesce and are imaged as
singular B-lines as opposed to multiple, close-by B-lines.

In Carrer et al. (2020) a support vector machine (SVM)
classifies and scores pleural lines. The SVM is fed segmented
partitioned United States images whose features were fed into
Gaussian radial basis function kernel, a type of SVM classifier
known to have a better convergence time than polynomial
kernels. The SVM classifier was chosen over an NN as it
requires significantly less data to train, which is pertinent as
COVID-19 training data is presently lacking. The classifier was
applied to linear United States probe and convex United States
probe data separately, and the accuracy for the linear and convex
probes were 94 and 88%.

A similar method described by Veeramani and Muthusamy
(2016) is to use two Relevance Vector Machines, a Bayesian
framework for achieving the sparse linear model as per Babaeean
et al. (2008), to classify the LUS images as healthy or unhealthy,
and if unhealthy what disease is present. RVM’s provide a

probabilistic diagnosis, as opposed to the discrete diagnose
obtained with SVM’s. The method offered better accuracy,
sensitivity, and specificity than SVM and NN methods. While
first RVM classifier was a binary, the second RVM classifier was a
multiclass classifier capable of noting which diseases are present
in the lung including: respiratory distress syndrome, transient
tachypnea of the newborn, meconium aspiration syndrome,
pneumothorax, bronchiolitis, pneumonia, and lung cancer.
Both the binary and multiclass classifiers had classifying
accuracies of 100%.

Brattain et al. (2013) use Gaussian or statistical operations to
either score or classify LUS. Gaussian operations are convenient
because of their low computational weight. However, they do not
share the same level of generality as NN’s and as such they are
trained on narrower data sets and are prescribed in narrower
conditions. In Brattain et al. (2013), a statistical B-line scoring
system was developed. Depending on the severity of the B-lines
presented, the images were given a score between 0 and 4 using
angular features and thresholding. This method analyzed
segmented features and determines the severity of the B-lines
depending on five conditions: 1) Mean of a B-line column; 2)
Column length above half-maximum; 3) Value of the last row of a
column; 4) Ratio of the value of the last row over maximum for
that column; and 5) Ratio of the value for the midsection of a
column over maximum for that column. If these five features
exceeded predefined thresholds, the image column is a B-line
severity associated with it. However, as per Anantrasirichai et al.
(2016) this method is not robust as it is prone to being greatly
affected by noise and image intensity meaning the threshold
values must be changed depending on the quality of the images
being analyzed.

Table 1 provides a comparison of the accuracies of assorted
classification methods found in literature.

5 DISCUSSION

The previous sections discussed different methods to identify
manifestations of COVID-19 in lung ultrasound images. Several
challenges exist in order to implement these methods in a useful
clinical setting that can effectively assist healthcare professionals
during the course of the pandemic, autonomously identify

TABLE 1 | Comparison of LUS image classification methods.

Method Author Objective Accuracy Sensitivity Specificity

Supervised feed forward ANN (2018) Correa et al. Pediatric Pneumonia — 90.9% 100%
ANN (2016) Barrientos et al. Pneumonia — 91.5% 100%
CNN (2020) Born et al. COVID-19 92% 96% 79%
CNN (2020) Cristiana et al. B-lines (presence) 94% — —

CNN (2020) Cristiana et al. B-line (severity) 54% — —

CNN (2019) van Sloun and Demi B-lines (in-vitro) 91.7% 91.5% 91.8%
CNN (2019) van Sloun and Demi B-lines (in-vivo) 89.2% 87.1% 93%
CNN (2018) Kulhare et al. Multiple Abnormalities — ¿85% ¿85%
SVM Classifier (2020) Carrer et al. COVID-19 88–94% — —

RVM Classifier (binary) (2016) Veeramani and Muthusamy Healthy lung 100% 100% 100%
RVM Classifier (multiclass) (2016) Veeramani and Muthusamy Multiple Abnormalities 100% 100% 100%
Stochastic Method (2013) Brattain et al. B-lines 100% — —
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manifestations of COVID-19 in LUS images, and assess the
severity of the infection according to the grading scale
proposed in Soldati et al. (2020). The most important practical
considerations are related to the quality of the ultrasound images.
This means that the system must guide healthcare professionals
during LUS examinations and ensure appropriate image quality is
obtained regardless of the operator’s experience and hardware,
and the image processing method must be integrated into a
portable ultrasound system.

5.1 Augmented LUS Images for Operator
Guidance
Providing health care practitioners with an alternative to the
time consuming and ionizing CT and X-ray scans would
reduce the loading on the current medical system. However,
the increasing need for lung imaging in hospitals, long-term
care homes, and clinics, can lead to a shortage of sonographers.
A reduction in that additional load can be sought in the form of
a device to be used by personnel other than trained
sonographers to either assist in triaging incoming patients
or be used as a bedside monitoring tool.

The biggest challenge in LUS is that image segmentation and
classification requires quality images. One possible way to assist
the operation in this regard is to overlay processed images on
top of the original LUS images. For example, one can consider
presenting diagnostic information and a real time assessment of
the image quality over the original image to intuitively guide the
operator as in Moshavegh et al. (2016) and Moshavegh et al.
(2018). Image overlay on top of the LUS image can indicate the
current state of the image and how the operator can target
specific features in the images. Further, following the
recommendations outlined in the LUS-based diagnosis of
COVID-19 standardization protocol proposed in Soldati
et al. (2020), such a software may guide the operator to
ensure that:

1. The focal point of the image is set on the pleural line. Using a
single focal point and setting it at the right location has the
benefit of optimizing the beam shape for sensing the lung
surface. At the focus, the beam has the smallest width and is
therefore set to best respond to the smallest details.

2. The mechanical index is kept below 0.7. Mechanical index is an
indication of an ultrasonic pressure ability to cause
micromechanical damage to the tissue. The mechanical
index decreases as the focal zone moves further away from
the transducer, hence it can become a concern given the
previous point, in particular for a long observation time as
it is required for LUS. The mechanical index can be changed
with the frequency of the beam.

3. The image is not saturated. Saturation occurs when the signal
strength of the echo signals is too high making the pressure/
echo relationship no longer linear. This has the effect of
distorting the signals images, giving rise to completely white
areas in the image, which can be easily identified in the
software. Control gain and mechanical index can be
adjusted to prevent saturation.

4. The ultrasound probe is properly oriented to provide oblique
scans. The image features needed in the image processing
algorithm are clear.

5.2 Integration With a Portable Hand-Held
Ultrasound
High frequency linear array probe is suggested to be used for minor
subpleural lesions, as it can provide rich information and improve
diagnostic accuracy. In the setting of COVID-19, experts suggest that
wireless ultrasound transducers and tablets are the most appropriate
ultrasound equipment for diagnosis, Soldati et al. (2020). These
devices can easily be wrapped in single-use plastic covers, reducing
the risk of viral contamination and making sterilization procedures
easy. Furthermore, such devices can range between $4,000 and
$8,000, which is a fraction of the cost of regular ultrasound
machines. In cases of unavailability of these devices, portable
machines dedicated to use for patients with COVID-19 can be
still used, although more care for sterilization is necessary.

On a software front, the QLUSS and RVM classification
methods presented in Section 4.2, respectively, seem well
suited for a handheld solution. The QLUSS system has a low
computational weight attached to it and is able to operate in real
time, which is an asset for front line workers. The RVMmethod is
capable of classifying which lung disease from a list of potentials is
present in the LUS images and for processing of images off line.
These methods also have the added benefit of requiring small
databases, which could be stored in the handheld device itself or
on a nearby computer. Using an off-line, i.e., a method which
segments and classifies images after they are taken, solution is
critical in certain parts of the world due to the possibility of data
breach. Or online solutions—i.e., a solution that attempts to
segment and classify images live as they are being taken—are
simply not feasible due to lack of infrastructure. A portable hand-
held United States device would require local storage which could
be updated when new data was made available. An alternative
option would be to access a database stored online via the
Internet, as in Born et al. (2020a), if the infrastructure is available.

5.3 Probe Tracking
Probe tracking, a well documented and researched field Bouget
et al. (2017), gives the sonographer the ability to see in real-time
the position and orientation of the ultrasound probe. It can be
done by integrating a motion sensor into the probe itself. By
putting a position stamp on each United States frame would assist
in identifying and mapping intercostal tissue and bones which
may inadvertently cause black spots in the images, which are of
no use. Further, the ability to know each United States images
relative location to one another would allow the creation of 3D
maps to assist in diagnosis.

6 CONCLUSION

Current advancements in ultrasound image processing
provides health care practioners a means of imaging lungs to
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diagnose COVID-19. The methods presented in this article may
aid in interpreting LUS images autonomously or semi-
autonomously, thus allowing doctors without sonogoraphic
training to diagnose COVID-19. Integration of image
processing for COVID-19 diagnosis into handheld
ultrasound machines can be used for beside monitoring, as a
triaging tool for quickly diagnosing the severity of COVID-19
present.

As the COVID-19 pandemic and its characteristic traits are so
new to medical research, there is a severe lacking of databases
with significant resources. But as with every disease that has come
before, those resources will come with time. Further, those
databases combined with LUS will allow for more in-depth,
greater diagnostic tools.
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Efficient Coverage Path Planning for
Mobile Disinfecting Robots Using
Graph-Based Representation of
Environment
B. Nasirian1, M. Mehrandezh1 and F. Janabi-Sharifi 2*

1Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada, 2Robotics, Mechatronics and Automation
Laboratory (RMAL), Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, Canada

The effective disinfection of hospitals is paramount in lowering the COVID-19 transmission
risk to both patients and medical personnel. Autonomous mobile robots can perform the
surface disinfection task in a timely and cost-effective manner, while preventing the direct
contact of disinfecting agents with humans. This paper proposes an end-to-end coverage
path planning technique that generates a continuous and uninterrupted collision-free path
for a mobile robot to cover an area of interest. The aim of this work is to decrease the
disinfection task completion time and cost by finding an optimal coverage path using a new
graph-based representation of the environment. The results are compared with other
existing state-of-the-art coverage path planning approaches. It is shown that the proposed
approach generates a path with shorter total travelled distance (fewer number of overlaps)
and smaller number of turns.

Keywords: coverage path planning, disinfection, optimization, deep reinforcement learning, autonomous mobile
robots

INTRODUCTION

Surfaces contaminated with COVID-19 pathogens in hospitals introduce significant risk to the safety
of medical personnel and patients. Disinfection routines are among critical measures that hospitals
are taking to minimize the spread of COVID-19. To reduce the workload of the hospitals’ cleaning
teams and to avoid the direct contact of disinfecting agents such as chemicals or UV-C disinfectants
with human body, autonomous mobile robots would provide a favorable solution. The autonomous
robots can potentially perform the disinfection task more precisely and in a timely and cost-effective
fashion. Central to robotic disinfection routines is the coverage path planning.

Coverage Path Planning (CPP) will lead to an improvement in the efficiency of operations in
terms of cost, time, and job quality. It is defined as: generating a continuous and un-interrupted path
that covers an area of interest, while avoiding obstacles (Galceran and Carreras, 2013). The efficiency
of a CPP algorithm is usually determined by the total coverage ratio, completion time, total travelled
path length, and the number of turns (Khan et al., 2017).

Some CPP works cited in the literature are based on heuristics or randomized approaches, where
the coverage path is determined based on a set of simple behaviors (e.g., Mackenzie and Balch, 1993)
or randomized search through the environment (e.g., Palacin et al., 2005). These methods, however,
do not guarantee a complete coverage of the free space (Choset, 2001) while coverage completeness is
essential to guarantee that all COVID-19 pathogens are killed during the robotic disinfection tasks.
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Complete CPP methods decomposed the free space into
smaller regions (cells) in which optimal path planning could
be simply formulated (Choset, 2001). A complete coverage was
achieved by ensuring that the robot visited all cells in the
decomposed environment at least once (Choset, 2001). Among
the decomposition methods cited in the literature, an exact
environment decomposition method would stand out specially
in environments with un-even-shape boundaries and in presence
of concave-shape obstacles since the re-union of the cells under
this decomposition method would fully represent the free space
(Cabreira et al., 2019). In the pertinent literature, three topics are
given special attention: 1) the environment decomposition
techniques, 2) the optimal coverage path in each cell generated
via environment decomposition, and 3) the optimal coverage
sequences (Cabreira et al., 2019). In this paper we formulate a
complete coverage path planning in the environment that leads to
a minimal travelled distance (cost).

The operational environment would generally consist of
obstacles, free space, and the mobile robot. In the
Boustrophedon decomposition, as the most commonly-used
exact cellular decomposition approach, the free space was
divided into smaller regions (cells) by sweeping a line through
the whole target area in one direction (Choset and Pignon, 1998;
Choset et al., 2000). In order to traverse from one cell to another,
the robot might need to transit through a part of a third cell. This
causes overlaps, thus, extra travelled distance. This is mainly due
to the fact that no mechanism has been considered for transition
from one cell to another in present exact cellular decomposition
methods. To avoid the unnecessary cost associated with this
transition, a modified version of the Boustrophedon-based
decomposition has been proposed by us. Three transition cells
have been added to the decomposed environment at each critical
point. This allows the robot to either expand or shrink the original
cells around the critical point to avoid the overlaps of inter-cell
traversals and cell coverage paths (further explained in Section
Modified Graph Considering the Modified Environment
Decomposition (to Avoid Overlaps)).

Under classical CPP approaches (e.g., Choset and Pignon,
1998; Choset et al., 2000), an adjacency graph was built based on
the topology of the decomposition, where the nodes of the graph
represented the cells and the edges of the graph connected the
nodes with adjacent corresponding cells in the decomposed
environment. The problem of finding the optimal coverage
sequence was equivalent to finding the shortest path within
the adjacency graph that visits each node (cell) at least once,
which was equivalent to the Traveling Salesman Problem. The
problem of finding the optimal path over the adjacency graph is
an NP-complete problem. A depth-first graph search algorithm
was proposed to find an exhaustive walk through the adjacency
graph. However, the depth-first search solution was not optimal,
was computationally expensive, and required huge memory
storage for problems with a large adjacency graph
(i.e., environments with a large number of cells). Later works
on CPP (e.g., Jimenez et al., 2007; Hameed et al., 2013; Tung and
Liu, 2019) utilized Genetic Algorithm (GA) optimization
techniques to find an efficient coverage sequence over larger
adjacency graphs in a shorter computational time and with less

required memory space. However, in the coverage path found
using the adjacency graphs the robot usually needs to traverse
through the middle of the cells to transit from one cell to another,
which results in overlaps (extra travelled distance). The shortest
path that visits all nodes of the adjacency graph is not necessarily
equivalent to the shortest path travelled by robot since the graph
does not consider the overlaps of the transition paths with
coverage back-and-forth straight-line motions in the cell.

Another approach to find the traversal sequences was to create
a Reeb graph of the environment, where the nodes denoted the
critical points, and the edges represented the cells (Mannadiar
and Rekleitis, 2010). In order to find the most efficient coverage
sequence, the Chinese Postman Problem was solved over the
graph, that was to find the shortest tour that traversed over every
edge at least once (Mannadiar and Rekleitis, 2010). In
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al.,
2014), the Reeb graph was modified to an Eulerian graph by
duplicating selected edges of the graph. The edge duplication
referred to a situation, where the cell corresponding to the
duplicated edge in graph was divided into two different cells,
which further leaded to extra turns to make in the middle of the
original cell. Since performing a turn in the path takes more time
and energy than that in a straight-line motion, an efficient
coverage path should be generated such that the total number
of turns is minimized and consequently the total operational time
and cost of the CPP is decreased (Galceran and Carreras, 2013).

In this work, a CPP approach is proposed that works based on
a new graph representation of environment. In order to avoid the
costly turns in the middle of the cells, which is the case in
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al.,
2014), and transition path overlaps through the middle of the
cells, which is the case in (Jimenez et al., 2007; Hameed et al.,
2013; Tung and Liu, 2019), two different possible actions have
been considered for the robot in a cell: 1) back-and-forth straight-
line motion with turns at the end of the lines for covering the cell,
and 2) environment/obstacle contour-following motion to adjust
the robot position for starting the cell coverage. At those cells,
which had their corresponding Reeb graph edge duplicated in
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al., 2014),
the robot will have the option to follow some parts of the cell’s
contour in the first traversal, and then cover the cell by back-and-
forth straight-line motion in the second traversal without any
overlaps with the covered parts of the cell’s contour in first
traversal. This would lead to a new form of graph in which
the Eulerian cycle/path needs to be determined leading to a
minimum travelled distance (overlaps). The number of turns
would be also less than that cited in literature, (e.g., Xu et al.,
2014), since the turns in the middle of the cells are eliminated
(this will be further explained in Section Modified Graph
Considering Contour-Following Motion).

Another contribution of this research is that it evaluates the
inter-cell traversals at a low-level as well. The travelled distance
depends on both current-cell-coverage end point and next-cell-
coverage start point. Most of the previous works on CPP (e.g.,
Choset and Pignon, 1998; Jimenez et al., 2007; Xu et al., 2014) did
not consider the current position of the robot in the current cell to
choose the next cell in the coverage sequence. In (Chen et al.,
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2019), a corner model was utilized to find the shortest path
between the current cell and the next cell which would not
necessarily lead to an optimal path that robot can take. Their
technique did not choose the corner that cell coverage should be
started from, hence, the corner information was not included in
their graph representation of the environment. In (Hameed et al.,
2013; Tung and Liu, 2019), entrance and exit points have been
considered for each cell which resulted in multiple inter-cell paths
for each cell. In this work, four corners have been considered at
each cell as the candidates for the cell coverage start and/or end
points. Contrary to the case in a Reeb graph, where the nodes
represent the critical points, in the proposed graph by us, the
nodes represent the cell corner points at the critical points. Some
extra edges get added to the graph, which facilitate inter-cell
traversal paths at each critical point. To perform a complete
coverage, some edges are required to be traversed (cell coverage
edges), while some other will remain optional (i.e., contour-
following, and inter-cell traversal edges) (for further
explanation see Section Modified Graph Considering Cell
Coverage Start and End Points).

The problem of finding the efficient cell coverage sequence
can be solved by finding a path over the proposed graph in
which a required subset of the edges is needed to be traversed
with minimal cost. In this work, the cell coverage sequence
optimization problem has been considered as a Markov
Decision Process (MDP), and the efficient sequence within
the graph has been found using a double Deep Q Network
(DQN) approach. Double DQN is a Deep Reinforcement
Learning (DRL) method which utilizes two identical deep
neural networks to estimate Q-values where each of the
networks is used to update the other. The efficient coverage
sequence of the cells is equivalent to the optimal policy found
via the double DQN. In addition to finding shortest travelled
distance, the path generated through this method is robust to
changes in the start and/or end positions of the disinfection task
and works for coverage of any arbitrary subset of the cells in the
target space (further explained in Section Coverage
Optimization Over the Proposed Graph).

The aim of this work is to decrease the disinfection task cost by
adopting a new graph-based representation of the environment.
More specifically, the contributions are:

- A new graph representation of the environment has been
proposed based on the following modifications which
facilitate finding an efficient coverage path for
disinfection task.

1) Proposing a modified version of the Boustrophedon
environment decomposition with three transition cells
added at each critical point to allow the original cells
expansion or shrinkage;

2) Programming two different actions for the robot in a cell: 1)
back-and-forth straight-linemotion, and 2) contour-following
motion to adjust the robot position for starting the cell
coverage with no extra travelled distance (overlaps); and

3) Considering the corners of the cells (as the candidates
for the cell coverage start and/or end points) as graph

nodes to minimize the inter-cell traversal path overlaps
at each critical point.

- The optimization problem over the proposed graph has been
solved using a Double DQN technique which trains a model
over the environment to find an efficient coverage path for
any start and/or end positions of the disinfection task and
any arbitrary subset of the cells in the environment.

The results of the proposed approach are compared with other
complete CPP approaches cited in literature for indoor
environments (see Section Results and Discussion). It is shown
that the proposed approach outperforms the previous techniques
in terms of the total travelled distance. In addition, the total
number of turns are reduced in comparison with the work in (Xu
et al., 2014). Also, the proposed method is robust to changes in
the start and/or end positions of the robot used for the
disinfection task, and that it generates coverage path for any
arbitrary set of the cells in the decomposed environment. This
will reduce the overall cost of repetitive disinfection tasks in large
hospitals drastically.

METHODOLOGY

In order to decrease the travelled distance and the number of
turns in the hospital disinfection task, a complete CPP based
on a new graph representation of the decomposed
environment has been proposed. In this section the steps
and approaches of environment decomposition, constructing
the graph, and solving the optimization problem over the
graph are described.

Environment Decomposition
CPP in environments comprised of non-convex boundaries and
obstacles renders itself as a complex problem. A commonly-used
technique in most CPP approaches is to decompose the
environment using exact cellular decomposition into smaller
regions (cells) in which optimal path planning can be
formulated (Choset, 2001). Boustrophedon decomposition is
one of the most commonly-used exact cellular decomposition
methods for CPP problem over planar environments. The
Boustrophedon decomposition assumes the environment
boundaries are polygonal and known a priori. In this method,
a line segment (called a slice) is swept through the whole target
area in one direction to determine the critical points. Critical
points are the vertices of the environment boundaries where the
sweeping slice connectivity changes (Choset and Pignon, 1998).
One or two new cells are formed whenever the slice arrives at a
critical point, as shown in Figure 1. The decomposition can be
done in different directions (i.e., different slice sweeping
directions) resulting in different cell decomposition
configurations. One can also optimize the coverage by finding
the best decomposition direction over a particular environment
which leads to a cost-efficient coverage path (Oksanen and Visala,
2009).

After decomposing the environment into cells, the optimal
coverage path inside each cell can be determined separately by
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minimizing a coverage cost function. The direction of the back-
and-forth straight-line motions can be determined in a way that
the total number of turns is minimized and consequently the total
operational time of the CPP is decreased (Galceran and Carreras,
2013).

Graph Representation of Decomposed
Environments
In order to find an efficient sequence in traversing all the cells in a
decomposed environment, a commonly-used approach is to build
a graph that captures the topology of the cells. The problem of
finding theminimum cost coverage sequence is then equivalent to
finding the shortest path over this graph. In this work, we have
proposed a new graph representation of the environment which
leads to a more efficient coverage path. More details are provided
in the following sub-sections.

Mobile Robot
The proposed CPP technique in this work focuses on finding the
efficient sequence of cells coverage and the inter-cell paths
connecting the cells using a graph representation of the
environment. Similar to some other suggested CPP-based
techniques cited in the literature (e.g., Choset and Pignon,
1998; Mannadiar and Rekleitis, 2010; Hameed et al., 2013;
Chen et al., 2019), the proposed CPP technique in general is
not limited to a particular robot and is implementable on most of
the mobile disinfecting robots available in the market. However,
some assumptions have been made on the mobile robot shape,
disinfection system, and the drive mechanism when in designing
the proposed graph representation and the coverage path over the
environment.

The mobile robot is assumed to have a disk shape (i.e., the
robot is presented as a circle that circumscribes the robot
footprint entirely). Also, we assume that the robot is equipped
with a UV-C disinfection system. In order to avoid collision with
environment boundaries, the diameter of the circle
circumscribing the robot (L) should be known while
generating the proposed graph and the coverage path

(equivalent to constructing the configuration space).
Furthermore, disinfection diameter (D) denotes the diameter
of the area that the robot can disinfect using its onboard
probes, e.g., the maximum range of the onboard UV-C lamp
array can be considered as the disinfection radius. Disinfection
diameter (D) is always greater than or equal to the diameter of the
largest circle that circumscribes the entire robot (L). It is also
assumed that the disinfecting robot is of a differential-drive type,
which is capable of turning on the spot. Therefore, the robot does
not need any extra space to perform turns at the end of the
straight-lines in the planned path.

In order to disinfect things such as the beds, walls, shelves,
and other equipment in the hospitals, the disinfection coverage
diameter (W) is assumed to be always smaller than or equal to
the disinfection diameter (D). Please note that, in the coverage
path, the distance between the stripes and the distance of the
robot’s center point to the boundaries of the obstacles are equal
to W and W/2, respectively. This means that the free space will
get disinfected based on the disinfection coverage diameter
(W), while a depth of (D/2-W/2) of the walls and obstacles are
being disinfected (note that D ≥W ≥ L). All the items within the
range (i.e., at the D/2 distance from the center of the robot)
along the path will be disinfected. We also assume that, in
addition to vertical UV-C emitters, there are circumferential
emitters to disinfect blind spots immediately under and/or
surrounding the robot. If there are goods covered by other
objects, they will likely be missed due to the nature of radiation-
based disinfection. Since W is always greater than or equal to L,
it is guaranteed that the robot will not collide with the
environment boundaries (equivalent to constructing an
automaton representation of a point robot within its
configuration space). Robot diameter (L) and disinfection
diameter (D) depend on the mobile robot used for the
disinfection task while the disinfection coverage diameter
(W) can be selected by a user based on the required
obstacles disinfection depth (D/2-W/2). The disinfection
coverage diameter (W) is an input to the proposed
algorithm in this work, and it can be adjusted by the user.
In all figures and results presented in this paper, the default

FIGURE 1 | Boustrophedon decomposition technique with a slice sweeping from left to right. (A) Slice connectivity changes from one to two which results in two
new cells. (B) Slice connectivity changes from two to one which results in one new cell. (C) Decomposed environment.
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value of W is assumed to be equal to 1 m. The algorithms would
allow different W values, however.

Reeb Graph
One of the approaches that has been utilized in the literature is
based on generating a Reeb graph representation of the
environment and to solve the Chinese Postman Problem over
that graph (Mannadiar and Rekleitis, 2010). Under this, the nodes
denote the critical points, and the edges represent the cells
connecting two neighboring critical points. Figure 2 illustrates
the Boustrophedon decomposition and Reeb graph
representation of a simple environment in presence of a
convex-shape obstacle. In Figure 2, the Reeb graph contains
four nodes (critical points) and four edges (cells).

In order to find the best coverage sequence of the cells, one
needs to solve the Chinese Postman Problem on the graph, which
translates to: finding the shortest tour that traverses every edge on
the Reeb graph at least once. If the Reeb graph of the environment
is an Eulerian graph, all its Euler tours will be solutions to the
Chinese Postman Problem (Mannadiar and Rekleitis, 2010). For
non-Eulerian Reeb graphs, a standard approach to solve the
Chinese Postman Problem is to modify the graph to an
Eulerian one by duplicating selected edges in the graph. The
challenge is to choose duplicated edges such that the total cost
(the sum of the individual costs of all the edges) of the Euler tour
be minimized (Mannadiar and Rekleitis, 2010). Different
strategies such as linear programming and matching theory
algorithms can be utilized to determine which edges to
duplicate (Edmonds and Johnson, 1973).

However, the generated paths in (Mannadiar and Rekleitis,
2010; Xu et al., 2011; Xu et al., 2014) include a high number of
turns in the middle of the environment because of dividing the
cells with duplicated edges into two parts. In addition, the
travelled distance can decrease by applying some modifications
to the Reeb graph. Our proposed approach to resolve these short
comings by modifying the Reeb graph is described in the
following sections.

Modified Graph Considering Cell Coverage Start and
End Points
Most of the previous works on CPP did not consider the position
of the mobile robot in the current cell to choose the next cell in the
coverage sequence. As shown in Figure 3, if the mobile robot is at
the common boundary of the current cell (already covered cell)
and two adjacent cells (not covered yet), the position of the
mobile robot along the common boundary would be an
important factor to account for when choosing the next cell in
the coverage sequence. For example, when the robot is at the
position shown in Figure 3, the adjacent cell one would be a

FIGURE 2 | (A) The planar map of a simple indoor environment in presence of a convex obstacle. (B) The Boustrophedon decomposition and Reeb graph
representation of the environment. The numbered solid points represent the nodes, and the dashed lines denote the edges in the Reeb graph.

FIGURE 3 | The position of the mobile robot along the common
boundary is an important factor in choosing one of the adjacent cells as the
next cell in the coverage sequence.
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better candidate, than adjacent cell 2, to be the next cell in the
coverage sequence. In (Chen et al., 2019), the shortest path
between the current cell and the next cell is obtained by using
a corner model. However, the shortest path between them is not
always the best path. Graph-search approaches under CPP do not
consider this point because graphs, particularly Reeb graphs, do
not contain any information about the position of the robot at the
critical points.

The Reeb graph representation of the environment needs to
be modified to include the information on position of the robot
at the critical points. As illustrated in Figure 4A, four corners
are being considered for every cell as the potential cell coverage
start and end points. There are two critical points at two sides
of a cell (left critical point and right critical point). In each cell,
two corners are located on the right side of the left critical
point (left-top and left-bottom), and two corners are located
on the left side of the right critical point (right-top and right-
bottom).

As it can be seen in Figure 4A, corners have an offset of W/2
from critical points horizontal position and environment
boundaries, with W being the robot coverage diameter. This
offset ensures that: 1) the robot does not collide with the
environment boundaries (equivalent to constructing an
automaton representation of a point robot within its
configuration space) of the environment and 2) the covered
areas at the common boundary of two adjacent cells do not
overlap.

Figure 4B shows that the robot located at each corner of the
current cell will have four optional paths to traverse to reach one
of the four adjacent-cell corners. One should note that corners at
the most left and most right critical points of the environment are
exceptions. These optional paths can be added to the Reeb graph
as some extra edges, which facilitate the inter-cell traversal at each
critical point.

In the proposed modified graph, nodes denote the cell corners
(not the critical points), and some optional edges are added to the

graph representing the paths between the corners. In addition to
the nodes, the Reeb graph edges need to be modified as well.
Traversing each edge of the Reeb graph is equivalent to the
corresponding cell coverage. However, as it is shown in Figure 5,
the cell coverage can be done under two different options. Under
the first cell-coverage option, if the robot starts the cell coverage
from the left-bottom corner (corner 4) of the current cell, it will
finish the coverage in one of the two right corners depending on
the cell width and disinfection coverage diameter. In Figure 5A,
the cell coverage finishes at the right-bottom corner (corner 3).
The coverage path is undirected, so the coverage can start from
corner three and end at corner 4. Under the second cell-coverage
option, if the robot starts the cell coverage from the left-top
corner (corner 1) of the same cell, the end corner on the right side
(right-top corner or corner two in Figure 5B) would be different
than the end corner in the first cell coverage option. Therefore,
each edge of the Reeb graph should be replaced with a pair of
coverage edges, where traversing only one of these edges will
suffice for cell coverage.

This would lead to a new graph-search problem in which some
edges are required to be traversed (one of the two cell coverage
edges at each cell), while some other edges will remain optional
(inter-cell traversal edges in Figure 4B). Closest problem cited in
the literature to this setup would be the Rural Chinese Postman
Problem, where a subset of the edges from the graph are required
to be traversed at a minimal cost. Since this required subset does
not form a weakly-connected network, the Rural Chinese
Postman Problem would constitute an NP-complete problem
(Pearn and Wu, 1995). As opposed to that in the original Rural
Chinese Postman Problem, there is a pair of coverage edges
associated to each cell in the graph, and only one of these coverage
edges is required to be traversed in our case. This means that there
are no edges that are required to be traversed; however, there are
pairs of edges that remain essential to be traversed. When one of
the edges in a pair is traversed, that pair is considered to be
complete. The graph representation of the simple environment

FIGURE 4 | (A) The candidate cell coverage with start and end points at each cell. (B) The inter-cell transition options for mobile robot at each corner of the cells.
The dashed red lines show the inter-cell transition paths.
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seen in Figure 2, with coverage edge pairs and inter-cell
traversal edges at each critical point (CP) is shown in
Figure 6. The environment boundaries and cell
decomposition have been removed from that in Figure 6 to
illustrate that the cell coverage sequence problem can be solved
as a solely graph-search problem indeed. In Figure 6A, all the
quotients in dividing cells’ widths based on the coverage
diameter (W) in this environment are even numbered.
Therefore, the coverage edges’ end points are adjacent to
their start points. Figure 6B shows a case where the quotient
in dividing cell 4’s width by the coverage diameter (W) is odd
numbered. As it can be seen in Figure 6B, the coverage edges in
cell four start and end corners are not adjacent. It should be
noted that the proposed graph representation of environment is
undirected; therefore, both coverage and inter-cell traversal
edges do not have a direction.

Modified Graph Considering Contour-Following
Motion
As it can be seen in Figure 6A, in order to find a route over the
graph which traverses all coverage edge pairs, some of the
coverage edges would be required to be duplicated or at some
cases both coverage edges in the same pair have to be traversed. In
(Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu et al., 2014), in
order to avoid covering the cells with duplicated edges twice, the
graph-search algorithm was modified to cover the top (or
bottom) part of the cell in the first traversal and the bottom
(or top) part of the cell in the second traversal. However, as
Figure 7 shows, the generated path includes a high number of
turns right in the middle of the environment because of splitting
cells. One should note that turns are more costly, so they have to
be avoided. The travelled distance is also increased under this
algorithm because of the extra distance travelled to make
those turns.

Instead of splitting the cells into two, we have defined a
contour-following option for the mobile robot. It allows the

robot to adjust its position in a cell, or cross a cell, without
traversing cell coverage edges. This will result in a reduced
number of turns and travelled distance. Two different actions
are considered for the robot inside each cell: 1) back-and-forth
straight-line motion with turns at the end of the lines (cell
coverage edges pair), and 2) contour-following motion to
adjust the robot position for starting the cell coverage
(contour-following edges).

In this approach, instead of duplicating the coverage edges
or traversing both cell coverage edges in the same pair, the
mobile robot follows some parts of the cell’s contour in the first
traversal to get to a favorable corner node to start the cell
coverage from. Then, it covers the rest of the cell by back-and-
forth straight-line motions in the second traversal. An optimal
coverage path over the environment in Figure 2 has been
represented in Figure 8. A contour-following motion has
been performed by the mobile robot in cell 3. As it can be
seen in Figure 8, there would be no overlaps between the back-
and-forth straight-line motions and the path taken by robot to
adjust its position for starting cell three coverage which was not
the case in CPP techniques (Jimenez et al., 2007; Hameed et al.,
2013; Tung and Liu, 2019) that utilized adjacency graph to find
the coverage sequence.

There are four possible contour-following paths at each cell
connecting the adjacent cell corners to each other. The contour-
following paths have been added to the graph (see Figure 6C). In
CPP problem, traversing of the contour-following edges is not
required.

Modified Graph Considering the Modified
Environment Decomposition (to Avoid Overlaps)
The ellipse shown in Figure 8 represents a part of the optimal
path over the environment, where the most left stripe of cell 4
has been covered separately while the robot was traversing from
cell two to cell three and from cell two to cell four. Cell four
coverage has started from the second stripe of the cell. The

FIGURE 5 | The coverage paths of a cell starting from different corners. (A)Cell coverage started from corner 4 ending at corner 3, and vice versa. (B)Cell coverage
started from corner 1 ending at corner 2, and vice versa.
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FIGURE 6 | The graph representation of the simple environment of Figure 2with coverage edges pairs and inter-cell traversal edges at critical points (CPs). (A) The
quotient in dividing cell 4’s width by the coverage diameter (W) is even numbered. (B) The quotient in dividing cell 4’s width by the coverage diameter (W) is odd
numbered. (C) Contour-following edges are added to the graph.
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graph does not contain enough information to consider
skipping the first stripe. When the robot is traversing a cell
coverage edge, it is covering the whole cell. As a result, there
would be a coverage overlap in the first stripe of the cell four.
This overlap increases the travelled distance and consequently
the cost of operation. To avoid this, the graph has been
modified based on a more flexible environment
decomposition method. Three transition cells are added to
the cellular decomposition of the environment at each
critical point. This allows the robot to expand or shrink the
cells around the critical points to avoid the overlaps of inter-cell
traversals and cell coverage paths. Figure 9 illustrates the

transition cells and their associated corners which are added
to the graph nodes. The transition cells have a width of W
(coverage diameter) and include two corners (top and bottom).
The modified graph of the simple environment of Figure 2
has been shown in Figure 10. In Figure 10A, the graph is
represented over the environment. The environment
boundaries are removed in Figure 10B to illustrate that
the coverage sequence problem can be considered as a
solely graph-search problem. Those edges of the graph that
are equivalent to coverage of transition cells should be added
to the list of required edges to be traversed for complete
coverage. All other added inter-cell traversal edges at the end
of the transition cells are optional.

Coverage Optimization Over the Proposed
Graph
As explained in Section Graph Representation of Decomposed
Environments, a new graph representation of environment was
constructed, where the graph nodes represent corners of the
cells, and the edges represent cell coverage, contour-following,
or inter-cell traversal. For a complete coverage, all cells
including primary and transition cells are required to be
covered by the robot at least once. This is equivalent to
going through all cell coverage edges (transition cells) or
edge pairs (primary cells) in the graph at least once. Since
cell coverage edges or edge pairs are not connected, the robot
should connect these coverage edges together using contour-
following or inter-cell traversal edges. To find an efficient
sequence of covering the cells, an optimization problem over
the graph was formulated that targets to minimize the distance

FIGURE 7 | Coverage of a single cell in (Mannadiar and Rekleitis, 2010).

FIGURE 8 | The optimal coverage path for the simple environment of
Figure 2. The ellipse shows the first stripe of cell four which has been covered
apart from the rest of the cell area.

FIGURE 9 | The modified cellular decomposition with transition cells.
Each transition cell has only two corners.
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travelled by the robot for transitioning between the cells.
Similar to the Rural Chinese Postman Problem (Pearn and
Wu, 1995), the optimization problem would be an NP-
complete combinatorial problem since the subset of required
edges does not form a weakly-connected network.

In this work, the optimization problem was solved using a
double DQN technique (Van Hasselt et al., 2015). As
represented in Algorithm 1, double DQN trains a deep Q
network (Qθ) to approximate the action values through a
DRL process. The reason that a DRL has been chosen over
RL techniques is that the state space for coverage problem is
generally large, and consequently there would be a large number
of state-action pairs. Therefore, a function (deep network)
would be required to approximate the action values (Q
values). Two identical deep networks, online Q network (Qθ)
and target Q network (Qθ′ ), are utilized in the double DQN
learning process. The purpose of using the targetQ network is to
reduce Q-values overestimation (Van Hasselt et al., 2015).
Through this DRL-based technique, the robot interacts with
the environment defined based on the proposed graph and
learns how to choose the starting corner of the next cell in
the coverage sequence. A pseudocode is provided in Table 1,
which illustrates how the environment in DRL framework has
been constructed based on the proposed graph information.
When Qθ is trained over the graph environment, the efficient
coverage sequence of the cells would be equivalent to the
optimal policy found by double DQN. The optimal action
that the robot takes at each step of the coverage process is
computed by Eq. 1.

apt � argmax
a

Qθ(St , a), (1)

where arepresents all possible actions that the robot can take at
state St , which are the integer numbers in the set: [0, number of

nodes), and apt is the optimal action taken by the agent at each
state St , which is the largest Q-value approximated by Qθ . It is an
integer number in the set: [0, number of nodes) that represents
the starting corner of the next cell in the optimal coverage
sequence.

In the following, the DRL framework in this context is
explained. More details on the definitions and steps are
provided in the pseudocode of Table 1.

Episodes of the learning process start with a robot at a randomnode
(corner) and a list of already covered cells which is created randomly.
The state changes through interactions of the agent and the
environment, which is defined based on our proposed graph
representation of the environment. An episode ends when the agent
reaches the goal (final) state. The agent is at the goal state when all the
cell coverage edges are covered, and the robot is at the end node
(corner) of the episode, which is also selected randomly. If the episode is

FIGURE 10 | The graph representation of the simple environment of Figure 2, which can be utilized to find an efficient cell coverage sequence. (A) The environment
boundaries are shown to present how the graph is constructed. (B) The environment boundaries are removed to show that the coverage sequence problem can be
solved as a solely graph problem.

Algorithm 1. | Double DQN (Van Hasselt et al., 2015).

Initialize online network Qθ , target network Qθ′ , experience replay memory D

repeat

for each environment step:

Select some action at at state St

Execute at and observe next state St+1 and reward rt

Add (St , at ,St+1, rt) to D

for each online network update step:

Sample a random mini-batch of (St , at ,St+1, rt) from D

Compute the target: YQ
t � rt + cQθ(St+1 , argmax

a
Qθ′(St+1 , a))

Update the online network weight θ based on the error (Qθ(St+1 , at) − YQ
t )2

for each target network update step:

Update the target network weight: θ′ � θ
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TABLE 1 | Pseudocode for the python class graphEnvironmentwhich includes details on how the methods for episode reset, transition and reward model, and creating the
observation image are coded. The environment in DRL framework is constructed based on the proposed graph information.

class graphEnvironment:
def __init__(graph, start_corner, end_corner, max_steps):
episode_step ← 0
reward ← 0
done ← False
SIZE ← ceil ( sqrt (graph.num_corners))
episode_actions ← empty array
current_corner ← start_corner
state ← a list of 0s and 1s representing the robot current corner and already covered cells
final_state ← a list of 0s and 1s representing the robot end corner and required cells to be covered
final_reward ← 1
double_coverage_reward ← - 0.5
primary_cell_coverage_reward ← 0.05
transition_cell_coverage_reward ← 0.005
cost_scale ← 0.1
coverage_overlap_scale � 2

def reset():
episode_step ← 0
reward ← 0
done ← False
start_corner ← a random integer number in the set [0, graph.num_corners)
end_corner ← a random integer number in the set [0, graph.num_corners)
current_corner ← start_corner
state ← a list of 0s and 1s representing the robot current corner and a random set of already covered cells
final_state ← a list of 0s and 1s representing the robot end corner and a random set of required cells to be covered
episode_actions ← empty array
observation ← get_image()
return observation

def step(action):
episode_step ← episode_step + 1
if action belongs to a cell that has not been covered:

action_sequence ← graph.actionSequence (current_corner, action)
episode_actions ← concatenate (episode_actions, actionSequence)
reward ← 0
for act in action_sequence:

new_pos ← graph.nextCorner (current_corner, act)
cost ← graph.transitionCost (current_corner, act)/max_cost×cost_scale
reward ← reward - cost
if current_corner is in a primary cell:
if act is equivalent to cell coverage:
state ← update state by adding the current cell to the list of covered cells
reward ← reward + primary_cell_coverage_reward

if act is equivalent to contour-following and cell has already been covered or the contour-following is parallel to the coverage direction:
reward ← reward - cost×coverage_overlap_scale

else:
if act is equivalent to cell coverage:
if action !� current_corner:
reward ← reward - cost×coverage_overlap_scale

else:
state ← update state by adding the current cell to the list of covered cells
reward ← reward + transition_cell_coverage_reward

current_corner ← new_pos
state ← update the robot current corner

else:
done ← False
if state��final_state or episode_step >� max_steps:
done ← True

new_observation ← get_image()
reward ← double_coverage_reward
return new_observation, reward, done

if all required cells have been covered:
final_path_cost ← graph.transitionCost (current_corner, end_corner)/max_cost×cost_scale ×(coverage_overlap_scale+1)
reward ← reward + final_reward - final_path_cost
action_sequence ← graph.actionSequence (current_corner, end_corner)
episode_actions ← concatenate (episode_actions, actionSequence)

(Continued on following page)
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not converging to the goal state, it will be forced to stop when the
number of steps reaches a pre-defined maximum number of steps.

State includes 1) the robot’s current node (corner), 2) the list
of already covered cells, and 3) the episode’s end node (corner).
Since the model considered for the Q networks is a convolutional
neural network, the state, S, at each step of the episode is a three-
channel image created based on the observation made on the
above three parameters, where the first channel has a nonzero
value in the pixel corresponding to the robot’s current node
number, the second channel has nonzero values in the pixels
corresponding to the already covered cell numbers, and the third
channel has a nonzero value in the pixel corresponding to the
robot’s end node number. The size of this square image is
calculated based on the total number of nodes.

Action, a, is an integer number in the set: [0, number of nodes)
that represents a node number. Having access to its current state,
the agent selects a node number from which the robot should
start covering the next cell. There are four options (nodes) for
starting coverage from at each primary cell and two options
(nodes) for starting coverage from at each transition cell.

Transition is the process of applying the selected action at the
current state and updating the state after observing the changes in the
environment. If the selected action by agent is a node in an uncovered
cell, the robot takes the shortest path from the current node to the
selected node (as its action) over the graph. When the robot arrives at
the selected node (as its action), it starts covering the cell and ends at
another corner of the cell. This covered cell is added to the list of
already covered cells in the new state. The robot’s current node
(corner) is updated in the new state as well. If the selected action by
agent is a node in an already covered cell, the state does not change,
and a negative reward is assigned to that state-action pair.

Rewards are defined in a way that they would encourage the
robot to take an efficient path for traversing all cell coverage edges
in the proposed graph. The reward function is defined in a way
that it would reward the agent for reaching the goal state with
minimum travelled distance. The following is a description of the
reward function. The pseudocode of Table 1 provides more detail
on how these rewards are applied at each step of an episode.

- If the agent at a particular state selects a node to travel to (as its
action) which belongs to an already covered cell, meaning that it

decides to cover a cell that has already been covered before, the
state (robot’s current node and the list of already covered cells)
will not change and a large negative double-coverage reward of
Rdc � −0.5 will be assigned to that state-action pair. Rdc has a
large negative value since covering an already covered cell (area)
of the environment results in a large amount of unnecessary
cost (extra travelled distance) while not helping the coverage
task completion at all. The magnitude of Rdc has been chosen to
be much larger than the magnitude of the cost of transition (CT

in Eq. 2) for travelling from current node to a node in an
adjacent uncovered cell. This encourages the agent to avoid
covering a cell more than once and try covering the uncovered
cells in the environment instead. The exact value of Rdc has been
found by tuning the DRL hyperparameters over several sample
indoor environments based on speed of convergence, and not
getting stuck in local minima.

- If the agent at a particular state selects a node to travel to (as its
action) which belongs to an uncovered cell, the transition model
has two parts: 1) transition part which constitutes travelling
from the current node to the selected node (as an action) using
contour-following and inter-cell traversal edges, and 2)
coverage part which constitutes covering the destination cell
starting from the selected node (as an action). Therefore, the
coverage reward assigned to the state-action pair, Rc, has two
parts that encourages the agent to select nodes in the uncovered
cells while minimizing the travelled distance for transition to
the selected node.

Rc � CT + Rcc. (2)

Cost of transition, CT , and cell-coverage reward, Rcc, are
described below:

1) Cost of transition (CT ) is a negative reward assigned for the cost
of travelling from current node to the selected node (as an action).
The total cost of transition is the summation of cost of traversing
all edges in the graphpath fromcurrent node to the selected node:

CT � ∑

i

CTi. (3)

TABLE 1 | (Continued) Pseudocode for the python class graphEnvironmentwhich includes details on how the methods for episode reset, transition and reward model, and
creating the observation image are coded. The environment in DRL framework is constructed based on the proposed graph information.

current_corner ← end corner
done ← False
if state��final_state or episode_step >� max_steps:
done ← True

new_observation ← get_image()
return new_observation, reward, done

def get_image():
env ← 3-dimensional array with size of (SIZE, SIZE, 3) # equivalent to an image with 3 channels and width×height of SIZE×SIZE
env ← update the first channel to indicate the robot current corner
env ← update the second channel to indicate the already covered cells
env ← update the third channel to indicate the robot end corner
img ← convert env to an RGB image
return img
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The cost of travelling from one node to an adjacent node in the
graph has already been calculated offline and is included in the
graph edge weights. The graph edge weights,WTi, are obtained
based on the shortest distances between adjacent nodes of
the graph. A primary cell coverage edge weight is zero
since there is no extra travelled distance for covering a
single primary cell. To find CTi associated to every two
nodes, the edge weight (WTi), is normalized and then
scaled based on a trial and error process while tuning
the DRL framework rewards definition.

CTi � −0.1( WTi

WTmax

) , (4)

where WTmax is the maximum edge weight in the entire graph.

2) A positive cell-coverage reward of Rcc � 0.05 for covering an
uncovered primary cell or a positive cell coverage reward of
Rcc � 0.05 × 0.1 � 0.005 for covering an uncovered
transition cell is assigned to the coverage part. This
positive Rcc reward has been utilized to allow the agent
learn if it is gradually getting closer to the goal state. The
magnitude of Rcc is in the order of the magnitude of the cost
of transition (CT in Eq. 2) for travelling from current node to
another node in an uncovered cell. This helps the agent to
learn how to select the next cell in a way that the total episode
reward is maximized instead of selecting the closest
uncovered cell. Rcc for covering an uncovered transition
cell is smaller (by a factor of 10) than the corresponding
parameter for a primary cell since the transition cells are
always smaller than the primary cells. The exact values of Rcc

for both primary and transition cells have been found by trial
and error through implementing the DRL optimization over
several sample indoor environments. Improper values of Rcc

would increase the optimization convergence time and/or
even lead to getting stuck in local minima.

- When the transition path includes a contour-following,
the edge transition cost (CTi) is calculated similar to
that in Eq. 4 as if the contour-following happens in an
uncovered cell, and that it is not parallel to the cell
coverage direction. However, if the contour-following
happens in a covered cell or the contour-following path
is parallel to the cell coverage direction, the cost would
increase since coverage overlaps would be inevitable in
those parts. For those cases, the transition cost is multiplied
by a factor of 3 (obtained based on trial and error) to
penalize the agent for the coverage overlaps (extra travelled
distances) as it is indicated in Eq. 5.

CTi � −0.1(3)( WTi

WTmax

). (5)

- The magnitude of this transition cost should not be much larger
than the magnitude of transition cost in Eq. 4 since the agent

should still have a chance to take a contour-following path in a
covered cell if it leads to a maximized total episode reward at
the end.

- If applying an action at the current state results in reaching the
goal state, where all the cells are covered and the robot is at the
end corner of the episode, a large positive final reward of Rf � 1
will be assigned to the current state-action pair. This large
positive reward encourages the agent to continue taking
transition paths and covering the cells to reach the goal state.

This double DQN approach, like many other Deep learning
techniques, is slow at the training step since a large number of
possible interactions with the environment needs to be fed to the
learning networks. However, once the agent is trained on the
environment, the execution speed would be fast. The agent would
be capable of generating an efficient coverage path for any
arbitrary start and/or end positions immediately (i.e., via a
transfer learning). The user can determine which cells need to
be covered (which could be equivalent to selecting the rooms that
need to be disinfected), and the agent will generate the coverage
path using the already trained model without wasting time to
solve the problem for the new setting. The training step used in
the DRL can be done offline on a more powerful processor and
then the trained network can be uploaded onto the robot onboard
hardware. At the execution step, the required computational
power is not expensive, therefore, most of the commonly-used
processors on the mobile robots will be able to run it in real time.

Similar to some other CPP works cited in the literature (e.g.,
Hameed et al., 2013; Xu et al., 2014; Lewis et al., 2017; Chen
et al., 2019), our proposed technique considers a global path
planning that finds an efficient sequence for covering different
regions (cells) of the static and known environment, while
minimizing the travelled distance (overlap) in the coverage
path. Therefore, we assume that the hospital floor plans
would be static and known in advance, and the DRL-based
coverage planning can be carried out offline. The proposed
Double DQN optimization technique is applicable for hospital
disinfection since it is fast enough at the execution phase and
suitable for transfer learning (i.e., it can manage new start/end
corners, arbitrary areas of the environment selected for
disinfection). The environment uncertainties such as
unknown obstacles, dynamic objects, etc. and the robot
constraints are usually considered in a local path planning
algorithm, which needs to constantly acquire sensory
information on the environment. Development of a local
path planning method constitutes our future work through
which we will compute a collision-free trajectory in real time
based on the coverage path generated by our proposed global
CPP technique.

RESULTS AND DISCUSSION

The proposed graph can be automatically created for any
environment based on the steps described in Section
Environment Decomposition and Section Graph Representation
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of Decomposed Environments. The environment data including
the planar map of the environment is passed as input to a
MATLAB script written by our team. The proposed algorithm
creates and saves a file which contains all the information about
the graph representation of the environment including nodes,
edges, and transition costs and action sequences of travelling
from one node to another. The time required for this process is in
the order of seconds (using an OMEN HP laptop running
Windows 10 with an Intel Core i7-9750H CPU @ 2.60 GHZ
and 16 GB of RAM). The constructed graph is passed to a Python
code, where the environment of the DRL framework has been
created based on the information of the graph. The pseudocode
for the Python class of the environment constructed based on the

proposed graph is provided in Table 1. The Double DQN agent
provided in the GitHub repository of keras-rl package has been
utilized to create the Keras model and run the reinforcement
learning episodes. The sequential model initialized for both
online and target Q networks includes three convolutional
layers followed by two dense layers. An epsilon-greedy policy
and an Adam optimizer with learning rate of 25e-5 are considered
for the training step.

After the agent is trained over the graph environment, it
would be able to generate an efficient traversal sequence over
the graph for different configurations of the input
environment. Different configurations can be created by
selecting different: 1) start and/or end positions for

FIGURE 11 | The complete coverage path generated by the proposed CPP technique based on the graph representation of environment. (A)Whole free space has
been covered. (B)Cell 3 has been excluded from the area of interest. (C)Cell 2 has been excluded from the area of interest, and end corner position has changed. (D)Cell
4 has been excluded from the area of interest, and both start and end corner positions have changed. The blue lines represent the overlapped parts of the path.
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disinfection task, and/or 2) sets of the environment cells that
need to be covered. In order to evaluate the performance of the
proposed CPP technique, the coverage path has been generated
in several environments. The environment shown in Figure 2,
with modified cell decomposition shown in Figure 9, and the
graph representation shown in Figure 10, has been chosen to
demonstrate the performance of our proposed method. This
simple environment has been chosen as the testbench
evaluation environment since the optimal coverage path for
different configurations of this environment is manually
attainable. In the first scenario, the entire free space is
required to be covered. The coverage planning is set to start
from cell one and to end at cell four. Figure 11A shows the
calculated coverage path. As it can be seen, there are no

overlaps (extra travelled distance). The robot performs a
contour-following motion in cell three to adjust the cell
coverage start corner. The disinfection coverage diameter
(W) in this scenario was set at 1 m. It should be noted that
all cell coverage paths are assumed to be in vertical direction
(parallel to the Y-axis).

As it was mentioned in Section Coverage Optimization Over
the Proposed Graph, the coverage path planner can generate paths
for different configurations of the environment which it has been
trained for. It means that users can select any arbitrary area of
interest in the environment to be covered (Figure 11B). They can
also choose any arbitrary combination of the start and end
corners for the disinfection task (Figures 11C,D). As it can be
seen in Figure 11, the generated paths for different configurations

FIGURE 12 | (A) An indoor environment with a single room and a single obstacle inside the room. (B) The complete coverage path generated by the CPP technique
based on the graph representation of environment. The path stripes are shown by solid red lines. (C) The extra travelled distances (overlaps) in the generated coverage
path. The overlapping parts of the path are shown by solid blue lines.

FIGURE 13 | (A) An indoor environment including a single roomwith a single obstacle inside and two obstacles outside. (B) The extra travelled distances (overlaps)
in the generated coverage. The overlapping parts of the path are shown by solid blue lines.
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of the environment are optimal, i.e., the extra travelled distance
(overlap) is minimal.

Figure 12A represents another indoor environment that
comprises of a single room and a single obstacle. The
generated path is shown in Figure 12B. Since the
environment is larger than the simple environment in
Figure 11, and that there is a higher number of path stripes
over the environment, Figure 12C has been also generated to
show the extra travelled distances (overlaps) in the generated
coverage path. Figure 13A shows another environment that
comprises of the same room, but two obstacles are added to
the environment. The extra travelled distances (overlaps) in the
generated path are shown in Figure 13B. The extra travelled
distance (overlap) is the optimization metric used in the CPP
problem. If two different CPP approaches generate two different
complete coverage paths with no overlaps, the travelled distances
of those two approaches will be equal, and the extra travelled
distance will be zero in both cases. As the coverage overlap
increases, the extra travelled distance increases. Therefore, the
extra travelled distance (overlap) can be considered as the
evaluation metric in the CPP problem. The complete coverage
paths generated for both cases in Figures 12, 13 environments are
quite efficient in terms of extra travelled distance since the ratios
of their extra travelled distance to their total travelled distance are
quite low (less than 2%).

In the next step of the evaluation, the performance of the
proposed CPP technique based on our proposed graph
representation of environment has been compared with two
well-known state-of-the-art CPP techniques suggested in the
literature over two indoor environments. The CPP technique
proposed in (Mannadiar and Rekleitis, 2010; Xu et al., 2011; Xu
et al., 2014) duplicated selected edges of the Reeb Graph to make
it Eulerian, and then solved a Chinese Postman Problem over the
graph to find the efficient sequence of cell coverage with minimal
travelled distance. Figure 14A shows the coverage path generated
by the CPP technique proposed in (Xu et al., 2014) on the simple

environment shown in Figure 2. As it can be seen in Figure 14A,
there are many turns in the middle of cell one and cell four that
happen because of splitting these two cells into two parts (dashed
blue lines). The extra travelled distances (overlaps) are
represented by solid blue lines. The generated coverage path is
not optimal over this simple environment since the technique
does not consider the start and end points of coverage for each
cell. In their CPP technique, the robot has to return to the starting
cell at the end of the coverage (Figure 14A).

The CPP technique proposed in many of the previous
attempts (e.g., Jimenez et al., 2007; Hameed et al., 2013; Tung
and Liu, 2019) utilized Genetic Algorithm (GA) optimization to
find an efficient coverage sequence over the adjacency graph of
the environment that visits each node (cell) at least once by
solving a Traveling Salesman Problem. The coverage path
generated by the CPP technique proposed in (Tung and Liu,
2019) is shown in Figure 14B. As it can be seen in Figure 14B, the
robot needs to traverse through the middle of the cells one and
four to get back to the starting point which results in extra
travelled distances (overlaps) represented by solid blue lines in
cells one and four. In their CPP technique, the robot has to return
to the starting point at the end of the coverage.

A coverage path has been also generated using our proposed
method on the same environment with the exact same start and
end position. Results are given in Figure 14C. Our proposed
method outperforms the CPP techniques in (Xu et al., 2014) and
(Tung and Liu, 2019) in terms of total travelled distance. The
extra travelled distance in the path generated by our approach is
about 5% and 3.6% of the extra travelled distance resulted by
applying the CPP technique in (Xu et al., 2014) and (Tung and
Liu, 2019), respectively. The robot takes contour-following paths
to adjust its position for starting the cell coverage at each cell.
After arriving at the cell coverage start point found through the
optimization, the robot covers the cell with no overlaps with the
previously covered part of the cell contour. This can be seen in all
the cells in Figure 14C. The number of turns in the path

FIGURE 14 | The complete coverage path generated by: (A) the CPP technique proposed in (Xu et al., 2014), (B) the CPP technique proposed in (Tung and Liu,
2019), and (C) the proposed CPP technique based on the graph representation of environment. The solid red lines represent the generated path, and the solid blue lines
represent the overlapped parts of the path. The dashed blue lines show the common boundaries of the divided cells.
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generated by our approach is about 65% of the number of turns
resulted by applying the CPP technique in (Xu et al., 2014) since
the robot does not need to split the cells to get back to the starting
cell, and it takes contour following paths instead. The technique
proposed in (Tung and Liu, 2019) produced similar number of
turns to that in our proposed technique. A comparison of the
extra travelled distance and number of turns is shown in Table 2.
In Table 2, the extra travelled distance ratio is defined as the extra
travelled distance using our proposed technique divided by the
extra travelled distance utilizing other techniques in (Xu et al.,
2014; Tung and Liu, 2019). Similarly, the number of turns ratio is

defined as the number of turns produced through the use of our
proposed technique divided by the number of those from other
techniques in (Xu et al., 2014; Tung and Liu, 2019). The smaller
extra travelled distance ratio or number of turns ratio are in
Table 2, the better our technique has worked in comparison with
other techniques.

The proposed CPP technique based on the graph
representation of environment and other techniques (Xu et al.,
2014; Tung and Liu, 2019) have been applied to generate a
complete coverage path on a more complicated indoor
environment, as shown in Figure 15. The sequences of

TABLE 2 | A comparison of the extra travelled distance and number of turns resulted in the proposed CPP technique based on the graph representation of environment and
CPP techniques proposed in (Xu et al., 2014) and (Tung and Liu, 2019).

CPP technique proposed
in other works

CPP technique proposed in (Xu et al., 2014) CPP technique proposed in (Tung and Liu, 2019)

Environment Environment of Figure 14 Environment of Figure 15 Environment of Figure 14 Environment of Figure 15

Extra travelled distance ratio ×100 5% 42% 3.6% 43%
Number of turns ratio ×100 65% 45% ≈100% ≈100%

FIGURE 15 | The cell coverage sequence by: (A) the CPP technique proposed in (Xu et al., 2014), (B) the CPP technique proposed in (Tung and Liu, 2019), and (C)
the proposed CPP technique based on the graph representation of environment The extra travelled distances (overlaps) in the generated coverage path by: (D) the CPP
technique given in (Xu et al., 2014), (E) the CPP technique proposed in (Tung and Liu, 2019), and (F) the proposed CPP technique based on the graph representation of
environment. The overlapping parts of the path are shown by solid blue lines. The solid orange lines.
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covering the cells using the proposed techniques in (Xu et al.,
2014) and (Tung and Liu, 2019) are shown in Figures 15A,B
respectively. The extra travelled distances (overlaps) in the path
generated by the other techniques in (Xu et al., 2014) and (Tung
and Liu, 2019) are depicted in Figures 15D,E, respectively.

The proposed CPP technique based on the graph
representation of the environment has been applied over the
same environment with same start and end points. The sequence
of covering the cells and the extra travelled distance (overlaps) in
the path generated by our proposed method are shown in Figures
15C,F respectively. A comparison of the extra travelled distance
and number of turns has been shown in Table 2. As it can bee
seen in Figure 15F, the extra travelled distance (overlap) has been
decreased in the generated coverage path by our proposed
method. The extra travelled distance in the path generated by
our proposed approach is about 42% and 43% of the extra
travelled distance resulted by applying the other CPP
technique in (Xu et al., 2014) and (Tung and Liu, 2019),
respectively. This cost reduction is a result of utilizing the
proposed graph representation of the environment, which was
created considering three modifications described in Section
Graph Representation of Decomposed Environments. This
improvement can decrease the disinfection cost dramatically
since the hospital disinfection is a repetitive task which should
be done based on certain routines. The decrease in the cost is
more significant when our proposed method is applied over
larger indoor environments like hospitals.

In addition to the extra travelled distance (overlap), the number of
turns in the path generated for environment ofFigure 15 is 45% of the
total number of turns resulted by applying the CPP technique in (Xu
et al., 2014). The number of turns is decreased because the proposed
graph representation of the environment makes it possible for the
robot to take a contour-following edge for adjusting each cell coverage
start point or crossing a cell. The CPP technique in (Xu et al., 2014)
split the duplicated edges, so the robot performed extra turns at each
side of the splitting edges. This decrease in the number of turns
decreases the disinfection task completion time and cost. The number
of turns in the path generated by applying our technique is similar to
the number of turns produced by applying the technique proposed in
(Tung and Liu, 2019).

At the execution step, the required computational power was
not expensive. Therefore, most of the commonly-used processors
on the mobile robots will be able to run it in real time. For
example, using an OMEN HP laptop running Windows 10 with
an Intel Core i7-9750H CPU@ 2.60 GHZ and 16 GB of RAM, the
execution of the algorithm for the environment of Figure 15 took
about 30 s.

CONCLUSION

Mobile robots make the hospital disinfection process safer and
more effective. Central to the autonomous disinfection, a CPP
technique was presented in this paper which decreases the time and
cost for robotic disinfection of hospitals. The proposed technique
utilizes a new graph representation of the environment. This graph
representation of the environment is created offline considering a

more flexible version of Boustrophedon cell decomposition
method, taking both contour-following paths in cells, and the
corners of cells as start and end points of cell coverage into
account. The efficient cell coverage sequence is found by solving
an optimization problem over the graph using a double DQN
technique. The generated coverage path by the proposed
technique has been compared with those generated by two
state-of-the-art CPP approaches over two indoor
environments. The results indicate that the travelled distance
and number of turns are reduced when using our proposed
method. In particular, the extra travelled distance in the path
generated by the proposed approach was in the range of 3.6% to
43% of the extra travelled distance resulted from applying other
CPP techniques cited in the literature, (Xu et al., 2014; Tung and
Liu, 2019), depending on the complexity of the environment.
Furthermore, the number of turns was 45% to 65% of the total
number of turns resulted when applying one of the CPP
techniques cited in the literature, (Xu et al., 2014). This will
lead to an improved completion time and cost for disinfecting
hospitals using unmanned systems.

The learning time in the double DQN is in the order of hours
which indicates that the agent should be trained offline. However,
once the agent is trained over an environment, the in-field
execution time will be in the order of seconds (with an Intel
Core i7-9750H CPU @ 2.60 GHZ and 16 GB of RAM).
Additionally, the trained model by double DQN technique is
robust to changes in the start and/or end states of the robot used
for the disinfecting task. It is also robust to excluding some cells
from the disinfection target area, so regions of interest to disinfect
can be prioritized on the fly. For future works, we will apply other
DRL techniques over our proposed graph to decrease the training
time. To further our research, we intend to extend this work to
scenarios, where multiple disinfecting robots are employed for
doing the task collectively. This will decrease the total operation
time significantly due to the division of workload over all robots,
which can be incorporated to the current problem formulation
under the DRL method. Also, further works needs to be done
on adding constraints and uncertainties to the problem
formulation, for instance, uncertainties in the obstacles
position (including unknown static obstacles and dynamic
obstacles), constraints and uncertainties in mobile robot
motion, constraints on the battery capacity and access to
the charging stations will be considered.
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The deep tendon reflex exam is an important part of neurological assessment of patients
consisting of two components, reflex elicitation and reflex grading. While this exam has
traditionally been performed in person, with trained clinicians both eliciting and grading the
reflex, this work seeks to enable the exam by novices. The COVID-19 pandemic has
motivated greater utilization of telemedicine and other remote healthcare delivery tools. A
smart tendon hammer capable of streaming acceleration measurements wirelessly allows
differentiation of correct and incorrect tapping locations with 91.5% accuracy to provide
feedback to users about the appropriateness of stimulation, enabling reflex elicitation by
laypeople, while survey results demonstrate that novices are reasonably able to grade
reflex responses. Novice reflex grading demonstrates adequate performance with a mean
error of 0.2 points on a five point scale. This work shows that by assisting in the reflex
elicitation component of the reflex exam via a smart hammer and feedback application,
novices should be able to complete the reflex exam remotely, filling a critical gap in
neurological care during the COVID-19 pandemic.
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1 INTRODUCTION

The deep tendon reflex (DTR) is a critically important diagnostic tool for multiple upper and
lower neuron neurological illnesses Chardon et al. (2014); Walker et al. (1990). Assessment of
the DTR is often the first step toward localization of a neurological lesion. Crucially, the DTR
exam requires physical interaction with a patient, and is thus limited when in-person healthcare
delivery is reduced.

The COVID-19 pandemic has strained existing healthcare resources while simultaneously
providing significant impetus for the development and implementation of remote diagnostic and
therapeutic systems for healthcare delivery Chauhan et al. (2020). The development of a system for
smart delivery of tendon tapping stimulation will aid in the remote assessment of deep tendon
reflexes (DTRs) with future potential for therapeutic applications as well. Although there have been
reported neurological symptoms of COVID-19 Ottaviani et al. (2020); Pezzini and Padovani (2020),
the primary effect to neurological diagnosis and treatment is likely the backlog of urgent, non-
COVID-19 related healthcare needs.

Examination of the DTR is a standard part of the neurological exam, but one that requires both
physical contact between the clinician and patient, and the use of a non-disposable medical hammer.
The assessment of DTRs requires two main steps, 1) delivery of adequate stimulus via tendon
tapping, and 2) grading of the reflex response. Clinicians receive training in both of these skills, but
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the stimulus delivery is the component that must be performed in
close physical proximity to the patient.

The DTR involves afferent neurons in the muscle that synapse
directly onto the motor neurons of that muscle. The reflex is
stimulated via the application of an impact from a reflex hammer.
The hammer impact displaces the tendon, lengthening the muscle
tendon complex, and stretching the afferent neurons in the
muscle fibers Walker et al. (1990). This stretching of the
neurons activates the reflex loop, causing a rapid contraction
of the muscle and rotation of the joint. The reflex response is then
graded on a numerical scale, either five point (National Institute
of Neurological Disorders and Stroke), or nine point (Mayo)
Manschot et al. (1998).

A number of conditions such as hypothyroidism, peripheral
neuropathy, myoclonus and parkinsonism affect the reflex
response Chardon et al. (2014); Walker et al. (1990); Eslamian
et al. (2011). Efforts to quantify the dynamics of various DTR’s
are ongoing Shaik et al. (2020); Mamizuka et al. (2007); Manschot
et al. (1998); Kim et al. (2002); Chardon et al. (2014); Stam and
Tan (1987); Frijns et al. (1997), however, typical diagnostic use is
as a screening tool to indicate the presence of lesion and aid in
localization in either the upper or lower reflex arc, Walker et al.
(1990).

While laypeople may be able to accurately grade reflexes,
stimulation of the tendon with a reflex hammer is more
difficult. To that end, this work involves the development of a
smart tendon hammer and accompanying application for the
immediate assessment of tendon tapping stimulus. By measuring
hammer acceleration during tapping, it is possible to characterize
the stimulus as appropriate or inappropriate (in terms of tapping
location) after each individual tap. Implementation of this
categorization in a mobile application enables tendon stimulus
delivery by a layperson, as the skilled component of the procedure
then becomes the response grading. The reflex grading portion of

the proposed remote tendon exam is validated through a video
response survey in which both novice and expert participants
grade reflexes from video segments.

2 MATERIALS AND METHODS

All of the work, experiments and results reported here aim to
provide motivation and validation of the remote DTR evaluation
workflow and smart hammer system shown in Figure 1. The
system is intended to enable physical separation between patient
and clinician, with a patient’s caretaker or family member serving
as the novice participant delivering the tendon tapping and
grading the reflex response. A smart hammer streams tapping
accelerations to the mobile application, which then provides
feedback to the operator about the tapping location. Once
grades are recorded, they can be sent along with the associated
tapping data to a clinician for review.

This method of remote tapping contains key differences
from the standard tapping procedure that clinicians perform.
In the traditional clinical tapping by an expert, this
characterization of stimulus is done through experience and
“feel”, primarily based on visual location of the impact site and
the rebounding of the hammer in the clinician’s hand. The
proposed system utilizes the smart hammer to collect and
analyze the hammer acceleration in order to provide the same
characterization of stimulus to a novice who lacks the
experience and training of an expert.

First, tapping classification via acceleration is assessed for
feasibility and performed via support vector machine (SVM).
Next, the design and development of an assistive application for
tendon tapping feedback is presented. Novice tapping variability
is compared to expert performance in terms of impact
acceleration viability. Finally, novice reflex grading is

FIGURE 1 | Proposed remote deep tendon reflex exam system (A) Remote portion with smart hammer assisted reflex elicitation and grading, (B) Clinical portion,
with clinician receiving assessed scores and communicating with patient, (C) Tapping application screen.
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compared to expert grading through the use of an online video
reflex grading task.

2.1 Tapping Classification
The primary aim of the technical developments reported here
is the accurate classification of tendon tapping from hammer
acceleration measurements. It is essential that the information
to discriminate between correct and incorrect stimulation is
contained within the readily measurable hammer acceleration.
In the case of the wireless instrumented hammer and mobile
application, Bluetooth communication is the primary limiting
factor for the sample rate. To evaluate the practicality of
classification via streamed acceleration measurements
(limited to 200 Hz), human tapping data was collected at
800 Hz using a previously developed automated tapping
device Meinhold and Ueda (2018). 50 taps were analyzed
from two locations on each of the two subjects, the apex of
the right Achilles tendon, and an adjacent location. All data
collection occurred under an institutionally approved protocol
(GT# H17264).

The frequency content of each tap was ascertained by discrete
Fourier transform (fft, MATLAB, MathWorks Inc.,
United States). Mean results for both subjects, along with the
difference between locations, are shown in Figure 2C. Clear
separation between the tendon and incorrect location is

apparent up to about 50 Hz, which indicates that the 200 Hz
sampling rate may be sufficient for tapping classification. A t-test
confirmed (p< 0.001) that the mean power of the first 50 Hz of
the spectrum was significantly different between the on tendon
and off tendon conditions. There was a significant difference
(p< 0.01) in the mean power from 50 to 400 Hz, but not from 100
to 400 Hz (p> 0.05). For the statistical tests, power in the
respective bandwidths was computed for each tap, then the
groups of 100 were tested against the null hypothesis that
there was not a difference in the population means. The
results of a χ2 test for the full frequency range are shown in
the Supplementary Material. Although the reported results
pertain only to the Achilles tendon, it is expected that other
tendons produce similar acceleration profiles and frequency
spectra.

Both the waveform and amplitude of the frequency response
contain important information for differentiating the two
locations. The waveform most likely contains differences in
frequency dependent damping, while differences in amplitude
are most likely due to the level of impedance matching between
the hammer and tissues. These properties are each individually
viable choices for location classification, while acceleration time
series contains both frequency and amplitude information, such
that any classifier utilizing acceleration time series inherently
leverages both domains.

FIGURE 2 | Survey and automated tapping results (A) Mean score for each true score, (B) Mean number of errors for each true score, * represents p<0.05. (C)
Mean amplitude spectrum of robotic tapping on two human subjects, shaded portions represent one standard deviation.
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2.2 Tendon Hammer Design and Evaluation
A previously developed smart tendon hammer Meinhold et al.
(2017) was used in the course of this work. The hammer is a
modified commercially available reflex hammer (NITI-ON,
Chiba, Japan) with a silicone head, stainless steel handle and
wireless Inertial Measurement Unit (IMU) (Mbient Labs, San
Francisco, CA, United States) situated in a polymer case in the
head. The IMU records 3-axis acceleration at up to 800 Hz for
data logged to the onboard memory, or up to 200 Hz for data
streamed directly to a mobile device. The addition of the IMU to
the commercial hammer requires only the removal of a disc of
material out of the silicone head and inserting the IMU case,
which can be done without any precision machining. More
details on the construction and operation of the instrumented
hammer can be found in the previous study Meinhold et al.
(2017), as well as the Supplementary Material documentation.

2.3 Tapping Variability Comparison
As described above, the force applied by the tendon hammer to
the tendon is the mechanism for eliciting the DTR. Stimulation
variability is a confounding factor for the diagnostic utility of the
procedure. In order to ascertain the potential for laypeople to
perform this procedure remotely, manual stimulation variability
was compared between an expert and a non-trained operator.

A trained clinician performed a series of 50 taps with the
instrumented medical hammer to a latex rubber tendon analog.
The tendon analog was used to eliminate variability due to human
subject movement or physiological factors. Acceleration was
recorded from the embedded sensor at 100 Hz. The
repeatability of stimulation intensity was measured and
compared. The relative standard deviation (RSD) of peak
deceleration during impact was the metric used for comparison.

The performance of a novice operator in the same simulated
tapping experiment was also assessed. A series of 50 taps to the
surface of the latex rubber tendon was conducted, with the RSD of
peak tapping acceleration again being the primary metric of
comparison.

2.4 Materials Cost and Distribution
The Achilles tapping results and the associated statistical
analysis in Section 2.1 demonstrate that sufficient
information for classification is contained in the 100 Hz
acceleration signal. This has significant benefits for a
distributed and remote method of DTR assessment. The
200 Hz bandwidth allows for the use of relatively cheap (61
USD) IMUs as well as standard mobile phone data collection.
The process of retrofitting a standard silicone Taylor hammer
with an IMU requires only the coarse removal of silicone
material to accommodate the IMU case, without any high
tolerance machining operations. The ideal tool for
communicating with the wireless IMU is a mobile
application, as this is easily distributed, and does not require
hardware beyond common mobile devices. With distribution of
the devices to individuals requiring a DTR exam, physical
proximity between patient and clinician is precluded, and
sterilization of the hammer between uses is not necessary,
because the low cost enables a one device per patient paradigm.

2.5 Application Design and Functionality
A preliminary version of this application was previously reported
Meinhold et al. (2017). In the past, this application was designed
primarily for research users, the version presented here has been
adapted to aid novice users. The interface has been streamlined and
simplified to avoid confusion. In addition to the tablet interface, LED
indicators on the hammer body itself now indicate the success or
failure of the prior tap. A diagram of the intended use is shown in
Figure 1. The main function of the application is to stream
acceleration data from the tendon hammer, detect and classify
tendon strikes, then provide binary feedback in the form of a red
or green indicator. Although much more information can be
recorded, classification results are of the most use to a novice
attempting DTR evaluation. The application allows user input of
physiological information, as well as import of trained classifiers.
These SVM classifiers take the form of a string of parameters defining
a hyperplane, that are then used to classify each tap as either on target
or incorrect.

2.6 SVM Classifier
To evaluate the classification of tendon tapping location from
streamed acceleration data, an additional set of human trials were
carried out. Each subject underwent 100 taps from the tendon
hammer described in Section 2.2, 50 taps to the right Achilles
tendon, and 50 taps to a laterally adjacent location. A total of eight
healthy adult subjects participated in the experiments (mean age
36.5, 5 F), following an approved human subjects research
protocol (GT# H20531).

The large amount of sample points and classification problem
associated with traditional stimulus delivery during tendon
tapping lends itself to SVM based classification. Although a
large number of additional classification methods exist, SVM
was chosen due to the portability of the model and the training
speed. In order to evaluate the suitability of SVM classification of
the tapping location, eight different test/train datasets were
produced, with a single subject comprising the test set and the
remaining seven making up the training set. The feature vector
used consisted of the acceleration at each sample taken by the
IMU. A segment of acceleration consisting of the period after
impact was used, 0.25 s in length, for a total of 51 samples, a
representative feature vector is shown in the Supplementary
Material document. Each acceleration time series (feature
vector) was standardized prior to training of the model. The
models were trained in MATLAB (fitsvm), with a linear kernel.
Accuracy of the models was assessed as the accuracy in correctly
classifying the 100 taps on the held out subject.

The linear SVM classificationmethod produces a simple model of
coefficient weights and an offset, which allows for easy transfer to the
mobile application. Classification also can take place in near realtime,
because of the computational simplicity.

2.7 Layperson Grading
Human subjects (N � 9, 2 Expert, 7 Novice) were recruited to
validate the ability of laypeople to grade reflex responses
accurately, and to compare to trained expert performance.
Experts had both formal training and clinical experience in
DTR assessment, for more information, see the Supplementary
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Material. Reflex grading took place in a virtual environment, with
video training and evaluation. All training and testing took place in
an online, remote format. Participants were first given a training
video with three repeated examples of a tap and a response, the
impact location of the tendon hammer on the bicep tendon was
obscured in all cases. The rating scale employed was the National
Institute of Neurological Disorders and Stroke (NINDS) 0–4
numerical scale. After reviewing the training video, participants
were given 25 unlabelled tap videos to score, five for each of the five
grades. Mean and median scores for each of the five were tabulated
for each participant. All data collection took place under an
institutionally approved protocol (GT# H20393).

3 RESULTS

3.1 Expert and Novice Tendon Tapping
Variability
Expert impact deceleration RSD was 18% while the novice
acceleration RSD was 25%. The variability in acceleration
indicates that similar levels of variability in tapping force
should be expected for expert tendon tapping. Novice impact
acceleration variability was larger than the expert’s, but still
suitable for tendon reflex elicitation. Full results are shown in
the Supplementary Material documentation.

3.2 SVM Classification Accuracy
The accuracy of the trained SVMmodel for the achilles tendon is
shown in Table 1 Classification accuracy for each subject. Overall
classification accuracy was 91.5% with a range of 67% when
subject seven was held out for testing to 100% on subjects 1 and 6.
With the relatively small subject pool, the high accuracy
demonstrates the suitability of the SVM based classification
method for determining tapping impact location from
streamed (200 Hz) acceleration data.

3.3 Layperson Grading Results
Aggregate results for each reflex grade from the reflex grading
survey are shown in Table 2. The mean error across all seven of
the novice participants and 25 reflex videos graded was 0.205 on
the five point scale. However, mean error provides only one
descriptor of the results. A more clinically relevant statistic may
be the number of instances in which multiple trials would still
result in an incorrect grade. In that case, taking the mean and
median of all five trials for each participant results in an incorrect
grade in just three and four of the 35 cases respectively. Both
experts who completed the survey did not have any errors. Results
are shown in Figure 2 and Table 2. There was a significant

difference (p< 0.05), between the number of errors in the 0 and 1
reflex grades and the 2 and 3 grades.

4 DISCUSSION

Taken together, the results shown demonstrate the potential viability
of the remote deep tendon reflex exam. Tapping data on human
subjects shows that 68% of the power difference between tapping
locations is contained in acceleration signals below 100Hz, and that
the signals below 50Hz are significantly different, allowing the
combined use of readily available wireless IMUs and support
vector machine classifiers to provide DTR elicitation feedback.
The SVM classifier is shown to be capable of detecting tapping
location on the Achilles tendon with 91.5% accuracy from streamed
acceleration measurements enabling instant feedback to novices
attempting to elicit reflex responses. With the developed
application, remote users know when they have hit the tendon
correctly, and can then grade the response.

Although novice performance is not perfect, the results indicate
grading errors after a number of trials are relatively rare. Most
importantly, out of a total of 175 novice graded reflexes, only a
single response was more than 1 point away from the ground truth.
The significant difference between errors in the 0 and 1 groups and
the 2 and 3 groups indicates that areflexia or below normal reflexes
are easier for novices to catch than the normal range. Although a
larger sample size is needed, it is important to consider the range of
conditions that can cause reflex responses to be on the lower end of
the scale. Only a single reflex, the bicep tendon reflex, was evaluated,
however it is expected that the novice performance in grading other
reflexes would be similar.

Although this work has centered on the reflex exam being
performed in a completely remote manner, with both tapping and
grading done by novices, an important result emerged from the
survey results. Both experts were capable of grading reflexes from
video with 100% accuracy. An alternative procedure where the
novice provides the elicitation via smart hammer and assistive
application, and a video of the response is sent to the clinician
may deserve further study and development. As the COVID-19
pandemic continues to dictate the use of telemedicine, this work
provides experimental indications that remote implementation of
the tendon reflex examination is possible.
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Robotic Telemedicine for Mental
Health: A Multimodal Approach to
Improve Human-Robot Engagement
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1Department of Mechanical Engineering, Imperial College London, and UK Dementia Research Institute—Care Research and
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COVID-19 has severely impacted mental health in vulnerable demographics, in particular
older adults, who face unprecedented isolation. Consequences, while globally severe, are
acutely pronounced in low- andmiddle-income countries (LMICs) confronting pronounced
gaps in resources and clinician accessibility. Social robots are well-recognized for their
potential to support mental health, yet user compliance (i.e., trust) demands seamless
affective human-robot interactions; natural ‘human-like’ conversations are required in
simple, inexpensive, deployable platforms. We present the design, development, and pilot
testing of a multimodal robotic framework fusing verbal (contextual speech) and nonverbal
(facial expressions) social cues, aimed to improve engagement in human-robot interaction
and ultimately facilitate mental health telemedicine during and beyond the COVID-19
pandemic.We report the design optimization of a hybrid face robot, which combines digital
facial expressions based on mathematical affect space mapping with static 3D facial
features. We further introduce a contextual virtual assistant with integrated cloud-based AI
coupled to the robot’s facial representation of emotions, such that the robot adapts its
emotional response to users’ speech in real-time. Experiments with healthy participants
demonstrate emotion recognition exceeding 90% for happy, tired, sad, angry, surprised
and stern/disgusted robotic emotions. When separated, stern and disgusted are
occasionally transposed (70%+ accuracy overall) but are easily distinguishable from
other emotions. A qualitative user experience analysis indicates overall enthusiastic and
engaging reception to human-robot multimodal interaction with the new framework. The
robot has been modified to enable clinical telemedicine for cognitive engagement with
older adults and people with dementia (PwD) in LMICs. The mechanically simple and low-
cost social robot has been deployed in pilot tests to support older individuals and PwD at
the Schizophrenia Research Foundation (SCARF) in Chennai, India. A procedure for
deployment addressing challenges in cultural acceptance, end-user acclimatization and
resource allocation is further introduced. Results indicate strong promise to stimulate
human-robot psychosocial interaction through the hybrid-face robotic system. Future
work is targeting deployment for telemedicine to mitigate the mental health impact of
COVID-19 on older adults and PwD in both LMICs and higher income regions.

Keywords: social robots, COVID-19, human-robot interaction, intelligent virtual assistant, multimodal interaction,
dementia, telemedicine, low- and middle-income countries
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INTRODUCTION

Dementia is a leading cause for disability and dependence across
the world. As a chronic neurodegenerative condition, demands
for care increase over time. Many people with dementia require
social support, day care or assisted residence facilities with
advancing illness. A staggering one in four United Kingdom
hospital admissions is due to a dementia-related condition
(Alzheimer’s Research UK, 2020)1. Global care costs are
projected to exceed $2 trillion/annum demanding 40 million
new care workers, which could easily overwhelm medical and
social care systems as they stand today (Alzheimer’s Research UK,
2020)1. Prevalence of dementia is further skyrocketing in LMICs;
63% of PwD already live in LMICs, where 70% of new cases occur
(Prince et al., 2007; Prince et al., 2013). In India, the treatment gap
today is a staggering 90% (Dias and Patel, 2009). Lower-income
nations will have comparable or even worse rates. Availability of
resources, including human resource capacity, are major
contributing factors to this gap (Prince et al., 2007; Shaji et al.,
2010). Recent industrialization, migration, and urbanization in
Asia have also impacted traditional family structures such that
older people face less family support and more isolation today
than ever before (Dias and Patel, 2009).

This global health crisis has become even more critical during
the COVID-19 pandemic. However, planning and response to
public health emergencies (i.e., COVID-19 outbreak) often do not
directly address mental health, in particular for vulnerable groups
such as older adults and PwD (Vaitheswaran et al., 2020).
Dementia is already an emerging pandemic (Wang et al.,
2020) with more than 50 million cases worldwide and a new
case occurring every 3 s (Alzheimer’s Disease International,
2019)2. The combined strain of COVID-19 and dementia
pandemics is severely increasing suffering of PwD and their
caregivers. COVID-19 has caused unprecedented stress, fear
and agitation among the seniors, especially those with
cognitive impairment or dementia (Mehra and Grover, 2020),
who are considered to be more vulnerable to COVID-19 (Wang
et al., 2020). Isolation and confinement measures imposed to
prevent infection of high-risk populations have undercut essential
sources of support. Care is reduced or, in some cases, completely
removed and important face-to-face contact lost, which may have
long-lasting psychosocial and cognitive consequences in PwD.
Caregivers for PwD are also in dire need of mental health support
and many older adults without specific mental health diagnosis
are also suffering pronounced psychological consequences due to
isolation. Furthermore, the level of anxiety and exhaustion among
staff in care residence facilities has increased during COVID-19
(Wang et al., 2020). There is immediate, urgent and desperate call
for greater mental health support in this arena.

The need for mental health and psychosocial support of PwD
and their carers worldwide is well-documented (Wang et al.,
2020) both during and prior to the COVID-19 pandemic. The
effect of COVID-19 on healthcare infrastructure in LMICs,

however, is arguably more extreme due to the health system
capacity and deeper dependency on families for support of PwD
(Walker et al., 2020). A recent study conducted with caregivers in
South India (Vaitheswaran et al., 2020) highlights a clear need for
more services and support of PwD and caregivers for the post-
pandemic, including stronger adoption of technology.
Affordable, accessible and scalable solutions to monitor mental
health, improve independence, increase quality of life, and reduce
caregiver burden are urgently needed both in the immediate
situation, as well as beyond the current global lockdowns.

Socially assistive robots (SAR) are well-documented for
promise to support dementia and mental health (Tapus et al.,
2007), with strong potential specifically to mitigate COVID-19
impact on PwD. Prior to the COVID-19 pandemic, a range of
tools from simple voice interfaces to interactive social robots have
been introduced with the aim of providing stimulation,
entertainment, personal assistance, monitoring and safety for
older adults and PwD (Inoue et al., 2012; Martín et al., 2013;
Mordoch et al., 2013; Joranson et al., 2015;Moyle et al., 2017; Falck
et al., 2020); see (Abdi et al., 2018) for a recent review. Exemplary
cases such as the humanoid robot NAO (Agüera-Ortiz et al.,
2015), PaPeRo (Inoue et al., 2012), Bandit (Tapus et al., 2009), Eva
(Cruz-Sandoval and Favela, 2016), and robot alternatives to
animal assisted therapy such as AIBO, the robotic dog
(Tamura et al., 2004), NeCoRo, the robotic cat (Libin and
Cohen-Mansfield, 2004), and the well-known Paro, the robotic
seal (Wada and Shibata, 2007) have shown the possibility of
improving patient engagement, reducing agitation, improving
mood and communication, and decreasing stress (Inoue et al.,
2011; Petersen et al., 2017), though comparable results have been
argued with a simple stuffed animal (Moyle et al., 2017). Recent
literature (Martín et al., 2013; Valenti Soler et al., 2015; Rouaix
et al., 2017) has argued social robots can help improve irritability,
global neuropsychiatric symptoms, and PwD’s emotional
responses with robot assisted therapies. The neuropsychological
effects of interaction with robots has also shown increased cortical
neuron activity (Wada et al., 2005a). Social robots hold specific
promise in the COVID-19 crisis by providing older adults and
PwD with complementary support to alleviate anxiety and
loneliness, improve engagement, and reduce caregiver burden.
Social robots can also provide clinicians with an alternative
platform to deliver remote therapies and support PwD,
especially at a time when nonemergency clinical appointments
are increasingly shifting to remote alternatives.

There are several verbal and nonverbal interaction modes used
by SAR to engage with humans—such as facial expressions,
speech, gestures, or behavior—but the most effective
communication mode in human-robot interaction (HRI) is
largely considered to be speech (Fong et al., 2003). Intelligent
virtual assistants (IVA), also known as conversational agents,
chatbots, or virtual assistants, are AI-powered systems that
understand user intents in natural language and generate
relevant responses using machine learning (ML) algorithms.
Despite benefits in feasibility of implementation and
commercial availability, virtual assistants and voice-enabled
smart speakers (e.g., Amazon Alexa, Google Home) alone have
limited flexibility to adapt for mental health care applications,

1https://www.dementiastatistics.org/statistics/hospitals/
2https://www.alz.co.uk/research/WorldAlzheimerReport2019.pdf
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particularly to support PwD. Emerging social robots, on the
contrary, can use a multimodal approach with combined
social and emotional nonverbal cues, such as facial expressions
or gestures, in addition to verbal communication. The integration
of affective communicative modalities and implementation in
social robots can ultimately lead to improved engagement in HRI
in demanding healthcare contexts, such as dementia care, during
and beyond the COVID-19 pandemic. Social robots can be used
as a means of telemedicine and remote therapy delivery for
mental health monitoring and psychosocial support of high-
risk populations, particularly older adults and PwD. By
providing companionship and enhancing independent living,
such robotic technologies could also give carers some respite
time and relieve the caregiver burden especially faced during
lockdowns.

The high cost of such complex interactive systems is
oftentimes a barrier for deployment, especially in LMICs.
While SAR have shown great potential to support PwD in
clinical and residential environments, no research to date has
developed and pilot tested mechanically simple and low-cost
robotic solutions to support dementia care in challenging
scenarios imposed by the COVID-19 outbreak in LMICs,
particularly in India.

The goal of this investigation is to design, develop, and test
the feasibility of a social robotic platform to support people
with dementia, during and following the COVID-19
pandemic. We are particularly interested in surmounting
cost constraints and ease of use demands for utility in
LMICs. In our previous work (Bazo et al., 2010) we
introduced a ‘hybrid face’ robot with combined static
physical features and a digital face that simulates facial
expressions based on mathematical affect space emotion
mapping. We further quantified the neurophysiological
response to the robot and initiated work to translate a
simplified version of it as a consumer product (Wairagkar
et al., 2020). In this study, we:

(1) Propose a new multimodal robotic framework that integrates
animated representation of emotions with a voice system
supported by a cloud-based AI conversational engine for
enhanced engagement in HRI.

(2) Test human-robot multimodal interactions with healthy
participants in the United Kingdom demonstrating the
robot’s ability to adapt facial expressions to users’ speech
in real-time and a strong user preference for multimodal vs.
pure voice communication.

(3) Introduce a user-centred procedure for cultural validation
addressing telemedicine acceptance of robotic mental health
support of older individuals and PwD. Modifications to our
robotic platform based on this procedure as implemented in
South India are presented, and the procedure is offered as a
broader method for introduction of such technology in new
cultural arenas and demographics.

(4) Present a pilot study introducing the robot into practice for
dementia support in LMICs through experiments conducted
with people with dementia at the Schizophrenia Research
Foundation (SCARF) in Chennai, India.

Results demonstrate the capacity to deliver telemedicine
cognitive engagement and mental health support through the
hybrid face robot. Current work is targeting trials in South India
with planned investigations on deployment in LMICs as well as
wealthier nations.

RELATED WORK

The ability to recognize, understand, and show emotions plays a
fundamental role in the development of SAR capable of
meaningful interactions (Breazeal, 2009). Facial expressions,
speech, and body language are proved to carry essential
affective information for social interactions (Breazeal, 2003).
According to (Schiano et al., 2000) facial expressions are the
primary means of communicating emotions. Ekman introduced
the facial action coding system (FACS) (Donato et al., 1999) and
posits that all human expressions are a combination of the
primary expressions: happiness, sadness, anger, fear, disgust,
and surprise.

Robotics researchers are faced with the question of whether to
design physically embodied, fully actuated robots, or simpler and
cheaper virtual agents. Literature has argued the level of a robot’s
embodiment is key to develop trust and rapport, and may affect
human judgements of the robot as a social partner (Wainer et al.,
2006; Bainbridge et al., 2011). (Ghazali et al., 2018) have
suggested trust toward robotic agents is also influenced by its
facial characteristics. Though it remains unclear how robot’s
gender shapes human trust, in this experimental study, gender
did not affect user trust and a higher psychological reactance was
observed in participants during interactions with a robot of
opposite gender. Embodiment is also an influencing factor of
users’ expectations of the robot’s abilities and autonomy
(Clabaugh and Matarić, 2019). However, the mechatronic
complexity in the development of embodied, fully actuated
robots with the desired expressive ability is associated with
high costs. This in turn constitutes a barrier for real-world
deployment beyond academic research, especially in LMICs.
The implementation of expressive robotic faces on LCD
screens has recently been applied in different SAR platforms,
which allows easy customization, adaptability to users’
preferences and culture, higher accessibility and scalability
(Abdollahi et al., 2017; Portugal et al., 2019); this may be
especially relevant for human-robot engagement with older
adults with and without dementia, as the screen can also be
used for interactive activities, visualization of the robot’s speech,
or as an additional user input. Regardless of the social robot level
of embodiment, facial characteristics, or gender, care should be
taken to avoid reaching the uncanny valley, graphically
represented by a sudden negative drop in human’s emotional
response toward robots when shifting from non-human/artificial
faces toward optimal human faces (Mori et al., 2012).
Additionally, when designing social robots to effectively
interact with older citizens and cognitive impaired individuals,
researchers must consider ethical concerns that may limit the
deployment of such technologies. These include increased use by
vulnerable populations, reduced human contact, loss of privacy,
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emotional deception, which occurs when users’ expectations of
the robot are not met, and attachment to the robot, which may
cause emotional distress (VanMaris et al., 2020; Van Patten et al.,
2020). In a longitudinal study with older citizens, (Van Maris
et al., 2020) highlight the need for research metrics to analyze
emotional attachment to social robots, people’s behaviors, and
speech patterns.

The field ofML has recently experienced extraordinary progress
in the development of IVA. These AI-powered systems interact
with users using natural language and are able to generate relevant
responses in the form of text, speech, or both. This technology
started in the 1960s with ELIZA (Weizenbaum, 1966), which held
text-based conversations with users acting as a psychotherapist. A
recent body of work (Romero et al., 2017; Harms et al., 2018) has
provided novel approaches for the development of conversational
agents for increased user engagement. Along similar lines, there has
been work on the development of embodied conversational
agents—virtual animated characters, usually with the
appearance of a human-like avatar, capable of understanding
multimodal utterances, such as voice, gestures, and emotion
(Griol et al., 2019). These systems aim to provide a more
empathetic response based on dialogue and behavior (Merdivan
et al., 2019), yet they often cause a sense of discomfort explained by
the uncanny valley (Ciechanowski et al., 2019).

Intelligent virtual assistants have been deployed in healthcare
for delivering cognitive behavior therapy (Fitzpatrick et al., 2017)
or assist older people in the living environment; see (Laranjo
et al., 2018) for a recent review. Yet, evidence of efficacy and
safety of conversational agents to reliably support healthcare is
limited (Laranjo et al., 2018); prior research has reported
inconsistent responses even when user statements explicitly
contained risk or harm (e.g., “I want to commit suicide,” “I
am depressed”) (Miner et al., 2016). To assist those with cognitive
impairments, (Wolters et al., 2016) have explored the use of
virtual assistants with PwD, highlighting the importance of
adapting voice and interaction style to each user’s preferences
and expectations, but importantly, to cognitive decline. One

interesting observation that deserves more introspection is that
people with dementia questioned the acceptability of a voice
system without a face. Furthermore, the COVID-19 outbreak has
spurred greater interest in the use of voice assistants and chatbots
as a tool to support high-risk populations, such as older
individuals and PwD; if designed effectively, these may
support patients in need for routine care via conversations,
provide up-to-date information, and alleviate the mental
health burden (Miner et al., 2020; Sezgin et al., 2020).

METHODS

Development ofMultimodal Robotic System
Affective Hybrid Face Robot
The hybrid face robot integrates a digital face capable of
showing facial expressions and a 3D printed faceplace to
convey realism and depth, which can be flexibly added to
the robot (Figure 1). The robot’s software was programmed
using Max 8 (Cycling ’74, San Francisco, CA, United States)
and was implemented on a tablet PC, building upon our
previous work (Bazo et al., 2010).

The robotic face is simply made of four facial features:
eyebrows, eyelids, eyes, and lips, with a total of 13 degrees of
freedom (DoF) illustrated in Figure 2. Realism features, such as
constant motion of the face, random blinking of the eyes, and
pupil dilation (Bazo et al., 2010; Craig et al., 2010; Wairagkar
et al., 2020) can be controlled and may lead to more dynamic
HRIs. Our choice of a simplistic three-dimensional design for the
robotic face aims to avoid the uncanny valley effect. Ideally, this
mechanically simple robot would elicit human-like trust and
engagement in HRIs, yet without the mechatronic complexity
and associated high-costs of a fully actuated face.

The robot’s software design is based on a mathematical
approach for emotion mapping, in which the robot’s expression
state, e→(t), for any given time, t, is defined as the weighted linear
combination of a set of basis expressions B � { b→1, b

→
2, . . . , b

→
n}.

Each vector contains 13 values, one for each degree of freedom
of the digital face. In our previous work (Bazo et al., 2010),
this set has been defined with the following expressions:
B � { b→happy, b

→
sad , b

→
angry, b

→
stern, b

→
surprised , b

→
disgusted , b

→
afraid , b

→
tired}.

The intensity vector w→�[w1,w2, . . . ,wn]T , wi ∈ [0,1], symbolizes
the amount by which an expression b

→
i contributes to e

.(t). Hence,
any expression state is the weighted sum of variances of each basis
expression, b

→
i, from the neutral expression, b

→
N , and then added

to the neutral expression along the following equation (time is
omitted from notation for simplicity):

e
. � ∑

n

i�1
(b
.

i − b
.

N)w
→

i + b
.

N (1)

Following this approach, the modeling of emotions can be
manually and remotely controlled by selecting each expression’s
intensity, which is in turn converted into a 13-value vector,
defining the DoF of the desired facial expression (Figure 3).
Additionally, the robot’s mouth is animated and synchronized
with the audio input’s amplitude, in decibel (dB), in such a way

FIGURE 1 |Hybrid face robot running on a tablet PCwith option to add a
3D printed faceplate for realism and depth.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6188664

Lima et al. Robotic Telemedicine for Mental Health

151

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


that when it surpasses a cut-off dB value the DoF correspondent
to the top and bottom lips (Mt and Mb, respectively) open and
close simultaneously, while the mouth width, Mw, changes by
30% to simulate the elastic movement of a human mouth.

The design of robot’s facial expressions and its control system
were optimized in this work. This optimization included: 1)
creating an interface with Python to enable automatic and

remote control of facial expressions integrated with
autonomous speech (see Section Intelligent Virtual Assistant);
2) optimizing the voice stream synchronization parameters in
Max software; 3)modifying DoF for some expressions to improve
recognition rates. Taken together, these improvements allowed
us to:

(1) Integrate the robot’s speech capacity with facial expressions
for adaptable emotion in response to users’ speech in real-
time.

(2) Introduce the robot into practice for aging and dementia
support in LMICs; a pilot study was conducted at SCARF
India using the hybrid face robot as a telemedicine tool for
remote cognitive engagement with a person with dementia
through repeated sessions, in the form of Wizard of Oz
experiment [see (Natarajan et al., 2019) for our recent
work].

Our aim is to enhance engagement in HRI by endowing the
robot with a set of multimodal affective cues (i.e., verbal and
nonverbal, through facial expressions), and further validate the
cultural acceptability and usefulness of such robotic tool as a
telemedicine solution for mental health support of older adults
and people with dementia in India. This may be of special interest
(but not limited to) in the context of COVID-19, particularly in
LMICs.

Figure 4 shows the optimized design of different facial
expressions simulated by the robot. Importantly, the

disgusted expression, which as pointed by Ekman in (Donato
et al., 1999) features a peculiar wrinkling of the nose impossible to
simulate with the current face design, was redesigned following
psychology and robotics literature (Donato et al., 1999; Breazeal,
2003): the eyes were narrowed, by decreasing Ll and Lr and
adjusting the eyelid asymmetry; eyebrows were lowered, with a
significant change in the right angle, Bal; upper and lower lips

FIGURE 2 | The 13 degrees of freedom of the expressive face: eyebrow
angles (Bal and Bar) and vertical height (Bhl and Bhr); eyelid openness (Ll and Lr);
eye vergence (Ev), pitch (Ep) and yaw (Ey); mouth corner vertical height (Mh),
width (Mw), top lip openness (Mt) and bottom lip openness (Mb).

FIGURE 3 | Front-end control of robotic animated facial expressions.

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6188665

Lima et al. Robotic Telemedicine for Mental Health

152

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


were raised, and the mouth was slightly opened, by adjusting Mt

and Mb; lastly, the mouth width, Mw, was increased. Afraid and
surprised expressions were modified to avoid past confusion
between one another (Bazo et al., 2010), as both feature raised
eyebrows, opened eyes andmouth. Major modifications included:
for surprised, the DoF Mt and Mb were increased to their
maximum values and Mw decreased to the minimum; for
afraid, the eyebrows vertical height was raised (DoF Bhl and
Bhr) and the angles were slightly rotated (DoF Bal and Bar). Other
expressions were used as in previous work (Bazo et al., 2010;
Craig et al., 2010).

Intelligent Virtual Assistant
In order to extend the social robot’s autonomous interactive
capabilities and explore multimodal affective HRI, we developed a
virtual assistant powered by state-of-the-art IBM Watson (IBM,
New York, United States) cloud-based AI capabilities. These AI
cloud services have been used in past research in robotics and
computer science (Chozas et al., 2017; Novoa et al., 2018; Di
Nuovo et al., 2019). Overall, the implementation of the
multimodal architecture described below allows the robot to
emotionally interact with humans through voice, in addition
to simulated facial expressions, and adapt the displayed
emotion depending on users’ speech in real-time.

System Architecture
The system uses speech recognition algorithms, natural language
understanding (NLU), and the training data provided to simulate
a natural conversation. The cloud-based AI conversational
system was designed to interact with users through speech,
text, or both, maintaining a conversation in four different
domains of knowledge, i.e., skills, atomic programs that
represent a capability in a specific domain. The implemented
skills enhance the flow of conversation and lead the system to:

• Converse about the user’s emotional state.
• Entertain the user with a quiz on selected topics.
• Provide definitions of any concept the user asks about

(integration with Wikipedia3).
• Give local weather forecasts if requested (integration with

The Weather Company4).

To create natural, believable interactions between intelligent
virtual assistants and humans, understanding the context of
conversations is of utmost importance (Harms et al., 2018).
Therefore, for each dialogue skill designed several context
variables were programmed (i.e., information that is stored
during the dialogue), such as the user’s name, mood, time of
day, or location. These allowed a certain degree of
personalization, in that for each interaction the system
dynamically tailors responses to user preferences and mood.
Figure 5 shows an extract of a human-robot conversation,
including different dialogue skills, context variables and the
interface with the affective hybrid face robot (see Section
Implementation for further details). Our principal aim in this
investigation was to integrate the IVA system with the robot’s
affective framework and address feasibility of acceptance and
deployment. In future work we intend to introduce a knowledge
base with user profiles and implement machine learning to
personalize interactions over time.

Implementation
Several APIs were programmable combined and integrated
with the robot’s affective capabilities in the back-end system
by an orchestrator coded in Python. The main cloud-based
services used include: 1) IBM Watson Assistant to create a
dialogue flow, context variables, and provide training
data—intents and entities, the user goal and its context,
respectively; 2) IBM Tone Analyzer, which detects sentiment
from text; 3) Google Speech to Text to perform speech
recognition; 4) Google Text to Speech to generate the
robot’s voice with a relevant response.

The interface created in Python between the hybrid-face robot
and the IVA takes as input 13-integer strings via sockets UDP and
local IP address, which represent the 13 degrees of freedom for
each facial expression simulated by the robot. The default facial
expression simulated by the robot was defined as happy. The
orchestrator is therefore responsible to manage the flow of
conversation by 1) controlling the jump between several
dialogue skills and 2) adapting the robot’s facial expression
depending on users’ responses in real-time, which are analyzed
by IBM Tone Analyzer and sent to the robot’s software (e.g., if the
user says “I had a bad day” the robot will verbally reply while
displaying a sad expression). To trigger a conversation ‘skill’ and
subsequently a dialogue node, the IVA algorithm evaluates
intents, entities, and context variables included in the user
response. This process is done based on the confidence level,
i.e., the probability that the variable was correctly identified, with

FIGURE 4 | Optimized design of facial expressions simulated by the
robot. Major modifications were made for the disgusted, surprised, and afraid
robotic expressions with the aim of improving emotion recognition rates.

3https://en.wikipedia.org/wiki/Main_Page
4https://www.ibm.com/weather
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regards to the examples given when training the algorithm. The
confidence scoring (decimal in the range 0–1) is done
independently of previous utterances and its default threshold
is 0.35.

Figure 6 illustrates the four layers coordinated by the
orchestrator, which were designedly integrated to enhance
engagement in multimodal HRIs. The interface layer includes
APIs for communication (speech and text), the interface with the
robot’s software and control of facial expressions; it receives input
from the cognitive layer, which comprises the cognitive process of
understanding user inputs through NLU. This is algorithmically
achieved by recognizing intents, entities and context variables,
and by analyzing the emotion in user responses. Further, the
enrichment layer establishes communication with external
services to get information about the current weather (The
Weather Company and Python library geopy were used to
locate coordinates and provide weather forecasts), or general
definitions provided by Wikipedia. Lastly, the support layer is
responsible for all links with external services and APIs,
i.e., config files, and stores all the cognitive processes involved
in interactions, indicating intents, entities and context variables
recognized for each user response, their confidence level, or
possible errors encountered (i.e., application logs). The latter
were utilized for algorithm training using the Watson Assistant
platform so that the system could understand different natural

language syntaxes, adapt its responses, and retrain itself in case
the wrong intent was identified.

Evaluation of Human-Robot Interactions
with Healthy Participants
In order to evaluate interactions with the multimodal robotic
system proposed, we conducted a user study to assess emotion
recognition of simulated facial expressions and the user
experience in human-robot multimodal interactions. Ethics
clearance was obtained by Imperial College London Science,
Engineering and Technology Research Ethics Committee
(SETREC). Written informed consent was obtained from
participants.

Emotion Recognition Experiments
Recognition of Ekman’s basic expressions is a standard test to
assess the emotional abilities of an expressive robotic face
(Schiano et al., 2000; Breazeal, 2003). Therefore, an expression
recognition task was conducted with N � 15 healthy participants
(23–49 years, 3 female, 12 male) in the United Kingdom to
qualitatively assess the optimized design (Section Affective Hybrid
Face Robot) of the affective robotic face, particularly the
disgusted, afraid and surprised facial expressions. Participants
were given a list with the eight facial expressions and were shown
a sequence of the robot’s eight expressions (see Figure 4) of
approximately 5 s each. After each facial expression observed,
participants chose the best match from the given list, following a

FIGURE 5 | Section of a human-robot conversation transcript from testing with healthy participants in the United Kingdom. Various context variables ($) and entities
(@) are identified. These allow to 1) change dialogue skills (e.g., gather definitions from Wikipedia, start a quiz to entertain the user), and 2) simultaneously adapt the
robot’s facial representation of emotion according to the sentiment in user response, ultimately leading to more engaging and personalized interactions.

5https://cloud.ibm.com/docs/assistant?topic�assistant-expression-language
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forced-choice paradigm in line with research (Breazeal, 2003).
The hybrid face robot was shown both with and without the 3D
faceplate (see Figure 1) to address its likeability. After the task,
qualitative feedback was gathered from in-depth interviews to
understand how the design of robot’s facial expressions could be
adjusted for further experiments and address the overall
impression of the robot.

User Experience Experiments
A user experience questionnaire (UEQ) was used to evaluate the
multimodal robotic system. The UEQ matched those deployed
for measuring the user experience of interactive products
(Schrepp, 2015; Memeti and Pllana, 2018). Our testing was
completed with N � 10 healthy volunteers (21–59 years, 5
female, 5 male) who had never interacted with the hybrid face
robot but had previous experience with interactive technologies.
This study was implemented as a new experiment drawing on
findings from the emotion recognition task (Section Emotion
Recognition Experiments). It was conducted independently with a
different set of users to obtain entirely unbiased user experience
feedback. For instance, the additional 3D faceplate was not used
in this study as it was not perceived favourably in previous
human-robot interaction experiments, suggesting a potential
uncanny valley effect, induced when the faceplate was added
to the digital face (see Section Emotion Recognition). The main
goal of the UEQ is to evaluate the interaction and engagement
between participants and the robotic system. The UEQ used in
this study considers five aspects: attractiveness evaluates the
overall impression of the robot; perspicuity assesses the
difficulty level to get familiar with the robotic tool; efficiency
relates to the effort required to understand the robot’s emotional
responses; stimulation evaluates howmotivating and exciting is to
interact with the robot; lastly, novelty judges how innovative and
creative the robotic system was perceived by users.

Participants were seated in front of the robot and interacted
with it, through speech and visualization of simulated facial

expressions. The IVA system was activated in one laptop, and
a speaker was placed behind the tablet PC, where the robot’s
software runs. This allowed a better synchronization of the
robot’s mouth animation and the audio signal (dB), in such a
way that the robot is assumed to be the one speaking. Following
human-robot interactions, participants answered the UEQ.
Table 1 lists the questions used for each aspect in this UEQ
analysis. The Likert scale system (Boone and Boone, 2012) was
used in this method with a scale range from 1 to 5 (1 represents
the most negative answer, 3 a neutral answer, and five the most
positive answer). For the novelty aspect, participants were asked
to choose between two terms with opposite meaning, using the
same scale. Afterward, we conducted a short in-depth interview
with the aim of qualitatively understanding benefits of
multimodal vs. pure face or voice interactions. Specifically,
participants were asked whether they would prefer to verbally
interact with the virtual assistant (voice only), or with the
multimodal robotic system instead (speech integrated with
facial expressions).

Robotic Telemedicine for Mental Health
Support
The overarching goal in this study is to facilitate introduction of
the robot into practice for mental health and PwD support in
LMICs. We introduce a user-centred procedure for cultural
adaptation of the robot in the context of South India and
describe the infrastructure to deploy it as a telemedicine tool
to deliver regular cognitive engagement. The pilot study here
described is the first of its nature to explore the feasibility and
cultural acceptability of robotic telemedicine for mental health
and dementia support in India. This may be of particular
interest during and following the COVID-19 context to
alleviate end-user anxiety and loneliness, improve
engagement, and reduce the caregiver burden especially faced
during lockdowns.

FIGURE 6 | Proposed architecture design of the intelligent virtual assistant for engagement in multimodal HRI. Multiple cloud-based AI services were combined and
integrated with the robot’s affective capabilities in the back-end system by an orchestrator coded in Python. The orchestrator manages the flow of conversation and
adapts the robot’s facial representation of emotion in response to users’ speech in real-time. The orchestrator coordinates the interface, cognitive, support and
enrichment layers.
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Designing Infrastructure
Due to regional language barriers, the AI voice system integration
(Section Intelligent Virtual Assistant) was not suitable for clinical
experiments conducted at SCARF India. Hence, we designed a
test infrastructure to use the hybrid face robot as an assistive tool
to deliver meaningful cognitive engagement with PwD and
healthy older adults in Chennai, India. This infrastructure
gives medical professionals the remote control of robot’s
animated facial expressions and speech. The proposed
experimental approach may provide clinicians with an
alternative platform for remote therapy delivery and enhanced
mental health support of PwD, in particular that meets the cost
constraints and ease of use demands for utility in LMICs.

Figure 7 illustrates the experimental setup to conduct remote
cognitive engagement using the hybrid face robot, in the form of
Wizard of Oz experiments. PwD and clinicians were located in
separate rooms to emulate a remote therapy session. PwD was
seated in front of the hybrid face robot which was placed on the
table. An external webcam was placed right under the robot to
record PwD’s expressions and gaze, which will be used for further
analysis; video of the whole session was recorded to capture all
human-robot interactions. In a separate room, a laptop was used
by the clinician to remotely control the robot’s facial expressions
(see front-end control in Figure 3). The clinician spoke audio
over a Bluetooth wireless microphone connected with the tablet
running the robotic face to allow synchronization of the robot’s
mouth animation with the clinician’s speech. The two-way verbal
communication between PwD and clinician during cognitive
engagement sessions took place via an additional phone call
connection due to unreliable internet connectivity for smooth
voice over IP. The mobile phone in PwD’s roomwas placed out of
sight behind the hybrid face robot as shown in Figure 7 such that
participants assumed the voice came from the robot (Wizard of
Oz approach). This additional voice connection for two-way
communication was required because the robot’s ability to
communicate autonomously could not be used, as the regional
language in Chennai, India (Tamil) is not yet supported by the

IVA. Furthermore, we aimed to provide clinicians with an
alternative robotic platform to deliver meaningful cognitive
engagement to PwD remotely, which may be of special utility
in the COVID-19 era. However, our experimental approach is
applicable to other scenarios where in-person meetings with
clinicians are not feasible, necessary or desirable.

LMIC Pilot Testing in India
This study protocol: “Use of a Hybrid Face Humanoid Robot in
Dementia Care: A preliminary study of feasibility and
acceptability” was reviewed and approved by the Institutional
Ethics Committee (IEC) of the Schizophrenia Research
Foundation (SCARF) in Chennai, India. It was executed as a
part of ongoing experiments conducted at Dementia Care
(DEMCARES), a geriatric outpatient mental health service run
by SCARF. All participants were required to provide informed
consent before recruitment.

Cultural Acceptability and Emotion Recognition in Target
Population
The acceptability and cultural appropriateness of the hybrid face
robot was explored in South India through qualitative
interviewing techniques, such as focus group discussions and
in-depth interviews with people with dementia and caregivers,
professionals with experience in dementia care, and robotics
researchers. We present a user-centred procedure for
successful introduction of the new affective robot in different
cultures, which involves iterative adjustments based on a set of
user studies with healthy older adults and people diagnosed with
dementia. We further validate the robot and its facial
representation of emotions specifically in the cultural context
of South India.

We conducted a series of emotion recognition tasks with a
total of N � 14 PwD and N � 26 healthy older adults to assess
cultural appropriateness and recognition of robotic facial expressions
in South India. Two types of emotion recognition tasks were used.
Participants were first shown a sequence of culturally validated

TABLE 1 | Questions selected for the user experience questionnaire (UEQ) evaluating response to the multimodal robotic system. Questions were grouped to evaluate five
aspects: attractiveness evaluates the overall impression of the robot; perspicuity assesses the difficulty level to get familiar with the robotic tool; efficiency addresses the
effort required to understand the robot’s emotional responses; stimulation judges how motivating and exciting human-robot interactions are perceived; novelty relates to
how innovative and creative the robot was perceived by end-users.

Aspect Id Question

Attractiveness a1 What is your overall impression of the proposed robotic system?
a2 How useful do you find the possibility to communicate with voice?
a3 How attractive and friendly do you find the robot’s facial expressions?

Perspicuity p1 How intuitive are the robot’s emotions?
p2 How clear are the robot’s responses?
p3 How easy is it to communicate with the robotic system?

Efficiency e1 How efficient is the robot to convey emotion through speech and expressive faces?
e2 How practical are the robot’s answers or suggestions?

Stimulation s1 How exciting is to communicate with this robotic system?
s2 How interesting was the conversation/interaction?
s3 How much does the robot motivate you to have new interactions?

Novelty n1 Dull/creative
n2 Conventional/Inventive
n3 Usual/leading edge
n4 Conservative/innovative
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pictures of Indian people displaying facial expressions (Mandal,
1987), corresponding to those simulated by the hybrid face robot
(seeFigure 4). After each emotion observed, participants selected the
best match from the given list, following a forced-choice paradigm.
Then, the same procedure was followed using the animated facial
expressions displayed by the hybrid face robot. The recognition of
robot’s emotive responses was compared with the recognition of
validated Indian photographs of the corresponding emotions for the
two cohorts in India: healthy older citizens and people diagnosed
with dementia.

Application of Hybrid Face Robot in Dementia Care
Finally, beyond use for social engagement with older adults, we
wish to target feasibility of using the robotic platform as a
telemedicine system to support mental health, dementia care,
and eventually therapeutic intervention. As a basis for this utility,
three repeated sessions of remote cognitive engagement using the
hybrid face robot, of 30 min each, were conducted with a person
with dementia [67 years, male, vascular dementia diagnosis, CDR
rating 1 (mild) (Morris, 1991)] at SCARF in Chennai, India. The
aim was twofold:

(1) Exploration of the feasibility of such robotic system to be
used for cognitive engagement with PwD with regard to end-
user acceptance and clinician ease-of-use.

(2) Test system infrastructure in clinical settings to troubleshoot
potential technical problems, prior to planned trials and
larger scale deployment beyond the COVID-19 pandemic.

The test infrastructure (Section Designing Infrastructure) was
applied in a set of three robot-assisted cognitive engagement
sessions to a person with dementia using the telemedicine
interface. Beyond demonstrating the feasibility of the clinician-
robot-patient interface in telemedicine for mental health in LMIC
setting, we wish to generate initial data on the hybrid face robot as
an engagement tool with PwD in the cultural context of South
India. A Wizard of Oz approach was used during the three
sessions. Hence, a clinician located in a separate room

controlled the robot’s range of facial expressions and spoke
with the participant ‘through’ the robot (Figure 7). In a
separate room, the participant was seated in front of the
hybrid face robot. Interactions between the robot and
participant included: presentation of the robot, discussion of
newspaper articles, and listening to music. The following pre-
and post-measures were used to understand the effect of robot-
assisted cognitive engagement sessions on mood and
engagement, respectively: the face scale (7-item modified
version) (Lorish and Maisiak, 1986; Wada et al., 2005b) and
the observational measure of engagement (OME) modified
(Cohen-Mansfield et al., 2009), a tool to assess direct
observations of engagement in people with dementia. The
measures were observed by a trained nursing assistant who
was present with the participant during experiments. This
follows the standard technique described in (Cohen-Mansfield
et al., 2009). Repeated sessions were used to acclimatize the
participant to the robotic system and develop a level of
familiarity. Together with the pre- and post-measures, this
enabled a comprehensive comparison of user behavior and
engagement in repeated human-robot sessions. After each
session, qualitative feedback was collected from the person
with dementia, the nursing assistant, caregiver, and clinician.

RESULTS

Findings of Human-Robot Interactions with
Healthy Participants
Emotion Recognition
Table 2 shows the results obtained in a confusion matrix of
expression recognition accuracies. The values on each row
represent, for a single facial expression, the percentage of
responses of the forced-choice. Results showed improved
recognition rates compared to our past experiments [see (Bazo
et al., 2010; Wairagkar et al., 2020)] All facial expressions showed
high recognition rates above 70%. Participants perfectly identified
the emotions for happy and tired. Disgusted and stern showed the

FIGURE 7 | Setup for using the hybrid face robot as a telemedicine interface to deliver cognitive engagement to PwD in the cultural context of South India. PwD’s
room includes: tablet with hybrid face robot, webcam to capture participant’s emotions; Clinician’s room includes: laptop with robot’s control, Bluetooth wireless
microphone; phone 1 and phone 2 were used to troubleshoot two-way voice communication.
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lowest recognition rates (73.3%) and were often confused
between one another, which is in line with our past results.
Notably, the recognition rate for disgusted rose from 18.4% (Bazo
et al., 2010) to 73.3%. To a lesser degree, afraid was slightly
confused with surprised and sad. Afraid shared the elevated
eyebrows and opened eyelids of surprise, as well as the sparse
downward-curving mouth of sad, which may explain the
confusion. Nevertheless, recognition rates were high. In
particular, afraid showed an increase to approximately double
the recognition rate previously obtained, from 44% (Bazo et al.,
2010) to 86.7%.

Qualitative data from interviews indicates the need to adjust
some features for the happy expression to increase its likeability,
namely increase the eyebrows’ vertical height (Bhl and Bhr) and
show an open mouth (increase Mt and Mb). Though the tired
expression showed 100% recognition, participants reported some
confusion with stern and disgusted, which can be due to their
similarity of partially-closed eyelids and low eyebrows. Despite
the added human features, participants’ feedback indicated the
addition of the faceplate was perceived unfavourably and the
physical depth was poorly perceived. The majority (13 out of 15
participants) disliked the robot and its capacity to show facial
expressions when the faceplate was added. We hypothesize our
experiments lie on the downslope of the uncanny valley; at this
negative gradient, an increase in human likeness (e.g., added
faceplate) worsens the human response toward the robot as its
partial human appearance moves toward the minimum in the
valley. Adding the 3D faceplate to the robot’s digital face appears
in this context to induce a stronger uncanny valley effect, which
we have considered in subsequent human-robot experiments.

User Experience of Multimodal Human-Robot
Interactions
Results from UEQ analysis are shown in Figure 8. An overall
positive impression of the multimodal robotic system by healthy
participants is shown. On average, the novelty and stimulation
aspects have received the most positive ratings. Notably, all
respondents consistently considered the robot as a creative
and inventive robotic platform (n1 and n2) and showed
enthusiasm in having new interactions with the robot (s3).
The attractiveness aspect showed positive responses.
Particularly, 70% of respondents found the possibility to
interact with voice extremely useful (a2). The lowest rate
within this aspect corresponded to the robot’s design (a3 with
20% neutral answers), which may suggest that our design choice

of a simplistic robotic face (with only four facial features) is not
sufficient to elicit trust and acceptability in HRI. Regarding
questions about perspicuity, there was an overall easiness in
interacting and getting familiar with the robot and 90% of
participants found the robotic platform easy to use (p3). The
efficiency aspect showed the less positive answers (e1, e2) and
20% of participants claimed difficulty identifying the emotion
conveyed by the combination of robotic speech and facial
expression. In post experimental interviews, all 10 participants
reported a strong preference for the multimodal system over pure
voice communication, which turned interactions and the overall
user experience more “enthusiastic”. Particularly, the robot’s
ability to adapt its animated facial representation of emotion
in response to user speech in real-time stood out.

Cross-Cultural Pilot Testing
Cultural Acceptability and Emotion Recognition
We have investigated cultural acceptability and feasibility of using
the hybrid face robot to support dementia care in India. The
overall perception of stakeholders was positive. The preliminary
indications are promising as the robot was considered a viable,
low-cost and culturally appropriate tool to assist in clinical
cognitive engagement with healthy older adults (healthy
control—“HC”) and PwD in India. Stakeholders concurred
that the possibility of using a hybrid face robot for remote
cognitive engagement can potentially help in meaningful
engagement of people with dementia at home and also
alleviate the perils of social isolation. Plans to deploy the robot
as a remote platform to deliver regular cognitive engagement with
more participants are underway. Ultimately, these findings
suggest the use of this mechanically simple robotic platform
for remote cognitive engagement may enhance mental health
care and mitigate the impact of COVID-19 on people with
dementia.

Emotion recognition experiments with healthy older adults
and PwD aimed to assess cultural appropriateness of the hybrid
face robot’s simulated facial expressions. Recognition rates of
human pictures were similarly high for PwD and HC for all
emotions except for afraid, which was well recognized by HC but
showed an accuracy below 50% for PwD.We found accuracies for
all robot’s simulated facial expressions were lower than expected
(between 14 and 62%), with similar values for both PwD and HC.
Afraid, angry and disgusted expressions showed the lowest
accuracies (between 14 and 20%) for both testing cohorts.
Emotions with subtle differences such as surprised and afraid

TABLE 2 | Expression confusion matrix for the hybrid face robot (% of total per presented expression). Bolded values indicate the % of correctly identified emotions.

Happy Stern Angry Disgusted Surprised Afraid Sad Tired

Happy 100 0 0 0 0 0 0 0
Stern 0 73.3 0 20 0 0 0 6.7
Angry 0 0 93.3 6.7 0 0 0 0
Disgusted 0 20 6.7 73.3 0 0 0 0
Surprised 0 0 0 0 93.3 6.7 0 0
Afraid 0 0 0 0 6.7 86.7 6.7 0
Sad 0 0 0 0 0 6.7 93.3 0
Tired 0 0 0 0 0 0 0 100
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were regularly transposed in user perception. The major
difference between the two control groups was observed for
the happy expression: double recognition value was obtained
for HC. Hence, a discrepancy was observed between cultural
recognition of human emotions vs. robotic simulated expressions,
however both PwD and healthy older participants perceived the
robot’s facial representation of emotion comparably. Results from
recognition of robot’s simulated emotions in Chennai, India are
in contrast to the high emotion recognition rates obtained with
healthy, younger participants in the United Kingdom (Section
Emotion Recognition). Recognition may show differences due to
age, cultural context, and cognitive state. Hence, expressions of
the hybrid face robot should be adapted accordingly for use in
South India to maximize long-term user engagement and
compliance.

Pilot Testing Remote Cognitive Engagement for
Dementia Support
We piloted repeated sessions with one person diagnosed with
dementia as a test of the infrastructure to deliver cognitive
engagement in regular sessions. We investigated feasibility of
using a mechanically simple, low-cost robotic platform as a
robotic telemedicine system to support mental health,
particularly in the cultural context of South India. The
participant enjoyed interacting with the robot in all three
sessions and his mood was rated “very happy” on the pre and
post measures of the modified face scale before and after each
session, respectively. As shown in Table 3, results from the OME
showed a trend of longer duration of engagement with the robot
from session 1 (9 min 35 s) to session 3 (18 min 1 s). The
participant had no difficulty talking to the robot as assessed by
OME “Talking to robot” measure, which received the highest
possible score of engagement in all three sessions. Furthermore,
the participant was never disruptive during any of the sessions as

shown by the lowest possible score received on OME “Disruptive”
measure (Table 3).

We identified the main areas of technical difficulties and
potential improvements for the next planned trials: 1) network
connection, which resulted in lags and distortion of voice during
remote human-robot sessions; 2) dependency of same network
for clinician and PwD; 3) problems in streaming music; 4) lack of
a synthetically generated robot’s voice instead of a recognizable
human one, which may interfere with participants’ acceptability
of the robot. As observed by the nursing assistant, these technical
issues often resulted in distraction, impacting participant’s
engagement, yet the advantages of robot-assisted cognitive
engagement with PwD were acknowledged. The caregiver
reported a positive impression of using the hybrid face robot
as a telemedicine tool for cognitive engagement and perceived it

FIGURE 8 | Analysis of the user experience questionnaire. The vertical line marks neutral answers. All positive answers of the 5-point Likert scale are shown on the
right with correspondent %. Negative answers and each % are shown on the left side.

TABLE 3 | Results from the observational measure of engagement (OME)
modified, which considered the following parameters to assess engagement
during robot-assisted clinical sessions: participant’s attention on a scale of 1 (very
disruptive) to 7 (very attentive); attitude to stimulus rated on a scale of 1 (very
negative) to 7 (very positive); duration of engagement (time until not interested);
frequency rate, 0 (none) to 3 (most or all the session), of talking to the robot,
talking about the robot with the nursing assistant, being disruptive or
distracted. The measures were observed by a trained nursing assistant.

Measure Session 1 Session 2 Session 3

Attention Average 7 6 5
Highest 7 7 7

Attitude Average 4 4 3
Highest 6 4 4

Duration of engagement 9 min 35 s 10 min 47 s 18 min 1 s
Talking to the robot 3 3 3
Talking about the robot 0 0 0
Disruptive 0 0 0
Distracted 0 1 2
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as a technology to help with her husband’s condition. The
clinicians who conducted cognitive engagement sessions
commented that the use of affective robotic platforms for
engaging persons with dementia, who otherwise are unable to
participate in many activities due to the restrictions imposed by
pandemic scenarios, holds significant promise. Further work will
be necessary to identify factors that will facilitate the use of
robotic platforms as a means of telemedicine and develop
methods to overcome potential barriers.

Overall, our results demonstrate remote cognitive engagement
is feasible with PwD in India using the hybrid face robot as a
telemedicine tool. The user-centred design and testing procedure
followed with 14 PwD and 26 older adults interacting with the
robot, in addition to repeated trials of remote cognitive
engagement with one PwD through repeated sessions, provides
a basis for deployment with larger participant cohorts. The
robotic system may be used as an alternative platform to assist
clinicians and support dementia care, which may be especially
useful in times when social and medical support of PwD is
limited, such as during and beyond the COVID-19 pandemic.

DISCUSSION

We have introduced a multimodal affective robotic framework to
enhance engagement in HRI with capacity to deliver robotic
telemedicine to support mental health and dementia care during
and beyond the COVID-19 context. We summarize the main
findings of the study, their implication for future research and
larger scale telemedicine deployment. We also outline the
limitations of our investigation and highlight future directions.

Summary of Findings
At a time of unprecedented overwhelming of global health
systems in face of the COVID-19 outbreak, limited social and
medical support is delivered to older adults and people living with
dementia, who face greater isolation than ever before. Social
robots hold significant promise to support mental health and
may provide end-users with complementary assistance to
stimulate interaction, alleviate anxiety and loneliness, in
addition to reducing the caregiver burden, which is a critical
need during and after the COVID-19 context. While user trust,
complexity and expense of socially assistive robots is a challenge
in any setting, we believe there is a larger gap of both resources
and targeted research in LMICs. Cultural differences—which
influence compliance—as well as technical challenges and cost
need to be addressed. In this work, we make progress toward
these challenges. In summary, contributions of this investigation
include: 1) the robot’s software design optimization; 2) emotion
modeling; 3) integration of autonomous conversation capability;
4) testing of the multimodal robotic system with healthy
participants in the United Kingdom; 5) validation of the
modified robot and its telemedicine interface with older adults
with and without dementia in the cultural context of South India.

Our study demonstrates feasibility and cultural
appropriateness of robotic telemedicine for mental health
support in India. One of the major findings of our study is

that cultural adaptation of a social robot is critical—we propose a
user-centred procedure that may be followed for successful
introduction of a new affective robot in different cultural
backgrounds, which involves iterative adjustments based on a
set of validation experiments with target users (Section Robotic
Telemedicine for Mental Health Support). The user-centred
procedure followed with 14 PwD and 26 healthy older adults
interacting with the robot in South India, in addition to a set of
repeated cognitive engagement pilot sessions with one person
with dementia, provides a strong foundation for subsequent
clinical use.

Our approach for robotic affective communication offers
novelty in its mechanically simple, low-cost and multimodal
design. We propose it as clinically useful and culturally
appropriate technology to deliver cognitive engagement for
dementia support in LMICs, particularly in India. Therefore,
this social robotic platform may result in a potential telemedicine
solution for mental health support of vulnerable populations, not
only in the COVID-19 era—which presents a unique opportunity
to introduce the robotic system, bringing familiarity with the
technology, which may enhance acceptability and compliance in
the near future—but also in scenarios where in-person patient-
clinician sessions are not logistically feasible or desirable.

Design Implication and Cultural Adaptation
We optimized the software design and control system of a hybrid
face robot comprising an animated digital face that simulates
facial expressions based on mathematical affect space emotion
mapping with a 3D faceplate to convey realism and depth. This
led to considerably higher emotion recognition accuracies than
earlier implementations of this style of robot (Section Emotion
Recognition). More specifically, accuracies above 90% were
obtained for happy, tired, sad, angry, surprised and stern/
disgusted robotic simulated facial expressions. When
separated, stern and disgusted were occasionally mistaken for
one another (70%+ accuracy overall) but were easily
distinguishable from all other simulated emotions.
Furthermore, we have ported the entire robotic system to an
inexpensive tablet platform. This highlights the flexibility and
adaptability in design of the hybrid face robot, which we have
identified as a key feature for cultural usefulness in India. By
integrating the robot’s facial expressions with an autonomous
conversational engine, we demonstrated real-time adaptable
emotion of the robot in response to users’ speech in HRI
experiments with healthy participants in the United Kingdom.
Although participants did not interact with the robot with
different modalities (i.e., speech with and without integration
of the robotic expressive face), there was a strong user preference
for multimodal over pure voice communication.

To understand the cultural differences in recognition of
robot’s simulated emotions, we conducted a series of
expression recognition tasks with PwD and healthy older
citizens in South India. Despite the increased recognition
accuracies obtained from younger participants in the
United Kingdom, we observed lower recognition rates for all
facial expressions simulated by the robot in India. One potential
explanation is the fact that young participants might be more
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familiar with robotic faces and digital characters, such as
emoticons, than older adults tested in India. These findings
are very intriguing as a basis for direct comparison between
cultural perception of affective emotion. Testing on a wider
cohort with parallel controls on subject age, experience with
interactive technologies, and possibly education represents a very
promising area for future work. In our experiments, we further
observed differences between healthy older adults and PwD in
India were marginal except for the happy expression, for which
double recognition was obtained for the healthy control group.
These results inform the cultural acceptability of the robot. As
PwD are from the same culture, this allows us to infer that
problems with acceptability are unlikely due to the cultural
influences but rather due to the effects of cognitive
impairment in dementia. Regardless of the current precision of
facial expression recognition, stakeholders were positively
disposed toward using the robot.

Although further investigation is needed, these studies suggest
that emotion recognition of affective robots and the overall
effectiveness of HRI are influenced by culture, age, cognitive
ability and familiarity with similar technologies. We argue the
expressiveness of social robots must be adapted to the culture they
will be deployed to following a user-centred and iterative
approach to ensure effectiveness, user acceptability and
compliance.

Robotic Telemedicine Beyond COVID-19
While our investigation of human-robot multimodal interactions
with healthy participants in the United Kingdom yielded
promising results, the AI voice system would need to support
regional languages for fully autonomous use in India. Hence, we
have designed an alternative test infrastructure to deploy the
hybrid face robot as a telemedicine interface to deliver cognitive
engagement in regular sessions (Section Designing
Infrastructure). In our set of user-centred validation studies,
including focus group discussions with stakeholders and
emotion recognition experiments with 14 PwD and 26 healthy
older adults, we identified the hybrid face robot as a feasible,
culturally appropriate, and low-cost telemedicine system to
support mental health in India. Additionally, we have piloted
repeated sessions with one person with dementia as a test of the
infrastructure to deliver cognitive engagement in regular sessions.
Finally, we have proposed a protocol to introduce the robot for
use with PwD and acclimatize the participant to the robot which,
through repeated sessions, was received favourably by the
participant in experiments, paving the way for further use.

We argue remote cognitive engagement assisted by such
robotic platform is feasible with PwD in the cultural context
of South India. We observed a trend of increased duration of
engagement with the robot from the first to last session, and no
alterations in PwD’s mood before and after each session. Positive
feedback was obtained from the caregiver and clinician present in
robot-assisted sessions. Particularly, the clinician indicated strong
promise in using social robotic platforms as a means of
telemedicine for dementia support; the caregiver also perceived
the robot as a technological tool to help with her husband’s
condition. As no similar study has been previously conducted in

the literature, this work may provide useful insights into testing
and adjusting a hybrid social robot for cognitive engagement with
PwD in the cultural context of India and lay the foundation for
future telemedicine deployment. This technology may be of
special utility, but not limited to dementia support in the
COVID-19 era. While the system could be used for other
psychological disorders, we wish to establish some veracity
through dementia and mental health support of older adults,
who are facing more isolation than ever before.

Limitations and Future Work
Limitations of the AI conversational system integration were
acknowledged pointing toward the need for a more natural and
unstructured dialogue, and adaptation for mental health
applications, e.g., to guide cognitive stimulation therapies for
older individuals and PwD. One potential way of increasing trust
and acceptability of the AI voice system among the target
population is to include different voices and speaking styles.
Future improvements of the system architecture should
include more training data, i.e., intents, entities and context
variables, in the attempt to step beyond a conversational flow.
This is a common drawback of existing dialogue systems
(Fitzpatrick et al., 2017; Harms et al., 2018). Nevertheless,
great efforts are being made in this promising research field to
create natural ‘human-like’ conversations (Harms et al., 2018;
Griol et al., 2019)6, including the exploration of conversational
robots and voice-based systems for supporting cognitive impaired
individuals (Cruz-Sandoval et al., 2020; Pou-Prom et al., 2020;
Salichs et al., 2020). A possibility for future work is to use the
camera of the tablet PC running the robot’s software to
automatically recognize user emotions. A thorough analysis
combining emotion detected from camera, speech and natural
language processing could ultimately allow the robot to sense the
user’s mood, behavior and personality traits and adapt its
response (verbal and nonverbal) in the most appropriate way
based on that multimodal feedback, in real-time. Future studies
may also use machine learning to adapt behavior to each user over
time, which is key for long-term compliance.

One fundamental limitation of the pilot study conducted in
India using the robotic telemedicine interface was that only one
person with dementia participated. These experiments were
logistically very challenging; one of the major drawbacks
identified was the screening of patients due to the resources
and time available. The main limitation of the experimental setup
created for remote cognitive engagement (Section Designing
Infrastructure) is that both PwD and clinician are required to
be connected to the same internet network.We identified lags and
distortion of voice during remote clinical sessions as the main
technical issue to solve for next trials, in order to ensure
maximum engagement. Although the nursing assistant
indicated distraction of PwD when technical issues occurred,
the participant was overall attentive and enjoyed interacting with
the robot. Future experiments could quantify engagement with
the robot, with more participants, different types and stages of

6https://www.research.ibm.com/artificial-intelligence/project-debater/
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dementia. Furthermore, for a more direct and rigorous
assessment of cultural differences in recognition of robot’s
simulated emotions, stricter controls would be needed for
subject age, experience with interactive technologies, and
cognitive ability. Education level of participants, which may
impact acceptability and compliance, could also be used as a
metric to be monitored in larger testing cohorts. Future clinical
trials and wider deployment could also include end-user training
sessions to fully judge the system capability, which may improve
its performance.

Finally, aiming to improve robustness, ease of use, availability
and scalability of the current system, we have also developed a
mobile app working in a similar fashion to the hybrid face robot,
as a digital affective robotic platform. Our new mobile-based face
robot will allow communication between clinicians and PwD via
mobile, without restrictions on location. Even in its current form,
our robotic framework provides a more accessible tool to deliver
cognitive engagement in LMICs, with potential for positive
impact in mental health and dementia care, during and
beyond the COVID-19 pandemic. Plans for deployment in
India are underway, specifically through robot-assisted
telemedicine sessions with older adults and PwD.

CONCLUSION

The major contributions of this paper are the development,
implementation and pilot testing of a multimodal robotic
framework that emotionally interacts through facial
expressions and speech to enhance engagement in human-
robot interactions. We qualitatively identified the benefits in
user engagement of multimodal vs. pure voice communication.
We modified this robot further to provide clinicians with a
telemedicine interface to deliver regular cognitive engagement,
which may be of great utility during and beyond the COVID-19
era. We followed a user-centred design of the robot to ensure it
meets the cost constraints and ease of use demands for utility in
LMICs, in addition to cultural acceptability. We found cultural
validation of a social robot is paramount and introduced a
procedure that may inform future studies for engaging
human-robot interactions in local cultures. We successfully
introduced the modified hybrid face robot into practice for
dementia support in LMICs through a pilot study. Results
revealed robot-assisted cognitive engagement sessions are
feasible in India (and more broadly LMICs), and a trend of
longer duration of engagement with the robot was observed
through our protocol to introduce the robot to people with
dementia in the cultural context of South India. Moreover,
clinicians, PwD and caregivers indicated strong promise in
the use of this social robotic platform as a means of
telemedicine for dementia support in India. Hence, we
propose it as an alternative or complementary technological
solution to deliver cognitive engagement and enhanced
mental health support to older citizens or PwD, during and
beyond COVID-19. Plans for deployment in telemedicine
sessions specifically motivated by the pandemic are currently
underway.
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Covid, AI, and Robotics—A
Neurologist’s Perspective
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Two of the major revolutions of this century are the Artificial Intelligence and Robotics.

These technologies are penetrating through all disciplines and faculties at a very rapid

pace. The application of these technologies in medicine, specifically in the context of

Covid 19 is paramount. This article briefly reviews the commonly applied protocols in

the Health Care System and provides a perspective in improving the efficiency and

effectiveness of the current system. This article is not meant to provide a literature

review of the current technology but rather provides a personal perspective of the author

regarding what could happen in the ideal situation.

Keywords: artificial intelligence, robotics, COVID-19, telemedicine, neurology, AI, neurologist

INTRODUCTION

Despite being one of the best healthcare systems in the world, our healthcare system is still highly
inefficient, suboptimal, and redundant. From the time a person enters the hospital to the time he
gets discharged, inefficiencies can be noted at every nook and corner. These inefficiencies lead to
poor patient care, creation of scut work for the caregivers, poor infection control, guess work in
medical management, inaccuracies in test reporting, waste of resources and very poor judgement
when it comes to spending the health care dollars.

If the working machinery is of poor quality, no matter how good an operator you hire, the
productivity of the machines will still be as good as the machinery employed. Unfortunately, this
applies to the health care system not only in Canada but around the world. Instead of changing
the machinery we keep replacing the operators. That’s the big reason we have not been able to
revolutionize health care. All we have kept doing is presenting the same machines in newer and
more attractive packaging. The machines are still the same.

Case Study
Let me start with a story. This is not a real story but brings you very close to reality. This is the
story of so many patients that I see in the hospital. Being a neurologist, I will mold the story to fit
a patient coming in for a neurological condition. For the understanding of the lay public let’s start
with a diagnosis familiar to most people—a seizure. So, this is the story of a patient who presents to
the hospital with a new onset seizure.

Case Review
Nora’s husband got woken up at 2 a.m. on July 29th, 2020 when he heard “a deep scream” and
found that Nora was convulsing, foaming from her mouth and unresponsive. She appeared gray
and started breathing heavily. He called 911. Emergency Medical Team (EMT) were there within
10min and after providing urgent care took her to the nearest emergency room. Nora was awake
but somewhat disoriented by the time she arrived at the emergency room. She was triaged within
10min but waited for another 2 h before seeing a physician. She followed simple commands, but
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her husband said that she was still “off and not back to the
baseline.” The doctor from the rural emergency room called the
neurologist on call who suggested a computerized tomography
(CT) scan of the head, a spinal tap and a load of 1,000mg of
intravenous Phenytoin. CT scan was done after 2 h followed
by the spinal tap. It was 4 p.m. the next day before the
tests results were available and reported normal. Nora had
another witnessed seizure. The emergency room (ER) physician
loaded her with another 500mg of Phenytoin and transferred
her to the University Hospital. Patient was seen within an
hour by the casualty officer (CO). She did not seem to have
any obvious seizures. Neurology resident was consulted at 11
p.m. the next day and completed the consult by midnight the
following morning.

Patient was reviewed by the staff neurologist the
following morning. Although she was awake and partially
responsive, she was still confused and disoriented. An urgent
electroencephalogram (EEG) was requested which showed
that the patient was in non-convulsive status epilepticus. At
this time the patient was given an extra load of Phenytoin
and the intensive care unit (ICU) ICU team was consulted.
EEG was still running and showed recurrent electrographic
seizures. Patient was given a load of Propofol and admitted
to ICU. Since there were no respiratory symptoms and the
chest Xray was normal she was not isolated. Blood was sent
for CBC, LFTs, COVID PCR, CRP, and electrolytes. An MRI
was requested for the morning. The COVID test came back
positive. The neurologist, neurology resident and five other
medical house staff were asked to self-isolate for the next
14 days due to exposure to a patient who tested positive
for Covid.

The next day Propofol was tapered off and Nora was alert
and oriented. She stayed in the hospital for an additional 4 days.
During the hospital stay she got daily CBC and electrolytes,
vital signs and neurochecks were done twice a day, she had two
additional chest x-rays in the context of the positive COVID.
Her MRI came back normal. On a daily basis she was seen
by her nurses every shift, seen by the neurology resident and
staff, met personnel from the dietary service who provided the
food, and was once evaluated by the physiotherapy service.
She was finally discharged on August 6th with instructions
about safety and driving and a follow-up by a neurologist
in 3 months.

While writing the above case I have significantly simplified
the course taken by a usual patient. A typical patient
will go through a way more tedious process to get the
above care and typically significantly more health resources
are used to provide the above care. Now before I share
my thoughts on how to improve the status quo I invite
the reader to pause right here and write down a list
of changes they would like to see in the care of this
patient. I specifically suggest imagining the applications of
artificial intelligence and robotics not only because of the new
reality of Covid but also to better streamline the healthcare
system, optimize health delivery, ensure safety of the health
providers and best use of all the information collected on
this patient.

DISCUSSION

As I look at this case and hundreds of cases that are triaged,
investigated and managed all over the country on a daily basis,
I ponder “if things could be different” had we used artificial
intelligence, machine learning, and robotics much more wisely.
Let me be more specific. We cannot improve a system if we are
unable to measure the success of that system. The definition of
success is a philosophical one and in general success is defined
as success based on the community norms. For our healthcare
system, in-part, I define success of a system based on whether the
following quantitative and qualitative outcomes are achieved:

1. Reducing morbidity and mortality related to
specific diagnosis.

2. Reducing healthcare costs within affordable budgets.
3. Patient and family satisfaction.
4. Sustainability of the system.
5. Reducing wait times.

A paradigm shift in health delivery requires resources, and
resources can come from proper budgeting. For long term
benefits we will have to start thinking about the cumulative costs
over decades rather than getting overwhelmed by instantaneous
expenses. In the following few paragraphs, I would like to present
an alternative to the current model and propose that such
a change can make our healthcare system significantly more
efficient and effective. Please be mindful that due to space and
time constraints, I have significantly abbreviated and simplified
my suggestions and thoughts.

HOME HEALTH
MONITORS/PERSONALIZED MEDICAL
ROBOTS

Compact devices could easily be designed, where a single device
monitors your blood pressure, heart rate, blood glucose, reads
and reports your electrocardiogram (ECG), detects heart attacks
and cardiac arrhythmias, monitors your oxygen saturation,
identifies and classifies dysarthria or aphasia based on machine
learning and even assesses your gait with a smart camera. The
device would also be able to provide first aid instructions. This
robotic device would come to you on wheels if it detects any
concern linked to your wearable device. These devices will have
a Bluetooth or Wi-Fi connection with your cell phone and will
enable you to call 911 and immediately transfer critical medical
data to the EMS who are en route to your home. This will
save significant time and help EMT make proper triaging and
urgent plans.

Medical Ambulances
Getting ambulances to rural settings in time is always a challenge.
This issue can be potentially resolved by creating rural ambulance
sub-stations with self-driving ambulances that will carry patients
to a main ambulance station staffed with humans. This will cut
down the commute to the hospitals. Because of low traffic in rural
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communities, self- driving ambulances will be useful for patients
who can be accompanied by a family member or friend.

With Covid or any other contagious disease, the safety of
paramedics is essential. This can be compromised if the EMT sits
too close to the patient monitoring the vitals during the ride to
the hospital. Medical robots can easily monitor cardiac functions
and vitals while the EMT can sit in a separate chamber avoiding
exposure to any contagion.

CT scans have already been deployed in ambulances. What
if the scanners are equipped with AI technology for identifying
potentially salvageable tissue in stroke patients? This will
significantly shorten the door to needle time, saving, and
improving more lives.

Triaging in the Emergency Rooms Using AI
Technology
One of the worst nightmares of many patients in the emergency
rooms is the never-ending wait time. AND the reason for the
waits is lack of personnel. The question is, do we really need a
human interface to triage patients in the emergency rooms? This
could be very easily done by self-serving kiosks as are seen on
airports for checking-in. These kiosks could be equipped with
statistical learning technology to properly triage and prioritize
patients and inform the attending physicians about the urgency
of the situation. At the same time the specialist on call can be kept
up to date about the ER visits of patients related to their fields of
expertise. IMAGINE how much time can be saved if the triage
monitors in the ER communicate directly to the monitors in the
on-call rooms.

When Patients Are Admitted
People/patients get hospitalized for one or combination of
the following reasons: To make a diagnosis, for investigations,
treatment and supportive care and placement in a safe setting.
Once the patient is admitted, there can be a lot of roadblocks
for timely investigations and discharge planning. The triaging
of requests for investigations is subjective to some extent.
Developing AI based algorithms that are reviewed by radiologists
may provide a more objective way to order tests. Routine
blood work these days has become random blood work. If all
investigations that are ordered on a daily basis were to be justified,
the ordering physicians will be in serious trouble. And this
adds up to the costs of the healthcare system. There have to
be AI monitored statistical protocols for ordering investigations
that will ensure that appropriate investigations get carried out
on a timely basis and inappropriate redundant investigations
are eliminated.

In the context of infection control, robotics can play a
significant role in patient care. Daily patient rounds can be easily
carried out by robots with a screen that shows the doctors face
to the patients. It is a short distance telemedicine. Telemedicine
does not have to be distant locations. Telemedicine can be used
across the hall to maintain social distancing.

Discharge Planning
AI can play an excellent role in discharge planning. Instead of
writing random clinic notes, the healthcare providers will be

required to provide object-oriented notes. This information will
be fed into a master database that will provide a daily update on
the roadblocks to discharging a patient.

Patients who may require a long-term care or placement will
be identified earlier instead at the time of discharge.

Clinic Visits
One of the shortcomings of the clinical care system is that in
this day and age humans are still involved in data collection that
could be easily done otherwise. We need to have a system in
place where all relevant clinical information is collected by an
automated system that also uses the tools necessary to make a
diagnosis and devices a treatment plan based on evidence-based
medicine. Humans will play a role in ensuring that there are no
shortfalls to the system. The automated system will be able to
counsel patients and can even be designed to show empathy at the
right time. All follow ups will be at the patient’s own home if they
operate a computer or to digital clinics if they require technical
help. Humans can still play a role in clinical examination until
that time that proven technologies also overcome this barrier.

APPLICATIONS OF AI AND ROBOTICS IN
CURRENT USE

Although the current use of AI and Robotics is far from
ideal, there are already many frontiers which have successfully
employed these technologies and are striving for an optimal
model. In the following two paragraphs I will discuss some
literature pertaining to this subject, briefly touching on our own
work in the use of AI in diagnostic radiology.

A complex experiment always starts from a simple one. In
order to identify complex pathologies in neuroimaging one has
to be able to identify the normal anatomy. This was the basis of
our initial experiments to segment and identify corpus callosum
on the mid-sagittal sections of the brain MRI (Li et al., 2013).
We subsequently worked with different classification techniques
to automatically identify various epileptogenic lesions on the
MRI of the brain including focal cortical dysplasia (Wang et al.,
2020), cavernous malformations (Wang et al., 2018), and mesial
temporal sclerosis (Wang et al., 2019). These techniques can be
potentially be implemented in remote settings where there is
no access to neuroradiologists for timely interpretation of the
studies. The same technique can be expanded to other regions of
the human body to compliment the radiologist for an expedited
reporting system. Pathologists have also been using AI techniques
to classify and identify cancerous cells as a pre-screen before a
more thorough and meticulous review (Brinker et al., 2021).

Robotics have dramatically changed the landscape of
diagnostic and therapeutic applications of stereotaxic
neurosurgery. Robotic frameless neurosurgery has exponentially
cut down the time employed to completing the procedure and
also minimizing the contact between the surgeon and the patient
as well as with the other support staff. Robotic stereotactic
surgery has become a routine in many affluent north American
hospitals with excellent results and in fact with improved
accuracy (Dorfer et al., 2020).
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Robotic telerounding employs a wheeled robot controlled by
the physician. The face of the robot is visible on the robotic
screen. Such robots have been employed for rounding in the
Intensive Care Units and acute stroke units (Garingo et al., 2016).
My vision will be to have such robots in each and every hospital,
specifically in wards that deal with contagious and infectious
diseases such as COVID. With the existing commercially
available devices this would be an expensive undertaking.
However, cheaper models can easily be manufactured on a large
scale. I believe the lives of hundreds of health care workers could
have been saved if such robots were already available during the
COVID pandemic.

FANTASY VS. REALITY

One of the biggest impediments in progress is the idea that
“it cannot be done.” If you can imagine it, you can do it.
Execution only follows imagination but otherwise is merely
a random motion. The kind of medical progress that we
have seen in the past 50 years would have also sounded like
a sci-fi movie to those before those times. MRI scanning,
functional MRI, gamma knife, stroke ambulance, clot retrieval
after a stroke, laser epilepsy surgery, functional brain mapping,
robotic stereotactic brain surgery, monoclonal antibodies for
cancer treatment, capsule endoscopy, deep brain stimulation
for movement disorders, exoskeletons for paraplegics, bionics,
vagas nerve stimulators for epilepsy, artificial heart, organ
transplantation, cardiac defibrillator device, cardiac pacemakers,
artificial plasma, plasmapheresis, treatment with IVIG are just a
few of hundreds of other examples.

If self-driving cars are possible, self-driving ambulances are
just a step forward. When I was in the medical school almost

30 years ago, there was not much that could be done if a person
had a stroke. Just see how much things have changed. Starting
from intravenous tissue plasminogen activator, to intra-arterial
treatment, then from intra-arterial treatments to clot extraction.
People who would have been disabled for life are nowwalking out
of the hospital in a few days.

I ask the readers to attend to this article with an open mind
that looks at the light ahead of us. If we close our eyes, all we will
see is darkness and hopelessness.

CONCLUSION

A well-known saying goes that if you keep doing the same
thing over and over again, you cannot expect a different
result. To improve our health care system during Covid 19
and once the pandemic is over, we need to implement some
dramatic measures, and we need to start thinking about a
workable strategy immediately. AI, robotics and telemedicine
provides a unique platform to device change. To bring
about a universal change we need to start thinking at the
highest administrative levels with well-defined timelines and
achievable milestones.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

This article was conceived, written, and formatted by SNA.

REFERENCES

Brinker, T. J., Schmitt, M., Krieghoff-Henning, E. I., Barnhill, R., Beltraminelli,

H., Braun, S. A., et al. (2021). Diagnostic performance of artificial intelligence

for histologic melanoma recognition compared to 18 international expert

pathologists. J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2021.02.009. [Epub

ahead of print].

Dorfer, C., Rydenhag, B., Baltuch, G., Buch, V., Blount, J., Bollo, R., et al. (2020).

How technology is driving the landscape of epilepsy surgery. Epilepsia 61,

841–855. doi: 10.1111/epi.16489

Garingo, A., Friedlich, P., Chavez, T., Tesoriero, L., Patil, S., Jackson, P.,

et al. (2016). “Tele-rounding” with a remotely controlled mobile robot

in the neonatal intensive care unit. J. Telemed. Telecare 22, 132–138.

doi: 10.1177/1357633X15589478

Li, Y., Mandal, M., and Ahmed, S. N. (2013). Fully automated segmentation of

corpus callosum in midsagittal Brain MRIs. Annul. Int. Conf. IEEE Eng. Med.

Biol. Soc. 2013:5111–5114.

Wang, H., Ahmed, S. N., and Mandal, M. (2018). Computer-aided

diagnosis of cavernous malformations in brain MR images. Comput.

Med. Imaging Graph. 66, 115–123. doi: 10.1016/j.compmedimag.2018.

03.004

Wang, H., Ahmed, S. N., and Mandal, M. (2019). Computer aided detection

of mesial temporal sclerosis based on hippocampal and CSF features in MR

images. Biocybernet. Biomed. Eng. 39, 122–132. doi: 10.1016/j.bbe.2018.10.005

Wang, H., Ahmed, S. N., and Mandal, M. (2020). Automated detection of focal

cortical dysplasia using a deep convolutional neural network. Comput. Med.

Imaging Graph. 79:101662. doi: 10.1016/j.compmedimag.2019.101662

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ahmed. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 4 March 2021 | Volume 8 | Article 617426168

https://doi.org/10.1016/j.jaad.2021.02.009
https://doi.org/10.1111/epi.16489
https://doi.org/10.1177/1357633X15589478
https://doi.org/10.1016/j.compmedimag.2018.03.004
https://doi.org/10.1016/j.bbe.2018.10.005
https://doi.org/10.1016/j.compmedimag.2019.101662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


FaceGuard: A Wearable System To
Avoid Face Touching
Allan Michael Michelin1, Georgios Korres1, Sara Ba’ara1, Hadi Assadi1, Haneen Alsuradi1,
Rony R. Sayegh2, Antonis Argyros3 and Mohamad Eid1*

1Applied Interactive Multimedia Lab, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates,
2Clinical Associate Professor, Cornea and Refractive Surgery, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates,
3Professor at the Computer Science Department (CSD), University of Crete (UoC), Crete, Greece

Most people touch their faces unconsciously, for instance to scratch an itch or to rest one’s
chin in their hands. To reduce the spread of the novel coronavirus (COVID-19), public
health officials recommend against touching one’s face, as the virus is transmitted through
mucous membranes in the mouth, nose and eyes. Students, office workers, medical
personnel and people on trains were found to touch their faces between 9 and 23 times per
hour. This paper introduces FaceGuard, a system that utilizes deep learning to predict
hand movements that result in touching the face, and provides sensory feedback to stop
the user from touching the face. The system utilizes an inertial measurement unit (IMU) to
obtain features that characterize handmovement involving face touching. Time-series data
can be efficiently classified using 1D-Convolutional Neural Network (CNN) with minimal
feature engineering; 1D-CNN filters automatically extract temporal features in IMU data.
Thus, a 1D-CNN based prediction model is developed and trained with data from 4,800
trials recorded from 40 participants. Training data are collected for hand movements
involving face touching during various everyday activities such as sitting, standing, or
walking. Results showed that while the average time needed to touch the face is 1,200ms,
a prediction accuracy of more than 92% is achieved with less than 550ms of IMU data. As
for the sensory response, the paper presents a psychophysical experiment to compare the
response time for three sensory feedback modalities, namely visual, auditory, and
vibrotactile. Results demonstrate that the response time is significantly smaller for
vibrotactile feedback (427.3 ms) compared to visual (561.70 ms) and auditory
(520.97ms). Furthermore, the success rate (to avoid face touching) is also statistically
higher for vibrotactile and auditory feedback compared to visual feedback. These results
demonstrate the feasibility of predicting a hand movement and providing timely sensory
feedback within less than a second in order to avoid face touching.

Keywords: face touching avoidance, IMU-based hand tracking, sensory feedback, vibrotactile stimulation, wearable
technologies for health care

1 INTRODUCTION

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has spread worldwide, with more than 88 million cases and 1.9 million fatalities as of
January, 2021 WHO (2020). Maintaining social distancing, washing hands frequently, avoiding
touching the face including eyes, nose, and mouth, are the major methods associated with preventing
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COVID-19 transmission Chu et al. (2020). Contaminated hands
have the potential to disseminate COVID-19 especially if
associated with touching the face Macias et al. (2009). Face
touching is an act that can happen without much thought,
and in fact, happens with such a high occurrence that
reducing it could mitigate a heavy source of transmission.
Beyond simple skin irritations, face touching has been linked
to emotional and cognitive processes Barroso et al. (1980),
Mueller et al. (2019), increasing with attentiveness while tasks
are being performed, as well as with increasing pressure and
anxiety Harrigan (1985). For such common underlying motives,
it is no surprise to see that on average a person touches their face
23 times in an hour Kwok et al. (2015). Given that the primary
source of COVID-19 transmission is through contact with
respiratory droplets [via the nose, mouth, or eyes, either
directly from another individual or picked up from a surface
Pisharady and Saerbeck (2015)], avoiding face touching is of a
great value.

Developing a system to avoid face touching outright by
stopping hand movement raises two main challenges. First of
all, a system must predict rather than detect when a hand
movement will result in face touching well before the hand
reaches the face. Secondly, once a hand movement is predicted
to result in face touching, a sensory feedback must be presented
immediately in order to stop the hand movement and thus avoid
face touching. Note that the prediction and response components
are evaluated separately to better analyze the capabilities/limits of
each component.

1.1 Predicting Hand Movement
Predicting face touching requires precise hand tracking. Two
common approaches for tracking hand movement are vision-
based approaches Al-Shamayleh et al. (2018) and wearable
sensor-based approaches Jiang X. et al. (2017), Mummadi
et al. (2018). A combination of these have also shown
potential for enhanced accuracy Jiang S. et al. (2017), Siddiqui
and Chan (2020). Vision-based hand tracking utilizes camera
networks Pisharady and Saerbeck (2015), and as mentioned, can
be supplemented with wearable devices such as motion sensor
systems placed along the body, to map either whole body or hand
movement Liu et al. (2019). One particular wearable device often
used is the inertial measurement unit (IMU), capable of collecting
data along six degrees of freedom, with three additional angular
sensors to enable a total of nine inputs. Found in many smart
watches, the IMU is equipped with an accelerometer and
gyroscope, providing an inexpensive option that is not only
accurate, taking measures along all three dimensions for each
of its components, but also one that does not require
complementary infrastructure to operate. This allows the IMU
to be versatile yet effective in the context in which it is
implemented.

Paired with an appropriate machine learning model, the data
from an IMU can be used to notify a user how often they are
touching their face, as well as whether they have done so after
each movement. IMUs have been used to correctly identify a
completed face touch with high accuracy Fu and Yu (2017),
Rivera et al. (2017). Even though detecting face touching greatly

supports awareness training, it does not prevent face touching
from happening. The motivation of the proposed system is to
apply machine learning in order to predict face touching and
provide vibrotactile feedback to prevent it rather than detecting it.

1.2 Sensory Feedback for Motor Control
Along with the development of hand tracking, the user must also
be notified of their impending action before it is committed, with
ample time for them to react. The notification must be delivered
through a medium that will elicit the fastest response time. The
three feedback modalities of relevance are visual, auditory, and
vibrotactile, and it has been shown that vibrotactile feedback
produces the fastest response times Ng and Chan (2012).
Vibrotactile feedback systems can be used to achieve this, with
benefits similar to that of an IMU, being cost-effective, and easily
implemented into a wearable device.

A low-cost wearable system that prevents people from
touching their face, and in the long run, assist people in
becoming more aware of their face-touching, is proposed. The
system exploits widespread and off-the-shelf smartwatches to
track the human hand and provide timely notification of hand
movement in order to stop touching the face. The decision to
build the system with just a smartwatch makes it immediately
available to people, without the requirement of building or
wearing additional hardware. The system assumes a
smartwatch with an IMU module and a vibration motor; a
reasonable assumption as most commercial smartwatches are
equipped with such hardware. Although preventing the spread of
COVID-19 is the most evident, the system can be adapted for
other applications such as habit reversal therapy (HRT) Bate et al.
(2011) and treatment of chronic eye rubbing McMonnies (2008).
The main contributions of this paper are summarized as follows:

1. Proposing a conceptual approach that utilizes IMU data to
predict if a hand movement would result in face touching and
provides real-time sensory feedback to avoid face touching.

2. Developing a model for tracking hand movement and
predicting face touching using convolutional neural
networks based on IMU data. To train the model, a
database of 4,800 hand motion trials recording with 40
users under three conditions, sitting, standing, and walking
is built.

3. Presenting a psychophysical study with 30 participants to
compare the effectiveness of sensory feedback modalities,
namely visual, auditory, and vibrotactile, to stop the hand
while already in motion before reaching the face. The response
time and success rate were used as the evaluation metrics for
the comparison.

2 RELATED WORK

2.1 Understanding Hand Movement
The detection and classification of body activity is a major area of
research, with applications and techniques ranging fromwearable
electrocardiogram recorders to classify body movements in
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patients with cardiac abnormalities Pawar et al. (2007),
recognition and 3D reconstruction of the face using computer
vision Chen et al. (2017), Zhao et al. (2018), Lv (2020), Yang and
Lv (2020), to activity tracking of remote workers through sensory
systems Ward et al. (2006), Manghisi et al. (2020). For instance, a
system named HealthSHIELD utilized Microsoft Kinect Azure
D-RGB camera to detect high/low risk face touching in order to
monitor compliance with behavioral protection practices. Results
demonstrated an overall accuracy of 91%. Inertial Measurement
Units (IMU) are another particularly common alternative that
although can be used in tandem with other systems Corrales et al.
(2008), can provide exceptional results on its own Olivares et al.
(2011).

In connection to real-time hand movement recognition in
virtual reality games, a wearable IMU has been investigated as an
alternative to simple button presses on a controller to identify
player action intent Fu and Yu (2017). Similar to the IMU
implementation of our own study, an accelerometer,
gyroscope, and magnetometer are used as the sensor inputs
for classification. Once a user moves their hand in a
predetermined pattern, a trained long short term memory
(LSTM) model identifies the movement, and the relevant in-
game controls are carried out.

Detecting the touching of one’s face using an IMU has been
examined recently Christofferson and Yang (2020). A
convolutional neural network is used to identify whether a
user had touched their face at the end of a gesture. Once a
user made their move, the collected data from the nine data
modes of the IMU are passed through a trained model, with a face
touch classification provided simply as true or false. This
approach resulted in a 99% accuracy rate.

As is seen in previous studies, the deep learning model used
alongside the IMU varies. Requiring a time series based solution,
recurrent neural networks, particularly LSTM, and convolutional
neural network (CNN) models have been implemented with
significant success Rivera et al. (2017), Christian et al. (2019).
Combinations of CNN layers with LSTM models have also been
effective in processing IMU data Silva do Monte Lima et al.
(2019). However, in related works where classification time is
relevant, a standalone CNN has shown great promise Huang et al.
(2017).

2.2 Real-Time Sensory Feedback
In order to provide a real-time sensory feedback to stop the hand
movement and avoid face touching, multiple feedback sensory
modalities can be utilized. Sensory feedback is usually presented
through visual, auditory, and tactile modalities. Visual modality
stimuli such as flashing is common in several warning systems,
such as road transport industries Solomon and Hill (2002) and
crosswalk warning systems Hakkert et al. (2002). In addition to
the use of vision, auditory modality is widely used in transport,
heath care, and industrial environments as it has an immediate
arousing effect Sanders (1975). For instance, a previous study
showed that auditory alarms used in helicopter environments
conveyed urgency Arrabito et al. (2004). Comparing the two
modalities, it was found that the response time to visual and
auditory stimuli is approximately 180–200 and 140–160 ms,

respectively Thompson et al. (1992). This is based on a
previous finding that an auditory stimulus takes only 8–10 ms
to reach the brain whereas visual stimulus takes 20–40 ms Kemp
(1973). However, there are several factors that influence the
average human response time include age, gender, hand
orientation, fatigue, previous experience, etc. Karia et al. (2012).

Vibrotactile modality has also been found to improve the
reaction time for several applications such as drone tele-operation
Calhoun et al. (2003), Macchini et al. (2020), collision avoidance
while driving Scott and Gray (2008), and alteration of motor
command in progress (such as altering a reach in progress)
Godlove et al. (2014). The temporal aspects of visual and
vibrotactile modalities, as sources of feedback about movement
control, are examined in Godlove et al. (2014). Amodified center-
out reach task where the subject’s hand movement was
occasionally interrupted by a stimulus that instructed an
immediate change in reach goal is utilized. Results
demonstrated that the response for tactile stimuli was
significantly faster than for visual stimuli.

Utilizing vibrotactile feedback for alarming the user about
face touching has recently been studied. A commercial product,
named IMMUTOUCH, utilized a smart wristband that vibrates
every time the user touches their face Immutouch (2020). A
recent research study presented a wearable system that utilizes a
smartwatch to provide vibrotactile feedback and a magnetic
necklace to detect when the hand comes to a close proximity to
the face D’Aurizio et al. (2020). Even though these solutions are
a great step forward to reducing the number of face touches and
their duration, they do not consider real-time touch avoidance.
Furthermore, these studies did not perform any systematic
studies to determine the most effective sensory feedback
modality to stop the hand movement and eventually avoid
face touching. Aside from differences in the type and
architecture of the deep learning model used for
classification, our study employs a wearable IMU not just to
classify a gesture, but to predict a gesture before it happens. The
motion input data therefore will not include the final portion of
an individual’s hand movement, placing a limit on the available
data for training. In examining feasibility of success under such
constraints, optimal sensory feedback thus plays a
significant role.

FIGURE 1 | The application scenario involves a smartwatch with Inertial
Measurement Unit to detect hand movement, a machine learning model to
predict when amovement results in touching the face, and a vibrationmotor to
alert the user in order to stop the hand movement.
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3 PROPOSED APPROACH

A high-level description of the system is visualized in Figure 1.
The system utilizes IMU data to measure hand movement,
convolutional neural networks to predict, in real time, whether
a hand movement will involve touching the face, and vibrotactile
feedback to alert the user so they stop their hand movement
before touching their face. Note that the system must perform in
real time in order to generate response to stop the hand
movement before it reaches the face.

A more detailed description of the system is shown in Figure 2
while a technical description of the system is further analyzed in
Section 4. The prediction component involves a sequence of three
processes, namely feature selection, data segmentation, and a
Convolutional Neural Network (CNN). Three sensory feedback
modalities are considered for the response component, namely
visual, auditory, and vibrotactile. Section 5 presents a
psychophysical experiment to compare these modalities and
inform the decision about using vibrotactile feedback.

A wearable device with an embedded IMU recording nine
different types of hand motion data (x, y, and z components for
accelerometer and gyroscope, and rotational pitch, roll, and yaw)
makes the input to the prediction component. In the feature
selection process, features are extracted and evaluated for
relevance to predicting face touching hand movement. These
features are used to improve the performance of the prediction
model. Feature selection included several data pre-processing
procedures such as data augmentation (to increase the size of
training data), data filtration to enhance the signal-to-noise ratio,
hand orientation calculation, Fast Fourier Transform (FFT)
features extraction, and optimization of the combined features.

Once the features are identified, the time-series of the selected
features are segmented according to a time window. The window
size is an extremely important parameter to optimize in this
process since it controls the tradeoff between response time and
prediction accuracy. Once the time series data are segmented, all
the features are fed into a one dimensional convolutional neural
network (1D-CNN) model. 1D-CNNs are generally excellent in
automatically detecting temporal relationships in multi-channel
time-series data with minimal feature engineering. Using the

1D-CNN kernels allows an automatic extraction of the temporal
features in IMU data, which is deemed important in recognizing
hand movement towards the face through its corresponding
IMU data. The model is trained and evaluated with data
generated for this purpose that is recorded from 40
participants. Each participant went through a data collection
session that consisted of two runs. In each run, the participant
had to perform 10 face-touching hand movements during each
of the following everyday activities (standing, walking, sitting)
as well as 10 non-face touching hand movements during the
same activities. Thus, each participant contributed 120 trials,
yielding a total of 4,800 trials. The CNNmodel provides a binary
output, whether the respective hand movement is predicted to
result in face touching or not.

As soon as a prediction of face touching event is made, the
response component renders a sensory feedback to alert the user,
while the hand is in motion, to immediately stop the hand
movement in order to avoid face touching. Based on the
findings of Section 5, vibrotactile feedback is utilized as the
sensory feedback modality as it provided superior performance
(measured using the response time and success rate of avoiding
face touching), compared to visual or auditory.

4 PREDICTION OF FACE TOUCHING

4.1 Data Collection
The data collection procedure combines computer and
smartwatch interfaces to collect the needed participant data.
The hardware used to collect the IMU data is an Esp32-
powered, M5Stack development watch known as M5StickC. It
has six degrees of freedom consisting of a 3-axis accelerometer
and a 3-axis gyroscope, with pitch, yaw, and roll being calculated
internally.

Using an Arduino IDE, the M5StickC is programmed to read
the IMU data and store it into a file through a serial connection to
a computer. It relies on input from two buttons: the main button
used to start and stop the recording of IMU data, and the side
button used for user error correction related to trial invalidation
and repetition. The program runs for a predetermined number of

FIGURE 2 |Overview of the FaceGuard system. Abreviations: FFT (Fast Fourier Transform), IMU (Inertial Measurement Unit), CNN (Convolutional Neural Network).
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trials per session before sending an end signal to the computer
that saves all the data to a file. The participation protocol in a
session consists of two runs, with 60 trials each (30 face-touching
and 30 non-face touching hand movements), that are repeated
twice to gather a total of 120 trials. As can be seen in Figure 3,
sitting, standing, and walking are considered as the three main
activity types due to them being the most common positions
taken in our daily lives. Thus, gathering data for touching and not
touching the face for each of those stances would allow the trained
model to make accurate predictions regardless of the user’s
position.

The M5StickC is used in conjunction with a computer GUI
application developed to ensure a holistic, user-friendly collection
protocol. Its main purpose is to guide users through the
participation and to store auxiliary user information that may
be useful in optimizing the prediction model, including height,
arm length, and age group. Users are first asked to fill out the
aforementioned optional information fields. Then, the
application window displays a list of the different sessions to
be completed and their associated number of trials, with
instructions on the watch’s hardware as well as the next steps.
Both interfaces rely on a communication of signals to control the
start and end of the data collection process. The M5StickC starts
recording the moment the main button on the watch is pressed
and stops recording when the same button is pressed again by the
participant. A single gesture is recorded in this fashion.

The data are then stored into a file. To prevent the loss of data
that may occur if the serial connection is interrupted, the user is
provided with the option to save their data at any point during the
participation upon exiting the computer application.

The general protocol for collecting the data relies on remote
participation in compliance with global social-distancing and
safety procedures. Users first receive a consent form and
statement containing information and instructions pertaining
to the participation. If consent is provided, they are given the

watch, a compatible laptop, and all needed accessories to
complete the required number of sessions in their own homes,
as can be seen in Figure 3. The equipment is then sanitized
properly before being passed on to the next participant. To ensure
overall user anonymity, no identifying information is asked for or
stored. Additionally, the protocol is asynchronous, which
provides users with the freedom to complete the participation
at their own pace as it is not compulsory to complete all trails and
sessions in one run, rather users are encouraged to take a break at
any point and return later to finish.

Overall, 40 sessions were recorded by 40 participants
collecting 4,800 trials in total as elaborated in Section 3. Of
the information disclosed to us, 15 of the 40 participants were
female, 15 were male, and 10 undisclosed. Additionally, most of
the participants were young adults, with the most common age
range being 16–20 years followed by 21–25 years.

4.2 Data Preparation and Inputs
Once data collection is completed, data are prepared for the
training and testing of the CNN-based prediction model. Each
gesture lasts varying amounts of time, and therefore, requires a
select window size to ensure prediction before a face touch has
occurred. However, during data collection, users are able to begin
their gestures at any point once the start button has been pressed.
As such, each trial recording includes a static component (the
duration before the hand movement starts), potentially shifting
relevant data outside of the determined window. A script that
produces plots displaying averaged sensor values over time
identifies the lengths of these gestures. The script is applied to
each file individually, providing plots for each feature (IMU
sensory data)—split into sub plots for each stance (sitting,
standing, and walking). The lengths of the static component of
every plot at the beginning of the gesture are recorded and
averaged, with the resulting values to be referenced for
trimming during data preparation. These plots are also used to
observe data trends among each feature. It is observed that the roll
and yaw did not yield a discriminative pattern for the hand touch
condition and thus they are excluded from the analysis. Further
confirmation is obtained during the training process of themodel;
removing these two features improved the accuracy of the model.
Furthermore, it is observed that it takes around 1,200 ms to
complete a hand movement that involves face touching, which
marks the upper limit for the total response time of the proposed
system (prediction and motor response).

From the total number of gestures (4,800), the training and
testing data sets are formed, randomly split 80–20% (3,840/960
gestures), respectively, and the two 3D input matrices are
constructed. Splitting was done by participants; data from a
single participant exist either in the training or the test set.
This is to ensure the model is resilient to behavioral
differences among participants. Filtration is also undergone,
where gestures that finish before reaching the time required
for the allotted window size are removed. In other words,
gestures with very short duration (shorter than the window
size of the 1D-CNN) are omitted from the dataset.

One challenge for developing a robust prediction model comes
from the lack of large-scale data samples (40 participants with 120

FIGURE 3 | The general setup of the participation. The user is provided
with aWindows laptop, the M5StickC watch, a USB-C cable, as well as a USB
extension cable to be used for the walking trials.
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trial repetition). To overcome this problem, data augmentation is
introduced to prevent overfitting and improve generalization of
the model. Augmentation is done by creating copies of the
training data set and shifting it in time with ‘N’ number of
steps while maintaining a constant window size. Augmentation is
a great tool for populating the training data such that they share
the same characteristics of the original set (representing the
events of touching or not touching the face).

Frequency domain signature of hand movement toward the
face can be obtained by taking the Fourier transform of the
chosen IMU signals. Frequencies of noise can be learnt and
discarded once the frequency domain features are obtained.
The fast Fourier transform algorithm which is readily available
in NumPy library in python was used toward the calculation of
the FFT coefficients for all the gestures. Raw and FFT IMU data
are then stacked to form 3D matrices, both for the training and
testing data sets. Both sets are also standardized, with the testing
data set standardized in reference to the training data set statistics.
In other words, the data are transformed to have a mean of zero
and a standard deviation of one across each feature. This is done
in response to differing scales between the components of the
IMU, particularly between the accelerometer, gyroscope, and
pitch angle. The dimensions of the training and testing
matrices are thus 41808×W×14, and 844×W×14.

One dimensional output matrices are constructed to provide
the desired output of the model, aligned with each hand
movement in the testing and training matrices. The output of
the prediction model is set to binary, designating a face touch to
(1), or not a face touch to (0).

4.3 CNN-Based Prediction Model
Architecture
The input data used to train the model is arranged into a three-
dimensional matrix: the first dimension represents the number of
trials in the dataset, the second dimension is the time length of the
gesture (each index represents a time step of 11 ms, in accordance
to the 90.9 Hz IMU sampling rate), and the third dimension is the
number of features. The number of features is defined by 6
degrees of freedom from the IMU (acceleration and gyroscope
data), as well as the pitch angle value, and corresponding FFT
coefficients to form a total depth of 14 features. These data are
used to train and test the model, where first a convolution layer
(conv1D) is applied, comprising 64 filters of kernel size 8. This is
followed by a rectified linear unit (ReLu) activation function
applied to the previous output, a batch normalization layer (BN),
and a max-pooling layer with a pool size of 2. A dropout layer of
value 0.8 is then applied. A second convolution layer is used,
consisting of 128 filters also of kernel size 8, followed by another
ReLu activation function. Batch normalization is utilized once
more, along with a dropout layer of value 0.9, after which the
input at its current state is passed through a flatten layer. Finally,
two fully connected layers separated by a third dropout layer of
value 0.8 are applied. The first fully connected layer has a
dimensional unit of 256, with a softmax activation function,
and the second has a dimensional unit of 2, with a ReLu
activation function. The last fully-connected layer outputs two
probabilities, one for each class (Not a face touch, face touch). The

architecture for the CNN-based prediction model is shown in
Figure 4.

4.4 Training and Performance Measures
The model shown in Figure 4 was trained using a categorical
cross-entropy cost function with a default learning rate of 0.001,
batch size of 512, and 300 epochs. The model was optimized
(weights adjustment) using Adam optimizer Kingma and Ba
(2014) during the training process. Batch normalization layers
(BN) were used after each of the convolutional layers which
basically re-centers and re-scales the input data leading to a faster
and more stable training process. To avoid overfitting and
prevent co-adaptation of the network weights, a dropout ratio
(0.8–0.9) was used in the model. This high dropout ratio proved
to work well with our study due to the relatively limited dataset
which makes the model more prone to overfitting. The training
accuracy reached 96.2% with a loss of 0.1. Table 1 shows the
normalized confusion matrix of the results. The trained model
has a sensitivity of 0.929 and a specificity of 0.935. This 1D-CNN
model was finalized after many optimization rounds for the
different hyper-parameters including the number of layers,
filters and dropout ratios. An accuracy of 87.89, 89.7, 87.31%
was obtained for a model with 3, 4, and 5 1D-convolutional layers
respectively and thus, a model with 2 layers proved to be more
efficient. Reducing the dropout ration to 0.5 reduces the
classification accuracy to 90%. Thus, an optimized ratio of 0.8
or 0.9 was used.

4.5 Results
With a focus on prediction rather than classification, the period
for data collection in real time becomes a significant parameter to
select. This window size limits the collection of data from the
IMU during a hand movement. Figure 5 displays the resulting
prediction accuracy as this window size is varied.

A shown in Figure 5, the prediction accuracy increases as
the window size increases, with 95.7% test accuracy reported at
around 935 ms. As expected, increasing the window size
provides the CNN-based model with further information
about the hand movement and thus improves the
prediction accuracy. However, increasing the window
sacrifices how fast a sensory feedback is presented to the
user. When fully implemented, this prediction delay will
also be extended by the inference time of the model. At a
window size of 700 ms, the average inference time, in which
the trained model classifies a single gesture, is 0.313 ms, and at
a window size of 990 ms, is 0.446 ms. These values are small
enough that they become negligible to the total time delay,
effectively reducing time delay before prediction to depend
only on window size.

The significance of this delay depends on the application of
this device. In a case where it is crucial to keep the user from
touching their face, a smaller window size will reduce the time
delay before a prediction is made (and before the user can be
warned sooner), thereby maximizing time for reaction. This
increases the probability that the user will indeed be able to
stop their hand movement and avoid touching their face. As is
shown in Figure 5, the consequence of this is a reduced prediction
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accuracy, as reducing the size of the time window reduces the
amount of information about the hand movement. With urgency
being prioritized, however, false-positives along with ample time
to react is still more favorable. In a case where the device is meant
to act as a reminder and perhaps a non-essential deterrent, such
as may be the case during the COVID-19 pandemic, a larger

window size may be excused to achieve higher accuracy.
Therefore, finding an optimum trade-off between response
time and prediction accuracy through the window size
depends largely on the application.

5 SENSORY FEEDBACK FOR MOTOR
CONTROL

A psychophysical experiment is presented to compare the
effectiveness of three different sensory modalities, visual,
auditory, and vibrotactile, as sources of feedback to stop the
hand movement. The ability of a subject to stop their hand
movement when confronted with sensory information is
quantified by comparing the response time and success rate
(percentage of times the user succeeds in avoiding face
touching) for the three sensory modalities (p< 0.05). Finally, a
questionnaire was introduced to the participants at the end of the
experiment to subjectively evaluate their quality of experience.

5.1 Participant
Thirty participants (15 female, 15 male, ages 25–50 years) are
recruited for the experiment. None of the participants have any
known sensorimotor, developmental or cognitive disorders at the
time of testing. Written informed consent is obtained from all
participants. The study is approved by the Institutional Review
Board for Protection of Human Subjects at New York University
Abu Dhabi (Project # HRPP-2020-108).

5.2 Experimental Setup
A custom wristband is developed to provide the three sensory
modalities, shown in Figure 6. A strip of five 3 mm LED’s is
attached along the top face of the wristband to provide blinking
visual feedback. On the bottom face of the wristband a coin type
vibration motor is attached to provide vibrotactile feedback (Pico
Vibe 310-177, Precision Microdrives vibration motor). At the
middle of the top face, a 9 Degrees of freedom (DoF) IMU is

FIGURE 4 | The architecture of the CNN-based prediction model. Note that W represents window size for the input matrix.

TABLE 1 | Normalized confusion matrix of the face touching/not face touching
classification.

True label Predicted label

Not face touching Face touching

Not face touching 0.97 0.03
Face touching 0.11 0.89

FIGURE 5 | The prediction accuracy of the model against the input
window size, averaged for the three conditions (sitting, standing, and walking).
The input window size range is 440–990 ms, in increments of 11 ms, out of
the 1,200 ms average time needed to touch the face.
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placed in order to sense any movements (displacements and
rotations) when the wristband is strapped on a hand. The
wristband is connected to a control box which hosts the
driving circuit of the vibration motor. A 1 kHz piezoelectric
buzzer is utilized to provide auditory feedback. An
ATMEGA328 microcontroller unit to control and acquire data
from all of the aforementioned hardware components is used.
The experimental setup is connected to a laptop through a serial
connection over a USB cable.

Participants sit around 2 m in front of the experimenter where
they could make unrestricted arm movements. Participants are
asked to wear the wristband at their dominant hand and keep
their hand in a resting position (on the table). The experimenter
instructs the participants through the experiment verbally.

5.3 Experimental Task and Protocol
In this experiment, participants complete a face touching task.
Participants are instructed to move their dominant hand to touch
their face, during which the hand movement is occasionally
interrupted by a stimulus cue that informs the subject to stop
the movement in order to avoid touching the face. Each
participant completes a total of 100 trials, with 30% of these
trials provide sensory feedback while the other 70% of the trials
have no sensory feedback and thus result in touching the face.
Among the 30% with sensory feedback, 10% are visual, 10% are
auditory, and 10% are vibrotactile. To minimize the learning
effects that influence the response time, the trials are presented in
a counterbalanced fashion.

A trial starts with the experimenter asking the participant to
rest their dominant hand on the table with tactile sensing
capability to detect the start of the hand movement. The
experimenter instructs the participant to move their dominant
hand and touch their face. During the hand movement, the
sensory cue is applied at the wristband. The hand movement
is analyzed based on the recorded IMU data. At the end of the
trial, the experimenter prompts the participant to confirm
whether they touched their face or not. The sensory stimulus
is given at a random time during the movement. The visual
stimulus is a blinking red light that shines around the wristband
to make it clearly visible, and lasts for 500 ms. The auditory
stimulus is a beeping sound at 1,000 Hz for 500 ms. The
vibrotactile stimulus has a vibration frequency of 200 Hz and
lasts for 500 ms. The intensity of vibration is set to be readily
detected (defined as > 95% correct in stimulus detection). After
completing the experiment, participants fill a questionnaire in
order to evaluate their subjective experience.

The main quantification is the response time, which indicates
how rapidly a subject can respond to a stimulus as a source of
feedback and stop the ongoing hand movement. The response
time is measured as the time between the onset of the sensory
feedback stimulus and the time when the hand reaches a complete
stop or reverses the direction of motion. The success rate—the
percentage of times the participants succeeds to respond timely to
the sensory feedback stimulus and avoid touching their face—is
also recorded. The data are analyzed using repeated measures
ANOVA (Analysis Of Variance) after confirming normal
distribution (D’Agostino-Pearson normality test).

It is also worth noting that the experimental protocol followed
COVID-19 preventive measures in terms of social distancing,
symptom check for all participants, disinfection of study visit area
before, and wearing personal protective equipment (surgical
mask and gloves).

5.4 Results
The average response time for vibrotactile stimulus is 427.3 ms
with standard deviation of 110.88 ms. The average response time
for visual stimuli is 561.70 ms with standard deviation of
173.15 ms. With regards to auditory stimulus, the average
response time is 520.97 ms with standard deviation of
182.67 m. Response time to vibrotactile stimulus is found to
be significantly shorter than that to auditory stimulus (p <
0.01) and visual stimulus (p < 0.01). Furthermore, the
response time to auditory stimulus is found to be significantly
shorter than that to visual stimulus (p < 0.05). A summary of
these findings is shown in Figure 7.

Another important performance parameter to compare is the
success rate. The average success rate for vibrotactile stimulus is
found to be statistically larger than that of visual stimulus (p <
0.05). Furthermore, the average success rate for auditory stimulus
is found to be statistically larger than that of visual stimulus (p <
0.05). However, there is no significant differences between
vibrotactile stimulus and auditory stimulus (p � 0.07).
Figure 8 shows the differences in success rate among the three
groups.

The questionnaire is designed to capture the participant’s
quality of experience. Participants are asked about their
favorite modality for feedback, which modality provides the
most pleasant experience, whether vibrotactile feedback creates
any fatigue or discomfort, and the chance to provide any further
feedback. As for preference, 25 participants (83.34%) selected
vibrotactile as their favorite modality for feedback, 3 (10%)
selected auditory feedback, and 2 (6.67%) preferred visual. 29
participants (96.67%) reported that they clearly perceived the
vibrotactile stimulation. 28 participants (93.34%) selected

FIGURE 6 | The wristband used in this study with all its components
labeled.
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vibrotactile feedback as the most pleasant among the three
modalities. Finally, none of the participants reported
significant fatigue or discomfort during the experiment.

6 DISCUSSION

The CNN-based prediction model requires less than 550 ms of
IMU data to predict face touching events with an accuracy greater
than 92%. Furthermore, the sensory feedback experiment showed
that around 427 ms is needed to stop the hand movement using
vibrotactile feedback. Therefore, it will take less than a second
from the start of the hand movement until complete stop.
Meanwhile, our study suggests that the average time for a
hand to reach and touch the face is 1,200 m. Therefore, the
proposed system is capable of providing timely response to avoid
face touching within less than 1 s. It is worth noting that there is a
tradeoff between the prediction accuracy and the response time.
In order to improve the prediction accuracy, the input window
size must increase, which implies that it will take more time to
stop the hand movement, which causes a decrease in chances to
avoid face touching.

Another important factor is the relationship between
prediction accuracy and practical usefulness of the system: an
increase in the number of false positives would create unnecessary
buzzing which may distract/annoy the user while an increase in
false negatives would not prevent face touching entirely.
Therefore, while the current prediction system is based solely
on the IMU data, fusing other sensory modalities into the CNN-
based model that are relevant to face touching and hand
movement would significantly improve the prediction
accuracy. For instance, gender, arm length, hand size, and age
groupmay provide complementary information to improving the

prediction accuracy. This involves recruiting a significantly larger
number of participants to generate enough data points to train
the model. In situations where camera data are available, such as
when the user is sitting in front of a PC, computer vision
approaches can be applied in order to fine-tune the model for
improved performance.

A major source for false positives stems from the lack of
information about the head posture in reference to the hand
movement. Therefore, it would be interesting to augment the
current CNN-based predictionmodel with the head position and/
or orientation. With appropriate sensors or camera systems, the
head posture can be continuously monitored and used as an
auxiliary input to the prediction model to further improve the
prediction accuracy. This is an interesting direction for future
work. Furthermore, collecting hand movements that are likely to
cause false positives (such as eating where the hand movement is
very similar to that of face touching) and training the model with
such data would significantly reduce the false positives.

Although the findings of the present study demonstrate the
feasibility of developing a system to avoid face touching, a few
limitations should be mentioned. First, the dataset utilized to
train the CNN-based prediction model is rather limited. A larger
dataset improves the prediction accuracy, including false
positives and negatives, which allows for a reduced window
size and improved system response. Furthermore, running the
CNN model is computationally expensive. Therefore, the
inference about the prediction of face touching may have to
be performed on a computationally powerful machine such as a
smart phone or even the cloud. This adds further delays to the
overall system response. Additionally, the current study focused
on preventing face touching through the dominant hand. It might
be desirable for several applications to avoid touching the face
with both hands, and thus evaluating the performance of the

FIGURE 8 | Success rate associated with visual, auditory, and
vibrotactile feedback. The middle red line of the blue box indicate a median
value and the bottom and top edges indicate the 25th and 75th percentiles
respectively (* means p < 0.05).

FIGURE 7 | Response time for visual, auditory, and vibrotactile
feedback. The middle red line of the blue box indicate a median value and the
bottom and top edges indicate the 25th and 75th percentiles respectively
(** means p < 0.05, *** means p < 0.01).
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system while tracking both hands is necessary for such
applications.

Another very important limitation is that the collected IMU
data were pre-segmented such that each trial is known to have a
single hand gesture. As the IMU signals are continuous streaming
data, a sliding window must be used to segment the raw data to
individual pieces in real time, each of which is the input of the
CNN model. The length and moving step of the sliding window
are hyper-parameters that need to be carefully tuned to achieve
satisfactory performance. This problem is present not only in
tasks that require constant gesture recognition, but also in other
fields such as continuous speech recognition. Finally, the
participants’ behavior or activities could modulate the hand
movement and thus may impact the accuracy of the
prediction model. More data must be collected while
participants are engaged in various activities/behavior in order
to enhance the resilience of the classifications against users’
activities/behavior.

7 CONCLUSION

This paper presented a system that utilizes IMU data to predict
hand movement that results in face touching and provide sensory
feedback to stop the hand movement before touching the face. A
1D-CNN-based prediction model, capable of automatically
extracting temporal features of the IMU data through 1D-
CNN filters, was developed and trained with IMU data
collected from 4,800 trials recorded from 40 participants.
Results demonstrated a prediction accuracy of more than 92%
with less than 550 ms of IMU time series data. Compared to
visual and auditory modalities, it was found that vibrotactile
feedback results in statistically faster response, better success rate,
and improved quality of user experience.

As for future work, it is of an importance to evaluate the
combined prediction/response system as a whole in a realistic
experimental environment (while performing everyday life
activities). Furthermore, the authors plan to develop a light-
weight CNN-based prediction model that optimizes

computational power in order to run the prediction model
on a wearable device (with limited computational power).
Improving the dataset by collecting more data can immensely
improve the model training and performance. In particular,
collecting data from tasks that exhibit similar hand movements
to face touching but do not involve face touching (such as
eating) will improve the system robustness, particularly against
false positives.
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Speech Interaction to Control a
Hands-Free Delivery Robot for
High-Risk Health Care Scenarios
Lukas Grasse†*, Sylvain J. Boutros† and Matthew S. Tata

1Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada

The Covid-19 pandemic has had a widespread effect across the globe. Themajor effect on
health-care workers and the vulnerable populations they serve has been of particular
concern. Near-complete lockdown has been a common strategy to reduce the spread of
the pandemic in environments such as live-in care facilities. Robotics is a promising area of
research that can assist in reducing the spread of covid-19, while also preventing the need
for complete physical isolation. The research presented in this paper demonstrates a
speech-controlled, self-sanitizing robot that enables the delivery of items from a visitor to a
resident of a care facility. The system is automated to reduce the burden on facility staff,
and it is controlled entirely through hands-free audio interaction in order to reduce
transmission of the virus. We demonstrate an end-to-end delivery test, and an in-
depth evaluation of the speech interface. We also recorded a speech dataset with two
conditions: the talker wearing a face mask and the talker not wearing a face mask. We then
used this dataset to evaluate the speech recognition system. This enabled us to test the
effect of face masks on speech recognition interfaces in the context of autonomous
systems.

Keywords: speech recognition, assistive robotics, COVID-19, medical robotics, human-robot interaction

INTRODUCTION

On March 11th, 2020, the World Health Organization (WHO) declared Covid-19 to be a global
pandemic (Huang et al., 2020), however the transmission and impact of the virus has varied
tremendously across regional, racial, and socioeconomic boundaries. Of particular importance and
concern is the role of front-line health care workers in spreading the virus (Casini et al., 2019) and the
extra burden placed on those workers in situations of high transmission risk. For example in China, a
study that surveyed health care workers in hospitals found that half of the employees were depressed
(50.7%), close to half of them had anxiety (44.7%), over a third of them suffered from insomnia
(36.1%) (Li et al., 2020), and a little under three quarter of them were facing psychological distress
(Tomlin et al., 2020).

This burden faced by health-care workers is compounded when those workers are responsible for
the mental and physical health of aging patients. Although the Covid-19 pandemic has affected
people all over the globe, it has had a disproportionately strong effect on the aging population and
their care givers. For example, as of September 2020 there have been just over 146,000 cases in
Canada. Of these, 10,549 cases were staff at long-term care facilities and 18,940 were residents of such
facilities. Since senior citizens account for 77% of the deaths related to SARS-CoV-2 (NIA, 2020),
there was an immediate need early in the pandemic to reduce the rate of transmission to people who
live in care facilities for the elderly and the care-givers who work with them. One common strategy
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has been near-complete lockdown of such facilities. Although
effective at reducing the risk of transmission into the resident
population, this approach has the unwanted consequence of
isolating residents from loved ones at a profoundly stressful
time. The longer-term consequences of this physical and social
isolation on the mental wellness of the aging population is not yet
known. Here we describe an end-to-end robotics solution to
break the physical isolation of lockdown in long-term care and
similar facilities.

Robotics is a promising area of research that can contribute to
an effective response to pandemic across a variety of health care
scenarios. Uses have been proposed and developed ranging from
assistance during Ebola outbreaks (Yang et al., 2020) to
supporting children during their stay in a hospital (Joseph
et al., 2018). Robotics and other autonomous systems offer the
distinct advantage of uncoupling physical interactions between
people by providing the option of interaction-at-a-distance. This
enables robots to act as a physical link between people who
cannot come into close contact. Widespread use of such systems
could act as a surrogate in place of real physical interaction during
periods of high risk of disease transmission.

One barrier to adoption of robotics in health care
environments is the human-robot interaction (HRI)
component. The research performed in this paper uses speech
as a modality for interaction, in order to lower the learning curve
for end users interacting with robots. Speech is an intuitive and
powerful means of interaction between humans and robots, and
speech recognition is increasingly being adopted for HRI in
humanoid robotics (Stiefelhagen et al., 2004; Higy et al., 2018;
Kennedy et al., 2017). However, speech still remains
underexplored in industrial collaborative robotics. A goal of
this paper was to provide insight into the scientific and
technical challenges of audio HRI in complex collaborative
robotics.

According the World Health Organization, the coronavirus
that causes COVID-19 is transmitted by various modes, but
mainly during one of two classes of interactions between
individuals: either close contact that allows direct exposure to
respiratory droplets, or contact with contaminated surfaces
enabling the virus to be transported to the nose or mouth by
the hands. Robots cannot contract respiratory diseases and do not
cough or sneeze, so using robotic systems as a physical link
between individuals breaks the direct respiratory transmission
mode. However, most robotic systems employ at least some
degree of hands-on operation so that human users can
provide instructions to the robot (e.g., via a keyboard or tablet
computer). This interaction exposes the risk of transmission via
contaminated surfaces. A hands-free solution is needed. Here we
present an end-to-end system for robotic delivery of items from a
visitor to a resident of a care facility. The proposed system can
operate without supervision by a facility worker thus reducing
their workload and diminishing their exposure and spread of the
virus. Importantly, it is controlled entirely by audio interaction
for hands-free use so that both direct respiratory and indirect
surface transmission modes are broken.

One novel contribution this paper makes is the evaluation of
the effect masks and accented speech have on speech recognition

interfaces for robotics in real-world environments. The
demonstration of an end-to-end self-sanitizing delivery
system is also a unique demonstration that can provide a
useful starting point for roboticists looking to build such
systems for real world environments. Our system
demonstrates how speech control can be integrated into a
robotics project, enabling users to directly communicate with
robots naturally. This paper has two intended audiences. The
first is speech recognition researchers who are curious about
the distortion effects of masks, and will find our analysis of
speech recognition performance under different mask
conditions to be informative. Secondly, roboticists who are
trying to develop automated delivery systems will find the
technical implementation of the end-to-end solution to be
one path to solve the typical problems that arise in this
scenario.

MATERIALS AND METHODS

The goal of this research was to improve the quality of life and
reduce the isolation of residents in facilities with a high risk of
disease transmission during the pandemic. We sought to develop
a system that can deliver items from visitors to residents using
end-to-end voice interaction to prevent physical contact with
surfaces. The robot makes use of a custom speech recognition
interface to interact with humans at a distance, thus reducing the
transmission of pathogens. This section begins by outlining the
robotics hardware platform on which the system was
demonstrated, then delves into the speech recognition
interface used to control the robot, and finally outlines the
implementation of a human-robot interaction workflow using
a state machine. All custom software was developed using the
Python programming language.

0.1 Robotics Platform
This section outlines the robotics platform and other hardware
used to demonstrate the system in this paper. The robotics
platform used was a Turtlebot 2 mobile base consisting of a
Kobuki base with proximity sensors, and an Orbbec Astra Pro
Depth Camera for mapping, navigation, and obstacle avoidance.
The Turtlebot 2 uses an Acer netbook to run the mapping,
navigation, and other aspects of the mobile base. We mounted
a Raspberry Pi 3 Model B to the base of the turtlebot and attached
microphones from a Logitech C920 webcam to the top of the
robot. This raspberry pi was used to run the speech recognition
interface described below. All communication between
components of the Turtlebot 2 as well as the speech
recognition system on the Raspberry Pi ran through Robot
Operating System (ROS) modules. Importantly, by using ROS
as a middle layer, the system is scalable to larger ROS-based rover
platforms in the case that the Turtlebot 2 is insufficient for a
particular use case.

0.2 Depth Camera
The depth camera was the Orbbec Astra with a depth image size
of 640 × 480 (VGA) 16 bit @ 30 FPS. It has a scanning range from
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0.4 to 8 m. The field of view consists of 60°horizontally,
49.5°vertically and 73°diagonally. It also has an infrared and
RGB sensor (Astra, 2020).

0.3 Mapping and Navigation
The mapping was created using Robot Operating System 3D
Robot Visualizer (RVIZ) (Dave Hershberger and Gossow, 2020)
and gmapping (Gerkey, 2020a) packages. The gmapping package
provided the turtlebot with the laser-based simultaneous
localization and mapping (SLAM) node using the
depthimage_to_laserscan package. Since it was impossible
during the 2020 pandemic to work within the setting of a care
facility, we demonstrated our system in a typical academic
research building. To control which rooms we wanted to map,
we used the turtlebot_teleop package, created by Wise (2020),
which provided us with manual control of teleoperation using a
keyboard. During this pre-mapping phase, we achieved a better
map by occasionally stopping and slowly rotating the robot to
draw an accurate representation of the objects and obstacles
around it. We used the publish point feature in RVIZ and
manually integrated the waypoints in a python dictionary to
obtain the coordinates of the rooms that we wanted to include in
the turtlebot’s database. Each waypoint consisted of five different
entries: the exact coordinates, and four nearest neighbours. The
nearest neighbours were intended to be used as a fallback option.
In the event that the turtlebot could not properly plan a trajectory
to one set of coordinates, it fell back to the next set until a proper
plan was made available to be followed. The map was stored using
the map_server package, created by Brian Gerkey (2020), this
produced two files (.pgm and .yaml) that were used later with the
AMCL package. The AMCL package created by Gerkey (2020b)
was used with the previously generated map to allow the turtlebot
to navigate to specified waypoints provided by the audio
interaction interface.

0.4 Sanitization Pod
Another technology that has shown promise for reducing virus
transmission rates is Ultraviolet (UV) light sanitization. A recent
study on UV light has shown it to be effective on killing Covid-19
virus (Kitagawa et al., 2020) in their study, the authors have
demonstrated that a 222 nm Ultraviolet C (UV-C) irradiation for
30 s resulted in 99.7% decrease of SARS-CoV-2 virus. The
combination of UV light sanitization and robotics is a
powerful combination for fighting the war against Covid-19.
An example of this combination is a robot developed by MIT
and Ava Robotics that can sanitize warehouses through the use of
UV-C light (Gordon, 2020). Robots can assist health care
employees with trivial tasks that reduce human exposure to
and the spreading of the SARS-CoV-2 pathogen.

Our system as conceived in this context is not fool-proof, for
example if the robot encountered an infectious individual while
navigating through the space, it is possible that it could transmit
pathogens. Since many transmissible pathogens can live on
surfaces for minutes to hours, we included an intermediate
behaviour for the robot in which it brings the item to be
delivered to a location where it can be cleaned. For our
demonstration, we built a custom enclosure with an opening

to represent a station for either automatic or manual sanitization
of the to-be-delivered item. We envision a more elaborate future
implementation that might involve automatic UV-C or similar
systems.

An important aspect of voice communication is
acknowledgement that the receiver is indeed listening to the
speaker’s instructions. Humans use behaviours such as head-
turning and sometimes subtle facial gestures to convey
attentiveness. To provide acknowledgement of voice
commands, we used a voice-activity detection algorithm
(provided by WebRTC) with an LED indicator to show that
the robot was triggered to be in listening mode.

0.5 Speech Recognition Interface
The speech recognition interface consisted of multiple
components that record and understand the speech of the
person using the delivery robot. The following section gives a
high-level overview of the speech recognition interface. The
process started with voice activity detection (VAD) and speech
recognition. We compared two commonly used open source
speech recognition systems in our research, Mozilla
DeepSpeech and Kaldi. Each speech recognition system used a
custom language model with a vocabulary that was restricted to
the specifics of the delivery task. Once a sentence was recognized
the user intent was parsed from the sentence using simple rules.
Next, we consider the specifics of each component of the system.

0.5.1 Speech Recognition and Custom Language
Model
The first speech recognition system was implemented using
WebRTC (Google, 2020b) for voice activity detection (VAD)
and used the DeepSpeech architecture demonstrated by Hannun
et al. (2014) for speech recognition. Specifically, we used the
implementation from Mozilla (2020). This implementation
contains a model that runs using Tensorflow Lite (Google,
2020a). This allowed us to run the speech recognition system
on a raspberry pi in real-time. The system started by performing
VAD on each audio frame using WebRTC and then added each
incoming audio frame to a ring buffer. If the ratio of frames
containing speech exceeded a threshold, the existing frames from
the buffer were fed to the speech recognition system. New frames
were continuously fed to both the speech recognition system and
the ring buffer until the ratio fell back below the threshold. Some
adjustment of the voice activity threshold were required, but once
the correct threshold was determined the system was quite
effective at identifying the onset of a voice.

Mozilla Deepspeech uses KenLM (Heafield, 2011) as the
language model used during decoding the speech from the
neural network. In this research we trained a custom KenLM
language model that was used to recognize specific sentences
related to initiating the robot to deliver a package, confirmation of
a correct delivery location, confirmation of receipt of a package,
etc. Using a reduced custom model substantially increases the
accuracy of the speech recognition system’s performance in real-
world environments. The custom language model was a 3°g
KenLM model trained with example sentences. During
inference we set the language model alpha value to 0.931,289
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and the beta value to 1.183,414 as these were the default values
used in DeepSpeech.

The second speech recognition system we used was Kaldi
(Povey et al., 2011), and the Vosk API (Cephei, 2020). For this
system we used the built in voice activity detection and the vosk-
model-small-en-us model, which was lightweight and can run on
small single board computers. This model also uses the Kaldi
Active Grammar feature, which enabled us to dynamically change
the vocabulary of the model to only include words relevant to the
delivery task. We used the same set of sentences and words used
to train the previously described custom language model for
DeepSpeech.

0.5.2 Intent Parsing
The next step in the speech recognition system was parsing the
user’s intent from the recognized speech. This was greatly
simplified due to the use of the restricted language model
described previously. The main type of intent parsing that
occurred was detecting when a user intended to initiate a
delivery, and then parsing out the location of the delivery. The
first step in achieving this was to ensure a recognized sentence
started with the word “robot”, which implied that the user was
addressing the robot. Once a sentence that started with the word
robot had been recognized, the next step was parsing the location
from the string. The language model was restricted such that all
the delivery sentences contained the phrase “deliver this package
to” as part of the sentence. An example of this is the sentence “hey
robot please deliver this package to room A”. The fixed structure
of these sentences enabled us to split the recognized string on the
words “package to” and take the remaining part of the string as
the selected room for delivery.

Another type of intent parsing that occurred in our speech
interface was to obtain confirmation from a user: either
confirmation of a correct intended delivery location, or
confirmation of successful package delivery. The first
confirmation happened after the selected room identifier was
parsed out of the recognized sentence. The robot used the Text-
To-Speech system described in the next section to confirm with
the user as to whether the room was correctly understood. The
user then confirmed the location as correct or rejected the
location. To do this, the language model contained multiple
sentences containing various confirming statements such as
“yes”, “yes that is correct” etc. and other rejection statements
such as “no”, “no that’s wrong”, etc. The confirmation intent
parsing step then performed keyword spotting over the
recognized string to see if any of the rejection statements were
present. If they were present the robot rejected the selected
location and informed the user. If the sentence contained
confirmation statements such as “yes” the robot then
performed the delivery. The final case is one in which the
perceived sentence did not contain any of the keywords, in
which case the system continued listening for a confirmation
or rejection.

0.5.3 Text-To-Speech
The system included a Text-To-Speech (TTS) functionality that
enables it to speak to users. This is an important component of

the Human-Robot Interaction as it is the primary method
through which the robot communicates after parsing the
delivery location and during delivery confirmation. The TTS
system used was the Ubuntu say command, which uses the
GNUstep speech engine created by Hill (2008). The TTS
system operated using a ROS python script; when a string was
published to a TTS topic the TTS system executed the say
command using the subprocess library. This enabled the TTS
system to be easily triggered via ROS from any device connected
to roscore over the network.

0.6 State Machine for Human-Robot
Interaction
All of the components demonstrated so far were connected
together into a complete system using a state machine that
communicated over ROS and coordinated the various aspects
of the human-robot interaction. The state machine and
interaction process are outlined in Figure 1.

The state machine facilitated an interaction scenario in
which a visitor to a long-term care facility wishes to deliver
a package to an at-risk individual that resides in the facility.
The visitor initiated the interaction with the robot by placing a
package in the robot’s delivery basket and then speaking to the
robot. Then the visitor instructs the robot on which room to
deliver the package to by saying a sentence such as “Hey robot,
please deliver this package to room E3”. Once the robot has
successfully parsed a delivery sentence the state machine
advances to the confirmation state. In this state the robot
repeats the room number to the human and asks if the room
number is correct.

Once the robot received verbal confirmation, the state
machine proceeded to the next state, which sent the room
id over ROS to the navigation system. The navigation system
then mapped the name to coordinates using the turtlebot’s
database. Next, the robot sanitized itself by navigating into the
UV-c sanitization pod. Once the robot had waited for the
correct amount of time in the pod it navigated to the
coordinates for the target room. Arrival at the delivery
target waypoint triggered the delivery confirmation state. In
this state the robot used the TTS system to inform the recipient
that they have a package and should remove it from the basket.
After a time delay to account for the removal of the package the
robot asked for confirmation that the package has been
removed. Once the robot received this verbal confirmation,
the state machine entered the final state, in which the robot
navigated back to the home position.

The state machine included an error state. The error state
communicated to the user that the robot did not understand a
command and then returned to the initial command recognition
state. This error state was specifically used during the command
recognition and confirmation stages to provide a way for the
robot to reset itself if instructions were unclear.

Methodology
Our tests of the implemented system consisted of a test of the
delivery scenario from start to finish, and an in-depth test of the
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speech recognition component. The setups of these experiments
are described below.

0.6.1 Delivery Scenario Evaluation
We verified the system’s functionality by completing an end-to-
end speech-controlled delivery using all of the components
described in the implementation section. We envisioned a
scenario in which a visitor to a care home would want a
small item such as a note or gift to be delivered to a
resident in a lock-down situation. Thus the test ran between
two labs at the Canadian Centre for Behavioural Neuroscience
at the University of Lethbridge. One lab was designated as the
start point where the visitor would give the item to the robot
and provide voice instructions about where to deliver it. This
space also contained a designated parking area for the robot
and a box intended to simulate the sanitization pod. This lab

was labelled lab c (see Figure 2). The destination for the
delivery was set to a second lab that was in the same
building and connected by a hallway to the first lab. This
lab was labelled lab t. The hallway contained garbage/recycling
bins which provided a realistic real-world environment for
navigation. Both rooms were on the same floor, as our robotics
platform cannot navigate between floors. This is a critical
challenge that would be important for future research in
developing delivery systems.

The speech recognition system used in the test had a
language model that recognised sentences such as robot
please deliver this package to room c or robot take this
package to room t, where room c and room t were the only
valid room names. During the test a light package was placed in
the delivery basket in lab c and removed in lab t upon
successful delivery.

FIGURE 1 | The Human-Robot Interaction Workflow. Delivery was triggered and confirmed by speech interaction between a visitor and the robot. The robot
navigated to the delivery target waypoint, with a stop to clean the itemwith UV-C light. At the target waypoint the robot used speech to confirm delivery and then returned
to its home position. Note that the entire interaction required no physical interaction with surfaces on the robot and, except for placing and retrieving the item in the
basket, could be conducted from a distance of as much as several meters away.

FIGURE 2 | Experimental setup for speech recognition evaluation and delivery scenario evaluation.
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0.6.2 Speech Recognition Evaluation
To evaluate the performance of the speech recognition system in
real-world conditions, we recorded audio from 13 participants
asking the robot to deliver a package to a room they selected from
a list of 30 possible rooms. Audio was recorded in a typical office
space with background heating/ventilation as the main source of
noise (the RT60 of the room was 0.33 @ 1,000 Hz and the average
SNR was 10.92 dB). Each possible room was a randomly
generated combination of a single letter and single numerical
digit, e.g., E4. The audio was recorded using microphones
mounted on the turtlebot. Since viruses cannot be transmitted
to a robot, the visitor need not maintain any particular distance
from the robot. Thus, participants stood facing the turtlebot
behind a line marked on the ground 61 cm back from the
robot’s position to speak the commands. The recording setup
is shown in Figure 2.

A hallmark of the COVID-19 pandemic was the widespread
requirement to wear a face mask in public spaces. Since such
masks are known to impart a low-pass filter to speech (Corey
et al., 2020), we considered whether our speech recognition
system would be negatively affected if users were wearing
masks. We therefore recorded speech using two conditions,
one with the participant wearing a face mask and another
with the face mask removed. This enabled us to calculate
whether or not a face mask would impede the accuracy of
each speech recognition system. For each condition we
recorded five trials for a total of 10 trials per participant.
Each participant wore their own personal mask. The masks
consisted of a variety of cloth, disposable polyester, and
other masks.

RESULTS

0.7 Experiment 1: Delivery Scenario
Evaluation
The first evaluation we performed of the delivery robot was an
end-to-end test delivery of a package from a starting location to
an end location, as outlined in Section 0.6.1. The first step in this
test was the manual generation of a map using the ROS gmapping
package. The turtlebot was manually navigated using the teleop
package and the generated map was saved for use during
navigation. The map is shown in Figure 3. The coordinates of
the starting point, sanitization pod, and delivery destination, were
then recorded and added to the python dictionary described in
Section 0.3. The command recognition component of the state
machine was configured such that the recognition of the phrase
Room T triggered a delivery to lab T and Room C triggered a
delivery to lab C. The previously described DeepSpeech system
was used for this step. The coordinates of the starting point in lab
C were also used as the location of the home position.

A package was placed in the robot’s delivery basket. After
receiving a verbal delivery command, the robot successfully
recognized and parsed the sentence asking it to deliver the
package to room T. The robot then navigated into the
sanitization box, waited for the correct amount of time, and then
autonomously navigated to lab T. Once the package was removed
and the robot received verbal confirmation it returned to the initial
starting point in lab C. A video demonstration is available at1.

FIGURE 3 | Map generated for turtlebot navigation using the ROS
gmapping package and an astra depth camera.

FIGURE 4 | First-pass outcomes of each recognition system with (left)
and without (right) a face mask. Recognition was scored as correct when the
intended target room was successfully recognized the first try. Recognition
was scored as clarification required when the state machine needed to
enter the error state and ask the user to repeat the instruction. Recognition
was scored as incorrect when the system recognized the wrong room. This
mode would require the user to reject the recognized room during the
confirmation step and repeat the instruction.

1https://youtu.be/-LCqVXyjT1k.
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0.8 Experiment 2: Evaluation of Delivery
Location Recognition System
The use of audio interaction to achieve hands-free autonomy for
the delivery robot was a key goal of this research. We explored
factors related to the success of potential failure of each speech
interaction system. We were particularly interested in two factors
that might influence the usefulness of audio interaction in this use
case: the use of a protective face mask, and the challenge of
recognizing the speech of users whose first language is not
English. Specifically, we evaluated each system’s delivery
location recognition component as described in Section 0.6.2.
Thirteen participants contributed five audio samples for each
experimental condition: with and without a protective cloth mask
covering the mouth and nose. The audio was recorded using the
microphones on the robot. We recorded audio from both native
English speakers and non-native speakers.

We measured accuracy to choose the correct target room by
running each speech recognition system on the pre-recorded
audio and parsing the results using the same approach as the
command recognition step of the state machine. Accuracy was
then calculated across all trials for each condition as the
percentage of destinations that were parsed and determined
successfully. The results of the experiment are shown in
Figure 4. The mask-off condition outperformed the mask-on
condition for both systems, correctly recognizing 70.8 and 73.8%
of the destinations as opposed to 52.3 and 60.0% for the mask-on
case for the DeepSpeech and Kaldi/Vosk systems respectively. We
also compared the results between participants who learned
English as a first language and non-native speakers of English.
The results are shown in Table 1. We found that the speech
recognition system performed poorly with non-native English,
particularly when the speaker was wearing a mask.

DISCUSSION

The Covid-19 pandemic has put an enormous strain on front-line
medical workers and threatened the lives of millions worldwide.
The widespread effects of the virus have also disproportionately
effected our aging population, who account for 77% of Covid-19
related deaths. The social and mental health impacts of lockdown
measures in long-term and assisted-living care facilities for
seniors, even for those who never experience the disease, are
not yet known but are likely to be severe. We sought to develop an
end-to-end autonomous delivery system that could break the
physical isolation of care-home residents by delivering physical
items (such as gifts, letters, etc.) from visitors to residents. The

system needed to meet two criteria: 1) break the direct respiratory
transmission pathway by using a mobile rover platform and 2)
break the surface transmission pathway by providing an end-to-
end hands-free speech control system. The system needed to be
intuitive to use and good at trapping errors.

We built a successful system based on a ROS-controlled
Turtlebot2 mobile base and free-field microphones. In ideal
conditions the system demonstrated good first-pass accuracy
(75% for native English speakers without masks) at
understanding the target destination for the delivery. In the
first-pass failure mode, 21% of outcomes were cases of the
robot failing to understand any target instruction and, thus,
asking for the instruction to be repeated. Only 6% of first-pass
interactions resulted in the robot understanding the wrong target
destination. Coupled with simple error-trapping in the
confirmation step, we believe the system could perform quite
well under ideal conditions.

One goal of this work was to compare commonly used speech
recognition packages (DeepSpeech vs. Kaldi/VOSK). Whereas
the two approaches performed identically given the
hypothetically ideal case of native English speakers without
masks, we found that Kaldi/VOSK handled the less-ideal case
of users wearing masks. In that case Kaldi/VOSK showed a lower
tendency to have high confidence in the wrong room (16.9% for
DeepSpeech vs. 1.5% for Kaldi/VOSK).

There are, however, a number of challenges that were
uncovered by this research. First, it is evident that face masks
cause problems for automatic speech recognition. This is
unsurprising given that they effectively low-pass filter the
acoustic signal (Corey et al., 2020). One solution might
involve training a custom acoustic model for the speech
recognition system trained on audio that is recorded from
people wearing masks. Alternatively, an existing speech dataset
could be modified to simulate the acoustic effect of a mask. A
second important challenge is that speech recognition systems
may perform worse for non-native speakers of English. This is a
known problem of speech recognition systems in general trained
with speech from native English speakers (Hou et al., 2019;
Derwing et al., 2000). Importantly though, the problem of
recognizing non-native English speech and the problem of
recognizing speech with a face mask seem to be interactive
(such that only 36% for DeepSpeech and 44% for Kaldi/Vosk
of first-pass recognitions were successful in this worst-case
scenario). Creation of a more robust acoustic model could
increase the reliability and widespread usefulness of the system.

Here we demonstrated the usefulness and some of the
challenges associated with hands-free audio control of

TABLE 1 | First-pass Recognition Accuracy compared between participants who learned English as their first language vs. English as a second language. The best
performance is highlighted in bold. Accuracy is averaged over all five recordings for each condition from all 13 participants.

Delivery Location Recognition Accuracy %

Mask Condition No Mask Mask
Approach DeepSpeech Kaldi/Vosk DeepSpeech Kaldi/Vosk
English is First language 75.0 75.0 62.5 70.0
English is second language 64.0 72.0 36.0 44.0
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robotics. By building the system around a set of ROSmodules, the
system is both scalable and portable to other robot systems that
make use of the ROS platform. Although this research is
described entirely within the context of autonomous delivery
in a health-care isolation scenario, it is easy to imagine related use
cases in which hands-free control of a mobile robot platform
might be advantageous. It is our hope that the present study
draws attention to the important contribution that audio AI can
make to sound-aware robots across a wide-range of use cases.
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There are high risks of infection for surgeons during the face-to-face COVID-19 swab
sampling due to the novel coronavirus’s infectivity. To address this issue, we propose a
flexible transoral robot with a teleoperated configuration for swab sampling. The robot
comprises a flexible manipulator, an endoscope with a monitor, and a master device. A 3-
prismatic-universal (3-PU) flexible parallel mechanism with 3 degrees of freedom (DOF) is
used to realize the manipulator’s movements. The flexibility of the manipulator improves
the safety of testees. Besides, the master device is similar to the manipulator in structure. It
is easy to use for operators. Under the guidance of the vision from the endoscope, the
surgeon can operate the master device to control the swab’s motion attached to the
manipulator for sampling. In this paper, the robotic system, the workspace, and the
operation procedure are described in detail. The tongue depressor, which is used to
prevent the tongue’s interference during the sampling, is also tested. The accuracy of the
manipulator under visual guidance is validated intuitively. Finally, the experiment on a
human phantom is conducted to demonstrate the feasibility of the robot preliminarily.

Keywords: COVID-19, swab sampling, transoral robot, Flexible robot, sampling robot, Flexible parallel mechanism,
surgical robotics, medical robotics

1 INTRODUCTION

Coronavirus disease 2019 (COVID-19) transmitted through respiratory droplets is spreading rapidly
(Chaolin et al., 2020). The widely used diagnose method is the oropharyngeal-swab (OP-swab)
sampling (Chen et al., 2020). This sampling is suggested to be performed by a healthcare professional,
while other possible approaches such as nasal mid-turbinate swab could be self-collection under
supervised (Kim et al., 2020). The healthcare workers who perform swab sampling face high infection
risks caused by the testees’ aerosol during the sampling, as close person to person contact is the main
way for the transmission of the virus (Jin et al., 2020). Besides, the sample’s quality depends on the
operators’ skills, which is inconsistent and may cause misdiagnosis (Li et al., 2020b). As highlighted
in (Yang et al., 2020), one of the effective solutions is using the teleoperated robot that can keep the
operators safe by avoiding close contact with the testees (Navid et al., 2021; Xiao et al., 2021).

Accurate swab delivery to the target region with reasonable force is essential for the teleoperated
robot-assisted swab sampling (Gu et al., 2019; Hosokawa-Muto et al., 2019). Enough dexterity for the
robot with at least three degrees of freedom is required to ensure that the robot can reach the target
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region and to wipe through the mouth. The typical configurations
are two bending DOFs with one translational DOF, or one
bending DOF, one rotational DOF with one translational
DOF. The workspace of the robot needs to cover the area of
throat with a maximum size of 23 mm × 20 mm. The
anteroposterior length of the tongue is less than 75 mm
(Miguel et al., 2007). As the applied force determined the
keenly feel of the testees, the robot is recommended to be
compliant enough through there is no quantitation standard
currently. Teleoperation is usually carried out under visual
guidance. In this situation, the operator stands by the master
console and teleoperates the slave robot. During the operation,
the swab sampling’s safety is an indispensable factor that can be
achieved by a flexible mechanism or control algorithm (Park,
2007; Ren et al., 2013). As the potential irritation of the swab
sampling for the testee, the operator should consider how to
prevent the tongue to block the view (Sahin and Dogan, 2019).
Besides, the sterilizability of the robot to prevent cross-infection
should also be considered (Porter et al., 2020). Currently, the
swab sampling robots are under development around the world
(Wang et al., 2020), with some of them being preliminarily
applied in the clinic (Li et al., 2020b). However, due to the
research activities’ limitation, most of the robots are still
incomplete with a simple structure.

This paper proposes a flexible transoral robot towards
COVID-19 swab sampling, aiming to reduce the risks of
infection for the healthcare workers during the sampling. The
contributions can be detailed as follows:

• A robotic system with a flexible mechanism is proposed,
achieving a dexterity sampling with flexibility.
• The tongue depressor is designed for safe operation.
• The experiments, including the parameter and the
performance tests of the robot, are conducted.

The rest of this paper is organized as follows. In Section 2, the
robotic system with the workspace and the operation procedure is

introduced in detail. The experimental evaluation is
demonstrated. Section 3 presents the results of the
experiments. Finally, the discussion is presented in Section 4.

2 MATERIALS AND METHODS

2.1 System Description
2.1.1 Robotic System
The robotic system consists of a flexible manipulator with a
tongue depressor mounted on a tripod stand, an endoscope
(Diameter: 5.5 mm, Resolution: 1280 × 720, HL-5520, Hlisen
Inc.) with a monitor for the guidance of the operation, and a
master console with a master device and a controller (Figure 1A).
To achieve the sampling, the surgeon stands by the master
console and operates the master device to control the
manipulator’s motion under the guidance of vision obtained
from the endoscope.

As shown in Figure 1B, the flexible parallel mechanism is
designed as the manipulator’s terminal. The super-elastic Ni-
Ti rods (Diameter: 0.78 mm, Young’s modulus: 20 Gpa,
Suzuki-Sumiden Wire Products Co., Ltd.) with universal
joints (MAASS-1.0, Misumi South East Asia Pte Ltd.) are
used as the chains to construct a 3-prismatic-universal (3-PU)
mechanism. The chains are driven by motors placed far away
from the manipulator via thread rods and flexible shafts. To be
specific, the motors are connected to the thread rods via
flexible shafts. The thread rods are used to drive the
motion of the flexible mechanism by translating the
rotational motion of the flexible shafts to the translational
motion of the Ni-Ti rods. The manipulator diameter is 8 mm.
There are three DOFs, including two bending DOFs and one
translational DOF. More details about this flexible parallel
mechanism including the kinematic, stiffness analysis,
evaluation, and master-slave operative performance can be
found in our previous work (Li et al., 2019a; Li et al., 2019b).
In brief, the manipulator can be operated stably and

FIGURE 1 | Flexible transoral robot. (A) The robotic system; (B) The flexible manipulator.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6121672

Li et al. A COVID-19 Swab Sampling Robot

190

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


accurately with proper flexibility by combining the parallel
mechanism and the flexible mechanism. The swab stick for
sampling can be attached or removed from the manipulator’s
terminal via its mechanical interface. As the swab stick is in
contact with the tissue of testee during the sampling, the
compliance of the manipulator is helpful to alleviate the
testee’ pain and increase their safety. In our design, it is
achieved via the Ni-Ti rods with super-elastic
characteristic. The level of the compliance is determined by
the stiffness of the rods, which is related with the sizes of their
diameters.

During the sampling, there is a possibility that the swab stick
would be disturbed by the spontaneous action of the tongue
caused by the irritation of the throat, leading to the failure of the
sampling or even additional injuries. So the tongue depressor
composed by a linkage mechanism is designed to restrict the
motion of the tongue. The tongue depressor can be controlled to
rotate in real-time during the sampling and reset to the initial
state when the manipulator inserts or retreats from the oral
cavity.

The master device is mainly composed of a parallel
mechanism with three prismatic-revolute-spherical (3-PRS)
chains, similar to the flexible manipulator in structure. This
kind of design plays an active role in decreasing the learning
curve for less experienced surgeons (Li et al., 2020a). Three
displacement sensors (LPZ-200, Fiaye Electric Co., Ltd.) are
attached to the chains to detect the pose of the master device.
Another displacement sensor (LPZ-20, Fiaye Electric Co., Ltd.) is
connected to the master device terminal to control the motion of
the tongue depressor. Three DOFs are achieved, including two
bending DOFs and one translational DOF. The flexible
manipulator’s movement can be amplified by five times,
allowing the operator’s delicate operation. The time delay of
the master-slave control has been tested in our previous work (Li
et al., 2019a; Li et al., 2019b).

The personal computer (PC) with SimLab boards (Zeltom
LLC.) running Matlab/Simulink programs is used as a
controller. The input pose signals of the master device and
the tongue depressor’s control signals are obtained from the
displacement sensors. The output signals are used to control the

motion of the flexible manipulator via flexible shafts (Diameter:
1.7 mm, Hagitec Co., Ltd.) and screws (Diameter: 3 mm, lead:
0.5 mm) driven by direct current (DC) motors (RE13, Maxon
motor Inc.).

2.1.2 Workspace Characterization
The workspace of the robot is evaluated by driving the
manipulator to its limit positions, which is shown in
Figure 2. The maximum displacement of the manipulator is
30 mm (Figure 2A), and the maximum bending angles of the
manipulator in its top view and its side view are both 30°

(Figures 2B,C). The displacement and the manipulator’s
bending angle are determined by both of the mechanical
structure of the manipulator and the master device. The
results show that if the swab stick’s length is 60 mm, the
workspace of the robot covers a cylinder space with a
diameter of 60 mm and a height of 30 mm, which is large
enough for the swab sampling compared with the size of the
throat. As the manipulator can be placed close the throat
before sampling, the translational distance of the
manipulator is allowed to be shorter than the length of the
anteroposterior length of the tongue. The tongue depressor’s
maximum moving distance is 20 mm, with a bending angle of
15° (Figure 2D).

2.1.3 Operation Procedure
The operation procedure is described as follows. Before the
operation, the sterilized wraps are attached to the flexible
manipulator, and the plastic wrap with high light
transmittance are covered on the endoscope to prevent the
possibility of cross-infection. After that, the robotic system is
set to the initial state. The operator stands by the master console
in the isolated condition. The testee faces to the mechanical
design and opens the mouth. When the tongue’s tip props up the
tongue depressor, the operator begins to operate the flexible
manipulator. The tongue depressor is controlled to hold down
the tongue and allows the swab stick to reach the throat. The
secret can be collected by quickly wiping the palatal arch,
pharynx, and tonsil. After the operation, the swab stick and
the tongue are retrieved.

FIGURE 2 | Workspace demonstration of the robot. (A) The maximum displacement; (B) The maximum bending angle in top view; (C) The maximum bending
angle in side view; (D) The motion range of the tongue depressor.
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2.2 Experimental Evaluation
Three experiments were conducted to test the pressure of the
tongue depressor, the accuracy of the manipulator under visual
guidance, and the robotic system’s performance on the human
phantom (see videos in Supplementary Materials).

2.2.1 Pressure Tests of the Tongue Depressor
The pressure on the tongue provided by the tongue depressor
should be larger than the forward force of tongue to prevent the
tongue’s disturbance. Nevertheless, overload pressure may lead to
the increased risks of tongue injuries. So the maximum pressure
of the tongue depressor is tested in this section. As shown in
Figure 3, the force sensor (Resolution: 2.5 mN, OMD-10-SE-
10N, Optoforce Ltd.) and the manipulator were attached to the
motion stage via the 3D printed support. The tongue depressor
was driven to rotate under the control of the position sensor
attached to the master device. The force sensor detected the
pressure from the terminal of the tongue depressor. This process

was repeated ten times, and the pressure data from the force
sensor were recorded.

2.2.2 Accuracy Tests Under Visual Guidance
The efficiency of sampling and the validity of the samples are highly
related with the operative accuracy, especially for the master-slave
operation under visual guidance. The tests of the master-slave
operation with following the reciprocating motion and circle
trajectory tracking have been conducted in our previous work (Li
et al., 2019a; Li et al., 2019b). As a result, the accuracy of the master-
slave operation under visual guidance was tested by a simple method
as follows. As shown in Figure 4, the disk target with ten concentric
and equally distributed circles was designed. The diameters of the first
and 10th circles were 50 and 5mm, close to the diameters of the
opened mouth and the uvula. A ballpoint pen refill was attached to
the terminal of the manipulator instead of the swab stick. The disk
target was placed in front of the manipulator with a distance of
20mm. Under the guidance of the real-time video from the camera,

FIGURE 3 | Setup for the pressure tests of the tongue depressor.

FIGURE 4 | Setup for the accuracy tests of master-slave operation under the visual guidance.
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the manipulator was driven to move towards the center of the disk
target by operating the master device with an average speed of more
than 6mm/s. This process was repeated ten times.

2.2.3 Performance Tests on the Human Phantom
The performance of the robot was preliminarily tested on a human
phantom to demonstrate the feasibility of sampling. As shown in
Figure 5A, the human phantom with a ratio of 1:1 to the human
body was placed in front of the robot. The manipulator with a swab
stickwas controlled by the operator under the visual guidance, aiming
to reach the throat and swab it via a swab stick. This process was
repeated three times. The method that prevents the robot from being
polluted by the virus was shown in Figure 5B. The manipulator was
covered with sterilized wraps, and the endoscope was covered with
transparent preservative film for a clear vision.

3 RESULTS

3.1 Pressure of the Tongue Depressor
The results of the pressure test of the tongue depressor are shown
in Figure 6. Figure 6A shows the state of the tongue depressor

when it contacts the force sensor. The deformation of the tongue
is caused by the elastic of the polylactic acid (PLA) material. For
the safety consideration, the block that drives the tongue
depressor is restricted within the manipulator frame to ensure
that the rotation of the tongue depressor ranges is in a defined
region. Figure 6B shows that the pressure is stable in each test.
The average pressure of 10 trials is 8.72 ± 0.03 N. As the pressure
is used to prevent the disturbance of the tongue under normal
conditions, it should be much larger than the average forward
force of the tongue with 2.2 N (Milazzo et al., 2019) in
consideration of the individual differences and the stress
reaction of the testees. According to the force transmission,
the pressure of the tongue depressor is determined by the
power of the driving motor, which means it can be further
adjusted for practical application if it is not applicable.

3.2 Accuracy Under Visual Guidance
As shown in Figure 7, all the points drawn by the terminal of the
flexible manipulator are located in the 10th circle, which means
the accuracy of the manipulator under visual guidance is higher
than 2.5 mm during the teleoperation. It is satisfied for sampling
because the target region’s diameter is more than 20 mm, which is

FIGURE 5 | Setup for the performance tests of the robot, (A) The setup of the robot, (B) The flexible manipulator with sterilized wraps.

FIGURE 6 | Pressure tests of the tongue depressor, (A) Process of the tests, (B) The pressure of the tongue depressor with time.
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eight times more than the maximum error. This test is practical
and effective as the trial process is close to the sampling operation,
though the method is simple without using precision measuring
equipment.

3.3 Performance on the Human Phantom
As the operation process of the tests is similar each time, we take
one as an example, which is shown in Figure 8. The followings are
the procedure:

• The flexible manipulator was set to the initial state and put on
the table (Figure 8A, time: 3 s).

• The human phantom was pushed forward with the tongue
contact to the tongue depressor (Figure 8B, time: 4 s).
• The tongue depressor was controlled to press the tongue
(Figure 8C, time: 3 s).
• The flexible manipulator was controlled to reach the target
region (Figure 8D, time: 4 s).
• The flexible manipulator was manipulated to get a sample via
the swab stick (Figure 8E, time: 6 s).
• The flexible manipulator was controlled to retrieve from the
throat (Figure 8F, time: 6 s).
• The tongue depressor was retrieved (Figure 8G, time: 2 s).
• The human phantom was pulled back (Figure 8H, time: 6 s).

FIGURE 7 | Accuracy tests’ results of master-slave operation under the visual guidance, (A) The process of the tests, (B) The results.

FIGURE 8 | The performance tests’ results of the robot, (A) The flexible manipulator was set to the initial state and put on the table, (B) The human phantom was
pushed forward with the tongue contact to the tongue depressor, (C) The tongue depressor was controlled to press the tongue, (D) The flexible manipulator was
controlled to reach to the target region, (E) The flexible manipulator was controlled to get sample via the swab stick, (F) The flexible manipulator was controlled to retrieve
from the throat, (G) The tongue depressor was retrieved, (H) The human phantom was pulled back.
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After this operation, the operator completed all the
procedures, which lasted for 34 s. During the process, c) to g)
are conducted under visual guidance. As key steps, the tongue
depressor pressed the tongue effectively, and the swab stick was
operated dexterously, which is satisfied for the operator. This is
only a preliminary test to shown the possible procedure of the
operation. More tests on human will be involved in the future to
further evaluate the performance of the robot.

4 DISCUSSION

A flexible transoral robot with a teleoperated configuration is
proposed to address the surgeons’ risks during the face-to-face
COVID-19 swab sampling due to the novel coronavirus’s high
infectivity. The manipulator with a 3-PU flexible parallel
mechanism allows it to achieve proper flexibility, improving
testees’ safety. The master device is similar to the manipulator
in structure, which is easy to use for operators. Under the
guidance of the vision from the endoscope, the surgeon can
operate the master device to control the swab’s motion attached
to the manipulator for sampling. As a key feature of this robot, the
tongue depressor is used because there is a possibility that the
tongue blocks the view to swab the back of the throat during the
sampling. Hence, the tongue depressor is useful to provide a
counterforce. Sterilizability is essential for surgical robotics,
especially the sampling robot. Cross infection to testee should
be avoided. The common methods, such as sterilized wraps,
ultrasonic washing, and pasteurization, are applicable for this
robot. As a quick and easy solution, we cover the sterilized wraps
manually to the robot. The terminal compliance is combined by
the swab with long and thin shaft and the manipulator. As the
manipulator is operated under visual guidance, the deformation
of the swab can be observed in real-time that indicates the contact
force between the swab and the tissue as the safety assurance
passively.

In this paper, the robotic system, the workspace, and the
operation procedure are described in detail. The experiments are
conducted to demonstrate the preliminary feasibility of the robot.
The pressure tests of the tongue depressor show that proper
pressure can be provided. With visual guidance, the flexible
manipulator’s accuracy under the master-slave configuration is
acceptable for the sampling operation. The performance tests on
the human phantom show the basic operation procedure,
providing a reference for application. In practical application,
the operator can stand far away from the slave manipulator by
extend the cables connecting the controlled and the computer to

avoid the face to face sampling. Besides, this robot can also be
used for self-testing. The master-slave configuration under visual
guidance makes the test easier. And the disturbance of the tongue
can be reduced by the tongue depressor.

As a surgical robot, many difficulties need to be overcome
before its clinical deployments. More experiments will be
conducted to evaluate the performance of the robot, such as
the success rate of sampling and the testee’s adverse reaction. The
fully autonomous operation will be taken into consideration.
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Review: How Can Intelligent Robots
and Smart Mechatronic Modules
Facilitate Remote Assessment,
Assistance, and Rehabilitation for
Isolated Adults With
Neuro-Musculoskeletal Conditions?
S. Farokh Atashzar1*, Jay Carriere2 and Mahdi Tavakoli 2

1Department of Electrical and Computer Engineering, Department of Mechanical and Aerospace Engineering, New York
University, New York, NY, United States, 2Department of Electrical and Computer Engineering, University of Alberta, Edmonton,
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Worldwide, at the time this article was written, there are over 127million cases of patients
with a confirmed link to COVID-19 and about 2.78 million deaths reported. With limited
access to vaccine or strong antiviral treatment for the novel coronavirus, actions in terms of
prevention and containment of the virus transmission rely mostly on social distancing
among susceptible and high-risk populations. Aside from the direct challenges posed by
the novel coronavirus pandemic, there are serious and growing secondary consequences
caused by the physical distancing and isolation guidelines, among vulnerable populations.
Moreover, the healthcare system’s resources and capacity have been focused on
addressing the COVID-19 pandemic, causing less urgent care, such as physical
neurorehabilitation and assessment, to be paused, canceled, or delayed. Overall, this
has left elderly adults, in particular those with neuromusculoskeletal (NMSK) conditions,
without the required service support. However, in many cases, such as stroke, the
available time window of recovery through rehabilitation is limited since neural plasticity
decays quickly with time. Given that future waves of the outbreak are expected in the
coming months worldwide, it is important to discuss the possibility of using available
technologies to address this issue, as societies have a duty to protect the most vulnerable
populations. In this perspective review article, we argue that intelligent robotics and
wearable technologies can help with remote delivery of assessment, assistance, and
rehabilitation services while physical distancing and isolation measures are in place to
curtail the spread of the virus. By supporting patients and medical professionals during this
pandemic, robots, and smart digital mechatronic systems can reduce the non-COVID-19
burden on healthcare systems. Digital health and cloud telehealth solutions that can
complement remote delivery of assessment and physical rehabilitation services will
be the subject of discussion in this article due to their potential in enabling more
effective and safer NMSDK rehabilitation, assistance, and assessment service
delivery. This article will hopefully lead to an interdisciplinary dialogue between the
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medical and engineering sectors, stake holders, and policy makers for a better
delivery of care for those with NMSK conditions during a global health crisis including
future pandemics.

Keywords: COVID19, Medical Robotics, neuro-musculoskeletal disorders, telerehabilitation, smart digital health

1 INTRODUCTION

Worldwide, over 127 million cases of patients with a confirmed
link to COVID-19 and about 2.78 million deaths have been
reported at the time this article was written (Johns Hopkins
University. (2020)). With limited access to vaccine or strong
antiviral treatment for the novel coronavirus, actions in terms of
prevention and containment of the virus transmission rely mostly
on social distancing among susceptible and high-risk populations
(Block et al. (2020); Lewnard and Lo (2020); World Health
Organization. (2020)). Also, mitigation strategies among
suspicious and positively tested populations again rely on
isolation measures, with the exception of those who are
sufficiently ill to be hospitalized (Jawaid (2020); Tripathy
(2020)). This review paper focuses on elderly adults with acute
or chronic neuro-musculoskeletal disorders and disabilities.

Aside from the direct challenges posed by the novel
coronavirus pandemic, there are serious and growing
secondary consequences (explained below) caused by physical
distancing, isolation guidelines, and by focusing the healthcare
resources almost only on COVID-19 (Bartolo et al. (2020)).
Related to the mentioned consequences, it should be noted
that the healthcare system’s resources and capacity have been
focused on addressing the COVID-19 pandemic, causing less
urgent care, (e.g. physical neurorehabilitation and assessment) to
be paused, canceled, or delayed, resulting in non-COVID health-
related concerns for patients suffering from other conditions,
such as post-stroke disabilities (for which intense and immediate
rehabilitation is needed). However, In many jurisdictions, in-
person visits to rehabilitation clinics were prohibited with the
exception of serious emergency cases; thus, at best, non-
emergency assessment and rehabilitation were transitioned to
remote delivery via verbal or visual teleconferencing (please see
Caso and Federico (2020); Ferini-Strambi and Salsone (2020);
Leocani et al. (2020); Ng et al. (2020); Seiffert et al. (2020);
Srivastav and Samuel (2020); Venketasubramanian (2020)). As a
result, this has left the elderly and adults with acute and chronic
conditions, in particular those in need of receiving
neuromusculoskeletal rehabilitation services, without the
required support resulting in serious delays for therapeutic
and rehabilitation services (Schirmer et al. (2020)). This has
also resulted in delays between the appearance of symptoms of
a non-COVID life-threatening condition (such as stroke or heart
attack) and when patients seek urgent care (Lange et al. (2020);
Kansagra et al. (2020)). Unfortunately, in many cases, such as
stroke, fast initiation of treatment and prompt followup
rehabilitation services are critical, since 1) late initiation of
therapy can result in vaster damage, and 2) neural plasticity
after stroke decays very quickly with time. In addition, in many
cases, care for non-life-threatening chronic disabilities and

illnesses has been deferred to the future, creating a backlog
that will take years to clear. All of these put an excessive
amount of pressure on the infrastructure of society including
healthcare systems in various domains which are now serving for
the fight against the virus among the society.

Given that multiple waves of the outbreak are expected
(Stefana et al. (2020); Xu and Li. (2020)) in the coming
months worldwide, it is important to address this issue as
societies have a duty to protect the most vulnerable
populations. The actions which are being taken during this
process will be imperative to boost up our healthcare system
and make it prepared not only for future waves of this pandemic
but also for future pandemics. The COVID-19 pandemic has
shown that our current healthcare system and model of
healthcare delivery are far more unprepared (King. (2020))
than anticipated and require rethinking and substantial future
preparation in order to provide continuity of care throughout the
second and third waves of COVID-19 and for potential future
pandemics.

In this article, we provide a detailed and targeted analysis of
the literature based on which we argue that intelligent robotics
and smart wearable technologies can help with extended,
accessible, and remote delivery of assessment and
rehabilitation services while physical distancing and isolation
measures are in place to curtail the spread of the virus. We
will also discuss that through supporting patients and medical
professionals during this pandemic, robots, and smart
mechatronic systems (such as telerobotic rehabilitation
platforms), which have been designed in the literature and can
be exploited here, have the potential to reduce the non-COVID-
19 burden on healthcare systems so that the hospitalization and
treatment of COVID-19 patients can remain the top priority.

This article conducts a literature survey supporting the use of
robotics technologies and AI for enhancing the quality of care
delivery specially for patients with NMSK conditions. This is
motivated by the fact that, in times of deep health crises such as
during the novel coronavirus pandemic, medical robotic and
smart wearable systems can play a positive role by assisting the
healthcare system and safeguarding public health in various ways.
Within this review we define smart wearable systems as wearable
IoT type devices, (e.g. a FitBit) which contain various sensors and
can provide feedback (through visual or other means) to the
patient. We will discuss exoskeletons separately, given their utility
for rehabilitation and assistance. Another robotic modality we
will discuss are telerobots, which can enable closed-loop,
autonomous, and semi-autonomous kinesthetic interaction
between an in-home patient and in-clinic therapies for
rehabilitation exercises of stroke patients (Atashzar et al.
(2016a); Shahbazi et al. (2016); Atashzar et al. (2018);
Hooshiar et al. (2019); Panesar et al. (2019); Fong et al.
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(2020a); Fong et al. (2020b); Sharifi et al. (2020)). In addition,
robots and telerobots can be used to help in preventing the spread
of COVID-19 by making it possible for frontline healthcare
workers to screen, triage, evaluate, monitor, and even treat
patients from a safe distance (please see Tavakoli et al. (2020)
for a high-level review of how robotics can aid the healthcare
workers, and society). In this regard, digital health and telehealth
solutions that integrate assessment and physical rehabilitation of
people with chronic NMSK conditions are the focus of this review
article and will be the subject of discussion below due to their
potential in enabling more effective and safer NMSK
rehabilitation and assessment service delivery. We will present
examples of robotic systems that aid and complement remote
delivery of assessment and physical rehabilitation services for
adults with chronic conditions.

It should be highlighted that this paper is written based on the
lessons we learned from COVID-19, in particular the deficiency
of remote rehabilitation and assessment for patients considering a
wide demographics. COVID-19 has proven that our healthcare
system is not prepared for taking such an unprecedented
challenge. This paper examines not only the current activities
but also the future horizon of technology and investigates how
can intelligent robots and smart mechatronic modules facilitate
remote assessment, assistance, and rehabilitation for isolated
adults with NMSK conditions. The last sentence is indeed the
title of the paper to show that we not only consider direct
challenges caused by COVID-19 but also we look beyond
COVID-19 to broaden the knowledge on the potentials for the
existing technologies to martialize the health care of tomorrow.

In addition to discussing existing rehabilitation and assistive
technologies for a more efficient delivery of care for individuals
with NMSK disabilities, we also discuss where there is potential
for further use of this technology to improve the quality of life
among this population. This will hopefully lead to an
interdisciplinary dialogue between the medical and engineering
communities in addition to the end-users of these technologies,
i.e., people in long-term or home care with chronic NMSK
conditions. This article also attempts to open a line of
conversation, supported by strong literature, between the
public, stakeholders, and policymakers about the real,
practical, and life-saving benefits that can be achieved in a
short-term future with the use and fusion of existing robotic,
telerobotic, and wearable technologies in the healthcare system.

It should be highlighted that, before the pandemic era, robotics
and automation were often tagged in several analyses as a force
that can eliminate jobs and damage humanity and society. This
article represents a targeted and focused literature review to
impress upon the fact that at this time, more than ever, we
need to invest in and investigate the life-saving potentials of
robotics and AI to better serve our society and reduce the burden
on healthcare systems during such unprecedented situation. A
science-based ethics-centered shift of culture toward more
advanced use of technology to assist delivery of healthcare
services (and in particular those related to NMSK conditions)
requires increasing the awareness about the features of existing
technologies, besides, dialogue, and collaboration. This
perspective review article aims to be one step in that direction.

2 POPULATION AGING BEFORE COVID-19:
AN UNDERLYING COMPOUNDED
PROBLEM
Based on official numbers and statistics, the population of senior
adults worldwide over the age of 60 is expected to more than
double by 2050. It is anticipated that by 2047, the number of
senior adults will exceed the number of children. This trend is
expected to continue due to increased life expectancy and reduced
fertility rates. An aging society can become a global public health
challenge in the near future and have significant social and
economic effects on healthcare systems worldwide
(Christensen et al. (2009); Chatterji et al. (2015); Suzman et al.
(2015); World Health Organization (2015)). The rapid aging of
societies worldwide is likely to increase the incidence rate of age-
related neuromuscular and sensorimotor degeneration and
corresponding disabilities. These age-related neuro-muscular
disabilities are caused by various factors such as normal
degeneration, stroke, and musculoskeletal conditions, resulting
in sensorimotor dysfunction (Degardin et al. (2011)), impaired
mobility (Wesselhoff et al. (2018)), and long-lasting motor
disabilities (Alawieh et al. (2018)), directly affecting the quality
of life of senior adults (Almkvist Muren et al. (2008)). In addition
to the deleterious effect on the quality of life, these disabilities can
reduce life expectancy, increase the risk of injuries (particularly
fall-related injuries), and result in further cognitive and
sensorimotor deterioration.

Stroke is the leading cause of significant age-related
neuromuscular and sensorimotor impairment (Mukherjee and
Patil (2011); Prince et al. (2015); Mozaffarian et al. (2015)) and
causes excessive pressure on healthcare systems. This has been a
major concern even before the substantial extra pressure due to
the pandemic. Many stroke survivors experience permanent or
long-lasting motor disabilities and often require labor-intensive
sensorimotor rehabilitation therapies and progress monitoring
during the golden time of recovery, the acute post-stroke phase,
and an extended period of time afterward (Dimyan and Cohen
(2011); Teasell and Hussein (2016)). The need to rapidly begin
treatment after a stroke and the extended duration of treatment
for stroke patients (Arias and Smith (2007); Cumming et al.
(2008); Cumming et al. (2011); Yen et al. (2020)), places a
significant burden on the healthcare system. The likely
outcome is that, with a healthcare system that is already
under-resourced, many patients suffering from a significant
functional deficit would not receive sufficient rehabilitation
and progress monitoring services during the pandemic, when
the healthcare system is extensively loaded with managing (and
preparing for) COVID-19 patients.

For a broad range of NMSK disabilities, it has been shown that
rehabilitation technologies, including multimodal biofeedback,
functional electrical stimulation therapy, and intelligent robotic
rehabilitation systems can significantly help patients in regaining
some of the lost sensorimotor functionalities (please see Takeda
et al. (2017); Atashzar et al. (2019); Yang. et al. (2019b) and
references therein). These rehabilitation technologies have been
seen as an adjunct to traditional rehabilitation therapies, and may
potentially replace traditional therapies for accelerating neural

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6105293

Atashzar et al. Intelligent Medical Robots and COVID-19

199

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


plasticity and regaining lost sensorimotor function, which results
in increasing functional capacity, quality of life, and ultimately
patient independence. The concern of societal aging and age-
related NMSK disorders is more pronounced due to the current
pandemic. Most of the patients in need of urgent and long-term
NMSK rehabilitation services are senior adults who are in the
vulnerable category considering the demographics related to
COVID19. The question is, “how can we deliver rehabilitation
services to this population during, and after COVID19
pandemic?” This question has raised in a serious international
conversations on how to deliver acute stroke rehabilitation during
the pandemic (please see the following citations and references
therein Lyden. (2020); Rudilosso et al. (2020); Smith et al. (2020);
Wang et al. (2020)). The problem is that a long delay can result in
losing major motor functionality, which would not happen if
rehabilitation was delivered in a timely manner, minimizing
permanent damages. A systematic literature-based
investigation on this question to find alternative solutions can
highlight the use of Robotics and AI technologies for
rehabilitation, which is the focus of this article and can help
with addressing the excessive pressure on the healthcare systems
resulting in interruption of neurorehabilitation for patients
in need.

3 CATEGORIES OF ROBOTIC SYSTEMS
FOR BOOSTING CARE DELIVERY

Figure 1 demonstrates the overall design of the paper and
shows how various modalities of robotics can be used for three

main modalities of the healthcare spectrum (rehabilitation,
assessment, and assistance) needed for patients with NMSK
disabilities during and after a pandemics. In Figure 1, we
categorize various robotic systems and various modalities of
care. Some robots can be used for multiple modalities of care.
For example, an exoskeleton can be used to retrain a post-
stroke patient when the patient performs a wide range of
robotics-enabled treadmill based task in a virtual reality
environment so that gradually the patient’s nervous system
can be retrained and the patient can walk better out of the
robot. For this, the physical, intensity, and temporal
characteristics of robotic therapy should be designed in a
way that maximizes the engagement of the patient and
stimulation f the nervous systems. An example of this
technology is Locomat from Hocoma (Switzerland). In
addition, the exoskeleton can be used as an advanced
wheelchair in the format of an assistive device, the primary
function of which is to help the patient to perform the activities
of daily living with the use of the robot without being too
concerned about retraining the brain. In this regard, the robot
should be able to detect the intention of the patient and help to
perform the task for the patient. Another example is social
robotic systems for kids with cerebral palsy, which has shown
potential for helping this population to better engage in
sensorimotor learning activities over time of aging as a
rehabilitative device. Also, social robots are used for
elderlies to assist them in managing isolation in long-term
care facilities (as an assistive device). Figure 1 shows the
overall concept of the paper when we classify the modalities
of robotic systems and modalities of care services, emphasizing

FIGURE 1 | Categories of robotic interaction and example remote rehabilitation, assessment, assistance, and support tasks for adults with neuro-musculoskeletal
conditions.
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that robotic systems can be used in a variety of health care
application, while some format of robotic systems can have
multiple health care application and some may have one or few
applications. In this paper, based on the concept shown in
Figure 1, we will discuss different robotic modalities which
have been used for a wide range of spectrum of care for patients
with NMSK conditions. In the current section, categories of
robotic systems are introduced for boosting the care delivery,
while Sections 4, 5 and 6 will provide relevant discussions
about the use of robots for addressing the mentioned spectrum
during and after COVID-19 with the focus on patients living
with NMSK.

In the literature, a wide range of robotic systems and
wearable technologies have been introduced to help people
with NMSK conditions. In order to establish an efficient
discussion about the existing technologies and how they
can be adapted to help with the current pandemic
situation, it is advantageous to discuss a number of
definitions and ways to classify such technologies.
Categories can be defined according to either 1)

mechanical structure or 2) modality of human-robot
interaction (HRI). The former explained the mechanical
characteristics of the robots regardless of how it interacts
with humans, while the latter focuses on how these systems
physically and intelligently interact with humans to deliver
the needed care. In this article, the modality of interaction is
considered to be the primary distinguishing factor between
various robotic and wearable systems. The resulting
categories can be defined as Telerobots, Autonomous
Collaborative Robots, Exoskeleton Robots, Smart Wearable
Mechatronic Systems, Hand-held Robots, and Social Robots.
The proposed categorization (which takes into account the
interaction, intelligence, and control) helps to lead the
discussion on how particular styles of robotic systems can
assist with the three core modalities of the spectrum of
healthcare for NMSK patients, during the COVID19
pandemic, namely, assessment, rehabilitation, assistance.

The intersections between various human-robot interaction
modalities and the spectrum of healthcare delivery are shown in
Figure 1. In this article, we provide literature-based discussion

TABLE 1 | Summary of advantages and limitations of robotic interaction modalities.

Advantages Limitations

Robotic interaction
modalities

Teleoperated robots Remote operation; sensory augmentation through data
fusion; motor augmentation; bypassing the barrier of
distance; computerized interaction to log the performance
metrics of both users at the two terminals

Minimum to no autonomy; concerns regarding transparency
of reflected force field; susceptibility of system stability to
network time delay and the variation in the delays which may
challenge safety; relatively high cost due to the need for two
robots; synchronization challenges

Autonomous
collaborative robots

High level of autonomy; need for minimum-to-no intervention
from human; allowing for higher level of distancing;
possibility of infinite work space (for mobile systems); can be
integrated with existing mechanical and mechanic systems
such as wheelchairs; securing a high level of sensor-based
situational awareness; minimizing possible human error
(depending on the context) relying on the past data and
cloud computation

Totally removing the human domain knowledge from the
loop which can raise safety risks for unseen situations and
under unstructured conditions; susceptibility to sensor
failure; susceptibility to biases in the data sets based on
which a behavior is trained; need for extra and redundant
sensors with high speed which can increase the cost and
accessibility

Exoskeleton robots Joint-space operation for augmenting the natural motor
ability of users; augmenting the mechanical power of the
wearer and enhancing the safety; ability to serve as both
assistive and rehabilitative system; reducing the mechanical
load on the joints, skeleton, and muscles of the users (such
as workers) supporting a high level of musculoskeletal health

Need for high power; increasing the weight and battery size;
major concerns of safety due to the several point of physical
contacts with the user and due to the secured contacts with
the user; a high level of safety risk in the case of sensor failure;
high cost; low accessibility; low level of compatibility (the
current state) with various unstructured environments

Smart wearable
mechatronic systems

Ability to be worn and measure body signals; ability to
provide biofeedback through due to close skin contact;
augmenting sensory awareness (haptics and
proprioception); ability to measure body motion for
monitoring and rehabilitation in the context of supervised or
unsupervised telemedicine; ability to contact tracing and
localization for navigation and for medical purposes; ability to
communicate with cloud over internet (in the context of IoT)

Low battery life and need for recharge in case of high
functionality due to limited space; possibility of errors in
measurement due to the small and variable surface contact
(such as due to hair blockage or sweating) resulting in
false-positive and false-negative alarms/reports;
susceptibility to hacking and attacks when communicating
biological signals and location information over cloud; limited
actuation ability due to the limited power and size

Hand-held robots Being light-weight while powered; providing active
assistance to delicate manual tasks; application in helping
people with hand tremor as an eating assistive device for
higher independence

Limitation complex mechatronic design of sensors and
actuators due to the small size and limited acceptable
weight; relatively high cost; limited degrees of freedom;
limited number of tasks which can benefit

Social robots Interact socially with humans including patients with
cognitive disorders or those in isolation; providing sense of
social engagements; supporting education and
development for kids with autism; possibility of multiple
recording during social engagement (including mood, stress
and vital signs)

Limited actuation and degrees of freedom needed for a
natural social interaction; challenges to adapt to complex
cognitive-related factors affecting social interaction;
requirement for a very high level of intelligence to promote
social engagement
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and our perspective on how HRI categorizations can help the
healthcare system during and after the COVID-19 pandemic. In
this section, we also offer some examples corresponding to a
subset of possible robotic solutions existing at these intersections.
The hope is that this review of existing technologies starts an in-
depth discussion and inspires others to quickly find new and
innovative solutions using existing systems in the literature that
can be applied across the healthcare spectrum and using all
possible modalities of human-robot interaction in the era of
the current crisis and to prepare for future waves and future
pandemics. To help the reader we have created Table 1, which is a
summary of the following section. Table 2 contains selected
references from the literature to show which type of robotic
systems are commonly applied to the three healthcare tasks
covered in this review, (i.e. Rehabilitation, Assessment, and
Assistance/Support).

3.1 Teleoperated Robots
These systems are composed of two synchronized robotic systems
(often called as leader-follower robotic systems, or leader and
follower robotic consoles) that communicate over a
communication channel (see Avgousti et al. (2016); Niemeyer
et al. (2016); Farooq et al. (2017); Evans et al. (2018); Hooshiar
et al. (2019) and references therein). An extension of these
technologies are multilateral telerobotic systems (see Shahbazi
et al. (2018) and references therein) which have multiple robots
interacting over a multiport network, realizing collaborative tasks
by operators or robots or both. The communication channel can

be a hard line, or satellite, or the internet. The purpose of such
technology is to transfer the agency and motor control of the
human operator(s) over a barrier and allow remote operation
while receiving sensory awareness feedback from the remote
environment(s) for the operator(s). Four main examples of
barriers are distance, danger, safety, and scale. A successful
example of a translational telerobotic technology in a totally
different medical application, (i.e. surgery) is the da Vinci
surgical robotic system.

In the context of NMSK, emerging telerobotic rehabilitation
systems which recently have attracted a great deal of interest
(Atashzar et al. (2016a); Shahbazi et al. (2016); Atashzar et al.
(2018); Hooshiar et al. (2019); Panesar et al. (2019); Fong et al.
(2020a); Fong et al. (2020b); Sharifi et al. (2020)) allow remote access
of patients to kinesthetic rehabilitation and remote monitoring
under telemedicine, maximizing accessibility regardless of
geographical barrier and minimizing the risk associated with
commuting to healthcare centers. This topic is discussed in
details later in this paper (under Sections 4.3, and 4.4).

3.2 Autonomous Collaborative Robots
These technologies are designed particularly to physically
conduct a task with the need for a high level of autonomy,
and situational awareness, and in collaboration with human
operators. Several examples and the literature can be found in
(Ajoudani et al. (2018); Chen. et al. (2018a); Saenz et al. (2018);
Haidegger. (2019); Hentout et al. (2019); Gualtieri et al. (2020)).
These robots sometimes have fixed bases, sometimes have mobile

TABLE 2 | Categorization of selected articles from the literature.

Healthcare services

Rehabilitation Assistance and support Assessment

Robotic
systems

Teleoperated robots Atashzar et al. (2016a); Shahbazi et al.
(2016); Atashzar et al. (2018); Panesar et al.
(2019), Fong et al. (2020b); Sharifi et al.
(2020)

Pernalete et al. (2002); Pernalete et al.
(2003); Atashzar et al. (2017a); Reis et al.
(2018); Hooshiar et al. (2019); Mehrdad
et al. (2021)

Brennan et al. (2009); Fong et al. (2020a);
Kim et al. (2020)

Autonomous
collaborative robots

Krebs et al. (1998); Krebs and Hogan.
(2006); Brewer et al. (2007); Blank et al.
(2014); Maciejasz et al. (2014); Pehlivan
et al. (2016); Díaz et al. (2018); Atashzar
et al. (2019); BionikLabs. (2020);
Nicholson-Smith et al. (2020)

Chow and Xu. (2006); Parikh et al. (2007);
Leaman and La. (2017); Chen et al.
(2018a); Wu et al. (2019); Azad et al.
(2020)

Balasubramanian et al. (2012); Debert et al.
(2012); Lambercy et al. (2012); Nordin et al.
(2014); Otaka et al. (2015); Kuczynski et al.
(2016); Kuczynski et al. (2017); Simbaña
et al. (2019); Simmatis et al. (2019);
Simmatis et al. (2020)

Exoskeleton robots Mao and Agrawal (2012); Proietti et al.
(2016); Bernocchi et al. (2018); Rehmat
et al. (2018); Bao et al. (2019); Shi et al.
(2019); Hocoma. (2020)

Chen et al. (2013); Pazzaglia and Molinari
(2016); Randazzo et al. (2017); Shore
et al. (2018); Di Natali et al. (2019); Lyu
et al. (2019); Kapsalyamov et al. (2020);
Settembre et al. (2020)

Ball et al. (2007); Rocon et al. (2007); Fitle
et al. (2015); Simmatis et al. (2017); Rose
et al. (2018); Mochizuki et al. (2019)

Smart wearable
mechatronic systems

Bonato (2005); Polygerinos et al. (2015);
Simon et al. (2015); Yang et al. (2018); Bisio
et al. (2019); Kos and Umek (2019); Wei
et al. (2019)

Shull and Damian (2015); Katzschmann
et al. (2018); Sweeney et al. (2019);
Gathmann et al. (2020); Alva et al. (2020);
Seshadri et al. (2020)

Šlajpah et al. (2014); Qiu et al. (2018); Qiu
et al. (2019); Carnevale et al. (2019);
Cerqueira et al. (2020); Oubre et al. (2020)

Hand-held
mechatronic systems
and robots

Rinne et al. (2016); Hussain et al. (2017);
Mace et al. (2017)

MacLachlan et al. (2011); Pathak et al.
(2012); Yang et al. (2014); Pathak et al.
(2014); Sabari et al. (2019); Ripin et al.
(2020)

Rinne et al. (2016); Hussain et al. (2017);
Mace et al. (2017)

Social robots Fasola and Mataric (2012); Calderita et al.
(2013); Malik et al. (2016); Céspedes et al.
(2020); Martín et al. (2020)

Broekens et al. (2009); Belpaeme et al.
(2018); van den Berghe et al. (2019);
Scoglio et al. (2019); Armitage and
Nellums (2020)

Pennisi et al. (2016); Chen et al. (2018b); Do
et al. (2020)
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bases, and sometimes they are equipped with arms. In addition,
hybrid collaborative arm systems exist, having one end fixed to a
mobile base, which is free to perform tasks in an environment
dexterously (these are often called mobile manipulators). Mobile
manipulators allow for a theoretically infinite workspace for the
manipulator (see the following citations for more information
about the modern application of this technology: Zhao et al.
(2018); Wu et al. (2019); Balatti et al. (2020)). Such hybrid robotic
systems can be used in healthcare centers for manipulating and
moving materials, and even can assist with delivering physical
assistance for patients, reducing physical interaction between
personnel and between patients and caregivers. Autonomous
collaborative robots have been used frequently in industry, and
more recently in health care systems (motivated by the need to
such technologies for handling COVID-19-related issues), to
reduce the load of repetition and precision when
collaboratively conducting tasks with humans. There are a
wide range of examples, but one particular example is
handling samples of COVID-19 and being part of the testing
pipeline, making the whole testing chain faster and more reliable
(please see Yang et al. (2020) for more details). In addition to the
above, mobile platforms (typically without manipulators),
including smart wheelchairs, are not fixed in a position and
instead use a wheeled platform or walking mechanism to move in
an environment (Chow and Xu (2006); Parikh et al. (2007);
Leaman and La. (2017)). This technology can be used for various
applications, including 1) mobility of patients with physical
NMSK disability and those with reduced cognitive strength
caused by COVID-19, reducing the need for physical
assistance by human, and maximizing patients’ independence;
2) as an inherent part of telemedicine which can be used for
delivering care remotely and checking vital signals in isolated
centers (such as nursing homes); and 3) interaction between
isolated patients and their families and personnel of the facility.

3.3 Exoskeleton Robots
These robots are external actuated mechanisms worn by humans
for motor augmentation, strengthening the users’ capabilities, or
to rehabilitate a human’s lost abilities and function (Gopura et al.
(2016); Proietti et al. (2016); Young and Ferris (2016); Hill et al.
(2017); Rehmat et al. (2018); Di Natali et al. (2019); Settembre
et al. (2020)). Using such technical aspects of rehabilitation and
mobility can be realized with minimum human-based
intervention. Exoskeletons have been used in industries to
reduce the mechanical load on workers. With the same
functionality, they have been proposed to be used for assisting
patients with extreme mobility problems, and in this regard, they
have been often seen as the next revolutionary generation of
wheelchairs (Pazzaglia and Molinari. (2016); Hill et al. (2017)).
They have been designed in various formats, including upper-
limb and lower limb, and combined. Using exoskeleton patients
with NMSK disabilities can be rehabilitated during walking and
mobility exercises while finely tuning the characteristics of
exercise (including the speed, step length, joint trajectories,
posture). This will significantly reduce the need to have
multiple therapists closely interacting with a patient to deliver
the mobility exercises.

3.4 Smart Wearable Mechatronics
These technologies are human-worn devices that measure body
signals and display information to the user through biofeedback to
support, assist, or augment the capabilities of the user. Smart
wearables can also provide haptic-, vibro-, and electro-feedback
stimulation to users (see the following citations for examples and
more details: Polygerinos et al. (2015); Chen et al. (2017); Maisto
et al. (2017); Yang. et al. (2019a); Alva et al. (2020); Cerqueira et al.
(2020); Gathmann et al. (2020)). These technologies have been
used to enhance the sensory capability of patients with NMSK
disabilities (such as Simon et al. (2015); Lopes and Baudisch (2017);
Bisio et al. (2019); Alva et al. (2020); Gathmann et al. (2020)). These
technologies have also been categorized under the umbrella of the
Internet of Medical Things (IoMT) (Bisio et al. (2019))) and smart
environments. Related to COVID-19, recently, researchers are
utilizing wearable technologies for following the time-series of
symptoms of patients, especially those with NMSK disabilities
which may degrade the ability to monitor the symptoms
through traditional means, and evaluate the evolution and
dynamics in bio-markers. These wearable sensor technologies
have the potential to provide early diagnosis of those who may
be in a sensitive age range or with underlying conditions; also for
monitoring of those who have shown some symptoms but not
serious enough to be hospitalized. With the use of artificial
intelligence, the collected data can be processed on the cloud,
and any health anomaly can be detected using computational
models (see examples: Saglia et al. (2019); Ding et al. (2020);
Seshadri et al. (2020); Weizman et al. (2020); Tripathy et al.
(2020)). As mentioned, these technologies can be equipped with
the tactile actuator to provide sensory feedback for the user, for
example when they move their hand close to their face (D’Aurizio
et al. (2020)), or when they do not follow guidelines for washing the
hands for a long enough duration; providing an additional layer of
situational awareness. These technologies can also be used to track
the spread of the virus by tracking the mobility of those with
comorbidities. In this regard, recently, there have been several
conversations about data security and privacy of the users, which
are all ongoing topics at the moment, to make sure that these
technologies follow the ethical guidelines and privacy of the users
(Arias et al. (2015); He et al. (2018); Tseng et al. (2019); Stoyanova
et al. (2020)).

3.5 Hand-Held Robots
This is a relatively small category of assistive robotic systems.
These technologies are light-weight powered robotic systems
designed to be held in a user’s hand and typically assist with
performing tasks. Initial uses of hand-held robotics were in
surgery to help a surgeon stabilize physiological hand tremors
when performing delicate surgical operations, such as retinal
surgery (MacLachlan et al. (2011); Becker et al. (2013); Yang et al.
(2014)). Recently, the same concept has been utilized to assist
patients with NMSK disabilities, in particular, assisting users with
severe NMSK disabilities when eating. This reduces the need for
interaction with nurses and other helpers (family members),
enhancing the independence and quality of life of users. An
example of such a robot is a smart-spoon, which counteracts hand
tremors in those with Parkinson’s disease to allow them to eat
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more easily with more confidence and without the need for
someone to feed them (Pathak et al. (2014); Stamford et al.
(2015); Sabari et al. (2019)). Such technology not only helps with
a patient’s self-confidence and mental state but also, during the
COVID-19 pandemic, it will reduce the need to have close and
long physical interaction with nurses and helpers for feeding (as
one example).

3.6 Social Robots
These technologies are robots that interact socially with humans
(Campa. (2016)) and have been used for a variety of applications
that benefit from social interaction, such as for education (see
Belpaeme et al. (2018) and references therein), for language
learning (see van den Berghe et al. (2019) and references
therein), for elderly care (see Broekens et al. (2009) and
references therein), for helping people with autism (see
Pennisi et al. (2016) and references therein), and depression
(see Chen. et al. (2018b) and references therein). Social robots
may be actuated or have speech capabilities and can measure the
user’s mood, temperature, stress, and vital signs via various
embedded sensors. Smart social robots have shown good
potential in engaging the users in interactive social exercises.
Social robotics systems have been shown to successfully benefit
kids living with autism (Pennisi et al. (2016)), and elderly living
with mild cognitive impairments, Alzheimer’s disease, and
dementia (Valentí Soler et al. (2015); Góngora Alonso et al.
(2019)). This technology can be a major benefit, especially
during the COVID-19 pandemic, when the elderly are isolated
due to the concerns over disease spread. Long term isolation for
patients who are already having cognitive disorders may have
very serious consequences, and any technology which can engage
these persons in interactive social exercises, while reducing the
risk of human-human contact, can be significantly beneficial.

4 REHABILITATION ROBOTICS

4.1 Rehabilitation During the COVID-19
Pandemic and Post-COVID Era
As mentioned earlier, the COVID-19 pandemic has put high
pressure on healthcare systems. Due to the inability of patients to
visit rehabilitation centers, or the risk of patients when going to
rehabilitation centers, the delivery of NMSK rehabilitation has
been distorted. It should be noted that most patients who have
experienced stroke(s) have an age greater than 65. This means
that the population of stroke patients is categorized as at-high-
risk, and it is critical for those patients to minimize situations that
may result in human contact, in particular visits to health care
systems. Concern has been raised, since the delivery of
rehabilitation is a time-sensitive treatment (as mentioned in
the introduction). A delay, or long pause, in treatment can
result in permanent loss of major sensorimotor functionality.
Recent literature strongly suggests very early mobilization and
intense therapy right after stroke to secure a high degree of
functional recovery, during the short golden time (right after the
stroke) when brain plasticity is at its maximum (Arias and Smith
(2007); Yen et al. (2020); Cumming et al. (2008); Cumming et al.

(2011)). However, currently, COVID-19 is the main (if not sole)
focus of healthcare systems in many countries. Thus, while there
are many patients who experience a stroke during this very
challenging time, access to healthcare facilities is strictly
limited. Also, as mentioned in the introduction, not only has
the pressure of COVID-19, and corresponding concerns about
disease transfer to the elderly, resulted in delays in delivery (and
consistency of delivery) of rehabilitation services, but also the fear
of COVID-19 has caused delays where patients are holding off in
seeking emergency care after stroke symptoms. It should also be
pointed out that family members, who usually play a central role
as the regular caregiver (or helper) for the post-stroke process, are
usually partners of an age that also likely falls within the high-risk
category for COVID-19. Thus, it would be highly risky (if not
impossible) for patients and their immediate families to travel
repeatedly to healthcare centers to receive frequent rehabilitation
services. At the same time, it is highly risky for post-stroke
patients to remain in the hospital as in-patients, due to the
risk of pneumonia, which can be significant for those with
suppressed immune systems. Thus, now, the question is how
we can use the existing intelligent robotic and mechatronic
technologies, and how we can expand and exploit them to
deliver a high degree of care while maximizing patients’ safety.

4.2 Conventional Robotic Rehabilitation
A solution suggested in the literature, before the current COVID-
19 pandemic, for reducing pressure on the healthcare system to
deliver labor-intensive rehabilitation was to develop in-clinic
robotic technologies that provide repetitive, multimodal,
rehabilitation exercises (such as active assist robot, and
exoskeletons for both upper and lower limbs). Examples of
such robots are InteractiveArm (which is an upper limb end-
point robotic system from BionikLabs, Toronto, Canada
(BionikLabs. (2020))), ArmeoPower (which is an upper limb
exoskeleton from Hocoma, Switzerland (Hocoma. (2020))).
Robotic rehabilitation technologies are designed to promote
multimodal stimulation of neural and muscle activities, while
patients perform tasks in a virtual-reality environment.
Functionality, effectiveness, and various formats of robotic
rehabilitation are explained in our recent literature survey,
published in (Atashzar et al. (2019)). Conventional robotic
rehabilitation technologies utilize various modalities of
interaction, mainly being collaborative robots (Peternel et al.
(2017)) and exoskeletons (examples can be found in Proietti
et al. (2016); Rehmat et al. (2018); Lv et al. (2018); Lefeber et al.
(2019)). Commercial robotic rehabilitation technologies are
composed of three components:

a) A sensorized robotic module which is an active medical
device and can provide multi-directional and high
bandwidth kinesthetic force fields (such as assistive,
coordinative, and resistive forces) and vibrotactile
haptic feedback, to enable the delivery of various types
of rehabilitation for patients with a wide range of
biomechanics, motor deficits, and levels of muscle tone,
spasticity, and involuntarymotions. A core design factor is
to make the robots responsive to allow for rendering a
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highly transparent and agile interaction with the patient’s
biomechanics, which is an imperative factor for an
efficient rehabilitation regimen. Rehabilitation robotic
systems have been equipped with a variety of sensors,
which can measure eye motion, quality of hand-eye
coordination, force and motion, grasp pressure profile,
and neuromuscular activities such as electromyography
(EMG) and electroencephalography (EEG).

b) A task-oriented visual game-like virtual reality environment,
which is an inherent component designed to provide
patients with multimodal cues during tasks, with the goal
of enhancing the engagement and participation needed for
promoting plasticity.

c) Programmable virtual therapist algorithms that are coded
to provide intervention, and are responsible for quantifying
the performance of the patients (based on the recorded
multimodal data) and, accordingly, designing therapeutic
reactions for delivery by the interface.

There are several advantages with the use of robotic
technologies and they have shown potential in accelerating
neural recovery. These technologies have been shown to
enhance the quality of motor performance for stroke patients
with mild-to-moderate disabilities. The contributing factors are
as follows:

a) Power: Robots are powerful and precise, so they can generate
accurate high- and low-intensity assistive and resistive force
fields and vibrotactile haptic feedback to deliver therapy for a
wide range of patients with various biomechanics over a long
period of time.

b) Repeatability: Robots can be programmed to repeat an
interactive task for as many iterations as are needed.

c) Objective assessment and progress tracking: Robots are
computerized and can measure and log multimodal data,
such as kinematic and kinesthetic factors (such as
motion and force profiles in different joints), eye
motion, quality of hand-eye coordination, biological
signals (such as EMG and EEG); with the recording of
all these modalities synced and saved for each session
during rehabilitation. This enables precise and
repeatable objective assessment that is imperative for
clinicians to tune the dose, strategy, type, and intensity of
therapy while monitoring the progress of motor
enhancement.

d) Multimodal Stimulation for Engagement: Using VR
environments coupled with robotic systems, visual,
haptics, and auditory cues can be fused with kinesthetic
rehabilitation, enabling multimodal goal-oriented
sensorimotor tasks which can help to keep patients
engaged and urge them to use their decision-making
capabilities, which is a critical factor for stimulating
neural recovery, in comparison to passive limb
movement therapy.

Please see: Jimenez-Fabian and Verlinden. (2012); Chen et al.
(2013); Tucker et al. (2015); Atashzar et al. (2019), for more

details on these technologies. The effectiveness of robotic
rehabilitation systems in enhancing neural recovery has been
widely studied and attracted a great deal of interest in the
literature (Krebs and Hogan. (2006); Atashzar et al. (2019);
Bao et al. (2019); Simbaña et al. (2019); Shi et al. (2019)).
There are several journals, societies, and conferences focusing
on this topic to raise awareness regarding new robotic solutions,
algorithms, technologies, and industries. However, despite the
proven potential, there exist several challenges limiting the
performance, efficacy, accessibility, compatibility, and usability
of this technology. This has resulted in conflicting clinical studies
with contradictory conclusions on the topic (Atashzar et al.
(2019)). Based on the literature mentioned, among the
limitations are 1) the restricted interpersonal interaction
between the patient and the therapist, 2) a homogeneous
response (with minimum flexibility) of a programmed robot
over the workspace to a heterogeneous symptom space of the
pathology, 3) non-standard strategies to tune the intensity, dose,
and parameters of robotic therapy, 4) conservative constraints
limiting the performance of the robot due to basic patient-robot
safety features, 5) cost, accessibility and portability of robotic
rehabilitation.

4.3 In-Home Robots for Delivering
Rehabilitation During the COVID-19
Pandemic
Considering the current pandemic and the above-mentioned
risks associated with visiting rehabilitation centers for post-
stroke patients, while considering the imperative need for early
rehabilitation, existing robotic systems can play a central role if
their use is managed systematically. During the last decade, there
has been an active scientific movement to make robotic systems
home compatible (Huang et al. (2016); Bernocchi et al. (2018);
Díaz et al. (2018); Washabaugh et al. (2018); Lyu et al. (2019)).
For this, the three main factors to be met are safety, portability,
and cost. Current commercial robotic rehabilitation systems are
not primarily designed to be used in patient’s homes. Therefore,
the existing commercial robotic rehabilitation systems are mostly
expensive, bulky, and may not be safe enough to be used at home
(with minimal supervision of an expert or trained operator).
Safety is a major concern due to the ability of these technologies to
generate very large forces while tightly connected to patients’
biomechanics (Zhang and Cheah. (2015); Atashzar et al. (2016b);
Atashzar et al. (2017b); Atashzar et al. (2020)). In order to address
these issues, two categories of suggestions have been made and
implemented in the literature, 1) hardware solutions and 2)
algorithmic solutions. Suggestions regarding hardware
solutions have resulted in the design and implementation of
novel robotic systems with inherent safety. In this regard, soft
robots (please see Chu and Patterson. (2018); Cianchetti et al.
(2018) and references therein) and mobile robots (see examples:
Avizzano et al. (2011); Yurkewich et al. (2015); Germanotta et al.
(2018)) are two suggestions in the literature, which be explained
below. It should be noted that both soft rehabilitation robotic
systems and mobile robotic systems can be made in very compact
sizes at a low cost. One major reason for this is that both of these
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technologies drop the need for the use of heavy, expensive,
motors in a rigid link format, which was previously required
for delivering high-torque therapeutic forces.

a) Soft Robots: Soft robotic systems are composed of soft
actuators, soft bodies, and possibly soft sensors. These
robots are inherently safe due to their particular
physics. Soft robotic systems are also usually
inexpensive and can be made in small sizes, in
particular in the format of soft exo-suits, which are
soft exoskeleton robotic systems. These robotic systems
can be operated with minimal concerns about safety
(due to their compliant design) and can be used for a
variety of rehabilitative tasks (Chu and Patterson
(2018); Cianchetti et al. (2018)). These systems have
great potential to be used in the homes of patients with
NMSK disabilities, allowing them to have inexpensive
rehabilitation therapy and minimizing the need for
frequent visits to clinic.

b) Mobile Robots: Mobile wheeled robotic systems have been
recently been considered as another potential solution to
enhance safety and portability while reducing costs
(Germanotta et al. (2018); Avizzano et al. (2011);
Yurkewich et al. (2015)). The actuation principal of
these robots is based on the friction between the wheels
of a mobile platform and a table-top surface (instead of a
robotic-links rigidly connected to a structure). Because
these robots are not connected rigidly affixed to a base,
they can provide a high degree of safety. In addition, since
these systems do not require long arms and have indirect
power transmission, they can be designed in a very
compact size for maximum portability, while reducing
the cost of the system.

In terms of algorithms, it should be noted that there has been
active research on designing intelligent stabilizers (such as those
designed based on the Strong Passivity Theory) which can
guarantee the safety and stability of mechanisms by
monitoring and updating the amount of energy which can be
delivered and absorbed by patients’ biomechanics when
conducting rehabilitation exercises (Zhang and Cheah. (2015);
Atashzar et al. (2016b); Atashzar et al. (2017b); Atashzar et al.
(2020)). These algorithms mainly function by monitoring the
mechanical energy flow between patient and robot. By analyzing
system stability conditions on the fly, these systems allow for
initiation and tuning of interventions (through immediate
injection of damping factors) whenever stability conditions are
about to be violated.With the use of such intelligent observational
algorithms, the safety and stability of HRI is guaranteed, adding
one more layer of safety in addition to mechanical safety, as
explained before. It can be envisioned that with the use of existing
soft and mobile robotic systems, that have embedded intelligent
stabilizers, we can have in-home robotic technologies to deliver a
highly transpicuous kinesthetic therapy for patients in the home
and minimize the need for visits and therapist-patient physical
contacts. Considering the need for urgent rehabilitation post-
stroke, and due to the extensive research and available mechanical

and algorithmic supports, implementing such composite
technologies on a large scale can be envisioned to address the
lack of rehabilitation services for post-stroke patients in isolation
due to the concerns related to COVID-19. Achieving this goal
requires a focused interaction between industries, designing
robotic systems, and healthcare systems, to make such
technologies widely available for the public and maximizing
the accessibility of rehabilitation services. This section provides
the needed facts and scientific perspective of such discussion.

4.4 Telerobotic Rehabilitation: A Potential
Transformative Paradigm for Delivering
Supervised Remote Therapy
Telerobotic rehabilitation systems (under the category of
teleoperated robotic systems) are the result of a natural
extension of conventional robotic rehabilitation systems and
have been seen as a novel paradigm within telemedicine, can
maximize equal opportunity regardless of geographical
constraints (Atashzar et al. (2016a); Shahbazi et al. (2016);
Atashzar et al. (2018); Panesar et al. (2019); Hooshiar et al.
(2019); Fong et al. (2020a); Fong et al. (2020b); Sharifi et al.
(2020)) and restrictions caused by COVID-19. Telerobotic
rehabilitation systems are composed of two synchronized
robotic systems that communicate over a communication
channel, (e.g., internet). One robot is at the patient’s side and
one robot is at the therapist’s side. A virtual reality environment is
shared between the therapist and the patient. As a result, the
patient can perform tasks (like what he/she would do using
conventional robotic systems), but at the same time, the
motions are sent to the clinician’s side where the therapist can
feel all the motions provided by the patients (since the two robots
are synchronized in the position-force domain) and can react by
applying forces. The forces generated by the therapist are logged
using the sensory systems of robotic system while being sent back
to the patient-side robot. The patient can move the robot, and the
forces relayed to patient-side robot allow for the patient’s motion
to be corrected and guided if needed. This technology can be a
core solution for patients at home, since a remote therapist can
interact with a patient not only through vision and audio
channels (conventional telemedicine modalities) but also
through kinesthetic and haptic interaction, which is imperative
in the rehabilitation domain. With the use of this new paradigm,
patients can benefit in-home from remote multimodal and tele-
kinesthetic interaction with in-hospital therapists. This enables
supervised and remote motor assessment and delivery of
rehabilitation. This technology can realize the immersive
experience of teletherapy and interpersonal interaction
between the patient and the therapist. At the time of the
COVID-19 crisis, the need for this technology is pronounced,
which can significantly enhance the current state of telemedicine.
Such technology enables wide-range interaction between
clinicians and patients across the country with a specific focus
on patients in nursing homes, those with co-morbidities, and
those in areas with highly pressurized healthcare systems. This
offers a transformation to equal access of healthcare services and
is a major global need, especially during this crisis. Besides
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accessibility, telerobotic rehabilitation can significantly increase
the duration in which a patient can receive rehabilitation services
in-home since the involvement in a rehabilitation program would
no longer be linked to physical visits to care centers.

It should be emphasized that although the concept of
telerobotic rehabilitation has been proposed and investigated
during the last decade, there were some restrictions, in the
past, for realizing such technology at large scale, mainly due to
the sensitivity of the quality of therapy to the quality of service
(QoS) of communication networks. This includes issues related to
reliability and resiliency of communication and security of data
transfer. In this regard, latency, jitter, and packet loss not only
deteriorate the fidelity of therapy rendered for the remote patient,
but can also result in “non-passive coupling” between the two
robots, adding to concerns about safety (as this can potentially
cause asynchronous growing of interactional trajectories). This
concern has been addressed in the literature to a reasonable
extent, mainly 1) through the use of passivity stabilizers
(mentioned earlier) and 2) accessibility to secure, highly
reliable, and an agile internet connection, such as 5G and
beyond Aijaz et al. (2016).

It should be noted it is imperative for therapists and clinicians
to feel the kinesthetic actions and reactions of patients. This is
needed for two major interconnected purposes 1) rehabilitation,
2) assessment, as explained below.

First, it should be mentioned that in the field of motor learning
and rehabilitation sciences, it is known that a successful
rehabilitative therapy needs to provide the therapist with the
on-the-fly awareness of 1) the user-specific motor capability,
kinematics, and biomechanical characteristics of the patient, 2)
the specific characteristics of the neuromuscular deficits, and 3)
the rate and pattern of motor improvement. These three factors
are identified in the literature of rehabilitation as the three critical
factors of motor retraining, which basically require physical
interaction between therapists and patients. Thus it can be
mentioned that although in-home autonomous robotic systems
can deliver programmed rehabilitation therapy for patients in the
home, without a telerobotic paradigm, these robots block the
interpersonal interaction between a human therapist and the
patients.

Second, it should be noted that interpersonal interaction is also
known to be an imperative need, beyond rehabilitation, and
specifically for long-term assessment of the severity of the
condition and any changes in motor performance potentially
correlated to the delivered regimen of rehabilitation.

Considering this note, the importance of telerobotic
rehabilitation and assessment systems is further underscored.
Thanks to the high speed, reliability, and accessibility of modern
internet in many parts of the world, telerobotic rehabilitation can
multiply the use potential of a therapist’s time by bypassing the
obstacles due to distance and challenges due to isolation/
quarantine situations caused by COVID-19. These
technologies minimize actual human-human contact through
virtualization, while still allowing computerized physical
interaction. Considering the available communications
backbone and robotic technologies, telerobotic rehabilitation
can be envisioned as part of the response to the COVID-19

pandemic and to prepare healthcare systems for future
pandemics. This section displayed the imperative need and
feasibility of such telerobotic rehabilitation systems, with the
hope of increasing public and scientific awareness on the topic.

Remark: It should be noted that one of the challenges which
should be addressed for a fluent translation of telerobotic
rehabilitation technology into practice is the cost and
portability of robotic systems for use in the patient’s home (as
one terminal of the telerobotic system). This is an active line of
research and can be considered as the current limitation.
However, due to the accelerated trend of improvement
regarding in-expensive robotic systems, such as soft and
mobile robotic technologies, which can be used in the context
of rehabilitation to reduce the cost and improve the portability (as
mentioned in the previous section), it can be envisioned that the
mentioned limitations can be addressed in the near future.
However, this would require further research, development,
and investment in the future of telerobotic rehabilitation systems.

5 ASSISTIVE TECHNOLOGIES

As mentioned in the previous section, robotic systems have
transformed the delivery of rehabilitation therapies, assisting
with the gradual recovery of patients with sensorimotor
disabilities. The other related, yet different, category of robotic
systems developed to help patients with NMSK deficits are
assistive robotic technologies. The primary difference is that
assistive technologies are designed to immediately augment the
sensorimotor capacity of NMSK patients and help them in
performing activities of daily living. As a result, a gradual
recovery is not the primary focus of assistive technologies.
Assistive technologies are realized in various modalities of
interaction, including smart wearable mechatronics (Simon
et al. (2015); Chen et al. (2017); Lopes and Baudisch (2017);
Maisto et al. (2017); Bisio et al. (2019); Yang et al. (2019a); Alva
et al. (2020); Cerqueira et al. (2020); Gathmann et al. (2020)),
handheld robots (Pathak et al. (2014); Stamford et al. (2015);
Sabari et al. (2019)), exoskeletons (Gopura et al. (2016); Pazzaglia
and Molinari (2016); Young and Ferris (2016); Hill et al. (2017);
Settembre et al. (2020)), and smart wheelchairs (under
autonomous robots) (Chow and Xu (2006); Parikh et al.
(2007); Leaman and La. (2017)). Assistive technologies can be
as simple as smart IoT-based fall protection devices (Saadeh et al.
(2019)), smart gait-aid goggles for Parkinson’s patients (Ahn et al.
(2017)) and active canes (Lachtar et al. (2019)); they can be also be
more complex, such as exoskeletons (Gopura et al. (2016);
Pazzaglia and Molinari (2016); Young and Ferris (2016); Hill
et al. (2017); Settembre et al. (2020)). In this regard, it should be
noted that falls are a major concern for the aged population
(Terroba-Chambi et al. (2019); Silva de Lima et al. (2020)) and
can result in critical bone fractures (which heal slowly, if at all)
and other deteriorating secondary conditions. On the other hand,
mobility is essential for aged individuals to maintain
cardiovascular and musculoskeletal health, particularly after
recovery from NMSK conditions. This is an addition to the
normal needs for situational awareness and navigation in daily
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living environments and manipulation of objects (such as
doorknobs, food, etc.). Addressing this need to enable mobility
without the use of advanced technologies would call for more
interaction with care providers for the delivery of assistance,
which increases the risk of infection transmission among this
vulnerable population. The main outcome of the use of assistive
systems is enhanced situational awareness (i.e., perceptual
augmentation), enhanced independence, empowered mobility,
and increased manipulability for individuals with degraded
sensorimotor competence, (i.e. motor augmentation).

Common use cases of assistive robots to improve the motor
performance of patients living with NMSK are 1) exoskeletons for
patients with spinal cord injuries, stroke, and gait deficits, 2)
smart motorized wheelchairs for patients with severe lack of
mobility, 3) wheelchair-mounted arms for patients with the lack
of manipulability (such as those aging with severe cerebral palsy),
4) smart motorized walking supports for patients with limited
mobility and those with a high risk of fall, and 5) handheld tremor
compensators for patients with pathological hand tremors such as
Parkinson’s disease and essential tremor.

In addition to the above-mentioned examples, which mainly
focused on augmenting the motor performance of users, the
second category of assistive mechatronic technologies are
designed to augment the sensory perception of the patients.
These active smart-technologies aim to boost up the
perceptual awareness of users, to improve perception of
sensory input. These technologies ultimately help with
activities of daily living and tracking the health status of
patients. Sensory perception enhancing systems may be in the
format of wearable suits, (e.g. armbands) and may provide
auditory, vibrotactile, or visual cues for the patients. One
example of such a systems are wearable vibrotactile suits for
helping individuals with degraded vision and sensory awareness,
so they can navigate safely in daily environments while protecting
them when encountering unexpected contacts, which may result
in falls (Bharadwaj et al. (2019)). Another example is technologies
that provide cues to the user regarding their posture during
walking to maintain a safer balance (Viseux et al. (2019)).
These technologies have been used to enhance sensory
awareness of people with degraded vision and perceptual
capability. Another important example is closed loop and
open loop sensory cueing systems for patients with freezing of
gait caused by Parkinson’s disease (Mancini et al. (2018); Sweeney
et al. (2019)). Freezing of gait can result in danger and major
challenges during daily navigation (such as crossing a street,
navigating in a home, walking to the bathroom, etc.), resulting in
limited mobility and independence. With the use of sensory
augmentation technologies, patients with Parkinson’s disease
have shown to have significantly enhanced mobility and have
recovered a high degree of gait fluency. This is believed to be
caused through the opening of a redundant neural sensory
processing pathway, which may be less affected by degenerated
neurons. The above-mentioned technologies will enhance the
mobility and independence of patients with NMSK conditions,
minimizing reliance on caregivers, which reduces concerns of
disease transfer. Additionally, new assistive and wearable
technologies have been recently proposed to increase gesture

awareness to alert individuals about hand-face contact to reduce
the risk of COVID-19 infection (D’Aurizio et al. (2020)).
Although some of these technologies may not be directly
categorized as robotic systems, they are smart mechatronic
modules that can enhance sensorimotor functionality of
people, while minimizing the risk of infection and maximizing
the patient’s cognitive awareness about the possible risky
situations (which should be strictly avoided for NMSK
patients with co-morbidity).

Enhancing motor performance and situational awareness,
offered by assistive technologies, is particularly critical during
the COVID-19 pandemic, as the increasing a person’s
independence during daily activities decreases their need for
interaction with helpers, nurses, and care providers. In other
words, using assistive technologies, patients with sensorimotor
deficits require a lower amount of supervision and physical
interaction with care providers for conducting activities of
daily living. This can also reduce the need for having a high
number of nurses and helpers in long term care facilities, which is
a significant concern at the moment with concerns related to
bilateral disease transfer between patients and between patients
and care providers. Besides cognitive aspects, there are several
mobility/manipulability restrictions that are associated with
normal aging or age-related NMSK deficits. This includes gait
control problems, balance problems, dexterity deficits, lack of
motor power, affected precision in targeting, perceptual deficits,
and involuntary movements.

Thanks to the use of advanced assistive technologies, the
need for interpersonal interaction between elderly and care
givers can be significantly reduced. This shows an unmet
need to boost the performance, and availability, of assistive
technologies to help patients with conducting many activities of
daily living. With the use of advanced smart assistive robotic
and mechatronic technologies, it is possible to enhance mobility
and manipulability during the daily lives of senior individuals;
ultimately improving their independence and increasing their
situational awareness while minimizing the risk of COVID-19
infection. By employing several assistive technologies, the need
for care providers in the living environment of senior
individuals will be reduced, minimizing the risk of infection
transmission to this vulnerable population during and after the
COVID-19 pandemic era. Due to the strong literature and
successful implementation of assistive technologies, short and
long-term investment in this field of research and development
can make the healthcare system more prepared for future
pandemics.

6 ROBOTS FOR ASSESSMENT AND
SUPPORT

In this section, we discuss the use of robotic and mechatronic
technologies for 1) delivering assessment for monitoring,
evaluating, and diagnosing NMSK disabilities and 2) for
providing mental, social, cognitive, and emotional support to
isolated NMSK individuals. Support and assessment technologies
can be implemented in a number of ways through robotic and
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wearable technologies. These technologies are grouped together
here as many supportive technologies require some manner of
real-time monitoring or assessment of an individual.

6.1 Social Robots for Support
It should be noted that due to COVID-19-related guidelines and
concerns, the elderly, particularly those with age-related NMSK
disabilities and mobility issues, are affected by extra social
distancing and prolonged isolation policies. This leads to
secondary challenges such as depression, anxiety, and stress,
caused by excessive and prolonged isolation in this population
(Armitage and Nellums. (2020)). Seniors are being isolated from
their families and caregivers, with some long term facilities
around the world reducing or restricting patient/physician
visits. Given this, robotic and wearable technologies can be
used to compensate in part for this lack of direct physician,
caregiver, and family interaction. Social robots, for instance, are
designed to interact and communicate with humans and their
surrounding environment. Social robots have been constructed in
a range of form factors from pet-like toys (e.g., Paro) to
humanoids (e.g., Sophia). Social robots have been shown to be
particularly effective at helping with the mental health and well-
being of elderly persons with dementia or other NMSK
conditions in healthcare and long-term care settings (see Pu
et al. (2019); Scoglio et al. (2019)). Social robots can provide
or act as a companion to help people with NMSK conditions feel
less lonely, feel more socially engaged, and interactive. Social
robotics has primarily been used in assisting with the treatment of
elderly patients, particularly those with dementia, and have been
shown to have a positive benefit in improving mood, reducing
anxiety, and reducing depression.

The mood-boosting effects of social robotics can be
particularly helpful during the COVID-19 pandemic, as social
robots can help to bring a sense of comfort and interaction to
isolated elderly persons, and can be used to create a sense or
routine or order without the need for caregiver interaction. From
its inception, social robotics research traditionally has been
focused on robotics for elderly care and those with NMSK
disabilities. Social robots have gained new relevance during the
pandemic, with many seniors, group, and long-term care homes
no longer allowing family members (or with extreme restricted
care and reduced frequency and physical contact), social workers,
and support workers to visit. Due to the low-cost and substantial
research that has already been done with social robotics, they are
among the technologies that can be quickly deployed to
healthcare and long-term care settings during the COVID-19.

6.2 Mechatronic Assessment Technologies
Smart wearable mechatronic technologies refer to smart body-
worn devices that can measure, analyze, display, and transmit
information and are among other smart mechatronic
technologies which can significantly reduce the burden on
the healthcare system. Due to the close physical contact with
the body, these devices have been used to measure several
biomarkers of users, including heart rate, oxygen saturation
level, temperature, and mobility. Monitoring these biomarkers
is imperative for remotely supervising the health status of

isolated seniors and, in particular, those in long term care
facilities. These technologies can help to find, diagnose, track,
and trace COVID-19 symptoms and infections. They can
directly assist the healthcare system to more optimally
distribute resources and act quickly to 1) avoid the
worsening of the symptoms, 2) avoid transmission of
COVID-19 among elderly adults, especially in long care
facilities. Due to the computational power available to
modern cloud processing modules, data collected using
wearables can be processed on the fly with machine learning
systems. Thus, such technologies have been suggested for
detecting and tracking COVID-19 symptoms and alerting of
any anomalies (Seshadri et al. (2020)). They have also been used
for contact tracing and activity tracking of patients during the
COVID-19 pandemic to monitor adherence to guidelines for
protecting individuals and reducing the spread of infection
(Pépin et al. (2020); Seshadri et al. (2020)).

Besides being used for monitoring and assessment of health
status and searching for COVID-19 symptoms/infections, such
technologies can be used to remotely monitor the physical
performance of patients with NMSK conditions (Venkataraman
et al. (2017); Noorian et al. (2018); Noorian et al. (2019); Sanders
et al. (2020); Venkataraman et al. (2020)). Using such technologies,
the need for frequent visits to clinics for (subjective) recording of
patient performance would beminimized, further reducing the risk
of disease transfer during the pandemic. A classic example of these
devices is those that monitor (and encourage) physical activity (for
instance a Fitbit watch). More complicated wearable devices can
monitor patients physiotherapy exercises in-home as part of
telemedicine services. They may also monitor vital signs, or
report if a person is in distress through the detection of serious
conditions such as fall(s) and monitoring of mobility status. For
elderly people with NMSK conditions, there is a clear benefit to
using wearable technologies to keep track of rehabilitation progress
and quality of life measures without requiring hands-on contact
with a clinician or rehabilitation specialist. Many of the interfacing
sensors (such as EMG, MMG, and EEG) can be built into wearable
devices opening an unobtrusive neurophysiological window to the
underlying biomarkers. Thus allowing for a truly remote and
objective assessment of patients with NMSK conditions in their
homes, while relaxing the need for in-person visits (please see
Maceira-Elvira et al. (2019) and references therein). This is a
critical factor to be considered that can allow the clinician to
monitor the progress of and recovery after a NMSK condition, such
as stroke.

Research in both fields of social robotics and smart wearable
monitoring mechatronics have had significant progress during
the last decade resulting in a wide range of available, inexpensive,
technologies which can be exploited by the healthcare system in
the short-term future to further support patients. Particularly
those in need of NMSK rehabilitation, supervision, and
monitoring. Thus with systematic planning and involvement
of stakeholders, such technologies can be utilized to fight the
primary and secondary challenges imposed by the COVID-19
pandemic for serving patients with underlying NMSK conditions.
The proven potential for such technologies calls for further
investigation and development to provide a range of
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“standardized” devices to lift the pressure on healthcare systems
in future potential waves of the COVID-19 pandemic and
potential future pandemics.

7 CONCLUDING REMARKS

The COVID-19 pandemic has significantly affected the
healthcare systems and has raised several questions about its
capacity and preparedness to serve under heavy pressure. Based
on the significant advancements in various fields of engineering,
it is widely accepted that the current unprecedented pressure
could have been eased if available technologies, developed during
decades of research and investment, had been channeled through
a standardized pipeline to tackle the many challenges presented
by existing conditions before the pandemic. Among these
challenges, there is a growing concern regarding services
needed for patients with NMSK conditions, many of which
are halted, whilst treatment is still extremely time-sensitive
(such as rehabilitation post stroke). In this perspective review
article, we have provided a detailed analysis of existing
technologies and literature, and discussed the corresponding
capacity and how they can help to serve patients, particularly
those in the three critical domains of NMSK care (namely
rehabilitation, assessment, and assistance). Supported by
current literature, we believe that there exists significant
technological advancements that could have been established
and deployed to deliver a much higher quality of care for NMSK
patients during the COVID-19 pandemic. We have provided a
detailed discussion of several examples of such technologies and
introduced their capacity. This article provides an in-depth and

focused look at the existing literature and provides a platform,
and the needed information, to initiate a conversation between
stakeholders, engineers, policy makers, researchers, and
healthcare providers to discuss various aspects of intelligent
robotics and smart mechatronic technologies to augment the
delivery of care through a systematic investigation, investment,
and development for NMSK patients. We believe that the existing
technologies have the ability, and are ready, to assist with
healthcare delivery during the current and upcoming future
waves of the pandemic, if much needed awareness is raised.
In addition, this article strongly suggests that a continual
conversation be struck, so that for future pandemics,
healthcare systems can be equipped with the power and
intelligence of robotics and mechatronics technologies to
ensure patients with NMSK conditions receive the same high
level of care comparable with the that received during the pre-
pandemic era.
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The COVID-19 pandemic has highly impacted the communities globally by reprioritizing

the means through which various societal sectors operate. Among these sectors,

healthcare providers and medical workers have been impacted prominently due to the

massive increase in demand for medical services under unprecedented circumstances.

Hence, any tool that can help the compliance with social guidelines for COVID-19 spread

prevention will have a positive impact on managing and controlling the virus outbreak

and reducing the excessive burden on the healthcare system. This perspective article

disseminates the perspectives of the authors regarding the use of novel biosensors

and intelligent algorithms embodied in wearable IoMT frameworks for tackling this

issue. We discuss how with the use of smart IoMT wearables certain biomarkers can

be tracked for detection of COVID-19 in exposed individuals. We enumerate several

machine learning algorithms which can be used to process a wide range of collected

biomarkers for detecting (a) multiple symptoms of SARS-CoV-2 infection and (b) the

dynamical likelihood of contracting the virus through interpersonal interaction. Eventually,

we enunciate how a systematic use of smart wearable IoMT devices in various social

sectors can intelligently help controlling the spread of COVID-19 in communities as they

enter the reopening phase. We explain how this framework can benefit individuals and

their medical correspondents by introducing Systems for Symptom Decoding (SSD), and

how the use of this technology can be generalized on a societal level for the control of

spread by introducing Systems for Spread Tracing (SST).

Keywords: COVID-19, IoMT, smart wearables, spread control, AI for health, smart connected health, telemedicine,

symptom tracking
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1. INTRODUCTION

SARS-CoV-2, also known as COVID-19, is a novel coronavirus
that initiated a pandemic outbreak in December 2019. Due to
the high infection rate and relatively low mortality rate, as well
as the long incubation period, COVID-19 spread through more
than 19 countries by late-January 2020 (Adhikari et al., 2020;

Tang et al., 2020; Zhai et al., 2020). The aggressive nature of the
virus besides the limited knowledge has resulted in high pressure
on the healthcare systems (Wang C. et al., 2020). As the initial
waves of this virus is being passed in some countries (Leung

et al., 2020), many nations and states are going through phases
of reopening (Ainslie et al., 2020; Olagnier and Mogensen, 2020),
which suggests that active monitoring of symptom development
and spread should be conducted more robustly while preventive
measures are implemented in a multifaceted manner to mitigate
(if not possible to prevent) the following waves of the pandemic.

In the absence of widely-available vaccine for different variants

of the virus, and approved treatment during any pandemic,
the only available solution is to implement preventive measures
to be taken in an attempt to mitigate the virus’ damage as
much as possible until a reliable cure is found (Le et al., 2020).
As of the time of writing this paper, no approved cure for
COVID-19 has been found, and the research for finding a
solution to end this pandemic is still ongoing (Li X. et al.,
2020) with some limited access to vaccines for initial variants
of the virus. A wide range of tests has been introduced for
diagnosing infected cases such as CT Scans (Li and Xia, 2020)
and Polymerase Chain Reaction (PCR) (Li Y. et al., 2020;
Long et al., 2020). Research centers are acquiring knowledge
about the virus to understand the infection mechanism (Zheng
et al., 2020), alarming early symptoms (Sun et al., 2020), silent
symptoms (e.g., “happy hypoxemia Guo et al., 2020; Tobin
et al., 2020”), and the virus’ function in the body (Chen et al.,
2020).

Any possible solution that can facilitate faster and more
accurate preventative actions (Adhikari et al., 2020), means of
diagnosis (Wynants et al., 2020; Zhai et al., 2020), development
of predictive models (for identifying symptoms’ progress) (Liu
et al., 2020), tracing, and monitoring (Hellewell et al., 2020) is
highly beneficial and essentially needed by several policymakers
and stakeholders (Ransing et al., 2020). These activities concern
hospitalized patients, out-patients, and those who have not
been diagnosed.

This article provides the authors’ perspectives about the
functionality of smart wearable IoMT technologies for early
diagnosis of COVID-19 symptoms (including silent symptoms)
at the individual level and for tracking the interpersonal
interaction using which the spread of the virus within the society
can be modeled. We argue that the same technology can be
used beyond COVID-19 and for detection and tracking of any
infectious disease which results in respiratory symptoms. We will
discuss the existing techniques and technologies and will explain
the existing technical challenges to be addressed. We explain
the functionality of state-of-the-art biosensors and machine
intelligence which can be fused in the context of wearable IoMT
technology to address several “unmet needs.”

In this paper we categorize IoMT technologies as (a) Systems
for Symptom Decoding (SSD), and (b) Systems for Spread
Tracing (SST). IoMT-based SSD are those systems which assist
with early diagnosis and tracing of the symptoms at the individual
level while coupled with certain algorithms and additional
hardware, SST technology are those technologies to model not
only the individual symptoms but also the dynamics of symptom
evolution in clusters of population based on interaction models
and tracing of interpersonal interaction for better management
of the spread in a cluster and on a larger scale in society.

In this perspective article, we disseminate our perspective
about the challenges and potentials for the use of SSD
technologies to continuously and autonomously monitor the
vital signs of patients can be to alert the individual and the
care providers about any upcoming potentially-major health
anomalies so that proper medical care can be planned. We will
discuss the imperative role of machine intelligence in particular
health-related anomaly detection algorithms which can be used
to not only detect but also predict the flares of symptoms.We will
also highlight that how with the use of SSD technologies objective
telemedicine sessions have been conducted, and how this can be
further promoted to enhance telemedicine quality and reduce the
need for in-person visits, and to avoid interpersonal contacts.

It should be noted that, continual monitoring allows for
detecting infrequent flares of symptoms which may not be
feasible based on infrequent discrete visits (Joyia et al., 2017;
Khan et al., 2020). This is a major benefit of IoMT technologies
which can significantly help with the fight against a pandemic,
if low-cost, and highly-accessible wearable IoMT can be made
available. This will not only help with a faster and more
efficient assessment of the symptoms, but it also will help to
distribute the healthcare resources optimally based on data
collected from the affected patients. To further motivate more
investment and investigation in this field it should be noted that
SSD systems can also significantly help to monitor individuals
before the infection and promote early diagnosis, planning, and
management under remote access. This will be possible due to
the available infrastructures for a smart and connected healthcare
model which should be further enhanced to prepare the system
for future waves of the pandemic and future pandemics.

The authors would like to emphasize their opinion that the
use of IoMT devices can be extended to a higher level, for
example, for clusters of patients in clinics or in small and
then larger societies. This will be challenging but will allow
monitoring not only the symptoms of individuals but also the
spread of the symptoms. This concept has already been evaluated
using smartphones in some couturiers (such as South Korea,
India, Iceland) and some states in the United States (such as
Utah), using GPS data of smartphones to monitor COVID-19
spread. However, GPS is not precise enough to gauge short
distances, especially for in-door interactions. Thus, other forms
of technologies such as Bluetooth Low-Energy (BLE) have been
suggested (for example, by Google and Apple) on smartphones.

Based on the literature review conducted in this paper
(explained later), despite the benefit of existing systems, such
as BLE, the current technology has major limitations, among
which we can highlight sensitivity to dynamic motions of
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the two carriers, sensitivity to a dynamic environment, the
difficulty of calibration and need for re-calibration in a cluttered
environment, and sensitivity to angle of arrival and location of
the sender and receiver. This highlights a list of challenges that
should be investigated for the higher performance of wearable
IoMT on a large scale. Addressing these challenges, IoMT-based
SST can implement preventive measures such as social distancing
guidelines (SDG) based on the gathered multimodal information
about (a) the symptoms evolution in a cluster of population
and (b) interpersonal interaction in the clusters, especially in
crowded indoor environments. Examples are medical facilities
(such as dialysis clinics and neurorehabilitation clinics) and non-
medical facilities, such as nursing homes, senior homes, drug
rehabilitation facilities. On a larger scale, SST technology can
enable medical providers to have a broader symptommonitoring
over the society (and clusters of the population) in terms of
the pandemic spread, and thereby manage the distribution of
hospitalizations and medical supplies. It can be mentioned that
the extended surveillance that SST technology grants can help
policymakers to detect and react to the main causes of the spread
by enacting more accurate laws to fight against the spread. SST
technologies also raise awareness among the people about the
dangerous areas of the city in regard to COVID-19 spread.

In this perspective article, we will also disseminate our opinion
that both SST and SSD technologies can be embodied as a
personal smart wearable device to help process the related
bio-signals for diagnosis, tracking, and prevention. However,
this would require significant optimization of electronics and
investigation of means of reducing the cost to maximize
accessibility and wide-use of such technology among the society
regardless of the economic strength. This is a challenge to be
addressed since most of the existing wearable systems either
rely on connection with smartphones or have a very high cost,
challenging the usability and feasibility of widely-used in societies
with a low economy. In addition, despite all exciting benefits, data
security, and reliability of data transmission can raise concerns
and should be investigated thoroughly (Zhang Z. K. et al., 2014;
Dorri et al., 2017; Khan and Salah, 2018; Noor and Hassan, 2019).

This article aims to initiate an in-depth conversation between
different sectors, including researchers, technology designers,
providers, hospitals, and policymakers to not only examine ways
that can be implemented rapidly to adopt the existing technology
and improve the health care system’s diagnostic and preventative
power using IoMTs but also to examine the challenges, and
future directions of such technology in particular when the
use is scaled-up to a societal level in order to fight possible
future waves of COVID-19 pandemic and future pandemics.
The authors would like to acknowledge that this article is
written as a “perspective article type” to provide the opinion
of the authors on the specific topic of the paper, i.e., the
potentials of IoMT for COVID-19 response. Our intention in
writing this article is to initiate discussions between researchers,
policymakers, and stakeholders to further investigate the use of
IoMT solutions for empowering the healthcare systems under
the severe restrictions imposed by COVID-19 and considering
the unfortunate current and future waves of this pandemic and
future pandemics.

2. INTERNET OF (MEDICAL) THINGS IN
THE ERA OF COVID19

IoMT has exponentially become more popular during the past
decade due to the benefits for creating smart environments
that can autonomously function to provide various services
(Bélissent, 2010; Sundmaeker et al., 2010; Gubbi et al., 2013).
IoMT wearable devices have been increasingly used for medical
purposes, such as monitoring health of elderly (Liang and Yuan,
2016), physical activity monitoring (Wang and Tang, 2020), and
orthopedic care (Singh et al., 2020). However, most of the pre-
COVID-19 uses of IoMT devices were for small-scale application
and in many cases when the cost and scalability were not
an issue. Given the large-scale challenges caused by COVID-
19 pandemic, autonomous services, and remote conduction of
service (telepresence) have become of higher importance, in
particular in the context of telemedicine (Singh et al., 2020)
calling for large-scale use of affordable and accessible technology
which can be used in remote areas and in regions with limited
economic power. Several governmental funding agencies are now
supporting research proposals across the world for designing
low-cost scalable IoMT devices to enhance the health care system
during the fight with COVID-19. Examples are funded NSF
RAPID grants (Atashzar and Wang, 2020; Rogers, 2020), in
addition to numerous calls for proposals, such as NRC (2020).
This shows the imperative unmet need for having very low
cost and effective IoMT devices for telemedicine which requires
addressing a wide range of technical challenges including the
accuracy, wearability, ease-of-use (specially for aged population)
in unstructured dynamic environments and with minimum to no
re-calibration needs. For this there is a need for discussing the
building block of an IoMT framework in the context of COVID-
19. IoMT frameworks are composed of two cores, namely,
hardware and middleware (Gubbi et al., 2013).

2.1. Hardware
Hardware includes all the sensors that monitor biomarkers and
symptoms. To choose the best sensors for tracking symptoms
of COVID-19, first, we should have an in-depth insight into the
symptoms of COVID-19 infection. Then we should choose the
most appropriate sensors for tracking the symptoms, considering
the cost for large scale deployment, need for calibration, re-
calibration, and the ease of use in the context of a wearable system
for the society.

Current identified symptoms of COVID-19 are
predominantly fever (Huang et al., 2020; Roser et al., 2020;
Wang D. et al., 2020), dry cough (Chen et al., 2020; Huang et al.,
2020; Roser et al., 2020; Wang D. et al., 2020), fatigue (Huang
et al., 2020; Roser et al., 2020; Wang D. et al., 2020), a drop of
SpO2 with minimum signs (happy hypoxemia) (Guo et al., 2020;
Tobin et al., 2020), and other symptoms that are less frequent,
though can be more serious, e.g., shortness of breath (Chen et al.,
2020; Roser et al., 2020), headache (Chen et al., 2020; Huang
et al., 2020; Roser et al., 2020; Wang D. et al., 2020), and muscle
pain (Chen et al., 2020; Roser et al., 2020).

Since COVID-19 is still known to be a respiratory disease,
achieving information about blood oxygen saturation level is
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essential. It should be highlighted that happy hypoxemia is an
unconventional situation because of which patients who have
critical oxygen saturation do not feel unwell for a long period of
time during which the infection gets worse, while patients do not
show serious symptoms resulting in delayed delivery of care. This
shows the importance of detecting such a condition as early as
possible. Pulse oximeter sensors measure pulse rate and the level
of oxygen saturation in reduced hemoglobin (Hb), based on the
light absorption characteristic (Vandecasteele et al., 2017).

Challenges for using Spo2 is the sensitivity of such sensor
to the contact quality and possibility blockage issues (such as
due to body hair) affecting the reflective light, also sensitivity
to movements. Thus choosing the best number of sensors (to
conduct redundant recording) and the best location on the body
are imperative topics to be investigated when designing the
wearable for a large scale. One solution is to use the multichannel
recording to reduce the chance of blockage and increase the
signal to noise ratio by fusing the recording. However, this would
increase the cost, size, and computational load. A comprehensive
analysis is needed to test various locations on the body, which
can provide a robust recording. The most successful wearable
systems in the market are smartwatches. However, due to the
complexity of the physiology at the wrist, recording SPo2 has
been a major challenge for smartwatch companies. A limited
number of very recent smartwatches in the marker offer SPo2
recording; however, they require a very steady posture for
a prolonged duration, which will be a challenge for patients
or elderly users. Also, these systems are not able to provide
continual recording, limiting the chance of picking up the
dynamic changes.

Another challenge of existing IoMT devices is the need for
being paired with a smartphone. This significantly increases the
cost and reduces accessibility, especially for remote areas and
for areas with a low economy. Thus there is an unmet need for
having an IoMT device that can not only accurately measure
the symptoms but also be independent of any edge device and
can operate as a stand-alone technology with minimum cost.
As mentioned before, some grant agencies are calling for new
proposals to generate stand-alone IoMT devices under 50$. Of
course, the accuracy cannot be sacrificed, especially since the
recordings are very sensitive. For example, a SPo2 of 91 out of
100 may require immediate attention, and this cannot be within
the range of error of the hardware.

In addition to Spo2, respiratory rate (RR) can be achieved
by various means, such as advanced processing of ECG (Shen
et al., 2017) or through the use of an array of piezoresistive films
placed non-invasively around an individual’s chest to sense the
frequency of the chest motion (Loriga et al., 2006; Pacelli et al.,
2006a,b; Witt et al., 2011; Fiedler et al., 2012; Atalay et al., 2014;
Subbe and Kinsella, 2018). The challenge with measuring RR is
the very low-frequency content, which makes it computationally
difficult to estimate based on bioelectrical recording such as ECG.
There are also specific challenges with any bioelectric recording,
as explained below. Using pressure belts can provide a measure
of RR, but it would challenge the wearability and usability of the
system and makes it difficult for large-scale uses. The topic of
calculating RR is an accelerated field of research, and more recent

efforts are focused on using other modalities (such as optical
PPG) to extract RR.

Body temperature is the most important information for
COVID-19 (Roser et al., 2020). In order tomeasure this modality,
contact sensors and IR sensors have been used. IR-based
temperature sensors provide better performance in rejecting
the ambient noise and less sensitivity to contact conditions
(Stavem et al., 1997; Liang and Yuan, 2016) when compared with
contact sensors (Sibinski et al., 2010), thus it is suggested for
smart wearables.

For detecting functionality of cardiovascular system besides
symptoms of fatigue, muscle soreness, stress, and heart rate (and
possibly RR), bioelectrical signals (such as EEG, EMG, and ECG)
can be used as information rich markers (Gazendam and Hof,
2007; Jap et al., 2009; Craven et al., 2014; Rechy-Ramirez and
Hu, 2015; Acharya et al., 2018; Xia et al., 2018). Bioelectrical
recording however may face challenges such as being affected
by the electromagnetic noise of the household devices, or
changes in electrical impedance and connectivity stemming
from sweating and other physiological causes. Substitutional
sensing modalities have been used in wearable IoMT devices.
For monitoring heart rate, PPG may replace ECG while relaxing
the dependency to electrical contact, and for monitoring muscle
activities, mechanomyography, or force-myography may replace
EMG (Castillo et al., 2020). Besides sensors, communication, and
power electronics are other modules of hardware in a wearable
IoMT, the complexity of which depends on the bandwidth needed
and power consumption.

From a communication standpoint, in wearable IoMT
devices, near field connection (NFC) (Neefs et al., 2010;
Opperman and Hancke, 2011; Timalsina et al., 2012; Duregger
et al., 2015), Bluetooth connection (Lee et al., 2007; Dementyev
et al., 2013), and WiFi (Lee et al., 2007; Curone et al., 2010;
Kim et al., 2015) are used based on their data transfer rate,
range of communication capability, power consumption, and
availability. Some of these communication modalities are also
used for localization, as explained later. It should be added that
the communication module of wearable systems has been seen as
a potential solution for addressing the contact tracing problem.
For example, there is a wide range of studies on the use of
Bluetooth low energy. Later in this document, we provide our
perspectives on the benefits and challenges of the use of such a
solution for detecting interpersonal contact between the wearers.

Thus, it can be mentioned that despite a wide range
of available sensing technologies, particular investigations are
needed to minimize the cost while maximizing the accuracy and
wearability. In the above, a range of challenges with existing
technologies is provided, which shows the roadmap that can be
taken to realize a scalable solution.

2.2. Middleware
Middleware administrates storing the information and
evaluating the collected data to extract meaningful features
that can be assessed on the fly to (a) provide biofeedback to the
user (Sundmaeker et al., 2010), and (b) provide information from
a cluster of users for analysis by medical workers, policymakers,
and other public sectors, which helps to monitor the effects of
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healthcare and guidelines at the societal level. There are different
architectures of IoMT middleware that are utilized based on the
expected functionality of the framework. These architectures
can be categorized mainly as service-based (Papazoglou and
Georgakopoulos, 2003), cloud-based (Ngu et al., 2016), and
actor-based (Soldatos et al., 2015) modules. As a part of
middleware, diagnostic IoMT technologies can be equipped
with means of artificial intelligence to predict health-related
anomalies. In the rest of this article, we provide our perspective
on this important topic as well.

2.2.1. Security and Privacy
Privacy is a significant concern and must be addressed before any
potential large-scale use of IoMT devices for contact tracing and
symptom tracking.Without a systematic solution which provides
a very high degree of protection on patient’s data, IoMT devices
can only be used up to a limited scale, such as for in a hospital uses
or for clusters of the high-risk population in a closed space (such
as nursing homes to track symptom evolution in the population),
or as part of telemedicine and individual uses. These are examples
of limited scale uses for which the important matter of privacy
and security can be addressed using existing infrastructures. For
any large-scale use of the device, a serious concern that needs to
be addressed is the matter of large scale security and privacy of
the information. Relevant important discussions can be found in
Subashini and Kavitha (2011), Zhang Z. K. et al. (2014), Dorri
et al. (2017), Gatouillat et al. (2018), Khan and Salah (2018),
Hatzivasilis et al. (2019), Noor and Hassan (2019), and Kagita
et al. (2020).

The authors also believe that one additional issue related
to this topic is the reliability of data storage and data
transmission and accessibility of the medical sector to such
data. Since internet-based architectures that handle personal
information can be a subject of different attacks, there is an
imperative need for utilizing security algorithms. Examples can
be found in the literature focusing on the maintenance of
the safety of such systems (Sicari et al., 2015). In addition to
compromising information confidentiality, large-scale uses of
IoMT architectures can increase the susceptibility to malicious
cyber-physical attacks that are aiming to hinder the processing
of the data and causing failures, false-positive alarms, and false-
negative reports (Khan and Salah, 2018). These attacks can range
from low-level (Xu et al., 2005) to intermediate-level (Zhang K.
et al., 2014) and high-level (Conzon et al., 2012). For addressing
this issue, there is a need for implementing defense mechanisms.
Several defense techniques have been proposed in the literature
for each type of attack, which should be investigated before a
large-scale IoMT can be deployed (Xiao et al., 2009; Bhattasali
and Chaki, 2011; Khan and Salah, 2018).

3. IoMT WEARABLE TECHNOLOGIES

Due to the potential benefit of IoMT devices, there have been
an accelerated range of recent efforts that envision the use for
fighting against COVID-19 spread and future pandemics. These
aim at the conduction of early diagnosis, tracking the spread, and
monitoring the infected and susceptible individuals (Atashzar

andWang, 2020; Dong et al., 2020; Garg, 2020; Roser et al., 2020;
Sohrabi et al., 2020; Wu and McGoogan, 2020). The trend (Ng
et al., 2020) is motivated with the imperative need to prevent the
spread of the COVID-19 on different societal levels. In order to
discuss various functionality of IoMT wearable technologies, in
this prespective article, authors have categorized IoMT wearables
into SSD and SST.

3.1. Systems for Symptom Decoding
Technologies, which are called Systems for Symptom Decoding
(SSD) in this paper, are designed for diagnosis, monitoring,
analyzing the evolution of signs of infection at an individual level.
Upon achieving the biomarkers via the hardware in an SSD, the
information can be sent to the (cloud-based) middleware to be
processed using various AI-based anomaly detection algorithms,
which aremachine learningmodules that process the distribution
of multidimensional data and detect health-related anomalies.

The authors would like to highlight that based on
conventional machine-learning-based anomaly detection
approaches, subtle multidimensional changes in the well-being of
an individual can be tracked to inform themedical correspondent
about the malevolent alterations in the biomarkers, to promote
early diagnosis of COVID-19 infection, fighting the prolonged
incubation period of COVID-19 (Zhai et al., 2020).

In terms of the type of algorithm for detecting infection-
related health anomalies, gray box and black box artificial
intelligence models can be used (see examples in the literature;
Khan and Khan, 2012), some of which rely on probabilistic
distributions of the data, and some rely on underlying labeled
patterns in the healthy data to be modeled. Based on probabilistic
algorithms, the likelihood of infection for an individual can
be calculated. In this regard, we can highlight two main
subcategories for health-related anomaly detection, which can be
used in IoMT wearable for COVID-19, namely (a) clustering-
based techniques, (b) classification-based techniques.

In this regard, the K-means clustering approach (Tan et al.,
2016), K-medoids approach (Garg et al., 2020), and Expectation-
Maximization-based clustering approaches such as mixture
models (Bublitz et al., 2017; Qi et al., 2018) are among the
candidates for clustering techniques. These machine learning
modules try to detect the underlying clusters of multidimensional
data and predict an anomaly if the new data does not show a high
probability of belonging to one of the clusters.

In addition, the Fuzzy logic approach (Hamamoto et al., 2018),
genetic algorithm (Chen et al., 2018), naïve Bayes networks
(Zhen et al., 2017), neural networks (Amarasinghe et al., 2018;
Chalapathy and Chawla, 2019), and support vector machines
(Erfani et al., 2016) are among classification algorithms used for
anomaly detection, which can be used for detecting COVID-19
anomalies in the symptom space of patients.

The authors’ perspective about the context of detecting the
health anomalies of COVID-19 based on multidimensional data
collected by wearables is as follows. Despite the great success
and advancements in the field, the anomaly detection algorithms
suffer from several issues which are pronounced for COVID-
19, including (a) the sensitivity of the accuracy to the amount
of available labeled data (this is concerning in the context of
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COVID-19 since the data is limited due to the novelty of the
virus and limited knowledge and consistent data collection), (b)
variation in the normal behavior of the data and the definition
of normal behavior (which is questionable due to the very
different and unpredictable behavior of the virus for different
individuals), (c) noise in data (which is a challenge for any
wearable and in-home technologies), (d) similarity between
advanced anomalies and normal data (which is a problem due
to heterogeneity of symptoms of COVID-19). Some of the
aforementioned concerns are rooted in existing issues of health-
related and more information in this regard can be found in
Papazoglou and Georgakopoulos (2003), Xu et al. (2005), Xiao
et al. (2009), Bhattasali and Chaki (2011), Conzon et al. (2012),
Zhang K. et al. (2014), Agrawal and Agrawal (2015), Rechy-
Ramirez and Hu (2015), Sicari et al. (2015), Soldatos et al. (2015),
Ngu et al. (2016), and Khan and Salah (2018).

Our perspective about the near future of AI-based diagnostic
techniques for COVID-19 and other infectious disease is
that the SSD technologies can be augmented by algorithms
which can facilitate prediction-in-time (beyond monitoring)
the “evolution” of symptom biosignals. This can significantly
augment the versatility of the system. In this regard, machine
learning algorithms that can predict a possible near future
adverse event over a given prediction horizon can be significantly
beneficial as it would allow for early diagnosis and planning.
The longer the prediction horizon, the more complex yet more
beneficial the algorithms will be. This is a challenging task;
however, the authors believe that it can be realized in the
near future using state of the art neural network architectures,
specifically LSTM or GRU (which are two modern formats of
recurrent neural networks for processing time series). However,
these models are supervised techniques and require heavy data
collection. A new variant of neural network architecture that
can help with addressing this issue is shallow neural networks.
Thus, the authors believe that a combination of a shallow
neural network and a recurrent neural network architecture can
provide the needed temporal resolution in terms of the prediction
horizon for diagnosing infection for COVID-19 symptoms. The
use of shallow architectures reduces the need for heavy data
collection, and the use of advanced modules such as GRU, which
is designed to be more efficient, allows for underlying modeling
patterns of symptom evolution that can be decoded for early
prediction of infection progress.

Thus, it can be summarized that thanks to the advances
in the last decade on neural network architectures, the next
generation of wearable IoMT devices can be augmented with
cloud computation allowing for accessing strong machine
intelligence for early detection and possibly prediction (with
a tunable horizon) for health-related anomalies. However, this
requires widespread and fast access to cloud computation
infrastructure. There exists a rich literature for detecting
general health anomalies to be adopted in COVID-19 IoMT
wearables; however, there exist several challenges that should
be investigated, as discussed in the above. This would call for
investment and investigation to empower wearable technologies
of tomorrow with means of predictive diagnosis intelligence.
This can significantly enhance the protocols and diagnostic

workflow. For example, results of the anomaly assessment can
be forwarded to the medical correspondent to accordingly
schedule hospitalization and online visits or suggest guidelines
to the possibly infected person. Figure 1 shows the overall
concept of SSD.

3.2. Systems for Spread Tracing
In this paper, we categorize SST as technologies that will take the
analyzed information from multiple SSD systems to monitor the
aggregation of information from a cluster of users to assess the
current status of the spread of COVID-19 and suggest guidelines
for the communities (including users and non-users of SSDs) to
help avoid the contraction of the COVID-19 especially for high-
risk populations and plan for minimizing the risk of infections
for non-affected groups.

The authors would like to highlight that SST can be identified
as the more general IoMT surveillance system for a population
cluster as it evaluates bothmedical biomarkers (those collected by
SSD) and non-medical information regarding the interpersonal
interaction between individuals. As an example, our perspective
is that in an in-patient non-COVID clinic in a hospital
where there are clusters of patients, clinicians, and visitors,
deployment of an SST technology (such as smart tags) can allow
for monitoring the evolution of symptoms among the under
surveillance population to minimize the risk of confrontation
and detecting early spread and hotspots of infection. This will be
imperative for (a) controlling the spread, (b) isolating the non-
infected individuals, and (c) planning for implementation of a
more efficient SDG.

It is of high importance to track and backtrace the path that
led to an infection, to monitor the early or recovered cases,
and to collect data for future analyses. This requires significant
human resources, clinical resources, and time which are all in
shortage currently in healthcare systems (Boulos and Geraghty,
2020; Dong et al., 2020; Emanuel et al., 2020; Fauci et al., 2020;
Menni et al., 2020). Here, “tracking” is defined as gathering
information about (a) the history of an individual’s locations, (b)
people that the individual has visited, and (c) tracking back to
the infection source. The authors would like to highlight that
currently, still in many couturiers (not all), this process has been
done by subjective surveys, which are very costly, non-objective,
time-consuming, and not necessarily accurate as in many cases,
an individual in the chain of interaction may have mild or happy
symptoms (which exist but are not felt as mentioned before). This
shows the importance of objective tracking of the trace of the
virus by (a) collecting multidimensional symptom markers and
(b) history of interaction, and (c) compliance to the SDG. This
topic is discussed in detail in section 3.2, and the authors have
introduced recent efforts by industries such as Google and Apple
and some governments to use advanced technologies such as GPS
and BLE to promote objective contact tracking using smartphone
technologies. This highlights the ongoing accelerated effort,
which further supports the use of wearable IoMT technologies
(equipped with contact tracking technologies) for COVID-19.

It should be noted that the benefit of augmenting sensorized
wearable technologies with biomarker and contact tracking
features is that the technology is able to not only track the location
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FIGURE 1 | Functionality of SSD.

but also concurrently the symptoms of the user to generate a
better model of infection spread in society and to better protect
the wearer and the visitors to the hotspots and estimate the
infection severity in various regions.

However, we should highlight that there is a wide range of
technical bottlenecks. Among the existing challenges, we would
light to highlight (a) localization accuracy and resolution in
a dynamic, unstructured, and cluttered environment and (b)
the security and privacy of the wearers. Regarding outdoor
localization, it can be mentioned that although GPS accuracy
may not be at the ideal level to detect interpersonal interaction,
it is sufficient for detecting whether an individual has been in a
crowded or infected hotspot zone or if a region is showing flares
of symptoms. It can also be used to detect whether an individual
has been following SDG. The use of such an advanced approach
allows for the generation of density heatmaps of the cluster of
crowds and that of symptoms and analysis of the interaction
between the two clusters.

Regarding indoor localization, however, the state of the art
techniques are designed based on the use of Bluetooth Low
Energy (BLE) (Ng et al., 2020; Sadowski et al., 2020; Spachos
and Plataniotis, 2020a,b), Ultra High-Frequency RFID (Li et al.,
2019), WiFi (Wang et al., 2017), and hybrid systems (Guo
et al., 2019; Monica and Bergenti, 2019). Our perspective is
that using these technologies; a wearable IoMT device can be
equipped with cloud-based signal triangulation techniques and
advanced filtering, data fusion, and estimation approaches (such
as Kalman-based sensor fusion andmachine learning techniques)
to locate the wearer with respect to the known locations of signal
transmitters installed in an indoor infrastructure. The technical
challenges are (a) accuracy needed for detecting interpersonal
interactions, (b) high sensitivity to dynamical movements
within the unstructured under-surveillance environment and
movement artifacts from the wearers, (c) the cost of the

systematic infrastructure needed for signal triangulation, and (d)
patient privacy.

The authors would like to highlight that with the use of SST,
it can be inferred if an under-surveillance society is following the
preventive guidelines and how the symptom activity is spreading
among the population. In addition, we believe that optimizing
the effort to treat hotspots detected by wearable systems can help
the policymakers to reevaluate the regulations based on the real-
time status of symptom spread. Thus it can be mentioned that
SST can help the sectors in charge to smartly alter the intensity
of the public regulations for controlling the COVID-19 spread to
manage the spatiotemporal aspect of the reopening process while
ascertaining the public compliance with preventive guidelines.
The authors’ opinion is that the use of wearable technologies can
help to better predict upcoming waves in various zones and to
objectively plan for sourcing medical supplies to avoid urgent
shortages. As an additional feature, symptom activities in various
clusters can be shared on a common platform with the society
to let commuters avoid facing hotspots with a higher risk of
infection. Figure 2 shows a schematic view of SST’s functionality.

The authors would like to highlight that the topic of
contact tracing using advanced proximity sensing, such as using
Bluetooth low energy (BLE) technology, is an active field of
research and recently is more accelerated due to the benefit of
tracking and backtracing contacts between individuals with a
positive history of COVID-19 infection and other users of the
technology. The use of BLE is motivated due to the availability
of it in smartphones and because of the functionality for
indoor locations to track interpersonal contacts. In this regard,
it should be noted that some governments are suggesting the
use of this technology for current waves of the pandemic. As
mentioned in Servick (2020) (the following quoted text is taken
from Servick, 2020); currently, “GPS data from phones can
identify potential hot spots and indicate who has been exposed.
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FIGURE 2 | Functionality of SST.

Government programs in South Korea, India, Iceland, and U.S.
states, including North Dakota and Utah, are using phone
location data to monitor COVID-19 spread. But GPS technology
is not precise enough to gauge short distances between two
phones to determine which encounters are most risky.” This is
the motivation for using other platforms such as BLE to detect
interpersonal interaction. Please see more details in Ng et al.
(2020), Servick (2020), and Zastrow (2020) for an explanation
of the use of BLE technology on smartphone applications for
tracking COVID-19 infection and some recent efforts such as
those by Google and Apple for releasing an application for
doing this. Also please see Wang et al. (2017), Guo et al.
(2019), Li et al. (2019), Monica and Bergenti (2019), Mackey
et al. (2020), Sadowski et al. (2020), Spachos and Plataniotis
(2020a), and Spachos and Plataniotis (2020b) for more details on
technologies that can be used for indoor tracking. However, there
is a wide range of challenges to be addressed for the use of such
technology. The challenges are mainly related to the achievable
accuracy of such a technique for an unstructured, cluttered,
and dynamic environment. Also, the need for calibration, the
sensitivity to angle of arrival, and the location of the sensor,
and the motion of the wearer further challenge the use of such
a system. The current efforts are toward (a) developing new
machine intelligence algorithms to further enhance the accuracy
of the system, (b) fusion with other modalities while keeping the
cost low to enhance the resolution.

The authors believe that the wearable technologies of
tomorrow will be able to estimate social distancing without
reliance on communication with smartphones to minimize the
cost and maximize accessibility while providing the needed
accuracy and resolution. This calls for an extensive investigation
and investment related to the field of IoMT wearables and can
significantly reform the future of the modern healthcare system
through more objective telemedicine.

It should be noted that a situation that can potentially
challenge this technology is the large-scale acceptability of the
society for the use of the proposed approach. The high-scale

use can be affected by the resistance of different groups for
the adoption of this technology and the lack of compliance.
These are open challenges facing large-scale use of any new
technology, which may initially limit the feasibility at the
societal level. A gradual adoption may be suggested starting
from smaller populations such as people in nursing homes and
those with co-morbidities, then scaling it to higher volumes.
The aforementioned challenges call for an active discussion
with and involvement of social scientists and policymakers,
who can help to investigate the underlying reasons for the
potential rejection of large-scale uses, and thus implement
the needed training and deliver accurate information to allow
for a higher volume of use and higher compliance at the
societal level.

4. CONCLUSION

In this paper, the authors disseminate their perspective on the
use, functionality, and challenges ofWearable IoMT technologies
coupled with artificial intelligence for changing the picture of
telehealth during a global pandemic in which remoteness, cost,
accessibility, efficacy, and versatility are crucial to managing
the infection symptoms at the individual level, in clusters of
high-risk populations, and ultimately in society. The authors
believe that to deploy this technology and benefit from its
multifaceted objective features, and several sectors should be
informed and agree on terms of operation. This perspective
article aims at providing insight on various aspects of wearable
IoMT, elucidating existing advances and challenges while
highlighting the potential benefit for managing the future waves
of COVID-19 pandemic and future pandemics. We emphasize
how this technology can help to conduct early diagnosis at
individual levels and how it can help with optimizing the
governmental regulations based on the interaction between
high-risk population clusters and symptom spread. This article
aims at increasing the awareness of the society, governments,
medical correspondents, and industries about this new smart
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way of surveillance of infection and spread to act accordingly by
enacting regulatory laws, providing medical supports, optimizing
plans for testing and hospitalization, and monitoring the
compliance. There are several technical and technological
challenges to be addressed, listed in this paper, calling for
extensive investigation and investment on the topic of IoMT
Wearable Technologies.
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The unprecedented shock caused by the COVID-19 pandemic has severely influenced the
delivery of regular healthcare services. Most non-urgent medical activities, including
elective surgeries, have been paused to mitigate the risk of infection and to dedicate
medical resources to managing the pandemic. In this regard, not only surgeries are
substantially influenced, but also pre- and post-operative assessment of patients and
training for surgical procedures have been significantly impacted due to the pandemic.
Many countries are planning a phased reopening, which includes the resumption of some
surgical procedures. However, it is not clear how the reopening safe-practice guidelines
will impact the quality of healthcare delivery. This perspective article evaluates the use of
robotics and AI in 1) robotics-assisted surgery, 2) tele-examination of patients for pre- and
post-surgery, and 3) tele-training for surgical procedures. Surgeons interact with a large
number of staff and patients on a daily basis. Thus, the risk of infection transmission
between them raises concerns. In addition, pre- and post-operative assessment also
raises concerns about increasing the risk of disease transmission, in particular, since many
patients may have other underlying conditions, which can increase their chances of
mortality due to the virus. The pandemic has also limited the time and access that
trainee surgeons have for training in the OR and/or in the presence of an expert. In this
article, we describe existing challenges and possible solutions and suggest future research
directions that may be relevant for robotics and AI in addressing the three tasks
mentioned above.

Keywords: COVID-19, robotics, surgery, teleoperation, tele-examination, tele-training

INTRODUCTION

The novel coronavirus has been declared a public health emergency of international concern by
WHO in Jan 2020 (WHO, 2020). By the time of writing this paper, all countries are affected by the
pandemic. The unprecedented shock wave of the virus spread has impacted regular health care
service delivery. The extreme pressure on healthcare systems has exceeded capacity, and managing
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the pandemic has become a global issue that has drastically
influenced most aspects of the healthcare system. The
performance of surgeries (most of which are categorized as
elective surgeries), training for surgery, and assessments for
surgery are aspects that have been significantly impacted.

Due to the chance of false negatives in the pre-surgery
COVID-19 testing of patients, all patients have to be treated
as suspect cases. Dealing with infected or suspected patients
requires precautions such as consideration for anesthesiologists
(Willer et al., 2020), limitation of staff exposure to patients, and
wearing PPE, which poses difficulties to operating theatre (Kumar
et al., 2020). However, these procedures cannot guarantee the
safety of staff and patients. Moreover, since hospital staff is in
contact with several people each day, cross-infection through staff
should also be considered.

New regulations have recommended a moratorium on elective
surgery to avoid virus spread in hospitals by minimizing personal
interactions and expenditure of medical resources for infected
patients who need intensive care. Deferring elective surgeries is
based on opinions and has secondary consequences. Progression
of the disease continues when the patient is waiting for surgery.
This has a substantial impact on the life quality of patients (Fu
et al., 2020), results in higher treatment costs (Reyes et al., 2019),
and may cause unexpected death (Zafar, 2020). On the other
hand, elective surgeries are not optional and must be performed
eventually. Thus, there may be a need for performing a deferred
surgery during the COVID-19 time frame. Moreover, catching up
with the 2 million backlogged elective surgeries worldwide each
week will impose a huge burden on the healthcare system when
elective surgeries resume (Szklarski, 2020).

This unprecedented scenario not only has affected surgeries,
but has also influenced surgery-related activities profoundly.
Surgical education has been affected adversely by the
pandemic. There has been a gradual reopening of activities,
including schools, but with the anticipated rise in the rate of
infection it is anticipated that there will be some levels of shut
down again in this sector. Trainees are banished from wards, and
residents have lost their access to practical OR training (Ferrario
et al., 2020; Ferrel and Ryan, 2020). In addition, emergency and
non-deferable surgeries are being done by senior surgeons
without the presence of trainees to reduce operation time and
risk of complications, and mitigate the risk of residents’ exposure
to COVID-19 (Bernardi et al., 2020). This situation has imposed
mental anxiety and has slowed down the learning curve of
residents and medical students, who will be needed in
catching-up with deferred surgeries in the future (Ahmed
et al., 2020).

Moreover, going into hospitals for pre- and post-surgery
assessments is also a safety concern during the pandemic.
There is always an infection risk for any minute that a non-
COVID patient spends in a hospital. Consequently, hospitals try
to discharge patients as soon as possible to reduce the risk of
infection. Besides, the closure of medical offices has disturbed
pre- and post-surgery assessments (Scaravonati et al., 2020).

Since there is no widely approved or sufficiently tested vaccine,
there is a possible chance of second and third global waves in the
Fall and Winter, and continuing lockdown regulations imposes

an intolerable burden on the healthcare system. Several countries
are therefore planning for a reopening guideline to resume safe
delivery of surgical services (Dattani et al., 2020). However, it is
not clear how the reopening phase will affect the quality of
healthcare delivery and how the above-mentioned tasks should
be performed safely while there is a lack of a clinically approved
therapy for COVID-19. This perspective paper proposes robotics
and artificial intelligence (AI) as a solution for the three above-
mentioned tasks and investigates potential opportunities in the
area to address the mentioned problems.

ROBOTICS-ASSISTED SURGERY

Minimally invasive surgery (MIS) has demonstrated superiority
over open surgery. Less amount of blood loss, and shorter
recovery and hospital stay are the main reasons for the
preference of MIS when it is possible. Meanwhile, robotics-
assisted MIS (RAMIS) has evolved and shown superhuman
capabilities for teleoperation and has found its place in MIS.
Teleoperation offers surgeons an ergonomically operating
posture (Ballantyne, 2002), provides them with more dexterity
than conventional laparoscopy (Moorthy et al., 2004), enhances
the accuracy of motion beyond surgeons’ natural ability, etc.
Besides these benefits, the main virtue that distinguishes
teleoperation in the COVID-19 era is providing the ability to
separate the surgeon’s console (leader robot) from the patient
robot (follower robot) while keeping them connected through a
communication interface (Challacombe et al., 2003).

Telesurgery affords physical separation of the surgeon from
the patient, in a separate room avoiding bilateral infection
transfer, which can be life-threatening. In addition, the
number of bedside staff in RAMIS is less than in open surgery
(Kimmig et al., 2020). This provides the safety of the patient and
operating room by reducing inter-personal contacts to the lowest
level possible. This performance has been shown experimentally.
In the United States, a CorPath robotic intervention arm has been
used in coronary intervention on a COVID patient to provide
safety of the personnel (Tabaza et al., 2020).

Dealing with an infected or suspected patient requires a
maximal level of protection (Liang, 2020). The physical
disturbance caused by this level of protection has a negative
influence on surgical performance. On the other hand, the
COVID-19 situation increases the surgeon’s mental stress,
which critically affects the surgeon’s performance. Elevated
stress levels could likely be due to the fear of contracting the
virus or spreading it to patients and the surgeon’s family (Tan
et al., 2020). Studies have shown that depression, anxiety,
insomnia, and stress have increased, especially among front-
line healthcare providers during the pandemic (Lin et al.,
2020). High stress levels may result in inappropriate responses,
such as poor decision making and impaired psychomotor
performance (Wetzel et al., 2006; Arora et al., 2010). The
elevated psychological stress levels among healthcare providers
may sustain even one year after the outbreak as it happened in
2004 with SARS (Lee et al., 2007). Not only telesurgery reduces
surgeon’s stress by providing better ergonomics during surgery
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(Berguer and Smith, 2006), but also, during the COVID era,
robotics-assisted surgery significantly reduces stress levels by
providing higher infection protection through physical
distancing between the patient and the surgeon; also, it
reduces the number of needed medical staff to be present in
close proximity to the patient and each other during prolonged
surgeries (which can increase the possibility of infection transfer
between a patient and staff and between staff members). It should
be highlighted that robotics assisted surgery does not make the
aforementioned interactions zero as there is always the need for
some format of interaction between a patient and staff. However,
it reduces the duration and the number of interactions.

Recently, the concept of semi-autonomous and autonomous
surgery has attracted a great deal of interest thanks to
advancements in the area of machine intelligence especially
when combined with computer vision (Moawad et al., 2020).
When compared with teleoperated robotic surgery, AI-based
autonomous and semi-autonomous robotic systems has not
been fully exploited in the literature as these are newer topics
of the field. In the language of surgery project, it has been shown
that combining AI with teleoperation can provide a semi-
automated system that can recognize and perform tasks
automatically when there is a pre-trained model for the
recognized task, allowing for faster and high accuracy
procedures (Bohren et al., 2011). Semi-autonomous robots
have been used for orthopedic surgery, such as MAKOplasty,
when preoperative images are fused with intraoperative
information to provide surgeons with an augmented
sensorimotor capability through production of dynamic virtual
fixture in time and space. More recently, fully-autonomous
robotic surgery has been discussed in medical robotic
communities and preliminary experiments on ex-vivo tissue
have shown promising results. The performance and accuracy
of semi-autonomous surgical robots have been proved clinically
(Hampp et al., 2019). For example, the MAKO (Stryker, 2020)
and NAVIO (Smith and Nephew, 2020) robots guide the surgeon
in joint arthroplasty semi-autonomously and prevent excessive
bone loss. This guarantees proper bone preparation and precise
implantation. However, autonomous surgical robots, despite
their great accuracy in comparison to manual procedures
(Shademan et al., 2016), are still in the non-clinical
development phase. In the context of remote operation, the
use of autonomous robots can provide a higher degree of
separation while providing some additional accuracy through
processing of multimodal intraoperative information. However,
this is a technologically challenging field which should be
investigated to provide more autonomy regarding management
of surgery during a crisis such as COVID-19.

The other benefit of RAMIS in the COVID-19 era is that it
increases the availability of intensive care unit (ICU) beds. The
smaller incision for RAMIS shortens patient’s recovery time and
hospital stay. This allows hospitals to dedicate more ICU beds to
critically ill cases while handling surgeries. There is however a
shortcoming in terms of the OR time usage for RAMIS as a result
of the extra setting-up time and longer procedure times
(Heemskerk et al., 2007; Cho et al., 2016; Lindfors et al.,
2018). Nonetheless, a shorter post-surgery hospital stay is of

paramount importance and outweighs the longer OR time,
notably in the COVID-19 era. Moreover, deploying AI in
robotic surgery has been shown to decrease soft tissue damage
and consequently decrease recovery time (Wall and Krummel,
2020).

Due to abdominal pressure in laparoscopic surgery, there are
some concerns about the possibility of aerosolization of viral
particles and contamination through surgery smoke in
laparoscopic surgery (Schwarz and Tuech, 2020; Van den
Eynde et al., 2020). Although these methods of infection are
not completely proved for COVID-19 yet, safety regulations
should be considered to prevent possible infections. It should
be noted that surgical smoke is also released in open surgeries;
however, in RAMIS, it is easier to handle the smoke trapped in the
patient’s body. Safety precautions to prevent these issues are 1)
lowering the electrocautery power to reduce the amount of smoke
production (Mottrie, 2020); 2) smoke evacuation and abdominal
deflation through ultra-low penetrating air (ULPA) filter
(Kimmig et al., 2020); and 3) reducing abdominal pressure to
the lowest possible. RAMIS surgeries are feasible to perform with
lower abdominal pressure than conventional laparoscopic
surgery (Kimmig et al., 2020). To summarize, RAMIS is safer
than MIS and open surgery in terms of contamination through
aerosolization of viral particles for bedside staff.

Telerobotic surgical systems have solved several issues
associated with conventional MIS and also provided the
surgeon with new capabilities. These features are 1) depth
perception; 2) dexterity enhancement; 3) improved accuracy;
4) better hand-eye coordination; and 5) and multiple tools
delivery through a single incision (Atashzar and Patel, 2018).
Moreover, in teleoperation, information and operation data can
be saved and used for training purposes both for AI supervision
and training of novice surgeons (Zemmar et al., 2020). The
problem of degraded haptic feedback in conventional
laparoscopy has not been solved yet. Better tracking accuracy
and improved surgical performances have been achieved using
the haptic feedback in RAMIS (Talasaz et al., 2014), (Currie et al.,
2017). Related to this, the lack of haptic feedback increases the
risk of tissue damage due to large unintentional forces. Other
modalities of feedback such as visual force feedback of the tool
(Tavakoli et al., 2006), a tactile sensor and tactile ultrasound
(tactUS) instrument for palpation and tumor localization (Trejos
et al., 2009; Naidu et al., 2017a; Naidu et al., 2017b), and skin
stretch feedback (Schorr et al., 2013) are influential in robotic
surgery, but none of them can completely make up for the
absence of haptic feedback. Thus, enabling telerobotic surgical
systems with force sensing and force reflecting modules is of high
importance, which increases the quality of teleoperated surgery
(Talasaz and Patel, 2013; Talasaz et al., 2017). A machine learning
algorithm has been deployed to estimate the elongation of suture
from knot type, initial suture length, and surgical thread type
data, and visual feedback has been used to warn the surgeon of the
risk of suture breakage (Dai et al., 2019). In particular,
considering a larger number of surgeries that can benefit from
teleoperated procedures using robots, during the era of COVID,
addressing this challenge should be accelerated. This topic has
seen ongoing research, and unfortunately, the current trend does

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6106773

Feizi et al. Telepresence for Surgery During Pandemic

230

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


not show a promise of an upcoming solution. With improving
technology for haptic feedback, this can result in a major advance
in the performance of teleoperated surgeries on a larger scale and
can enlarge the domain of surgeries, which can be conducted
teleoperatively, helping with the management of the current
concerns regarding infection transfer during surgery in the
time of COVID.

There are two characteristics associated with a good haptic
teleoperation system: transparency and stability. In the last three
decades, a significant amount of research has been done on
developing a transparent control architecture. Four-Channel
Lawrence (FCL) was proposed as the first transparent
teleoperation system (Lawrence, 1993). It was modified to
simpler architectures (Hashtrudi-Zaad and Salcudean, 2001),
(Hashtrudi-zaad and Salcudean, 2002). Atashzar et al.
proposed a simplified two-channel modified-ELFC (M-ELFC)
architecture that provides a high degree of transparency
(Atashzar et al., 2012). To deal with the stability issue, three
categories of passivity-based controllers have been proposed: 1)
the Wave Variable approach (Aziminejad et al., 2008); 2) Time
Domain Passivity Approach (TDPA) (Ryu et al., 2010); and 3)
Small-gain approach (Atashzar et al., 2017a). Both techniques
stabilize the system; however, stabilization comes at the cost of
compromising transparency. Considerable research has been
done to improve the performance of teleoperation (Artigas
et al., 2010; Chawda and Omalley, 2015; Atashzar et al.,
2017b; Panzirsch et al., 2019; Singh et al., 2019), but the
proposed stabilization methods are still far from ideal. The
discussion above clarifies some of the technical challenges
creating obstacles to realizing high-fidelity haptics-enabled
teleoperated surgery. The potential of RAMIS in resolving the
surgical issues caused by COVID-19 is calling for an accelerated
trend of research and development, extending the performance of
teleoperated surgical robotic systems for allowing more benefit of
this technology in reducing the burden on the healthcare system
during the pandemic and similar crises in the future.

Remark: AI has been extensively developed in the last decade and
has revolutionized many industries. However, the application of AI
in surgical procedures requires a significant amount of adaptation
and consideration. Robotic surgery can take advantage of AI in the
COVID era from three aspects; 1) increasing accuracy and reducing
the risk of failure by providing shared and full autonomy in simple
tasks (Rabinovich et al., 2020;Wall and Krummel, 2020); 2) allowing
physical distancing by changing the surgeon’s role from executive
and continuous control to supervisory and intermittent control; and
3) increasing the average number of surgical procedures, which will
be required to address the backlogged surgeries caused by the
shutdown of elective surgeries over a long period of time, thereby
reducing the load on surgeons and allowing after-hour surgeries
(Zemmar et al., 2020).

TELE-EXAMINATION OF PATIENTS

Preoperative examination for surgery preplanning and post-
operative patient examination in the recovery time is another
matter of concern in the COVID-19 era. In-person visits increase

the risk of virus contraction for the patient and the surgeon.
Keeping personal interactions as low as possible is the key factor
in dealing with the pandemic.

Post-operative examinations may include patient’s
assessment at home and ICU. Telepresence robots that are
made for telehealthcare purposes allow physicians to interact
with patients, and monitor patients’ vital signs without the
physical presence of the surgeon in the ICU (Laniel et al.,
2017). These systems have been used in Italy at COVID-19
patients’ bedside in the ICU (Bogue, 2020; Pullella, 2020). A
similar robot has been used in Israel to communicate with
quarantined patients (Marks, 2020). In terms of home
healthcare, messages, phone, and video calls have been used
for post-operative examination. It has been shown that
telepresence robots could provide a stronger feeling of a
person to person interaction for both users, in comparison
to video and phone calls, and both physicians and patients
have expressed satisfaction (Tavakoli et al., 2020), (Becevic
et al., 2015).

Preoperative examinations have also been done with AI- and
robotics-enabled telehealth, but applications are limited due to
the lack of physical exams and the need for clinical imaging.
However, it has been shown that for some specific conditions,
diagnosis via telemedicine could be as accurate as an in-person
diagnosis when examination through telemedicine is feasible
subject to limitations (Asiri et al., 2018). For example, AI can
be used for digital triage to direct patients to the most appropriate
medical center based on the resources and their condition before
they show up in emergency rooms (Lai et al., 2020). As another
example, it has been shown that blood draw and injections can be
done with portable robots using AI more accurately and faster
than a manual procedure (Zemmar et al., 2020). Another example
is the telerobotic system that has been used in China to perform
cardiac and lung ultrasound on a COVID patient (Wang et al.,
2020). These systems can help safeguard patients and staff by
reducing the need for patient referral to hospital and physical
distancing.

Robotics and AI have taken a step in the development of tele-
examination of patients during pre- and post-operative phases.
However, there is still room for adding new capabilities to tele-
healthcare robots in order to lower the need for in-person
examinations or patient referrals to hospital. Besides robots,
focusing on smartphone-based or computer-based tele-
examination systems would be useful because of their
widespread use.

TELE-TRAINING OF SURGEONS

The outbreak of COVID-19 has severely affected surgical training
procedures. The most significant components of surgical training
are comprised of theoretical, pre-clinical, and hands-on clinical
training, but the lockdown caused by the pandemic has severely
limited the opportunities for students and residents to acquire
surgical training (Puliatti et al., 2020), (Bernardi et al., 2020).
High-quality and intense healthcare support, which would be
needed during and after COVID-19, requires precise training.
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Although some schools are in a gradual reopening phase, there
would be some level of shut down again with the next wave of the
pandemic.

In such extraordinary conditions, online learning,
teleconferences, and webinars can be of benefit with regard to
surgical education and fill the gap with regard to theoretical
training issues (Dedeilia et al., 2020). The benefits of these online
learning technologies have been shown prior to the COVID-19
pandemic.

On the other hand, robotics and AI could improve the quality
of pre-clinical training. Pre-clinical training is conventionally
performed through dry or wet lab practices. The use of robotic
simulators based on virtual reality (VR) systems has shown a
significant improvement in novice surgeons’ skills (Tergas et al.,
2013). Hands-on-Surgical Training (HoST) provided by
augmented reality (AR), and dual-user teleoperated system
with virtual fixtures are more advanced simulators that help
the novice surgeon to navigate using haptics-enabled cues
outside the OR (Shahbazi et al., 2013; Kumar et al., 2015).
Xperience Team Trainer developed by Mimic Simulations
allows teamwork training in the OR at the pre-clinical stage
(Mimics, 2020). This technology provides simultaneous training
for the novice surgeon and the bedside assistant to improve
coordination between the surgeon and assistant.

The preservation of acquired skills is another important issue
in the COVID time. Surgical skills including motor and cognitive
skills decay when a surgeon goes through a long period of time
without using the acquired skills (Perez et al., 2013). Simulation-
based medical education may fill the gap in surgical practice and
prevent the loss of surgical skills during a lockdown (Higgins
et al., 2020). In addition, AI can be employed to interpret the data
collected from simulations for surgeons’ skill evaluation
(Winkler-Schwartz et al., 2019).

Because the above-mentioned technologies provide high-
quality training while keeping social distancing, they could be
part of the solution for the educational gap in the COVID-19 era.
An active line of research and development that can be
accelerated would be to design and develop small, inexpensive,
and portable sensorized robotic modules connected to cloud-
based virtual reality surgical environments. A large number of
trainee surgeons could then continue their hands-on practice/
training when access to training facilities is significantly
restricted. This is critical because sensorimotor learning is a
continual process in the human brain, and a long pause before
getting to the agency level can drastically result in fading of
sensorimotor skills.

Theoretical and pre-clinical training may guide students to
pass the cognitive phase of learning; however, the integration
phase, which gives them appropriate motor skills to perform
surgery, requires performing surgery under the supervision of an
expert in the OR (Choi et al., 2020). Residents would have very
limited access to this form of training due to cancelation of
elective surgery (Imielski, 2020) or requirements of social
distancing. For telesurgery which is more challenging for
residents to perform than open surgery and requires specific
training, a viable solution that can be achieved using existing
systems can be developed using hand-over-hand haptic-enabled

tele-training (realized by multilateral teleoperation systems). This
would not only allow novice surgeons to perform surgery from a
safe distance, but also give them the opportunity to be supervised
by an expert at the same time (Shahbazi et al., 2018a; Shahbazi
et al., 2018b). The dual console teleoperation system format
shares the control of the operation between the expert and the
trainee. Incorporating haptics-enabled feedback would then
provide the trainee with real-time force feedback. This format
of telesurgery training gives the resident experience through
supervised surgery without jeopardizing the safety of the
patient or the resident during the constraints imposed by
COVID-19. Furthermore, these multilateral tele-training
systems could also be set up to evaluate the motor skills of
trainees based on their performance.

DISCUSSION AND CONCLUSION

The novel coronavirus has challenged the healthcare system
across the globe. Social distancing has become a new normal
and may remain for a significant length of time especially as a
result of the lack of vaccine and treatment for a critical period of
time. This has deeply impacted surgeries and surgically related
activities which may revolutionize how future healthcare systems
function. Canceling elective surgeries was an efficient policy to
curb the spread of the virus; nevertheless, keeping to this plan
could have a detrimental effect on the health of patients and the
healthcare system. Currently, governments are working on
reopening guidelines. In this unprecedented situation, robotics
and AI could play an important role in the safe delivery of surgical
services through the use of telesurgery, tele-examination, and
tele-training environments. A summary of the existing
technologies and required features is given in Table 1.

Regarding teleoperated robotic surgery, it should be noted that
although there is a wide range of benefit for both patients and the
surgeons, there still exist a spectrum of challenges which are open
topics for research and development. Regarding benefits, in the
context of laparoscopic surgery, it can be mentioned that besides
reduced operation time, reduced blood loss, increased accuracy,
and reduced recovery time, there are additional benefits that are
more pronounced during the pandemic, including reduced time
and frequency of interpersonal interaction between surgical staff,
reduced number of staff, reduced interaction between patients
and staff, all to reduce the risk of infection transfer and increase
the safety of surgical procedures (Kimmig et al., 2020; Tavakoli
et al., 2020). It should be noted that the current state of telesurgery
and robotics-assisted surgery are advanced for abdominal
surgery; however, for some categories such as orthopedic
surgery, teleoperation has not been considered as a robust
option. During the pandemic, any technology that reduces the
duration of surgery directly or indirectly (for example, by
increasing the accuracy which reduces the need for
readjustments) can significantly reduce the chances of
infection transmission. This is critical since, in general,
surgeons operate on many patients in a short time, which can
increase the risk of infection even between patients indirectly
through their surgeon.
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However, it should be noted that there is a wide range of
challenges which have not been addressed yet, especially in the
context of teleoperated surgery, and these for the future direction
of research. One of the major challenges is the stability and
transparency of force-feedback teleoperated robotic systems
(Aziminejad et al., 2008; Ryu et al., 2010; Atashzar et al.,
2017a). Due to the concerns of safety the existing
commercialized telerobotic surgical systems, such as the da
Vinci surgical system, do not enable force reflection, even
though it is known that force reflection can significantly
increase the quality of surgery by providing a much higher
situational awareness for surgeons. Although a number of
stabilizers and control algorithms have been reported in the
literature, the existing algorithms result in deviation of motion
tracking and force reflection, which reduces the accuracy of
surgery and is often not acceptable (Artigas et al., 2010;
Chawda and Omalley, 2015; Atashzar et al., 2017b; Panzirsch
et al., 2019; Singh et al., 2019). Besides stability, instrumentation
is another challenge. Attaching inexpensive, disposable,
biocompatible, and miniaturizable force sensors to surgical
tools for measuring multidimensional forces for reflection
through a teleoperation medium is a major instrumentation
challenge and an open line of research (Atashzar and Patel,
2018). Technologies such as optical force sensors are
promising options and are the front line of research in this regard.

In addition, the introduction of AI in telesurgery is a new field
of research and development which has attracted a great deal of
interest in order to enable parts of surgical tasks to be automated,
thereby reducing some cognitive and physical burden for the
surgical team with the potential for reducing the operation time,
increasing accuracy and reducing the number of needed staff in
the operating room. The accuracy resulting from using AI in

industrial applications has been shown; however, more research is
required to prove its performance and build up confidence in the
medical area (Wall and Krummel, 2020). Dealing with soft tissue
is the main challenge when involving AI in the context of robotic
and telerobotic surgery.

Regarding tele-examination, telepresence robots have been
effective in improving post-operative patient-surgeon interactions
and monitoring patient’s vital signs, mostly in ICUs. However, due
to limitations, effective solutions for detailed pre- and post-operative
tele-examination of patients have not been proposed in the literature.
One of the main challenges in this area is the development of
portable sensorized robots for detailed remote monitoring of
patient’s signs. On the other hand, AI would be particularly
useful in automating tele-examination devices to reduce the need
for in-person pre- and post-operative examinations.

As for tele-training, simulation-based training systems using AR
and HoST have provided a context for pre-clinical training while
ensuring the safety of trainees and experts. In addition, simulation-
based training can be effective in ensuring skill levels of surgeons in
the presence of long periods of surgical inactivity. However, there are
open areas for research in this field. Hand-over-hand training using
multilateral teleoperation is one of the future research areas that can
profoundly improve the quality of clinical surgical tele-training. The
stability of delayed multilateral teleoperation and effective methods
for sharing control between an expert and a trainee are directions for
future researches (Shahbazi et al., 2018a; Shahbazi et al., 2018b).
Besides hand-over-hand training, employment of AI for surgical skill
training and assessment are open research areas.

In this perspective article, we have provided our opinions on
some existing technologies which can be adopted rapidly to help
with the current unprecedented situation and have given a
perspective of the technologies required in hospitals. The

TABLE 1 | Existing technologies and required features in telesurgery, tele-examination, and tele-training.

Current existing technologies
translated into practice

Required missing features
for performance improvement

Telesurgery • Unidirectional teleoperation. pros: better ergonomy; physical separation;
less bedside staff; shorter hospital stay; less abdominal pressure; simpler
surgical smoke handling; automated data recording.
cons: lack of force feedback in the loop; limited types of surgeries.

• Visual and other modalities of force feedback. pros: better diagnosis in
teleoperation and less tissue damage while avoiding instability.
cons: not as effective as direct haptic feedback.

• Transparent direct haptic feedback.
• Increased capability to include more types of surgeries.
• Reduce the cost of robots to increase accessibility.
• Development of shared autonomy between surgeons and robots.
• Automating simple tasks using AI to augment the performance, fluency
and consistency of the surgery while reducing the need for interpersonal
interaction.

Tele-
examination

• Telemedicine systems through voice and video conferencing. pros: no
need for hospital attendance; minimizing the risk for patients to come into
contact with the source of infection; minimizing the need for traveling to
clinics enhancing the accessibility; allowing for more-frequent visits; better
digital platform for tracking records and conditions.
cons: not as effective as in-person examination in many cases due to
limitations on conducting physical exams.

• Automated triage using AI.
• Portable examination system for pre-and post-surgery.
• Telepresence robots in ICU and patients’ houses for tele-physical
examination.

• Advanced automated wearable systems for tracking patient’s vital signs
and physical ability.

Tele-training • Online learning systems. pros: following up the theoretical aspects of
surgical training during lockdown; minimize the need for in-person
attendance.
cons: lack of experimental training.

• VR robotic surgery simulation systems. pros: effective experimental
training for students while minimizing the risk of making mistakes in actual
surgery and minimizing students risk of infection.
cons: not as effective as actual wet lab training.

• Hands-on-Surgical Training through dual-console telesurgery systems.
• A portable hands-on robotic module to provide consistency in surgical
training.

• Accurate surgical skill evaluation system using AI and actual saved
telesurgery data.
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intention in writing this article has been to initiate discussions
between researchers, policymakers, and stakeholders to further
investigate the use of robotic, telerobotic and AI-based solutions
in a framework for enhancing the performance of surgery,
surgical training, post-operative treatment, and monitoring
under the severe restrictions imposed by COVID-19. The
vision and opinions presented in this article are based on an
extensive review of the literature concerning approaches through
which Robotics and AI can play a significant role.
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In this paper, we design and develop a novel robotic bronchoscope for sampling of

the distal lung in mechanically-ventilated (MV) patients in critical care units. Despite the

high cost and attributable morbidity and mortality of MV patients with pneumonia which

approaches 40%, sampling of the distal lung in MV patients suffering from range of

lung diseases such as Covid-19 is not standardised, lacks reproducibility and requires

expert operators. We propose a robotic bronchoscope that enables repeatable sampling

and guidance to distal lung pathologies by overcoming significant challenges that are

encountered whilst performing bronchoscopy in MV patients, namely, limited dexterity,

large size of the bronchoscope obstructing ventilation, and poor anatomical registration.

We have developed a robotic bronchoscope with 7 Degrees of Freedom (DoFs), an

outer diameter of 4.5mm and inner working channel of 2mm. The prototype is a

push/pull actuated continuum robot capable of dexterous manipulation inside the lung

and visualisation/sampling of the distal airways. A prototype of the robot is engineered

and a mechanics-based model of the robotic bronchoscope is developed. Furthermore,

we develop a novel numerical solver that improves the computational efficiency of the

model and facilitates the deployment of the robot. Experiments are performed to verify the

design and evaluate accuracy and computational cost of themodel. Results demonstrate

that the model can predict the shape of the robot in <0.011s with a mean error of 1.76

cm, enabling the future deployment of a robotic bronchoscope in MV patients.

Keywords: surgical robot, robotic bronchoscope, mathematical modelling, steerable catheter, flexible robot

1. INTRODUCTION

Critically ill patients who develop respiratory failure and require mechanical ventilation (MV)
suffer a high morbidity and mortality. Indeed, Covid-19 patients who require MV, have a mortality
approaching 40% in some case series. Once MV, patients are at high risk of developing secondary
infections and other secondary complications. Rapid and accurate sampling of the distal lung is an
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important diagnostic procedure to guide therapeutic
interventions. However, despite the high cost and attributable
morbidity and mortality, diagnosis of diseases in the distal
lung in MV patients is not standardised, lacks reproducibility
and requires expert operators. Often, this leads to empirical
treatments such as broad spectrum antibiotics which are then
very difficult to deescalate, thus compounding the exposure
of patients to non-targeted antimicrobials and promoting
antimicrobial resistance. Pulmonary infiltrates in MV critically
ill patients are a common occurrence and a major diagnostic
challenge. Endobronchial secretions such as mucus and often
hinder manually steered bronchoscopes, leading to poor
sampling results. Hence, the aim of this paper is to develop
a robotic bronchoscope that democratises sampling of the
lung in MV ICU patients and enables non-skilled operators to
safely sample disparate regions of the human lung to improve
diagnostic accuracy and therapeutic interventions.

Bronchoscopy is a common diagnostic modality for the early
detection of lung diseases (see Figure 1). During bronchoscopy,
a thin tube (bronchoscope) is passed through the vocal cords into
the airways to reach potential regions of the lung for directed
sampling. Due to relatively large dimensions of the bronchoscope
used for sampling (> 5 mm), bronchoscopy of MV patients is
challenging. Another major drawback of the current technology
is reliance on manual insertion, which is difficult due to the
limited Degrees of Freedom (DoFs) of the bronchoscope, i.e.,
rotation and insertion.

To address the aforementioned challenges, we have developed
a miniaturised continuum robot for lung bronchoscopy. A
continuum robot has a continuously elastic structure and can
traverse tightly curved 3D paths in confined spaces and reach

FIGURE 1 | A schematic of lung bronchoscopy in ICU, showcasing the

insertion of the robotic bronchoscope through the mechanical ventilator and

inside the lung.

desired positions deep inside human cavities. Continuum robots
retain force transmission capability and offer great dexterity,
thus, enabling optimal therapies when deeply seated pathologies
are targeted (Burgner-Kahrs et al., 2015). Continuum robots have
been explored for various interventions including laparoscopy
(Wu et al., 2019), cardiac surgery (Fagogenis et al., 2019), neuro-
surgery (Mattei et al., 2014), and eye surgery (Mitros et al., 2020).

The proposed bronchoscope is a continuum robot comprised
of several parallel rods that can be bent via pushing/pulling of
the rods. A continuum robot composed of several constrained
push/pull rods is commonly known as a multi-backbone robot,
first introduced in Gravagne and Walker (2000). Simaan et al.
introduced the first surgical multi-backbone robot for dexterous
tool manipulation in robotics surgery (Simaan et al., 2004; Ding
et al., 2013). Xu et al. (2015) improved this design using a “dual
continuum” actuation mechanism that increases modularity.
Several researchers have explored the possibility of using a
parallel multi-backbone approach without constraints, allowing
more dexterous robots with increased DIFs per section (Bryson
and Rucker, 2014; Wang et al., 2019). Multi-backbone robots
have been commonly proposed for abdominal surgeries (Garbin
et al., 2019; Riojas et al., 2019; Wu et al., 2019).

A major challenge in deployment of miniaturised continuum
robots is real-time and precise modelling. There are several
different kinematic and dynamic models presented in the
literature (see Webster and Jones, 2010; Burgner-Kahrs et al.,
2015 for a detailed review). The most common model for multi-
backbone robots is a geometric model proposed in Simaan
et al. (2004). The model has been used to control the motion
of the robot as well as contact forces at the robot’s tip (Bajo
and Simaan, 2016). The geometric model assumes the robot
curvature is constant and provides an accurate description of
the robot’s differential kinematics for large scale movements.
However, due to the effects of unknown boundary conditions
and the constant curvature assumption, the model’s prediction
of the robot shape and micro-scale movements are not accurate.
To overcome this challenge, Del Giudice et al. (2017) proposed
a method to improve micro-scale motion of a multi-backbone
robot using modulation of the flexural rigidity of the rods.
Another commonly method for modelling of multi-backbone
robots is Cosserat rod theory (Bryson and Rucker, 2014; Wang
et al., 2019). However, the Cosserat rod theory results in a
relatively large boundary value problem (BVP) that should be
solved for every rod in the robot and are computationally
expensive. As a result, less accurate modelling methods are still
attractive due to their low computational cost (Kaouk et al., 2014;
Bajo and Simaan, 2016).

In this paper, we develop a bronchoscope using a miniaturised
multi-backbone robot. The bronchoscope is mounted on a
linear stage that can be used to automatically insert/retract the
bronchoscope to reach targeted positions in the distal lung.
Next, we develop a geometrically exact model of the robot that
considers both the geometry of robot and mechanical properties
of the backbones. The model results in a reduced order BVP and
can be used to predict the shape of the bronchoscope without the
constant curvature assumption. Furthermore, we develop a novel
nonlinear observer that significantly improves the computational
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efficiency of the model to estimate the solution of the proposed
model in real-time. Finally, simulations and experiments are
performed to validate the design and the modelling Theory.

In the next section, section 2.1, the robot architecture and
bronchoscope design is presented. Section 2.2 details the model
of the bronchoscope. Section 2.4 outlines the detail of the
observer design. In section 3, simulations and experimental
results are performed to evaluate the design and quantify the
accuracy and computational efficiency of the model. Concluding
remarks appear in section 4.

2. MATERIALS AND METHODS

2.1. System Design and Prototyping
This section describes the design and engineering of the robotic
bronchoscope. The mechanical system design begins with DoFs
discussion. To improve the dexterity of the bronchoscope, we

propose a novel design that allows the robotic bronchoscope
to bend in 3D at two points. The tip of the bronchoscope is
composed of two segments shown in Figure 2. Each segment
is actuated by 3 nitinol (NiTi) rods with an outer diameter
of 0.475mm which are passed through holes located on
fixtures surrounding the bronchoscope. The circular fixtures are
employed to avoid buckling of the rods. An additional silicone
rod shown in blue in Figure 2 is acting as the main backbone.
It has an outer and inner diameters of 2.3mm and 2mm,
respectively and is rigidly connected to the fixtures to ensure
they cannot move relative to each other. The fixtures’ outer
and inner diameters are 4.5 and 2.4mm, respectively. Length
of proximal segment at the tip of the bronchoscope is 40mm,
length of the distal segment is 500 mm, and the overall length
of the bronchoscope is 540mm. The end-effector is actuated
via the push-pull of the 6 rods. In contrast to the cable driven
bronchoscopes, the proposed design employs in-compressible

FIGURE 2 | The robotic bronchoscope. (A) The inlet shows the tip of the bronchoscope which is composed of two segments that can be independently bent.

By pulling/pushing the wires at each segment the bronchoscope can bend in 3D space. (B) The bronchoscope prototype placed inside a 3D printed lung model.

An electromagnetic tracker (Aurora electromagnetic tracking system, NDI, Canada) is placed at the tip of the bronchoscope to measure its tip position in real-time.

(C) Camera view from the endoscopic camera placed inside the working channel of the bronchoscope.
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Nitinol rods to offer more bending curvature via pushing of the
rods. Furthermore, a 7th DoFs is employed for the insertion and
retraction of the end-effector into the airways.

All DoFs are actuated by brushless DC motors (Maxon
Motors) with a gearhead with a 150 : 1 reduction and a quadratic
encoder. Each motor is controlled via a position controller
module with a built in PID controller (EPOS4 Compact
50/5 CAN). The controllers employ the encoders feedback to
accurately control the position of the motor shaft. The position
controllers communicate with a PC via the CAN protocol. A
CAN-to-USB interface (Kvaser Inc., CA, USA) is used to connect
the position controllers to the PC.

The motors are connected to lead screws that convert
the power generated by the motor into feed velocity for
pulling/pushing the rods. The lead screws are carrying a v-
shaped 3D printed part that is connected to the rods (shown
in Figure 2) and travels along the lead screw to pull/push the
rods. Additionally, 6 linear potentiometers are used to accurately
measure the displacement of the rods.

Figure 2 shows the developed robot and an inlet showcases
the different segments that the manipulator comprises.

2.2. Geometrically Exact Model of the
Robot
We use the Cosserat-rod theory (Antman, 2005; Rucker et al.,
2010) to model the robot. First, we present the model for a
robot with one bendable segment. Next, we generalise the model
to a robot with more segments. The following notation is used
throughout the paper: x, x, and X denote a scalar, a vector,
and a matrix, respectively. A complete summary of variables
and operators is given in the Appendix. The symbols used are
summarised in a nomenclature section.

A schematic of the robot is shown in Figure 3. The robot
comprises a main backbone (shown in blue) rigidly connected
to the fixtures and three NiTi rods (shown in red) fixed at the end
fixture. The three rods can pass through the rest of the fixtures
and have enough clearance to not create forces and moments but
rather follow the curvature of the main backbone. The relative
position of each rod with respect to the main backbone (di, i =
1, 2, 3 in Figure 3) is given by

di = [δcos(βi), δsin(βi), 0]
T , (1)

where δ is the rods’ distance from the robots centroid (see
Figure 3) and βi is the relative angular position of each rod with
respect to the main backbone

βi = α + (i− 1)
2π

3
, i = 1, 2, 3, (2)

with α shown in Figure 3.
The robot main backbone is modelled as a long, slender,

one-dimensional Cosserat rod endowed with a Darboux frame
attached to every point on its arc with the z axis of the frame
tangent to the curve. The rod is under an external point force
[F(t)] and distributed constant load (f ) simulating the weight of
the fixtures. The configuration of the rod can be defined using a

FIGURE 3 | A schematic of the continuum robot with one bent segment. The

main backbone is modelled as a Cosserat rod under external point force (F )

and distributed load (f ). The cross section view shows the position of the rods

with respect to the main backbone.

unique set of 3D centroids, r(s, t) :[0, ℓ]× [0,∞] → R
3
× [0,∞],

and a family of orthogonal transformations, R(s, t) :[0, ℓ] ×

[0,∞] → so(3) × [0,∞]. The position of the main backbone
is defined by

r
′

(s, t) = R(s, t)e3, R
′

(s, t) = R(s, t)[u(s, t)]
×
, (3)

where u(s, t) = [ux(s, t), uy(s, t), uz(s, t)]
T is the curvature vector

of the deformed backbone, [.]
×

operator is the isomorphism
between a vector in R

3 and its skew-symmetric cross product
matrix, and e3 = [0, 0, 1]T is the unit vector aligned with the z-
axis of the global coordinate frame. Assuming the rods are made
of linear elastic isotropic materials, we can derive the constitutive
equations for calculating the instantaneous curvature of the rod
(Rucker et al., 2010)

u
′

(s, t) =− K−1

[

[u(s, t)]
×
Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(4)

where l is the length of the main backbone and K =

diag(EI,EI,GJ) is the stiffness matrix for the whole robot; E is the
robot’s Young’s modulus; I is the second moment of inertia; G is
the shear modulus; J is the polar moment of inertia. It is assumed
that the cross section of the robot is symmetric and the products
of inertia are negligible (i.e., Ixy = Ixz = Iyz ≃ 0)

In practice, the robot curvature u(s, t) and position r(s, t) are
unknown and should be estimated as the function of the length
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of the three rods (ℓi, i = 1, 2, 3). We can estimate each rod’s total
arc length as

ℓi(t) =

∫ l

0
‖r

′

i(s, t)‖ds, (5)

where ‖.‖ denotes the ℓ2-norm and ri(s, t) is the position of ith
rod given by

ri(s, t) = r(s, t)+ R(s, t)di. (6)

Substituting (6) in (5) and simplifying the equations using (3)
yields

ℓi(t) =

∫ l

0
‖e3 + [u(s, t)]

×
di‖ds, (7)

Now, we can write the system of differential equations
governing the motion of the robot using (3), (4), and (7)

r
′

(s, t) = R(s, t)e3, (8a)

R
′

(s, t) = R(s, t)[u(s, t)]
×
, (8b)

u
′

(s, t) =− K−1

[

[u(s, t)]
×
Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(8c)

ℓ

′

i(s, t) = ‖e3 + [u(s, t)]
×
di‖, i = 1, 2, 3, (8d)

with the following boundary conditions

r(0, t) = [0 0 0]T , (9a)

R(0, t) = I, (9b)

uz(0, t) = 0, (9c)

ℓi(0, t) = 0, (9d)

ℓi(l, t) = Li(t), i = 1, 2. (9e)

The model defined by (8) and (9) accepts the overall length of
the first two rods Li, i = 1, 2 as inputs and predicts the robot
curvature u(s, t), position r(s, t), and length of the third rod ℓ3(t).
We note that the length of the third rod is always defined by the
length of the first and second rod.

Additionally, (8) and (9) form a boundary value problem. In
the absence of external torques, the initial curvature of the robot
along z direction is zero (9c). However, the initial curvatures
along x and y directions [i.e., ux(0, t) and uy(0, t)] are unknown.
In addition, the first and second rods’ arc length ℓi(s, t), i = 1, 2
are defined both at the base (s = 0) and the tip of the robot (s = l)
by (9d, 9e).

Moreover, the model given in (8) is quasi-static and solved
using the separation of variables. To solve the equations, it
is assumed that at a given time, time-dependent variables are
constant and the equations are solved in spatial domain (with
respect to s) using standard methods such as the Runge-Kutta or
Adams-Bashforth families of algorithms. Shooting methods can
be used to solve the boundary value problem. A shooting method

consists of using a nonlinear root-finding algorithm to iteratively
converge on values for ux(0, t) and uy(0, t), in order to satisfy (9e).
Next, the time-dependent variables are updated [i.e., Li(t)], and
the equations are solved again in the spatial domain.

2.3. Multi-Segment Robot
Here, we generalise the model given in (8) for a multi-backbone
robot with multiple bending segments shown in Figure 4. It is
assumed that the robot is composed of n segments with lengths
of lj, j = 1, .., n. Each segment is actuated via 3 parallel rods fixed
at the end the segment. Thus, there are n rods and the jth segment
contains 3× (n+ 1− j) rods.

To model the robot, we start from the 1st segment containing
n × 3 rods and use (8) to estimate the curvature, position of
the main backbone, and the lengths of the cables up to the
next segment. Next, at the junction where the segment ends
(shown with dashed lines in Figure 4) we enforce the appropriate
boundary conditions. The boundary conditions to be enforced
across each transition point between sections are as follows: (1)
The position and orientation of each tube must be continuous
across the boundary, i.e.,

r(s−, t) = r(s+, t), R(s−, t) = R(s+, t), (10)

(2) considering the static equilibrium and the fact that the rods
apply no torque around z direction:

uz(s
−, t) = uz(s

+, t), (11)

(3) at the distal end of each segment, we have a boundary
condition for the length of the rods that end:

ℓj(s, t) = Lj(t). (12)

We repeat this process for the rest of the segments. We
note that the curvatures along x and y at each break point
are unknown. A shooting method must be used to iteratively
converge on values for {ux(0, t), uy(0, t), ux(l1, t), uy(l1, t),...,
ux(6

n
j=1lj, t), uy(6

n
j=1lj, t)}, in order to acquire the desired length

for the rods. Solving the BVP numerically is computationally
intensive. The computational cost of the model is a significant
obstacle in deployment of such designs and more efficient
numerical methods are needed. To this end, we study the design
of a novel observer that can rapidly estimate the solution of
robot’s model without the need to solve the BVP.

FIGURE 4 | A schematic of multi-backbone robot with multiple bending

segments, dashed lines denote break points.
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2.4. Rapid Solution of the Robot’s Model
Our main goal in this section is to design an observer that
employsmeasurements of ℓi(l, t) through time to estimate correct
value of uy(0, t) and ux(0, t) and ensures the boundary conditions
in (9) are satisfied without the need to solve the BVP iteratively.
First, we transform the model in (8) into an observable form that
simplifies the design of the observer. Next, we design an observer
rule that guarantees exponential convergence of the solution of
the observable model to the solution of the robot model given in
by (8) and (9).

We define the vector of missing initial values as

ǔ(0, t) = [uy(0, t), ux(0, t)]
T . (13)

To realise the effect of the missing initial value [i.e., ǔ(0, t)] on
the solution of the equations, we define four auxiliary variables,
namely,

Ai(s, t) : =
∂ℓi(s, t)

∂ǔ(0, t)
, i = 1, 2, 3 (14a)

B(s, t) : =
∂u(s, t)

∂ǔ(0, t)
, (14b)

C(s, t) : =
∂

[

RT(s, t)
(

F(t)+ (l− s)f
)]

∂ǔ(0, t)
, (14c)

D(s, t) : =
∂

(

RT(s, t)f
)

∂ǔ(0, t)
. (14d)

Using the new variables defined by (14), one can derive the
following generalised model of the multi-backbone robot (see the
Appendix for derivation)

r
′

(s, t) = R(s, t)e3, (15a)

R
′

(s, t) = R(s, t)[u(s, t)]
×
, (15b)

u
′

(s, t) =− K−1

[

[u(s, t)]
×
Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(15c)

ℓ

′

i(s, t) = ‖e3 + [u(s, t)]
×
di‖, i = 1, 2, 3, (15d)

A
′

i(s, t) =
−(e3 + [u(s, t)]

×
di)

T[di]×
‖e3 + [u(s, t)]

×
di‖

B(s, t), i = 1, 2, 3, (15e)

B
′

(s, t) =K−1

[

[Ku(s, t)]
×
B(s, t)−

[u(s, t)]
×

KB(s, t)− [e3]×C(s, t)

]

,

(15f)

C
′

(s, t) =[RT(s, t)(F(t)+ (l− s)f )]
×
B(s, t)−

[u(s, t)]
×
C(s, t)−D(s, t),

(15g)

D
′

(s, t) = [RT(s, t)f ]
×
B(s, t)− [u(s, t)]

×
D(s, t). (15h)

Now, we provide a set of initial conditions for (15) that
ensures the solution of the observer model in (15) exponentially

converges to the solution of the boundary value problem defined
by (8) and (9).

r(0, t) = [0 0 0]T , (16a)

R(0, t) = I, (16b)

uz(0, t) = 0, (16c)
[

ux(0, t)
uy(0, t)

]

= −

∫ t

0

[

A
T
1 (l, t)

A
T
2 (l, t)

]†

P

[

ℓ1(l, t)− L1(t)
ℓ2(l, t)− L2(t)

]

dt, (16d)

ℓi(0, t) = 0, (16e)

Ai(0, t) = 0, i = 1, 2, (16f)

B(0, t) = [1 0 0; 0 1 0], (16g)

C(0, t) = 0, (16h)

D(0, t) = 0, (16i)

where P is a symmetric positive definite matrix and † denotes the
pseudo-inverse operator. We note that (16f-16i) are calculated
based on the definition of the auxiliary variables in (14). (16d)
is the main observer rule that guarantees the convergence of the
observer (see the Appendix).

The observer given in (15) is quasi-static, similar to the robot’s
model in (8). However, instead of using an iterative BVP solver,
it can be solved as an initial value problem using the initial
values given in (16). At a given time t, time-dependent variables
are assumed constant and the equations are solved in spatial
domain. Next, the time-dependent variables are updated [i.e.,
Li(t), ux(0, t), uy(0, t)]. The updated time-dependant variables
are used to solve the equations in the spatial domain again. The
observer can be generalised to a multi-segment robot following
the approach discussed in section 2.3.

In the next section, series of simulation and experiments are
performed to evaluate the model’s accuracy and demonstrate
the computational efficiency of the observer in comparison with
common BVP numerical solvers.

3. RESULTS

Simulations and experiments are performed to evaluate the
proposed design and modelling theory. The bronchoscopic robot
used in the simulations and experiments consists of two bendable
segments, shown in Figure 2. The length of the first segment is
500mm, and the length of the second segment (at the tip) is
40mm. The outer diameter of the robot is 4.5mm and the inner
diameter of the robot is 2mm. Twenty-seven circular fixtures
each weighting 5 g were equally spaced along the length of the
bronchoscope and were rigidly fixed to themain backbone shown
in blue in Figure 2.

We performed experiments to identify the developed model
parameters and validate the model. First we performed
experiments to identify the model parameters. For the
identification phase, each rod was commanded to either
push or pull the end disks by 5mm, making the robot to
randomly bend to 12 different positions. We estimated the 3D
shape of the robot using calibrated stereo rig comprising two
Logitech HD Pro C922 webcams. The cameras were running at
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1, 080p resolution. As identified through calibration using on
average 30 views of a checkerboard, a single pixel corresponded
to 0.25 × 0.25 mm on the image plane. Following calibration,
the entry point of the robot, i.e., s = 0 was estimated in 3D
space via triangulation. The robot coordinate frame was aligned
to a planar calibration target always visible by the cameras
during the experiments.

Furthermore, manual backbone segmentation established the
base and shape of the bronchoscope relative to the aligned
calibration grid. Matching backbone points were selected in both
images, and then triangulated to provide the 3D point cloud.
This process is shown in Figure 5. The mean error of the 3D
triangulation algorithm was equal to 6 pixels corresponding to
1.5mm. The extracted 3D backbones were used to identify for
the robot model parameters, namely, Young’s modulus, E and
shear moduli G of the robot and initial displacement of the rods,
δℓi, i = 1, ..., 6. The parameters were identified by fitting the
kinematic model given in (8) to the shape of the robot estimated
via the cameras at 12 different configurations. The identified
parameters of the model and the known parameters of the model
are given in Table 1.

In the next step, to validate the model accuracy we
commanded the robot to move to 20 different positions. The
shape of the robot was estimated using the calibrated cameras
and was compared to the shape of the robot predicted by the
identified model. Figure 6 shows representative results. Results
of the measurements including maximum, mean, and standard
deviation of error of the model in predicting the robot tip
position and the root-mean-squared error of the model in
predicting robot shape are listed in Table 2. The root-mean-
squared error is calculated as

RMSE =

√

∑m
j=1(‖r̂ − r‖j)2

m
, (17)

TABLE 1 | Physical parameters of the robot.

Known Identified

l1 40 mm E 92.13e9 GPa

l2 500 mm G 31e9 GPa

f [0.25, 0, 0]T N δℓ1 6.03× 10−14 m4

α1 15◦ δℓ2 0.23 mm

α2 30◦ δℓ3 1.2 mm

δ 1.7 mm δℓ4 0 mm

I 2.13× 10−12 m4
δℓ5 0 mm

J 2.72× 10−12 m4
δℓ6 0.7 mm

FIGURE 6 | A comparison of experimental bronchoscope’s shape with model

prediction at four different configurations.

FIGURE 5 | Estimating robot’s backbone shape using two calibrated cameras.
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TABLE 2 | Experimental results.

emax [mm] emean [mm] σ [mm] RMSE [mm]

26.2 17.6 10.9 10.3

Maximum error of tip position (emax ), mean error of tip position (emean), standard deviation

of error (σ ), and root mean squared error (RMSE) are reported.

and is used as a measure of the differences between the actual
shape of the robot, r̂, and the model predicted shape, i.e., r, for
m = 30 data points along the robot backbone.

In the experiments, the robot tip was capable of bending up to
100◦ with respect to its backbone (see Figure 6). The maximum
error of the model in estimating the position of the robot tip is
26.2 mm, corresponding to 1.9% of the robot’s length.

Finally, we performed simulations to compare the
computational efficiency of the observer with various shooting
methods used to solve BVPs. Shooting methods consists of using
a nonlinear root-finding algorithm to iteratively converge on
values for ux(0, t) and uy(0, t) for each segment, in order to
satisfy the boundary conditions (9), i.e.,

Minimize: Error : =

∥

∥

∥

∥

∥

∥

∥

∥









ℓ1(l1, t)− L1(t)
ℓ2(l1, t)− L2(t)

ℓ4(l1 + l2, t)− L4(t)
ℓ5(l1 + l2, t)− L5(t)









∥

∥

∥

∥

∥

∥

∥

∥

,

w.r.t. : ux(0, t), uy(0, t), ux(l1, t), uy(l1, t).

(18)

We compared the observer predictions with shooting method
algorithms that employ three different root-finding algorithms,
which to the best of authors knowledge, are the most commonly
used BVP solvers. These solvers are:

1. Interior-point method (Byrd et al., 2000),
2. Quasi-Newton method with BFGS Hessian estimation (Curtis

and Que, 2015),
3. Nelder-Mead method (Powell, 1973).

In the simulations, we pulled and pushed the cables from −5
to 5 mm at a frequency of 2π/10 Hz. The simulation runs for
10 seconds at sampling frequency of 50 Hz. The observer gain
P used in the simulations was set to 70 × I, as this value was
found to achieve the minimum prediction error. The optimally
tolerance for all the algorithms were set to 10−6. The simulations
are performed in Matlab on an Intel Core i7 (2.93GHz) machine
with 16 GB memory.

Figure 7 shows the robot’s trajectory estimated via different
methods. The observer and the Nelder-Mead method gave the
best accuracy. The other two methods, namely, interior-point
and quasi-Newton, gave substantial error at two points across
the robot trajectory. Also, it can be seen that the observer has
an error at the first sampling time but rapidly converges to the
correct solution.

Figure 8 shows the error of the solvers and the observer in
satisfying the boundary conditions given in (18). The observer
error is the same order as the BVP solvers. The BVP solvers
occasionally fail in minimizing the error, while the observer

FIGURE 7 | A comparison of bronchoscope’s tip trajectory calculated by

solving the robot’s model using four different methods. The bronchoscope’s

backbone is shown at several configurations along the trajectory.

FIGURE 8 | A comparison of (A) accuracy and (B) computational efficiency of

the observer with common BVP solvers. On each box in (B), the central mark

indicates the median, and the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively. The whiskers extend to the most

extreme data points and the outliers are plotted individually using plus symbol.
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TABLE 3 | Experimental results.

Observer Interior-point Quasi-Newton Nelder-Mead

emean [mm] 8.05× 10−5 7.28× 10−5 2.53× 10−5 9.52× 10−5

σe [mm] 1.35× 10−4 1.39× 10−4 6.14× 10−5 6.04× 10−5

tmean [sec] 0.011 0.52 0.62 0.64

σt [sec] 0.006 0.45 0.36 0.19

Mean error (emean), standard deviation of error (σe ), average time to estimate the solution

of the model (tmean) for each method, and standard deviation of time σt are reported.

consistently maintains an error below 10−4 mm. Figure 8

compares the computational efficiency of the BVP solvers and
the observer in terms of the time that each method takes to
compute the solution of the model at each sampling time.
Evidently, the observer is much faster than the BVP solvers
and has lower standard deviation. The average time that the
observer takes to estimate the model’s solution is 0.0108 s,
which is significantly faster than other solvers. We performed
10 more simulations, where, the robots rods are pulled/pushed
at frequencies between π/5 Hz and π/50. The results are
summarised inTable 3. The results demonstrate that the observer
maintain similar error as the BVP solvers, while exhibiting
superior computational efficiency. The average time that the
observer takes to estimate the model’s solution is 47 times
faster than the fastest BVP solver, namely, the interior-point
method.

4. DISCUSSION

In this paper, we presented the concept for and the design
of a continuum robot for pulmonary endoscopy in MV
patients. MV patients are at high risk of developing
secondary infections and there is a need for a reliable and
controlled sampling of the distal lung to guide therapeutic
interventions. Current methods for diagnosis of diseases
in the distal lung in MV patients are not standardised,
lack reproducibility and require expert operators. Here, we
proposed a novel robotic bronchoscope that can be used
to democratise lung sampling and improve the accuracy
and reliability of distal lung sampling in MV patients. The
proposed design of the system considers the limitations
and constraints of current bronchoscopy, i.e., limited
dexterity, low repeatability, and relatively large size of
the bronchoscope.

One of the main challenges in current bronchoscopy is
navigating the tightly curved architecture of bronchial tree.
Several studies (Coppola et al., 1998; Ulusoy et al., 2016) have
reported that bifurcation angles of the bronchial tree including
sub-carinal angles and inter-bronchial angles vary between 30
and 100◦. The experimentallymeasuredmaximumbending angle
of the proposed robotic bronchoscope is 100◦ with respect to the
robot’s main backbone, which enables the robot to traverse the
tightly curved structure of airways. We note that the maximum
bending angle and curvature of the robot is a function of the
robot’s interaction with the environment. In the future, we
will study the bending capability of the robot in lung models

to fully verify the effectiveness of the robot in navigating the
bronchial tree.

The external diameter of traditional bronchoscopes is
generally 5–6mm with a working channel with inner diameter
of 2mm (Vachani and Sterman, 2008). The developed prototype
is comparable with current technology and has an outer diameter
of 4.5mm with a working channel with inner diameter of 2mm.
Moreover, the bronchoscope is highly dexterous and possesses 7
DoFs in total. The continuum manipulator is able to bend in 3D
at 2 different points along its backbone thanks to 6 push/ pull
NiTi rods. The extra dexterity offered by the proposed design can
potentially extend the reach of the clinical bronchoscopy.

One of the aims of this research is to democratise
bronchoscopy in MV patients in the ICU via automating the
procedure. To this end, we have proposed a new theoretical
framework to model the robot that can be used in closed-loop
control of the bronchoscope motion. Our novel mechanics-based
model of the robotic bronchoscope can predict the shape of the
robotic bronchoscope under external forces with an accuracy
corresponding to 1.9% of its arc-length. We note that for long,
slender continuum robots, tip error is highly dependent on the
total arc length (Rucker et al., 2010) and robot’s backbone’s
interaction with its surrounding environment. We note that this
error can be further reduced via closed-loop control of the robot
tip. A closed-loop controller can employ sensory feedback from
the robot tip position to minimise the bronchoscope error in
navigating the lung. In practice, electromagnetic trackers are
placed at the tip of the bronchoscope to measure its tip position
in real-time. The proposed design offers a 2mmworking channel
that can be used to place such trackers, allowing real-time
monitoring of robot position for closed-loop control.

Furthermore, we have demonstrated that our numerical
framework can estimate the model’s solution 47 times faster than
the fastest existing solvers, enabling applications in real-time
robotic control. Future work will focus on developing a closed-
loop control strategy that uses the model and the feedback of
the robot tip position acquired with electromagnetic trackers,
to minimise the error of the robot tip in following a desired
trajectory for sampling.
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A. NOMENCLATURE

t Time.

s Arc length.

. Derivative with respect to time.
′

Derivative with respect to s.

[ ]
×

Converts R
3 in so(3).

n Number of bendable segments.

i Number of rods in each segments.

di Position of rods with respect to the main backbone.

δ Rods’ distance from the robots centroid.

αn Angular position of 1st rod of nth segment with

respect to the main backbone.

βi Angular position of ith rod with respect to the main

backbone.

l Overall length of the robot.

ln length of the nth segment.

ℓi Model predicted length of the ith rod.

r(s, t) Position vector of the main backbone in the global

reference frame.

ri (s, t) Position vector of the ith rod in the global reference

frame.

R(s, t) Orientation matrix.

u(s, t) Vector of backbone curvatures.

ux (s, t) Curvature around x axis.

uy (s, t) Curvature around y axis.

uz (s, t) Curvature around z axis.

K Stiffness matrix.

E Young’s modulus.

I Second moment of inertia.

G Shear modulus.

J Polar moment of inertia.

F(t) External point force.

f External distributed force.

e3 Unit vector aligned with the z-axis of the global

coordinate frame.

I Identity matrix .

0 Zero matrix.

P Observer gain.

A(s, t),B(s, t),C(s, t),D(s, t) Auxiliary variables defined in (14).

APPENDIX

Derivation of Auxiliary Variables
Here, we derive the differential equations governing the evolution
of auxiliary variables given in (14), beginning with (14a).

Using (8d) and the chain rule of differentiation we have

A
′

i(s, t) =

∂

ǔ(0, t)

[

(e3 + [u(s, t)]
×
di)

T(e3 + [u(s, t)]
×
di)]

1/2
=

−(e3 + [u(s, t)]
×
di)

T[di]×
‖e3 + [u(s, t)]

×
di‖

B(s, t)

In deriving (15) we used the following identity

∂([a]
×
b)

∂c
= −[b]

×

∂a

∂c
+ [a]

×

∂b

∂c
.

We now use (8c) to derive the equations for calculating B(s, t).

B
′

(s, t) =
∂u

′

(s, t)

ǔ(0, t)
= K−1

[

[Ku(s, t)]
×
B(s, t)−

[u(s, t)]
×

KB(s, t)− [e3]×C(s, t)

]

Furthermore, C(s, t) can be computed by taking the transpose
of (8b), multiplying both sides by F(t) + (l − s)f , subtracting
RT(s, t)f , and finally taking partial derivative of both sides with
respect to ǔ(0, t).

C
′

(s, t) =[RT(s, t)(F(t)+ (l− s)f )]
×
B(s, t)−

[u(s, t)]
×
C(s, t)−D(s, t).

We can calculate D(s, t) in a similar way. First, we take the
transpose of (8b). Next, we multiply both sides by f . Finally,
taking partial derivative of both sides with respect to ǔ(0, t) gives

D
′

(s, t) = [RT(s, t)f ]
×
B(s, t)− [u(s, t)]

×
D(s, t).

Proof of Convergence and Stability
The error of the observer in satisfying the robot’s model’s
boundary condition in (9) (i.e., robot’s rods’ lengths) is

ǫ(t) =

[

ℓ1(l, t)
ℓ2(l, t)

]

−

[

L1(t)
L2(t).

]

To prove that this error exponentially converges to zero, we select
the following Lyapunov candidate

V =

1

2
ǫ
T
ǫ. (A1)

Taking the time derivative of V and replacing ǫ̇ using (14a) we
obtain

V̇ = ǫ
T
ǫ̇ = ǫ

T

[

A
T
1 (l, t)

A
T
2 (l, t)

]

˙ǔ(0, t).

Substituting ˙ǔ(0, t) using (16d) gives

V̇ = −ǫ
T

[

A
T
1 (l, t)

A
T
2 (l, t)

] [

A
T
1 (l, t)

A
T
2 (l, t)

]†

Pǫ

= −ǫ
TPǫ

In deriving the above equation we used the following identity

aa†
= aaT(aaT)−1

= I.

P is symmetric positive definite. Thus, ∀t > 0, V̇ is negative
definite. Therefore, as t → ∞, ǫ̇(t) → 0. Consequently, the
solution of the observer converges to the solution of the model
given in (8).
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The COVID-19 pandemic has caused dramatic effects on the healthcare system,
businesses, and education. In many countries, businesses were shut down,
universities and schools had to cancel in-person classes, and many workers had to
work remotely and socially distance in order to prevent the spread of the virus. These
measures opened the door for technologies such as robotics and artificial intelligence to
play an important role in minimizing the negative effects of such closures. There have been
many efforts in the design and development of robotic systems for applications such as
disinfection and eldercare. Healthcare education has seen a lot of potential in simulation
robots, which offer valuable opportunities for remote learning during the pandemic.
However, there are ethical considerations that need to be deliberated in the design
and development of such systems. In this paper, we discuss the principles of roboethics
and how these can be applied in the new era of COVID-19. We focus on identifying the
most relevant ethical principles and apply them to a case study in dentistry education.
DenTeach was developed as a portable device that uses sensors and computer simulation
to make dental education more efficient. DenTeach makes remote instruction possible by
allowing students to learn and practice dental procedures from home. We evaluate
DenTeach on the principles of data, common good, and safety, and highlight the
importance of roboethics in Canada. The principles identified in this paper can inform
researchers and educational institutions considering implementing robots in their
curriculum.

Keywords: COVID-19, roboethics, dentistry, education, DenTeach

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has caused disturbances in all aspects of
everyday life, including healthcare, commerce, manufacturing, and education. In Canada, the
response to the COVID-19 pandemic included the shut-down of businesses and the reallocation
of human resources to emergency functions (Detsky and Bogoch, 2020). Additionally, many
companies asked personnel to work from home if possible. In order to slow down the spread of
the SARS-CoV-2 virus, human interactions have to be limited, and people were asked to wear masks,
avoid touching surfaces and their faces, and wash hands as often as possible. In a world where human
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interaction is minimized, robotics and artificial intelligence can be
invaluable tools in rebuilding the economy and resuming the
“normal” life. Since the start of the COVID-19 pandemic, robots
have been used to disinfect hospital rooms (Neustaeter, 2020) and
provide comfort to Alzheimer’s patients (Ryan, 2020). Robots can
also potentially be used to deliver packages, track inventories,
stock shelves and take temperatures. As health agencies are
anticipating possible third and successive waves of COVID-19,
a wider distribution of robots could alleviate the pressure on
essential personnel and help minimize the spread of the virus.
When considering a more significant implementation of robots in
human life, ethical considerations must be made to ensure that
robots are used for the betterment of humanity.

Ever since automatic machines have been invented, writers
and directors have been dreaming up possible scenarios for
robot technology to develop. Not surprisingly, many such
attempts depict the end of the human race and the rise of
machines. Discussion of robots in popular culture affects the
public’s view of robotics. In fact, over 70% of people say that sci-
fi movies have influenced their attitude toward robots (El
Mesbahi, 2015). In order to prevent these grim predictions
from becoming a reality, and to appease the public’s fears of
a possible real-life Terminator scenario, ethical aspects of
robotic development have to be considered, and strict rules
of conduct are to be established. The relatively new field of
roboethics, formally acknowledged since 2002, inspires the
design, manufacturing, and use of robots (Veruggio, 2006).
Roboethics shares some of its core ideas with information
technology ethics, especially concerning the safe use of
technology and fair access to technological resources. Robots
pose a new challenge from the regulatory standpoint: if a robot
commits a crime, who is liable? Would a company that built the
robot be at fault when the robot’s actions are unpredictable? Or
how should the law tackle establish regulations that describe
criminal intent in a machine (Pagallo, 2017; Bösl and Bode,
2018)? Roboethics helps to establish a structured way of dealing
with moral dilemmas arising in robotics. If certain laws and
moral principles are established for robotics research, that could
facilitate the integration of robots in day-to-day life.

THE LAWS OF ROBOETHICS

The earliest rules of robotics were described by Isaac Asimov in
1942, when robots were more of a fiction than reality (Asimov,
1942). These Laws, including the Zeroth law added after the first
three, are presented below:

1. A robot may not injure a human being under any
conditions—and, as a corollary, must not permit a human
being to be injured because of inaction on [the robot’s] part.”

2. A robot must follow all orders given by qualified human beings
as long as they do not conflict with Rule 1.

3. A robot must protect [its] own existence, as long as that does
not conflict with Rules 1 and 2.

4. (Zeroth law) No robot may harm humanity or, through
inaction, allow humanity to come to harm.

The above Laws are generic and do not consider the wide
spectrum of robotics applications. Since 1942 the field of robotics
has evolved, and some of the resulting robots do function in
accordance to the Laws. For example, combat robots have become
a reality: robots are used to carry loads and other logistical
support (Vincent, 2015) and help in bomb disposal (US
Department of Homeland Security, 2020). However, it is not
difficult to imagine a future in which robots will be able to carry
firearms and assist in warfare. The latter would be in clear
violation of Asimov’s Laws as the harm to opposing humans
would be imminent. On the other hand, the side that fights using
robots is able to preserve the lives of its own soldiers. The
dichotomy between ethical outcomes in the above situation is
further amplified by a robot’s potential inability to comprehend
what “existence,” “harm” or “humanity” is. If the robot has no
sense of self, how can it act as an ethical agent?

In addition, Asimov’s Laws are robot-centric and do not
consider humans who design the robots. Since Asimov, many
organizations and agencies have attempted to revise the Laws of
Robotics to reflect both the complexity and the developments of
robotics. As such, the field of roboethics can be divided into two
fields: engineering ethics and machine ethics (Dodig Crnkovic
and Çürüklü, 2012). Engineering ethics produce rules and bestow
responsibility for robotic creations on engineers and computer
scientists. Machine ethics suggests that internal ethical principles
and moral decision-making patterns should be designed into
robots, making them capable of autonomous ethical decision-
making.

Murphy and Woods have proposed a revision for Asimov’s
Laws, shifting the attention frommachine ethics to human design
and responsibility (Murphy and Woods, 2009).

1. Human–robot work systems must comply with rigorous
professional and legal standards for safety and ethics.
Without such compliance, humans cannot utilize robots in
a working system.

2. Robots must respond to humans only so far as determined by
each robot’s role.

3. Humans must provide robots with autonomous mechanisms
for self-preservation. But those mechanisms must relinquish
control as needed to comply with the previous two laws.

The revised Laws are in line with engineering ethics ideas but
are still too general to be easily applicable to all robots, or to be
written as a part of a government or industry policies. Across the
globe, institutions have used the above Laws as a starting point for
the development of their own sets of ethical standards for
robotics.

TYPES OF ROBOETHICAL
CONSIDERATIONS

There are several categories of ethical questions that must be
considered before a robot becomes available to the public. These
categories are not exclusive, and as the field develops further
categories may be added.
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Data
Today, data is becoming one of the most valuable commodities.
Robots that have a capacity to record, store, and process data are
thus working with a precious resource that must be carefully
managed. With data that comes from the robot’s operator,
privacy is the topmost concern. A user should be able to
consent to their data being recorded, but safety or ownership
of that data is not inherent. Would a robot store data locally or on
the cloud? Does the data, once recorded, belong to the user or the
robotics company? Can that company guarantee the privacy of
the data recorded? Is the data safe from possible breaches, and if
leaked, can that data be used in harmful ways? If the company
uses recorded data to further research or make a profit, should the
primary source of data be compensated? If the company was
funded through tax-dollars, should the generated data be
available to the public? Questions of data ownership, integrity
and accessibility should be considered at the design stage to
ensure that human rights are not being violated, and the work
contributes to the common good.

Common Good
With robots playing an increasingly larger role in day-to-day life,
engineers and computer scientists who design robots will have to
consider the broader impact of their work. Many robotics
guidelines, such as the ones put up by the Institute of
Electrical and Electronics Engineers (IEEE) and European
Commission European Group on Ethics in Science and New
Technologies, include clauses on the betterment of humanity and
human well-being (European Group on Ethics in Science and
New Technologies, 2018; The IEEE Global Initiative, 2019). As
technologies develop, organizations, countries, and humanity
should consider the impact such technologies will have in the
future. With billions of dollars spent on military research, is
artificial intelligence (AI) arms race something that should be
prohibited at early stages? Can robots support human autonomy
and prosperity? Would robot-generated benefits be accessible to
anyone on the planet? If robots’ expanded functionality makes
certain professions obsolete, should there be a contingency plan
to retrain workers? One could also ask how “common” is the
common good—is contributing to the collective good instead of
benefiting one’s own interests something that organizations or
countries are capable of?

Safety
Since Asimov proposed his Laws of Robotics, safety has been one
of the main concerns for robotics. Ideally, a robot should never
intentionally harm a human, but with the development of
autonomous machines such as self-driving cars, the field of
robotics has encountered the trolley problem1 (Thomson,

1985). In case of an accident, should a car prioritize the life of
its own passenger(s), or the bystander(s)? A machine would need
to be able to decide in less than a second, and the decision
algorithm is to be programmed in by an ethical computer
scientist. The trolley problem can be solved in many ways
depending on one’s philosophical beliefs, so an overarching
directive coming from a governing body would be necessary to
unify the responses. In general, there is a need for a regulatory
organization that would oversee the development of robotics to
ensure human safety, system transparency and correct reporting,
adherence to existing laws, and overall regard for humanity’s
future.

Robots’ safety should also be considered here—if AI indeed
reaches human-like intelligence levels, would it be ethical for
humans to use robots in applications where they would be
destroyed? Should the public be educated to treat robots with
compassion and to prevent vandalism against robots, or should
they be treated as utilitarian constructs built to serve as tools?

CURRENT STATE OF ROBOETHICS IN
CANADA

There is currently no central agency that oversees roboethics in
Canada. Universities and funding organizations have proposed
some general guidelines, but don’t have the authority to enforce
them. One of the most comprehensive AI ethics manifests comes
from scholars at the University of Montreal. They proposed the
Montreal Declaration for Responsible Development of Artificial
Intelligence in 2018 (The Forum on the Socially Responsible
Development of AI, 2018). The main purpose of the Montreal
Declaration is to establish an ethical framework for AI
development that would benefit everyone in society. As such,
the Montreal Declaration is addressed to any person who wishes
to develop AI ethically, and to political representatives who may
be able to contribute to AI development through lobbying or
policymaking. The Montreal Declaration touches upon 10 ethical
principles that should be followed when developing AI:

1. Well-being principle
2. Respect for autonomy principle
3. Protection of privacy and intimacy
4. Solidarity principle
5. Democratic participation principle
6. Equity principle
7. Diversity inclusion principle
8. Caution principle
9. Responsibility principle
10. Sustainable development principle

These principles fit under the data, common good, and safety
considerations described in the previous section. However, these
principles are largely human-centric, and do not account for
super-intelligent AI systems.

The University of British Columbia has taken a more
inquisitive approach to developing roboethics principles by
establishing the N-Reasons Platform (Danielson, 2010). This

1The trolley problem refers to a series of thought experiments where one must
decide between sacrificing one person to save several people. In the experiment,
one imagines a trolley running on a track that ends with a several people tied up on
the tracks, and the user has a choice to pull a lever to divert the trolley to a track
with just one person tied up. Either choice will directly cause the death of one or
several people respectively (Thomson, 1985).
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survey-based platform asks the public to evaluate several types of
robots and choose reasons for why they would approve/not
approve of their development. Results can be used as an
indicator for public perspectives on robotics and inform future
policy development. Of note, when the N-Reasons survey was run
in 2010, the public was largely supportive of bomb-disposing
robots and therapeutic robot animals, but did not agree with the
development of fully automated armed aircrafts (Danielson,
2010).

The science of robotics falls under the purvey of the Natural
Sciences and Engineering Research Council of Canada (NSERC)
funding agency. While there are no robotics-specific policies
under their code of ethics, NSERC provides guidelines for
ethical standards and values, conflicts of interest, decision-
making, private interests, and confidentiality policies. NSERC
provides a total funding capital of $1.2 billion dollars to natural
science and engineering research, and as a result, has a large
influence on determining the direction of innovation in Canada.

While there are no robotics-specific guidelines under the
NSERC code of ethics, there are two robotics networks that
function under its umbrella. The NSERC Canadian Field
Robotics Network (NCFRN) was established to support
collaboration between academic researchers, government, and
industry partners to create outdoor-capable robotic systems
(Natural Sciences and Engineering Research Council of
Canada, 2018). Currently, NCFRN develops robots capable of
working in land, water, air and human community environments.
After NCFRN’s success, the NSERC Canadian Robotics Network
(NCRN) has been established (NSERC Canadian Robotics
Network (NCRN), 2018). At this time, NCRN has two
streams: Interactive Autonomy and Resilient Autonomy.
Research in interactive autonomy aims to develop robots that
are able to effectively interface and collaborate with humans.
Robots developed under the latter category are designed to work
in extreme environments for long-term missions. Both NCRN
streams of research could contribute to development of robots
useful during and after the COVID-19 pandemic.

ETHICAL CONSIDERATIONS FOR
ROBOTICS RESEARCH AND
DEVELOPMENT DURING COVID-19
The current economic system favors automation as a tool for
faster product manufacturing and distribution. Robots and AI
systems are becoming more popular in the service, healthcare,
and education systems. As the field of robotics is developing, the
resulting robots are becoming faster and more capable. Robotic
intellect, usually powered by AI, must be considered when
designing long-term roboethics politics or implementing
robotic solutions in everyday life. It has been predicted that
robots will reach human-like intelligence sometime in the 21st
century (Kurzweil, 2005; Hibbard, 2008).

Since the start of the COVID-19 pandemic, robots were used
as a solution for minimizing human-to-human contact. After the
pandemic is contained, we may find that robots are playing a
bigger role in our society than pre-COVID-19. Consequently, the

field of robotics may consider revisiting ethical guidelines to
ensure that newly deployed robots are benefiting society.

Bonds Between Humans and Robots
During the pandemic, vulnerable populations of elderly patients
found themselves emotionally bonding with robots because they
were unable to interact with their loved ones. Some elderly care
homes provided Paro, a furry seal-looking robot, to their patients
for stress-relief and comfort (Knibbs, 2020; Ryan, 2020). As a
result, patients bonded with a robot, expressing feelings of love
and excitement to it. We now should consider how ethical it is to
let sometimes disoriented patients emotionally invest into a
robot. In the past, such trust has sometimes turned
unfortunate when robots were disabled by their parent
company. Jibo was a robot developed by Jibo Inc.; it was the
first intelligent speaker and was capable of learning new patterns
as the users interacted with it (Camp, 2019). When Jibo Inc. was
sold off and servers hosting source codes disabled, Jibo started
glitching and eventually turned off forever. For users who spent
months interacting with Jibo, it was a painful and distressing
process. If robots are to become an integral part of a patient’s life,
its lifespan must be guaranteed. In a case of a company going
bankrupt and turning off the servers, there could be a way to
make the source code public so that any individual can host the
code for their robot. In the culture of planned obsolescence,
robots that form relationships or perform critical tasks cannot be
allowed to slowly become non-functional for a company’s profit.
Guarantee of robot’s function beyond a year-long trial period
enforces the trust into robot’s safety. Moreover, when that bond
between the robot and a human (e.g., patient or elderly person) is
established, companies can use that as a money-making function
for their profit.

Loss of Jobs
Loss of jobs to automation is a hot topic for economists.
Automation has played a critical role in the development of
the current market: from the first assembly line to shipping,
machines have increased productivity across the globe. As robots
and AI develop, workers are facing changes in employment
opportunities. Currently, it is estimated that in 6 out of 10
occupations, at least 30% of activities are automatable
(Manyika et al., 2017). While up to 375 million people
globally might need to switch their jobs by 2030, historically,
automation has created employment opportunities. Some job
sectors, like agriculture and manufacturing, have seen declining
employment; however, completely new job positions have been
created due to automation. Overall, a country’s labor
displacement by automation depends on many factors such as
demographics, industry structure, and economic strategy. Due to
the COVID-19 pandemic, many businesses were forced to close,
and work positions that rely on human-to-human contact were
especially affected. For some of those jobs, human employees
were replaced with robot employees. Laid-off workers now have a
choice of coming back to constricted job market or to go back to
school to enter a new job market. For workers who are unable to
do either, they are forced to join the gig economy, resulting in
reduced wages and social stability. In line with the common good
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principle, governments should consider the careers of workers
whose positions are “automatable,” providing them with post-
graduate education opportunities and expanded job markets
should come together with higher robot implementation.

ROBOETHICS AND EDUCATION PRE- AND
POST-COVID-19

Exploration for the use of robotics in education has yielded many
promising classroom robots such as Nao, a robot developed by
Alderbaran robotics. Nao can be used to teach programming
skills, motor skills (such as handwriting) and be a learning peer
for autistic students (Shamsuddin et al., 2012; Hamamsy et al.,
2019; Sandygulova et al., 2020). As this example suggests, robots
can hold different roles in the educational process: they can act
solely as tools, but they can also be social. Social educational
robots can be further subdivided into teachers, peers, and novices
(Belpaeme et al., 2018). Teaching robots are typically used to
instill new skills, like teach new vocabulary to an elementary
school student. This teaching type of robots has been around the
longest. Teaching robots are successfully used as interactive
practice tools, and as an alternative knowledge dissemination
device. Interestingly, when robots establish an empathetic link
with a student, student’s results are observed to be better
(Saerbeck et al., 2010). Further on, robots can act as tutors in
one-on-one teaching sessions by personalizing their instructional
approach to each individual student, thus improving their
student’s performance (Leyzberg et al., 2014). The application
of tutor-robots in conjunction with online adaptive learning
approaches is a promising area of development for dental
education in particular (Alwadei et al., 2020). Peer robots are
developed to form an empathetic bond with students, learn
alongside human subjects, and collaborate with students to
solve problems. Novice robots tap into a pedagogical method
where a student must explain or teach a topic to a novice. Novice
robots are programmed to be taught by students.

When considering the ethics of teaching, the effectiveness of
the method is one of the chief concerns. Would a robot-teacher be
as good at delivering material when a robot is unable (currently at
least) to fully observe non-verbal cues coming from the students?
For robot–teachers that have a capacity to automatically evaluate
student’s performance, their assessment should pass the following
criteria (Kalu et al., 2005):

(1) Be accepted by the experts in the teaching community;
(2) Be reliable, and provide the same result when performed at

various times;
(3) Be valid, thus measuring the skill being measured (instead of

measuring skill tangential to skill being assessed).

To assess the validity of a particular teaching robot, we should
consider how well the robot-delivered assessment reflects the
real-life skill, predicts future performance, and compares to the
existing gold-standard (Kalu et al., 2005; Holmboe et al., 2010).

Additionally, a big part of in-person school education is the
development of social skills, and would a robot-based pedagogical

team be able to support the same levels of social and emotional
development in students? With COVID-19, schools were forced to
shut down and largely transition to distance education. In an online
classroom, it is harder for the instructor to observe or support their
students. For schools where education revolves around practicums
and labs, such as dental colleges, students are facing deferred classes
and exams (Wu et al., 2020). Dental students have reported concerns
about their clinical care education, but were open to other strategies
such as simulation and teledentistry (Hung et al., 2020). Schools can
hence adapt by using robots as tools for practicums, and in some
cases, as instructors. The future of robot-centric education might be
coming sooner than expected. It yet remains to be answered whether
robotic educational tools would serve equally as well in training
students as human instructors. As robotic tools often rely on the
Internet to connect and run their respective programs, students
located in areas with poor or nonexistent connections could be at a
disadvantage. Additionally, depending on the level of education,
students that pay high tuition prices might not be ready to pay for
robot-centric education when there is no evidence of efficacy. There
is much potential with robotics in education, and the COVID-19
pandemic might be helpful in providing more data and direction to
educational robotics field.

DENTEACH FOR REMOTE DENTAL
TEACHING AND LEARNING

The COVID-19 pandemic has paused both a dental practice and
dental education. Because SARS-CoV-2 virus can be found in the
saliva of infected patients, dental healthcare professionals are at a
higher risk of exposure to the virus (Wyllie et al., 2020). Even after
the first wave of the COVID-19 has subsided, dental practices are
not able to return to the same patient numbers as pre-COVID, and
dental schools are largely conducting instruction online. Dental
clinics are able to continue working at reduced capacity until a
vaccine is available by increasing preventative measures such as
increased handwashing and the use of protective shields. However,
dental colleges are not able to conduct any of the practical aspects
of the curriculum due to classroom setup and instructors’ capacity.
This is amajor source of concern for dental students, whose clinical
education has been disrupted by the pandemic (Hung et al., 2020).
Virtual educational systems and dental simulators have been
previously tested in remote education settings and yielded
promising results. Students reported positive attitudes toward
virtual practice systems and VR-assisted dental simulators.
Students also observed a significant increase in their practical
skills performance (Liebermann and Erdelt, 2020; Liu et al.,
2020; Murbay et al., 2020). However, previously developed
dental training simulators are not widely adopted by dentistry
schools because of the following concerns: affordability and
portability. In addition, currently available simulators are not yet
officially recommended for the assessment or training of students
(Galibourg et al., 2020). The latter might change soon due to the
necessity of remote dental education. To address the concerns of
portability, Tactile Robotics has developed a haptic-enabled robotic
platform for dental teaching, learning and practicing purposes. This
platform, called DenTeach, is portable and affordable, making
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remote practical dental education a possibility (Maddahi et al.,
2020).

For dental educational institutions, DenTeach allows for
continuous education through COVID-19, and aids in helping
classrooms to become more efficient. DenTeach faithfully
captures the environment in which a dental task is performed.
It records both sounds, video, and drill vibrations during the
procedure demonstrated by the instructor. This allows the
student to better understand the task and facilitates the
learning process. Additionally, DenTeach is supplied with an
articulator that can mimic a patient’s posture, thus training the
student to perform the task in the most realistic position. Neither
of these functions is widely available in a traditional classroom. As
a result, DenTeach can increase teaching efficiency by
accelerating skill acquisition by students, and removing
limitations based on classroom size.

DenTeach provides extensive quantitative feedback and allows the
student to learn and practice at a remote location, such as their home,
with a minimal supervision of the instructor. The system uses a
combination of sensory responses, and performance data to aid in the
learning experience. During the instruction, the students experience
how the tool feels during the performance of the task. Understanding
proper dental tool handling is alsomade possible through sensors and
actuators on dental tools and by providing an effective augmented
reality environment. For the instructors, DenTeach supports an
intuitive interface that allows the instructor to demonstrate the
model procedure, review students’ work, and provide them with
assessments. Dental instructors can teach from a remote location, and
the students are able to follow along with the procedure at their own
workstation. Additionally, instructors can record a procedure that
students can follow along later. This provides an opportunity to
change the novice-expert apprenticeship model as an expert would
not need to be present for instruction. The recorded material can be
reused and could result in cost-benefits to educational institutions. A
summary of the capabilities of the platform is listed in Table 1.

DenTeach Platform
DenTeach is a vibrotactile dental apparatus that can be situated to
work in a wired or wireless setting. There are two types of DenTeach

workstations available. The first setup is the instructor workstation
that comprises a set of sensory systems attached to a commercially
available dental drill. The sensors are able to measure the position,

TABLE 1 | Capabilities of DenTeach in both instructor and student workstations.

Instructor Student

Evaluation of Performance

Quantifying the students’ skills during the performance of dental tasks using several KPIsa Real-time quantitative evaluation of performing dental tasks using several KPIs
Evaluating students based on the performance index Compare performance skill with instructor’s KPIs

Instructional Experience

Measuring kinematic and kinetic characteristics of the dental tool motion Follow along with a recorded video, audio and haptic feeling
Communicating with students through a custom-made user interface User-friendly augmented reality
Recording teaching sessions for future use, online education (e-learning) and case rehearsal Available 24/7

No supervision required

Physical Setup

Portable for use everywhere from school to home

aKPIs: Key Performance Indicators.

FIGURE 1 | (A) Instructor workstation. Instructor workstation comprises
of a DT-Rightway dental articulator, a sensory system, 4 cameras covering
360° view coverage, a microphone to speak with students in real-time, a
software that shows the performance and information of each student
and allows the instructor to monitor them remotely. (B) Student workstation.
Student workstation consists of the DT-Rightway dental articulator, a sensory
system, two sets of RealFeel dental handpiece (slow-speed and high-speed)
and a software that captures student’s actions and provides performance
metrics.
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orientation, velocities, accelerations, and jerk (vibrotactile
characteristics) of the drill while it is in contact with a physical
model of the tooth (Figure 1A). A robotic-based dental articulator is
also included in the platform that allows the instructor to set the
posture of the oral cavity in different orientations to emulate the
patient’s actual posture. The second type of setup is the student
workstation. It includes a custom-designed training tool that has a set
of sensory systems and a display showing the dental operation
performed at the instructor workstation. A similar robotized dental
articulator as the instructor helps the student follow the instructor’s
technique and to experience working on patient’s posture in addition
to the traditional tabletop technique (Figure 1B). The student
workstation software quantifies student’s performance and displays
it as a set of key performance indices (KPIs) (Cheng et al., 2021). There
is a total of 82 KPIs available through the DenTeach system, allowing
for detailed analysis of student’s performance. KPIs include metrics
such as task completion time, tool handling smoothness and
steadiness.

DenTeach in the Context of Learning
Domains
The learning process and educational goals can be widely
classified into three domains based on the Bloom’s Taxonomy.
These domains are 1) cognitive, 2) psychomotor and 3) affective
(Bloom et al., 1956). The cognitive learning domain includes
activities that train critical thinking skills, fact recollection,
decision making, and general comprehension of the subject
matter (Anderson et al., 2001; McHarg and Kay, 2009). The
psychomotor domain includes learning technical skills such as
procedural knowledge and accompanying adaptive thinking.
Training in the psychomotor domain develops one’s reflexes,
dexterity and deliberate movement (Simpson, 1971; Anderson
et al., 2001; McHarg & Kay, 2009). Educational goals classified
under the affective learning domain typically emphasize skills
related to emotional intelligence and personal values (Bloom
et al., 1956; McHarg and Kay, 2009).

A successful dental school graduate should have the following
characteristics after degree completion: technical competence, critical
thinking, ethical and professional values, social responsibility,
professionalism in the work environment, patient management,
and capability for self-assessment (Schneider et al., 2014). Each of
these characteristics correlates with certain learning domains
identified above. When dental educators were asked to evaluate
the types of skills that dental students train during their schooling,
the two areas that received the highest rank were knowledge and
technical skills (Hoskin et al., 2019). Critical thinking, decision
making, and ethics were ranked highly as well under the same
questionnaire (Hoskin et al., 2019). DenTeach is primarily
intended for the practice of dental procedures, meaning the
students would be engaging primarily in the practice of skills that
fall under the psychomotor learning domain. When students are
completing dental tasks usingDenTeach, they are practicing operating
the drill in an environment that emulates patient posture. This allows
students to develop their motor skills in addition to spatial perception.
The DenTeach system assumes that students already have prior
theoretical knowledge of procedures, which was potentially

acquired during lectures preceding dental tutorials. In the time of
COVID-19, as dental education transitioned online, such theoretical
knowledge would have been taught through e-learning tools such as
Canvas (Iyer et al., 2020). Additionally, dental students have reported
using YouTube to watch videos of dental procedures being performed
even before the COVID-19 pandemic (Burns et al., 2020). This
evidence suggests that the development of online tools can
enhance dental education even after in-person education is
resumed (Alwadei et al., 2020; Burns et al., 2020; Jeganathan and
Fleming, 2020).

Ethical Aspects of DenTeach
As discussed in the above sections, when attempting to
implement a new piece of technology into human life, we
must consider the impact said technology will have. As an
educational device, DenTeach’s purpose is to benefit the
current instruction model in dental colleges by making
dental education accessible to students during and after the
COVID-19 pandemic. In this section, we evaluate DenTeach
on the principles of data, common good, and safety and discuss
potential ethical considerations for DenTeach
implementation.

Data Considerations: Privacy, Security, Longevity
DenTeach collects two kinds of data when in use: camera
footage from an instructor’s feed and sensor data from both
students and instructor’s workstations. This data, once
recorded, would be processed by a data transmission system
and is saved on a local server or on the cloud (depending on the
institution’s preference). After the data is saved, it is available
on-demand for both students and instructors. To protect
students’ privacy, each student is only able to see their own
performance, but the instructor has access to all student
performance data. This system of information storage and
protection is common among higher education institutions,
but unfortunately, it is also common for universities and
colleges to get hacked (Maranga and Nelson, 2019). With a
device that is designed to fully rely on servers and cloud data
backups, it is critical to highlight the importance of
cybersecurity. Additionally, since remote learning instructors
will only be able to base their assessments and marking on data
provided by DenTeach, it is critical that this data is not
tampered with both by external forces, and by students
themselves.

One of the big advantages of DenTeach is the possibility of
remote software upgrades. These upgrades can be done swiftly
and applied during downtime, thus not impeding the education
process. Additionally, Tactile Robotics offers a 4-years guarantee
and 24/7 support for students who purchase and use DenTeach.
Lastly, in order to access the instructor’s data, install updates, and
contact DenTeach for support, students will need to have a stable
internet connection, which might not always be available. With
expansion of services available online and technologies that
require the Internet to function, internet access is starting to
be viewed as a human right (Human Rights Council, 2016).While
the Internet is reasonably ubiquitous in North America, other
areas might not have a stable internet connection available, which
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should be considered by dental schools accepting international
students or situated abroad.

Common Good: Benefits of DenTeach
Over the years, there have been several attempts to create a
simulation dental classroom. Most studies have found that new
simulation classrooms did not have a big impact on the way
dental pre-clinical procedures are taught (Buchanan, 2001). New
generations of technology utilizing internet connection, virtual
reality, 3D modeling and next-generation sensors are currently
used to develop dental simulation devices that expand beyond
what was previously possible. Still, many devices currently being
used require supervision and real-life teaching in addition to
being stationary and hence not suitable for remote teaching and
learning. DenTeach is designed to support educators in the
difficult time of COVID-19, but its potential use can extend
beyond pandemic response. Professional education institutions,
such as dental schools, require program standardization and
objective evaluation (Quinn et al., 2003). DenTeach can
provide unbiased quantitative feedback to students, and since
instructors are able to upload procedures to the server, students
are all exposed to the same material in the exact same way. This
provides dental schools and education researchers with a unique
opportunity to standardize the curriculum and evaluate the
simulation classroom with only the experimental variable
being the students. Tactile Robotics is currently conducting
studies to comprehensively evaluate and compare student
performance in DenTeach enabled and traditional classroom
settings. The COVID-19 pandemic has challenged the current
novice-expert apprenticeship model, and technology could be a
useful tool in helping dental educational model evolve.

DenTeach allows students to practice dental procedures at any
time, thus allowing for self-study and self-analysis–two important
steps in mastering dental techniques. Because DenTeach is
designed to be portable, it allows for schools to admit students
located around the globe. Additionally, a standardized
curriculum could make high-quality dental education available
to students located in areas without dental schools, benefiting
both the students, and the surrounding population. Further, to
make DenTeach available to any dental school interested, Tactile
Robotics has a flexible marketing plan for each country or client
interested. This supports the principle of equitable access to
technology.

Finally, DenTeach offers both right-hand and left-hand setups
to enable students to practice in a way that would be most natural
and comfortable for them. This emulates field conditions and is
inclusive of all students who would be admitted to dental schools.

Safety
DenTeach could not reasonably cause harm to human
beings–while it does have a dental drill, and weighs a few
pounds, it would require a malicious intent from a human, or
an unfortunate accident caused by a human for someone to

sustain an injury from DenTeach. As such, safety is not a
significant concern for DenTeach implementation.

CONCLUSION

The COVID-19 pandemic has stimulated the field of robotics to
compensate for restrictions implemented to slow the spread of
the SARS-Cov-2 virus. Robots were deployed to perform tasks
that were too risky for humans, such as comforting at-risk
elderly patients and sanitizing hospital spaces. Because of the
urgency of the situation, more attention was focused on the
rapid development of robots, and less on the ethical aspects of
such robotic systems. The principles of data, the common good,
and safety are of most relevance for the ethical implementation
of robotic systems. This paper is specifically focused on ethical
considerations in the design and development of robotic
systems for healthcare education. Dental colleges were forced
to shut down during the pandemic, and practical courses were
delayed until the time it was safe to resume instruction. For
students who are enrolled in dental schools during COVID-19
and are continuing to pay tuition fees, it is a dental college’s
ethical responsibility to deliver training, even in these
challenging times. This created an opportunity for robots to
be used to train students in practical dental skills. Previously
there have been attempts to create portable dental simulators:
both Simodont and IDEA can be used remotely to assist
students in learning dental tasks (Luciano et al., 2009; Gal
et al., 2011). DenTeach is a new-generation haptic-enabled
dental simulator that can be used remotely to train dental
tasks completed with a drill. When implementing DenTeach
in the educational curriculum, data privacy and equal access
should be considered a priority. We explore different aspects of
such considerations and provide examples of real-life
applications of robotic systems during the COVID-19
pandemic. This may provide some guidelines for engineers
and researchers during the research and design process.
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Neurorehabilitation From a Distance:
Can Intelligent Technology Support
Decentralized Access to Quality
Therapy?
Olivier Lambercy1,2†*, Rea Lehner2,3†*, Karen Chua2,4,5, Seng Kwee Wee2,4,6,
Deshan Kumar Rajeswaran2,4, Christopher Wee Keong Kuah2,4, Wei Tech Ang2,5,7,
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Current neurorehabilitation models primarily rely on extended hospital stays and regular
therapy sessions requiring close physical interactions between rehabilitation professionals
and patients. The current COVID-19 pandemic has challenged this model, as strict
physical distancing rules and a shift in the allocation of hospital resources resulted in
many neurological patients not receiving essential therapy. Accordingly, a recent survey
revealed that the majority of European healthcare professionals involved in stroke care are
concerned that this lack of care will have a noticeable negative impact on functional
outcomes. COVID-19 highlights an urgent need to rethink conventional neurorehabilitation
and develop alternative approaches to provide high-quality therapy while minimizing
hospital stays and visits. Technology-based solutions, such as, robotics bear high
potential to enable such a paradigm shift. While robot-assisted therapy is already
established in clinics, the future challenge is to enable physically assisted therapy and
assessments in a minimally supervized and decentralized manner, ideally at the patient’s
home. Key enablers are new rehabilitation devices that are portable, scalable and
equipped with clinical intelligence, remote monitoring and coaching capabilities. In this
perspective article, we discuss clinical and technological requirements for the development
and deployment of minimally supervized, robot-assisted neurorehabilitation technologies
in patient’s homes. We elaborate on key principles to ensure feasibility and acceptance,
and on how artificial intelligence can be leveraged for embedding clinical knowledge for
safe use and personalized therapy adaptation. Such new models are likely to impact
neurorehabilitation beyond COVID-19, by providing broad access to sustained, high-
quality and high-dose therapy maximizing long-term functional outcomes.

Keywords: neurorehabilitation, robot-assisted therapy (RAT), clinical intelligence, decentralized care, stroke
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INTRODUCTION

Stroke is a leading cause of disability and morbidity globally,
accounting for 132 million disability-adjusted life-years (DALYs)
worldwide (GBD, 2018). Among others, the neurological damage
resulting from a stroke can lead to severe upper limb
sensorimotor impairment, affecting a person’s ability to work
and take part in activities of daily living. To date, there is no cure
for stroke and patients rely on neurorehabilitation services long
after their injury to at least partially recover sensorimotor
function.

Currently, neurorehabilitation strongly relies on physical and
occupational therapy sessions, which are primarily based on one-
to-one interactions with healthcare practitioners either during an
inpatient hospital stay (mostly during the acute to sub-acute
phase) or as part of regular visits to specialized outpatient
institutions (mostly during the sub-acute to chronic phase).
This current model of care is highly resource demanding and
already faces important challenges to cope with constantly
increasing numbers of patients due to changing demographics,
shortage of trained healthcare providers, and economic pressure
to minimize healthcare costs. As a result, therapy dose is typically
rather low at all stages of the continuum of care, despite the
growing evidence that intensive high-dose neurorehabilitation
positively impacts sensorimotor function even long after the
injury (Daly et al., 2019; Ward et al., 2019).

The coronavirus (COVID-19) pandemic brought additional
critical constraints to this already fragile ecosystem (Caso and
Federico, 2020). Patients after stroke belong to the population at
risk (Jordan et al., 2020) and essential care, such as
neurorehabilitation services, was set to lower priority to avoid
overloading the healthcare system. Furthermore, physical
distancing measures and the cut-back on face-to-face
consultations have led to a reduction in clinic and therapy
stays/visits. As a result, several studies have reported that the
quality of care in stroke patients has been impacted (Bersano
et al., 2020; De Sousa et al., 2020; Richter et al., 2021). A recent
survey revealed that a large majority of healthcare professsionals
involved in stroke care (primarily neurologists, interventionalists
and rehabilitation physicians) were concerned that this lack of
care will have had a noticeable negative impact on long-term
outcomes, and that rehabilitation is likely the most affected area
of stroke care (De Sousa et al., 2020).

COVID-19 crystalizes the limitations of existing healthcare
models and highlights the urgent need to rethink conventional
neurorehabilitation so that high-quality therapy can be provided
while the need for hospital stays and visits is minimized. In the
last decade, the digital revolution has fueled the vision of new
scalable technologies that provide higher doses of high-quality
rehabilitation along the continuum of care and, in particular, in
the home of patients (Galea, 2019). However, such solutions for
“neurorehabilitation from a distance” still remain in their infancy
(Dafer et al., 2020; De Sousa et al., 2020) and have so far only been
investigated as separate elements (i.e., individual technologies
and therapy concepts). This article aims to provide an
overarching vision on how different existing technological
solutions could be combined in the form of a connected

RehabGym. The overall goal of such a framework is to
promote recovery, maintain functional gains and maximize
independence by optimally using the potential of rehabilitation
technology. For this, we propose concrete considerations for the
implementation of minimally supervized robot-assisted therapy
as a possible approach to provide quality, high-dose
neurorehabilitation solutions along the continuum of care. We
argue that user-friendly, intelligent and robust technology could
help transform the current hospital-centered model into a home-
centered model of care that is potentially more resource- and
cost-effective, and robust to extreme situations such as the
COVID-19 pandemic.

NEUROREHABILITATION FROM A
DISTANCE

From a Hospital-Centered Model to a
Home-Centered Model of
Neurorehabilitation
Neurorehabilitation after stroke often starts at the bedside early
after the incident (e.g., after 2–3 days once the patient is stable), is
then continued for 1–3 months in a rehabilitation clinic and later
transitions to community-based rehabilitation treatment, for
example, in an outpatient center (i.e., 5–6 weeks of intensive
training). While such a model allows healthcare practitioners to
closely monitor their patients and support them and their families
(both physically and emotionally) throughout the recovery
process, it heavily relies on physical access to medical facilities
and sustained interactions with trained specialists (hospital-
centered model, Figure 1A). This neurorehabilitation model is
not only challenged by events such as the COVID-19 pandemic
but also by changing demographics, which might lead to a
shortage of human resources and non-sustainable costs. This
ultimately affects the dose and quality of therapy patients receive,
limiting rehabilitation to intense but relatively short and early
time periods that might be insufficient to achieve functional
recovery. After discharge, there is typically limited support for
continued care management or to motivate patients to self-
engage in physical activities or rehabilitation exercises at
home, which are necessary for the maintenance of functional
gains (Nicholson et al., 2013). This gap may explain the often
observed decrease in functional ability or learned nonuse of the
impaired limb (Taub et al., 2006; Hidaka et al., 2012).

To offer a more sustainable approach, there is a need to shift
the existing hospital-centeredmodel of care toward amore home-
centered model (Figure 1B). In such a scheme, selected patients
are discharged from hospital/outpatient centers earlier and
provided with various solutions to perform high-quality
therapy at home. This facilitates decreased dependence on
hospital fixed schedules and limited resources, thereby
bringing the promise of increasing the overall therapy dose
patients may receive, provided that they engage in self-directed
therapy.

While a home-centered approach to conventional therapy is not
new and has been shown to be implementable in a cost-efficient

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6124152

Lambercy et al. Neurorehabilitation from a Distance

259

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


way (Mayo et al., 2000; Hillier and Inglis-Jassiem, 2010; Mayo,
2016), digital technologies and artificial intelligence have a key role
to play in further establishing and supporting this model, as they
could provide patients with intelligent connected tools
empowering and motivating them to engage in quality therapy
from a distance.

Technologies Supporting
Neurorehabilitation From a Distance
A variety of technological approaches have been proposed to
support the implementation of neurorehabilitation from a
distance, and new developments emerged during the COVID-
19 pandemic as possible answers to the limited access to medical
facilities. Existing solutions span from simple webinars or mobile
phone applications informing patients, to chatbots (i.e., artificial
intelligent coaches (Argent et al., 2018; Tudor Car et al., 2020))
demonstrating and encouraging home-based exercises, or virtual
reality (VR) exergames sometimes supported by passive
instrumented tools (e.g., orthoses, gloves or objects to
manipulate) (Nijenhuis et al., 2017). Telerehabilitation (or
telemedicine) has already been widely studied as a method to
support neurorehabilitation from a distance (Tyagi et al., 2018;
Kuah et al., 2019; Laver et al., 2020) and has often been presented
as a possible answer to meet neurorehabilitation needs during the
COVID-19 pandemic (Chang and Boudier-Revéret, 2020; Turolla
et al., 2020). In a typical telerehabilitation scenario, healthcare
practitioners interact with patients over a live communication
stream, offering the possibility to guide and encourage patients

while monitoring their progress. Telerehabilitation approaches
that go beyond video/audio support and offer additional
connected hardware (e.g., USB-based wrist blood pressure cuff
and mat with contact sensitive switches, gaming driving wheel
with a special gripper, joysticks, etc.) have been proposed for
stroke patients (Johnson et al., 2007; Dodakian et al., 2017;
Johnson et al., 2017). Telerehabilitation using socially assistive
robots (e.g., a humanoid robot with telepresence and computer
vision under the supervision of a remote clinician) can also
deliver emotional support and help to increase the patient’s
motivation (Fasola and Mataric, 2010; Pulido et al., 2019;
Sobrepera et al., 2020). Nevertheless, the lack of physical
assistance, an essential facilitator for movement therapy in
patients with sensorimotor impairments, and the inability to
actively measure physiological parameters for providing
feedback to improve performance strongly limit such
telehealth approaches. Also, most telerehabilitation
applications still rely on the synchronous presence and
supervision of a rehabilitation professional, thereby not solving
the underlying issue of lacking resources for neurorehabilitation.

Active technologies such as robotics, which can guide and
assist motion while collecting objective measures of movement
quality, might be the key enabler providing access to quality
therapy from a distance, without the need for constant
supervision by a therapist or expert operator on site.
Technology-assisted therapy has been established as a tool to
complement conventional rehabilitation in the clinics, with the
ability to safely deliver high therapy dose and intensity in suitably
selected patients (Veerbeek et al., 2017; Gassert and Dietz, 2018;

FIGURE 1 | Two approaches to neurorehabilitation along the continuum of care. Compared to the hospital-centered model of stroke rehabilitation (a), the home-centered
model of care (b) aims to reduce the time a patient spends in a healthcare institution (depicted in black) physically visiting a rehabilitation professional. However, patients receive a
similar or even potentially higher dose of therapy (depicted in red) due to continued self-directed training at home (depicted in yellow). This should be supported by different
complementary mobile technology-based devices (e.g., robotics, wearables, virtual reality games) (blue shapes) introduced early in the inpatient rehabilitation
(i.e., RehabGym), and that can, after a familiarization phase under therapist supervision, be taken home by patients to continue with a minimally supervized rehabilitation training
(i.e., without the presence of a clinician or expert operator). These devices should be intelligent connected tools (depicted in green, more detail on a possible implementation in
Going Beyond COVID-19: Moving Towards Minimally-Supervised Robot-Assisted Therapy) allowing for remote patient monitoring, while empowering and motivating patients to
engage in high-quality therapy from a distance, which is not possible with traditional stationary neurorehabilitation technologies (purple blocks).
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Mehrholz et al., 2020). For the upper limb, there is increasing
evidence demonstrating that robot-assisted therapy is at least as
good as usual care (Ranzani et al., 2020) and provides the unique
ability to actively assist patients with physical impairments and
objectively monitor performance and engagement through
objective sensor measurements. Nevertheless, most rehabilitation
robots today remain complex systems (e.g., multi-degrees-of-
freedom exoskeletons, or devices requiring precise attachment/
positioning of the user, or systems relying on complex graphical
user interface where input from an operator is required) that have
so far been limited to supervised use in the clinic with close one-to-
one monitoring and readily available technical assistance.

GOING BEYOND COVID-19: MOVING
TOWARD MINIMALLY SUPERVIZED
ROBOT-ASSISTED THERAPY
To fully exploit the potential of rehabilitation technologies such
as robotics and truly revolutionize neurorehabilitation delivery,
there is a need to move out of the research labs or clinical settings.
While few pilot studies have demonstrated feasibility of home
self-administered upper extremity training with robots (Sivan
et al., 2014; Wolf et al., 2015), this translation remains a major
challenge due to multiple key technical and clinical requirements
imposed by minimally supervized use.

Technical Requirements and Usability
Realistically, for a rehabilitation robot to be adopted and regularly
used by neurological patients in their home environment, it
should be: intrinsically safe and user-friendly, portable for easy
deployment in homes where available space might be scarce,
robust so that little to no maintenance is needed over potentially
long periods of use, and scalable (low-cost and relying on
typically already available resources in patients’ home such as
standard electrical and internet connections). Of these technical
aspects, ease of use in an independent way is probably the most
critical point to ensure acceptance and adoption, and a point that
has been so far rarely evaluated in existing robotic technologies
for neurorehabilitation (Zhang et al., 2011; Catalan et al., 2018).

Usability considerations (e.g., in the form of user-centered
design involving patients in the development process (Meyer
et al., 2019)) should be taken into account not only at the level of
the hardware (e.g., how to turn it on/off, how to don/doff a device,
etc.) but also at the level of the software and graphical user
interface, which should be intuitive and easy to navigate for non-
experts in computer use, or patients with cognitive deficits
(Ranzani et al., 2021). User archetypes created through data
generated from actual target users might increase the potential
for better design of technology-assisted interventions in stroke
rehabilitation (Haldane et al., 2019). Along the same lines, robot-
assisted exercises should be easily understandable to ensure safe
use and the training of physiologically meaningful exercises.

Clinical Artificial Intelligence
Besides technical requirements, it is fundamental to integrate
clinical knowledge into technologies to be used at home in a

minimally supervized way. We define here clinical artificial
intelligence (cAI) as a combination of medical, psychological
and technical knowledge in the form of embedded algorithms
analyzing and processing online the data generated by digital
technologies. As such, cAI is expected to play a key role in clinical
decision making, online adaptation of therapy exercises, and
monitoring of progress through the extraction of validated
assessment scores (Kanzler et al., 2020). For example, in a
typical minimally supervized robot-assisted rehabilitation
scenario, it is envisioned that an initial therapy plan (e.g.,
combination of exercises at a specific dose and intensity in
order to achieve selected goals) is established by a therapist
during the initial inpatient rehabilitation. However, this initial
therapy plan should be able to adapt and evolve based on patients’
progress without requiring the direct intervention of the
therapist. Algorithms have been proposed, where cAI-based
decisions regarding exercise selection were suggested to
therapists during supervised rehabilitation in chronic stroke
patients, showing strong agreement with therapist perception
and decisions (Panarese et al., 2012). In a similar way, several
assessment-driven therapy adaptation algorithms of various
complexity (e.g., based on online extraction of performance
biomarkers, or including machine learning models, etc.) have
been proposed and evaluated with stroke patients to tailor
rehabilitation exercises to the ability and needs of each
patient. Several promising studies, under supervised use in
the clinic, validated the feasibility of such algorithms to
dynamically adapt difficulty and intensity of therapy
exercises on a trial-per-trial basis, thereby ensuring that the
therapy remains at an optimal level of challenge to maintain
motivation for long term adoption (Metzger et al., 2014; Giang
et al., 2020). Finally, cAI algorithms should as well monitor
progress on a daily basis and detect potential decline in use and/
or performance, with the possibility to feed this information
back to the patients and caregivers. In a similar way, cAI should
detect undesired symptoms that could lead to pain, increase in
muscle tone, or upper limb compensatory movements, which
could also be objectively extracted from the collected sensor data
(Wittmann et al., 2016; Ranzani et al., 2019; Cai et al., 2020).
When a severe abnormal deviation from the normal movement
range/trajectories is detected, the cAI should initiate a safety
procedure to prevent suboptimal rehabilitation outcomes or, in
the worst case, an injury. It should be emphasized that the
objective of cAI is not to replace healthcare practitioners, but to
support a home-centered model of care where one-to-one
presence of therapists is not viable. Communication channels
should nevertheless be in place to asynchronously inform
clinicians about therapy status and potential deviations e.g.,
via digital alerts, through the generation of daily reports, or via
short digital questionnaires filled by patients/caregivers (de Jong
et al., 2014; Hill & Breslin, 2016; Kowatsch et al., 2019). Once an
unexpected event during minimally supervized training
occurred, the cAI should alert the therapists in the hospital/
clinic so that (tele)consultation can be arranged to evaluate the
cause and to ensure that appropriate advice can be provided to
the patient. These measures will aid in mitigating the risks of
injuries.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6124154

Lambercy et al. Neurorehabilitation from a Distance

261

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Towards a Connected RehabGym
A robotic device for minimally supervized rehabilitation
combined with cAI bears high potential for treating selected
patients. However, as for any therapy, a more holistic approach is
needed since patients with various impairment levels will have
different needs and therapy goals that could hardly be met by a
single device. The transition to a technology-supported home-
centered model of care may therefore rely on a network of
modular rehabilitation technologies that are complementary
and interconnected within a common digital therapy platform.
In this ideal concept of a connected “RehabGym”, we foresee
simple, dedicated, rehabilitation technologies targeting different
body segments (e.g., shoulder/elbow, wrist, hand), motor
function (e.g. reaching, grasping, haptic exploration) and
impairment level (from hemiparetic to highly functional
patients) being proposed as a battery of digital interventions
available for the treatment of a patient. A common digital therapy
platform offers the unique advantage of sharing user-interaction
features between devices, to improve usability and help seamlessly
transition from one device to the other (e.g., within a therapy
session, or over the course of rehabilitation). Figure 2 presents a
possible set of selected user-friendly, mobile, complementary
robotic systems targeting different components of the upper
limb, that could be used as a basis to implement such a
connected RehabGym concept (Chua et al., 2018; Butzer et al.,
2020; Lambelet et al., 2020; Ranzani et al., 2020; Ranzani et al.,
2021).

One possible implementation avenue would be to first deploy
the RehabGym technologies in hospital settings, where a patient
could familiarize with the use of each technology during the
essential inpatient rehabilitation (under supervision), and where
rehabilitation practitioners could identify which technologies are
most likely to benefit a patient. This initial supervised step is
certainly fundamental to ensure safe use of a robotic technology
and adoption by the user. In the clinic, such a room equipped

with multiple complementary devices could be operated with a
single therapist supervising multiple patients, which should
provide a cost-effective solution (Hesse et al., 2014;
Bustamante Valles et al., 2016) and a compatible approach to
minimized one-to-one interactions.

Upon discharge, a patient could then take home a selected
rehabilitation technology to continue therapy in a minimally
supervized manner. If available, the patient’s caregiver(s)/family
will also be instructed on how to operate the device(s) safely and
how to optimally support the rehabilitation process (e.g., support
setting up devices and promoting motivation and compliance).
Caregivers and family could play an essential role in assisting
patients who are not so familiar with handling devices or suffer
from more severe impairments, thereby ensuring a successful
transfer of the RehabGym to the home environment. Cloud
computing should enable data exchange to a centralized
database where patient profiles (e.g., data from all RehabGym
technologies used by the patient, collected digital health
biomarkers, as well as clinical assessment data) are stored and
can be accessed remotely by a cAI concept shared by all devices of
the connected RehabGym. It should be noted that the system
should be operational even if the internet connection is slow or
instable, which can be ensured by asynchronous data exchange
and storage on the cloud. The cloud for the RehabGym should be
securely hosted either within the hospital IT infrastructure or by a
third party who is accountable for information security (e.g., data
confidentially, integrity and availability). Algorithms should
update therapy plans and other training parameters (e.g.,
suggest transfer to another RehabGym device/exercise), and
inform on overall rehabilitation progress. Additionally, exercise
adherence and motivation could be increased by integrating a
conversational agent (i.e., chatbot) that educates users on relevant
topics (e.g., healthy lifestyle) and provides personalized
motivational messages, as well as real-time exercise support,
monitoring, and feedback as previously shown for

FIGURE 2 | Conceptual overview of a connected RehabGym, with examples of user-friendly and complementary (i.e., targeting all segments of the upper limb)
mobile robotic technologies for minimally supervized neurorehabilitation. All technologies are first introduced during inpatient rehabilitation at the hospital, and selected
technologies (e.g., the one(s) best adapted to the impairment level and rehabilitation goals of a patient) are taken home upon discharge. Connected devices ensure
asynchronous (i.e., not online/real-time), remote communication with healthcare professionals for monitoring purposes.
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physiotherapy patients and home exercise in a hands-free
augmented reality environment (Kowatsch et al., 2021).
Building a strong “virtual” working alliance between a chatbot
interface and a patient might prove a promising tool to improve
the acceptance of the connected RehabGym and avoid mental/
social distress caused by isolation. However, it should certainly
not replace regular in-person controls with healthcare
practitioners if possible.

In controlled clinical settings (non-connected) RehabGym
concepts with complementary upper limb robotic devices have
proved feasible for stroke patients with moderate to severe upper
limb impairment (Lo et al., 2010; Hesse et al., 2014; Bustamante
Valles et al., 2016). These studies, however, did not directly
investigate how to personalize therapy plans to best leverage
on a set of complementary devices, nor did they investigate the
feasibility of transferring such technologies to the home of
patients. Building on our previous studies, we envision that
moving to such a connected RehabGym to home settings and
additionally targeting more distal upper limb components should
be more suited for patients with mild to moderate upper limb
impairment, and without severe cognitive deficit (Lambercy et al.,
2011; Chua et al., 2018; Ranzani et al., 2020).

Potential Implementation Barriers
While promising, digital technologies will not solve all problems
in the delivery of neurorehabilitation service, nor will they
completely replace face-to-face visits. The idea of a connected
RehabGym is to provide a new complementary model to existing
rehabilitation approaches. The provision of minimally supervized
therapy to neurological patients will raise a new set of questions
that will need to be carefully addressed for successful
implementation.

The selection of suitable patients and pairing with adequate
technology-assisted therapies are necessary to ensure positive
delivery and experiences of such a minimally supervized
therapeutic model. Clinical considerations include patient
impairment severity, medical fitness and motivation, desired
rehabilitation goals, and available social supports. Certain
groups of patients might find it difficult to accept this new
paradigm of care, in particular the cognitively impaired,
visually challenged, elderly and technologically non-savvy.

Ethical concerns may arise from patients and their families at
several levels when a connected technology is introduced in the
home environment, for example with respect to safety, access,
privacy, data protection and respect for autonomy (Cavoukian
et al., 2010). There would be anticipated needs to provide
heightened cybersecurity infrastructure between healthcare
institutions and technology providers, as patients’ anonymized
data may need to be accessed by remote servers for processing
and continuous refinement of cAI algorithms. In general, ethical
frameworks related to the use of cAI for decision making in the
context of healthcare are still in their infancy, and should be
carefully studied in view of the increasing amount of connected
tools generating health-related data (Magrabi et al., 2019).

Finally, the adoption of technology in and out of clinic may
not always hinge on hard evidence or clinical effectiveness, but
rather technology robustness, subjective preferences, or

technological proponents and partnerships (Backus et al.,
2010; Turchetti et al., 2014; Chua and Kuah, 2017). Access to
rehabilitation technology in low- and middle-income countries
also needs to be considered and the proposed connected
RehabGym would need to be adapted for low-resource
environments with less robust infrastructure (e.g., power,
internet) and limited access to rehabilitation services. Cost
considerations, and in particular billing and reimbursement
models for such novel means of neurorehabilitation delivery
should also be carefully studied to ensure its viability on a
large scale. In particular, possible device rental models
should be explored to minimize the treatment costs for the
individual and further promote flexibility in therapy plan
adjustment.

CONCLUSION

Technology plays a key role in times of the COVID-19 pandemic
for solving problems in essential healthcare delivery such as in
neurorehabilitation. We proposed an approach to implement
neurorehabilitation from a distance, through the use of digital
connected interventions (e.g., minimally supervized robot-
assisted therapy) that could accompany stroke patients along
the continuum of care, from the hospital to their home.

For technology-based models of neurorehabilitation from a
distance to become successful, three factors are crucial for their
implementation: firstly, the technologies need to meet technical
requirements such as robustness, safety and usability since
patients train with at least one device at home (i.e., the most
suitable device according to patients’ needs). Secondly,
rehabilitation technologies should be scalable (i.e., easily
applicable to the increasing number of patients in need of
such treatment, which implies social, technical, economical
and infrastructure considerations) in order to be impactful.
Thirdly, the implementation of artificial intelligence embedded
in neurorehabilitation technologies needs to be clinically
motivated and transparent to patients, caregivers and
healthcare practitioners in order to increase the trust in
technology-assisted rehabilitation in a home-centered model.
All these aspects are essential to ensure that neurological
patients accept rehabilitation technologies and actively self-
engage in therapy (Neibling et al., 2021).

The proposed model of neurorehabilitation is likely to impact
neurorehabilitation beyond the COVID-19 pandemic, by
providing broad access to sustained, high-quality and high-
dose therapy to maximize long-term functional outcomes and
promote stroke survivors’ independence and quality of life. Such a
paradigm shift is bound to happen, and COVID-19 may act as an
accelerator for the adoption by patients, caregivers and
rehabilitation practitioners and for the market penetration of
the proposed technology-assisted rehabilitation (Keesara et al.,
2020). However, such a new approach to stroke rehabilitation can
only become successful in the future if it is accompanied by a
holistic digital transformation of healthcare systems, including
appropriate responses by authorities, healthcare providers, and
insurance companies.
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A COVID-19 Emergency Response for
Remote Control of a Dialysis Machine
with Mobile HRI
Hassam Khan Wazir, Christian Lourido, Sonia Mary Chacko and Vikram Kapila*

Mechatronics, Controls, and Robotics Laboratory, Mechanical and Aerospace Engineering Department, NYU Tandon School of
Engineering, Brooklyn, NY, United States

Healthcare workers face a high risk of contagion during a pandemic due to their close
proximity to patients. The situation is further exacerbated in the case of a shortage of
personal protective equipment that can increase the risk of exposure for the healthcare
workers and even non-pandemic related patients, such as those on dialysis. In this study,
we propose an emergency, non-invasive remote monitoring and control response system
to retrofit dialysis machines with robotic manipulators for safely supporting the treatment of
patients with acute kidney disease. Specifically, as a proof-of-concept, we mock-up the
touchscreen instrument control panel of a dialysis machine and live-stream it to a remote
user’s tablet computer device. Then, the user performs touch-based interactions on the
tablet device to send commands to the robot to manipulate the instrument controls on the
touchscreen of the dialysis machine. To evaluate the performance of the proposed system,
we conduct an accuracy test. Moreover, we perform qualitative user studies using two
modes of interaction with the designed system to measure the user task load and system
usability and to obtain user feedback. The two modes of interaction included a touch-
based interaction using a tablet device and a click-based interaction using a computer. The
results indicate no statistically significant difference in the relatively low task load
experienced by the users for both modes of interaction. Moreover, the system usability
survey results reveal no statistically significant difference in the user experience for both
modes of interaction except that users experienced a more consistent performance with
the click-based interaction vs. the touch-based interaction. Based on the user feedback,
we suggest an improvement to the proposed system and illustrate an implementation that
corrects the distorted perception of the instrumentation control panel live-stream for a
better and consistent user experience.

Keywords: COVID-19, interface, human-robot interaction, manipulation, remote interaction, robotics

1 INTRODUCTION

Last few decades have witnessed widespread adoption of robotic solutions by several industries for
operations that are considered difficult or dangerous for humans to perform (Trevelyan et al., 2008).
In the automotive industry, for example, heavy-duty industrial manipulators form an integral part of
the assembly line (Hägele et al., 2016) and one would be hard-pressed to find an automotive
manufacturing facility that does not employ some sort of robotic assistance. Moreover, robots are
actively being developed, examined, and used for inspection, decontamination, and

Edited by:
Simon DiMaio,

Intuitive Surgical, Inc., United States

Reviewed by:
Xiao Xiao,

National University of Singapore,
Singapore

Amol Dattatraya Mali,
University of Wisconsin–Milwaukee,

United States

*Correspondence:
Vikram Kapila

vkapila@nyu.edu

Specialty section:
This article was submitted to

Biomedical Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 30 September 2020
Accepted: 04 February 2021

Published: 07 May 2021

Citation:
Wazir HK, Lourido C, Chacko SM and

Kapila V (2021) A COVID-19
Emergency Response for Remote
Control of a Dialysis Machine with

Mobile HRI.
Front. Robot. AI 8:612855.

doi: 10.3389/frobt.2021.612855

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6128551

ORIGINAL RESEARCH
published: 07 May 2021

doi: 10.3389/frobt.2021.612855

267

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.612855&domain=pdf&date_stamp=2021-05-07
https://www.frontiersin.org/articles/10.3389/frobt.2021.612855/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.612855/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.612855/full
http://creativecommons.org/licenses/by/4.0/
mailto:vkapila@nyu.edu
https://doi.org/10.3389/frobt.2021.612855
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.612855


decommissioning of nuclear plants (Nagatani et al., 2013;
Krotkov et al., 2017); search and rescue operations following
natural, industrial, andman-made disasters (Murphy et al., 2008);
and exploration in outer space (Yoshida and Wilcox, 2008). The
above examples have one common thread, i.e., obviating the
exposure to harm and risk to human safety. Thus, when operating
in hazardous environments, in most cases the robots act as a
physical extension of their human operators to enhance their
dexterity, sensory experience, and cognition (Wang et al., 2015).
Endowing a human operator with the ability to utilize the robot to
its maximum potential requires the development of intuitive user
interfaces for human-robot interaction (HRI). In recent years,
several advancements have been made to render the HRI as
seamless as it can be.

HRI is a rapidly advancing research field with several active
areas of application that include human supervised control of
robots, autonomous robot control, and human-robot social
interaction (Sheridan, 2016). The human supervised control
can be further divided into proximal vs. remote control, the
latter of which includes teleoperation and telerobotics (Sheridan,
1992). In a hazard-prone, high-risk environment, the use of
remotely controlled robots is preferable over proximally
controlled robots because the human operator can perform the
required tasks from a safe remote location. Varied HRI modalities
for telerobotics have been developed over the years and each
approach achieves a particular objective. Some early examples of
HRI for telerobotics include using a joystick for teleoperation
(Yamada et al., 2009), performing stroke gestures on a
touchscreen (Sakamoto et al., 2008) and pointing gestures
using a camera (Abidi et al., 2013), and using a wearable
sleeve (Wolf et al., 2013). In recent years, as mobile devices
(e.g., smartphones and tablets) have become ubiquitous in our
personal and work environments, users have gained increased
comfort in utilizing the rear-facing cameras of mobile devices to
interact with their environments. Since mobile devices with well-
endowed sensing, interaction, communication, and computing
functionality are readily available to the common user, mobile
mixed-reality interfaces have become greatly accessible and do
not require research-grade devices to implement algorithms that
were previously thought to be computationally expensive. Recent
implementations of augmented reality (AR) based approaches
include tracking a single or multiple fiducial markers on the robot
(Hashimoto et al., 2011; Kasahara et al., 2013) or its surroundings
(Frank et al., 2017a; Chacko and Kapila, 2019) to determine the
pose of the robot or objects in its workspace. Other studies have
used this approach for multi-robot tracking and control (Frank
et al., 2017b). Although marker-based tracking has its merits,
with the advent of markerless technologies, e.g., Google’s AR
Core (Lanham, 2018; Google, 2020), the tracking can be
performed in even unstructured environments while using
highly intuitive user interfaces. Studies such as Frank et al.
(2017a) and Chacko and Kapila (2019) have explored the
potential of directing a robot manipulator to perform pick-
and-place tasks using virtual elements in a semi-autonomous
manner with the aid of a human collaborator. Another study
suggests the use of virtual waypoints to guide a robot along a path
(Chacko et al., 2020). With telerobotics and HRI being used for

myriad applications, we propose to use these approaches in a
healthcare setting and show that telerobotics and intuitive HRI
can obviate the need for patients and healthcare workers to be
exposed to high-risk interactions during a pandemic.

Medical caregivers such as doctors and nurses share physical
space and interact with patients routinely. These shared spaces
have a higher concentration of pathogens, which makes their
occupants particularly susceptible to contracting bacterial and
viral infections. The situation is exacerbated in the case of an
epidemic, or more importantly a pandemic, which can lead to a
widespread shortage of personal protective equipment (PPE) and
increase the risk of contagion for both the caregivers and patients
in a medical facility. A contemporary, and still developing,
example of this situation is the spread of the novel
coronavirus pandemic across the world, including in the
United States. Since the spring of 2020, there has been a
massive global shortage of PPE, including face masks, eye
protection, respirators, gloves, and gowns (Ranney et al.,
2020). This PPE shortage has been a major barrier in
responding effectively to the pandemic and in mitigating the
resulting spread of Coronavirus Disease 2019 (COVID-19).
Essential healthcare workers, such as first responders, nurses,
and doctors have been forced to forgo or reuse PPE when working
with patients with or without COVID-19 to preserve their limited
stocks. Additionally, the novel coronavirus has been found to
transmit asymptomatically, i.e., through infected patients who do
not yet display any symptoms (Mizumoto et al., 2020), at a
significant rate, thus markedly increasing the likelihood of cross-
contamination during the treatment and care of all patients.
Healthcare workers are additionally exposed to the risk of
infection through interaction and contact with fomites,
including medical devices or instrument panels, and
subsequently transmitting the disease to coworkers (Klompas
et al., 2020). Many healthcare providers caring for COVID-19
patients have become infected and even lost their lives due to a
lack of sufficient access to PPE (Wang et al., 2020). In addition to
increasing the strain on an already overloaded healthcare system,
such a lack of protection poses a significant threat to the morale of
healthcare workers and their families.

With the shortage of PPE, patients without COVID-19 who
need critical and/or life-saving treatments also face increased risk
in healthcare facilities (Naicker et al., 2020), including patients on
dialysis. Such patients tend to be severely immunocompromised
and are at a high risk of suffering serious complications if infected
by the virus, as reported in China (Naicker et al., 2020). To
minimize the risk of cross-contamination and infection, hospitals
and dialysis centers have implemented strict protocols with
multiple additional precautions in dialysis units for staff
members, patients, and their family members (Naicker et al.,
2020). However, dialysis centers have been plagued by staff,
equipment, and PPE shortages. In fact, at the peak of the
COVID-19 pandemic in New York City, a headline in the
city’s paper of record The New York Times declared that
“Dialysis Patients Face Close-Up Risk From Coronavirus,”
(Abelson, 2020). During this period, healthcare workers sought
to minimize visits with dialysis patients by using baby monitors
and performing physical interaction with dialysis machines
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without fully entering the patient rooms (see Figure 1A). To
mitigate the plight of these patients and avoid healthcare worker
exposure, concerned authorities, such as the Food and Drug
Administration (FDA), have encouraged expanding the non-
invasive remote monitoring of such patients (FDA, 2020). To
remotely determine whether a specific patient requires help,
many healthcare device manufacturers are rolling out Internet
of Things (IoT) devices to remotely monitor bio-signals relating
to their temperature, heart rates, respiration rates, etc., (Hale,
2020). These remote systems are important tools for avoiding the
overcrowding of emergency rooms and hospitals and reducing
the unnecessary exposure of vulnerable people to pathogens.
Historically, most of the research around medical robotics has
concentrated on surgical teleoperation robots such as the DaVinci
robot (Intuitive Surgical, Mountain View, CA), and is more
focused toward patient safety during surgical procedures by
mitigating human error and promoting minimally invasive
procedures. Other medical robotic approaches focus on
augmenting the doctor’s vision with virtual overlays to provide
additional information (Liao et al., 2010;Wang et al., 2014). Some
social and companion robots are available that target the elderly
(Wada et al., 2005) or serve as emotional support (Logan et al.,
2019), however there is a dearth of examples of telerobots that can
be used to manipulate medical devices using intuitive HRI. There
are autonomous robots that can deliver medications throughout
hospitals (Murai et al., 2012), and a study explored the
development of a tele-nursing robot (Li et al., 2017) that can
navigate and interact with objects in the environment, but these
solutions are either not relevant to this study or are cost
prohibitive to be rapidly deployed in case of a pandemic.

In this paper, we propose to create an emergency, non-invasive
remote monitoring and control response system that addresses
the needs of a highly vulnerable population: patients with severe
kidney diseases. A viable solution for remotely monitoring and
controlling a dialysis machine’s instrumentation panel poses
several design challenges. Typically, dialysis centers consist of
multiple reclining chairs or beds with attendant dialysis machines

placed next to them (see Figure 1B). Potential solutions for
remotely manipulating the dialysis machine’s instrument panel
include: (1) accessing embedded firmware of medical devices and
(2) retrofitting the machine with a teleoperated robotic
manipulator. As medical devices are sensitive instruments with
proprietary firmware, varied software architectures, and
individualized system requirements, it is not feasible to create
a generalized framework to access the embedded firmware for
remotely monitoring and controlling different medical
instruments using smartphone/tablet-based third-party apps,
especially as expeditiously as a pandemic emergency demands.
Thus, retrofitting dialysis machines with teleoperated robotic
arms, which can be easily mounted or removed as needed, is
deemed as the most viable option. We envision a remote-
monitoring-and-control framework wherein a camera-
equipped robotic manipulator interacts with the instrument
control panel of the dialysis machine, thus reducing the risk of
COVID-19 exposure for both patients and healthcare providers.
Our proposed solution can address the shortage of PPE in the
heathcare facilities during a pandemic, enabling patients who
require dialysis to continue receiving the life-saving treatment in
isolation. At the same time, staff members in dialysis units can
continue to provide high quality care with a relatively low risk of
cross-contamination. This work’s engineering merits involve
piloting a framework to quickly retrofit available dialysis
machines with robust off-the-shelf four degrees-of-freedom
(DoF) robotic manipulators and supporting remote
management of the device instrumentation panel with high
fidelity. Thus, in the proof-of-concept study of this paper, we
recreate and live-stream the instrument control panel
touchscreen (ICPT) of a commonly used dialysis machine, the
Gambro X-36 Phoenix (Baxter International Inc., Deerfield, IL)
(see Figure 2), to replicate and access it on a remote user’s tablet
computer touchscreen (TCT). Moreover, we develop the control
framework for the robot manipulator to achieve precise and
accurate remote manipulation of the dialysis machine’s ICPT.
We test our intuitive smartphone/tablet-based interface with over

FIGURE 1 | (A) Schematic representation of a dialysis patient receiving treatment at a hospital during the COVID-19 pandemic. The image shows use of baby
monitors and reluctance of healthcare workers in entering the patient room. (B) A typical schematic representation of a patient receiving treatment at a dialysis center.
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30 users. Our future work will investigate wider applications of
this framework to diverse medical instruments in the post
COVID-19 era.

The paper is organized as follows. Section 2 elaborates on the
materials and methods used in the study. This section provides
details on the design of the robot manipulator and the user
interface, the development of the communication architecture
andmarker detection, and the robot operation. Section 3 explains
the system evaluation metrics used in this study. These metrics
include a quantitative study about the accuracy of the robot and
the user interaction, as well as qualitative studies about the user
experience while operating the robot remotely. Following this, the
results of system evaluation are provided and discussed in Section
4 and an improvement is suggested to render a distortion-free
perception of the ICPT on the user TCT. Finally, Section 5
provides concluding statements and discusses the future direction
of the research.

2 MATERIALS AND METHODS

The method proposed in this paper uses an off-the-shelf four
DoF robotic manipulator equipped with a USB camera. The
robot base and camera stand are fixed on a board, making the
system installation and operation simple, just requiring the
user to properly locate the robot in front of its workspace and
point the camera to a touchscreen (representing a dialysis
machine ICPT) with which the robot manipulator is
required to interact. The HRI user interface (UI) consisting
of a mobile application (App) is connected to the same wireless
network as the robot manipulator system. To identify the
surface plane of action of the robot, the mobile App uses
the camera’s video-feed which includes a 2D image marker
located in the plane of the ICPT, in front of the robot
manipulator. The mobile App determines this plane of
action (i.e., robot workspace) based on the dimensions of
the robot and its computed position relative to the image
marker. With the mobile App executing on a hand-held

smartphone or tablet, when a user taps on the TCT at any
location of the displayed surface of operation, an algorithm
transforms the tapped location’s pixel coordinates to a
corresponding location coordinate in the workspace and
frame of reference of the robot and sends it to the robot
manipulator controller. Given this commanded position,
another algorithm on the robot manipulator controller uses
inverse kinematics to calculate a set of joint angles that can be
used to attain the given position and orientation of the robot
end effector and provides a solution to reach the specified
location in space (Craig, 2018). Then, in a sequence of steps, the
system plans a path, moves the robot manipulator to go to the
desired location on the ICPT, taps on the desired location, and
returns to its home position to wait for the next instruction.
Figure 3 illustrates the components and interconnections of
the proposed dialysis machine HRI environment.

2.1 Robot Hardware
The robotic platform used in this study is a modified version of
the Robotis OpenManipulator-X (Robotis, 2020). Based on the
Robot Operating System (ROS) framework, this platform is open-
source and open-hardware, i.e., its controllers and CAD models
of most of its components are accessible and free to use (see
Figure 4A). This robot platform’s system configuration is a four
DoF arrangement, with a pen holder tool holding a stylus pen (see
Figure 4B), which interacts with the ICPT during operation. For
the controller to function correctly, its program has been altered
to account for the modified end effector, the number of actuators
used, and each link’s dimensions to accurately calculate the
forward and inverse kinematics. The modified manipulator
consists of four Dynamixel XL430-W250-T servomotors and
two 3D-printed links made of polylactic acid (PLA) that are
connected by means of metal brackets (see Figure 4A). The end
effector is a PLA 3D-printed pen holder that holds the stylus pen
to interact with the screen. The load capacity of the modified
manipulator is conservatively estimated to be 160 g which can
easily accommodate the 15 g end effector and 20 g stylus pen. A
Raspberry Pi 4 (RPi4), with 4GB of RAM and with ROS Melodic

FIGURE 2 | Schematic representation of Gambro X-36 Phoenix dialysis machine and its touchscreen interface.
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installed on Raspbian-Buster OS, controls the robot manipulator
using the ROS packages executing on it. Using this powerful and
cost-effective single-board microcomputer gives the system
sufficient capacity to control the robot and run computer
vision algorithms without compromising the system’s memory.
Its small dimensions also make it simple to install and locate it
near the system without interfering with the robot manipulator
workspace.

To determine the workspace of the robot manipulator, the
forward kinematics are first determined using the
Denavit–Hartenberg (D–H) convention (Spong et al., 2006).
Then, the Monte Carlo method is employed to generate the
manipulator’s work envelope using the forward kinematics
equations along with random sampling of permissible joint
angles (Jianjun et al., 2018). This method produces a graphical
representation of the manipulator workspace (Guan and Yokoi,
2006) that in turn is used to determine the range of ideal positions
to install the robot relative to the medical device ICPT monitor.
The allowable maximum and minimum distances between the
robot and the medical device ICPT are determined to be 0.27 m
and 0.20 m, respectively. The maximum distance is determined as

the maximum distance between the robot and the ICPT that
ensures that the entirety of the ICPT lies within the estimated
workspace of the robot. The minimum distance is obtained by
placing the ICPT as close to the robot as possible while ensuring
that all of the interactions and the fiducial marker on the ICPT
remain visible to the camera (see Figure 5).

To establish the achievable accuracy and repeatability of the
robot, tests are conducted by commanding it to move the end
effector from its home position of (x � 0.09, y � 0.0, z � 0.284) m
to a test position and then returning the end effector back to its
home position. This test is conducted for five test positions, one at
each corner of the ICPT and one at the center, with the position of
each test point measured relative to the lower left corner of the
ICPT. Moreover, the process is repeated 50 times for each test
point and the computed accuracy and repeatability are provided
in Table 1. Note that the accuracy represents the distance
between the desired test position and the average of the
achieved positions. Moreover, the repeatability represents the
radius of the smallest circle that encompasses all of the achieved
positions corresponding to a desired test position (Mihelj et al.,
2019).

FIGURE 3 | Schematic of a remote monitoring and control system for medical instruments. A healthcare worker interacts with the video-feed from a camera on a
user interface (UI) hosted on a tablet computer touchscreen (TCT). The user commands are processed to control a robot manipulator to interact with the instrument
control panel touchscreen (ICPT) of a dialysis machine serving a patient.

FIGURE 4 | Robot manipulator prototype (A) prototype CAD model and (B) built prototype.
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2.2 USB Camera and Camera Calibration
The USB camera used in this setup is a C920 HD Pro Webcam,
configured to capture a 640×480 image. By executing the camera
driver on ROS, the webcam capture is made available as a ROS topic
and becomes accessible to any subscribing program. Next, we
perform a one-time geometric camera calibration using a pattern
on a planar surface (Zhang, 2000), allowing the system to correct the
image for lens distortion and to detect and measure objects in world
units by determining camera location in the scene. These calibration

parameters are estimated using an available ROS package for camera
calibration and are stored as a file, to be later used during operation
by the HRI interface and estimate spatial coordinates.

2.3 Communication with HRI Interface
Using the built-in Wi-Fi adapter of the RPi4, the information
generated and published by the nodes running on ROS is made
accessible to all members of the network on which the
microcomputer is connected. Using a WebSocket server node on
ROS establishes a communication bridge and allows web
interaction with the ROS topics using an IP address and a port
number. Upon joining as a client, the mobile App used for the HRI
interface communicates with the RPi4 server and accesses the
information running on ROS. This mobile HRI interface,
developed using the Unity Engine (Unity Technologies, San
Francisco, CA) and a freely available ROS asset, lets the App
publish and subscribe to ROS topics (see Figure 6). When the
application first starts on the mobile device, it immediately looks for
the IP address and port to establish communication with the RPi4
microcomputer. The RPi4 and the mobile HRI interface are
connected to an ad hoc wireless network created using a Netgear
Nighthawk X10 AD7200 Wi-Fi router. For the laboratory
environment of this study, the maximum range of the wireless
network is experimentally obtained to be 27 m.

2.4 Reference Marker Detection
The approaches initially considered for the design of the HRI
user interface in this work can be distinguished by the number
of reference markers affixed on the medical device ICPT
monitor, i.e., (1) four markers approach and (2) single
marker approach.

FIGURE 5 |Workspace of the robot with the rectangular regions showing the range of allowable positions for the ICPT (A) top-view of the workspace and (B) side-view
of the workspace.

TABLE 1 | Robot accuracy and repeatability test results.

P1 (u, v) P2 (u, v) P3 (u, v) P4 (u, v) P5 (u, v)

Ideal (mm) (128.5,84.3) (55.1,151.6) (206,151) (204.5,18.1) (56,20)
Accuracy (mm) 0.55 0.06 0.21 0.19 1.00
Repeatability (mm) 1.29 1.13 0.88 1.76 1.03

FIGURE 6 | Communication between RPi4 and App.
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2.4.1 Four Markers Approach
Using the projective transformation technique (Hartley and
Zisserman, 2003), with four markers, allows the estimation of
any location on the instrumentation control panel displayed in
the video-feed on the touchscreen monitor. The four markers are
placed on each corner of the ICPT monitor (see Figure 7A) and
detected from the USB camera capture. The video-feed of the
camera is used to estimate its real-world 3D pose (relative to the
plane formed by the fourmarkers) and subsequently to compute the
pose of any point on the ICPT monitor relative to the camera’s
coordinate frame. In this approach, the user can select each button
of the ICPT by touching the corresponding location of the button
on the streaming video image shown on the UI of the TCT (see
Figure 7A, top panel). Moreover, the markers’ detected points are
used to correct the perspective distortion caused by the placement of
camera relative to the ICPT monitor and to scale the image to fit it
on the UI of the TCT display. This method relies on two
assumptions: (1) visual markers affixed to the ICPT monitor and
interactive control elements (buttons and sliders) of the instrument
control panel are on the same plane (coplanar points) and (2) the
base location of robot relative to the camera position can be
estimated (see subsection 2.5). Even though this approach can
allow our system to interact with any medical machine with an
ICPT, regardless of the ICPT function arrangements, placement of
four markers on the same plane as the machine screen, in some
cases, may block portions of the display containing important
information for the machine functionality.

2.4.2 Single Marker Approach
This approach uses only one reference marker (see Figure 7B).
The system localizes the robot relative to the marker’s position
using marker corners as correspondences to perform a projective

transformation, but reducing the accuracy of the estimation
(compared to the four markers approach) due to the lower
number of correspondences detected. With this in mind, the
robot control needs to be pre-programmed using the a priori
knowledge about the locations of the on-screen control elements
(buttons and sliders) relative to the attached marker to establish a
one-to-one correspondence. For example, when the user touches
button A on the UI of the TCT, the corresponding location (u1,
v1) for the ICPT needs to be assigned automatically as the
intended location. The UI executing on the TCT consists of a
streaming video panel and a button panel. For each button on the
medical device ICPTmonitor, a corresponding button is available
on the button panel of the UI on the TCT. This approach also
assumes that the location of robot relative to the camera position
can be estimated. However, requiring information about the
arrangement of control elements on the ICPT to pre-program
the UI of the TCTwill limit the usability of this arrangement since
the on-screen layouts of control panels may vary between
machines of different manufacturers and specially for different
medical machines. Moreover, not having the well-defined four
corners of the surface plane of action (as in the four markers
approach) limits the system’s ability to accurately correct
perspective distortion (see Figure 7B, top panel).

2.4.3 Hybrid Approach
In this paper, we present an early proof-of-concept that employs a
hybrid approach by building on the two methods discussed above
(see Figure 8). By subscribing to the image published by the
camera driver node on ROS, the mobile App gains access to its
video-feed that contains a single ArUco marker (Garrido-Jurado
et al., 2016) placed on the top-left corner of the screen and detects
it using the open-source ArUco module (Romero-Ramirez et al.,

FIGURE 7 | Reference marker detection (A) four marker approach and (B) single marker approach.
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2018) of the Open Source Computer Vision Library (OpenCV).
Instead of requiring a pre-programmed control panel on the UI of
the TCT with known locations of the control elements on the
ICPT (as in the single marker approach), the UI now detects the
reference marker’s corners, and an algorithm estimates the
homography (Corke, 2013) between the camera image to the
surface plane of the reference marker. With this transformation
and the information from the camera calibration file, the mobile
App maps coordinates of a user-selected pixel on the video
streamed image on the UI of the TCT to a spatial coordinate
on the ICPT in world units, relative to the camera’s reference
frame. As in the previous approaches, this approach assumes that
the robot base location relative to the camera can be estimated. Its
functionality is similar to the four markers approach, letting the
user select a control element (button or slider) of the ICPT by
touching its corresponding location on the UI’s image on the
TCT. However, its accuracy may be compromised due to the
limited number of correspondences detected.

As described above, the usability of the hybrid approach benefits
the system by not relying on the a priori knowledge of arrangement
of the control elements on medical device ICPT or on risking
portions of the ICPT being blocked by the placement of multiple
markers, however it has less accuracy than the four markers
approach. The hybrid approach will also not correct the captured
image’s perspective of the USB camera for the UI displayed on the
TCT. In future research, we will test, compare, and contrast the
usability and performance of the three approaches by conducting
user tests to assess various parameters of UIs (such as intuitiveness,
user-friendliness, perception, and remote operation workload) and
the robotic device (such as accuracy and repeatability).

2.5 Camera Position and Robot Calibration
To allow the robot manipulator to interact with a point in its
workspace (on ICPT) corresponding to any point selected by the
user on the mobile App screen (on TCT), the robot controller

requires the corresponding spatial coordinate specified in the
robot’s frame of reference (located on the center of the robot
base). This necessitates imparting the system knowledge about
the camera’s pose relative to the robot frame of reference (RTC).
Thus, a calibration routine is created and implemented before the
system starts any HRI operations. That is, this routine is run
immediately after the camera’s orientation has been established to
capture the robot’s workspace surface (i.e., the ICPT monitor).

We first locate the ArUco marker in a predefined pose relative
to the robot’s reference frame (see Figure 9). With this known
pose (RTM) and with the pose of the marker relative to the camera
reference frame (CTM), estimated by the mobile App, the
calibration routine computes RTC as follows

RTC � RTM(
CTM)

− 1. (1)

Now RTC is stored on and used by the mobile App to map pixel
location of any point tapped by the user on the TCT to a spatial
coordinate on the ICPT in the robot’s reference frame. To achieve
a mapping from the TCT to ICPT of any size, the user enters, in
millimeters, the width and height of the ICPT, and the u and v
offsets of the top left corner of ICPT from the center of the fiducial
marker, into the App. This creates an interactive region on the
TCT that is the size of the ICPT as seen on the video-feed on the
TCT. Next, to map any desired point on the ICPT to the robot’s
workspace, we first locate the fiducial marker of known size
(40 mm × 40 mm) on the ICPT surface. Based on the size and
orientation of the marker obtained using computer vision, the
App obtains the marker’s pose relative to the camera position. It
uses this information to map any pixel coordinate to a space
coordinate relative to the camera frame. Finally, using the
transformation matrix (RTC) obtained in the calibration step,
the desired interaction point on the ICPT is mapped to spatial
coordinates in the robot arm’s coordinate frame. This coordinate
serves as the input to command the robot to move to the desired

FIGURE 8 | Reference marker detection (A) hybrid marker detection approach and (B) complete setup with hybrid approach.
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position. As long as the ICPT is located within the robot workspace
and its entire screen (with the fiducial marker located on it) is visible
to the camera, the robot can reach any desired point. Finally, once
the App maps the TCT coordinate into a spatial coordinate, it is
published to a ROS topic, making it available to the robot
manipulator controller. However, even if the calculation of RTC is
accurate, there may be slight residual errors in the end effector’s final
position. To compensate for this, the second part of the calibration
routine consists of commanding the robot to go to the center of the
reference marker multiple times. The user moves the end effector’s
final position by tapping on the UI screen at preprogrammed
buttons, which are displayed during the calibration routine, to
manipulate the stylus pen’s tip in the X, Y, and Z directions until
it matches the marker’s center as precisely as possible. The offset
values needed to reach the actual desired position are stored and
used to increase accuracy during the operation.

2.6 Robot Operation
A program on the RPi4 runs a ROS node that uses the
information from the mobile App and uses the controller
node of the manipulator robot to move it to the user-specified
location. After performing the calibration routines, the system is
ready to operate. The manipulator robot control program moves

the robot to an initial position and waits for a user-specified
coordinate to be available on the ROS topic where the mobile App
publishes coordinates.

When the App starts, it immediately tries to communicate
with the microcomputer. Once the communication is
established, the touchscreen of the tablet device running the
App will show the streaming video from the camera located next
to the robot, capturing the images from the ICPT (see
Figure 10A). With the detected 2D reference marker’s
information, the App will wait for the user to tap on the
display of the TCT. The moment a new user-specified
coordinate is received, using a sequence of events, the robot
control program: (a) moves the robot manipulator to the desired
location, just over the specified coordinate on the surface plane
of the ICPT; (b) performs a tapping action that consists of
moving slightly toward the ICPT until a contact occurs; and (c)
returns to the initial position and waits for any new coordinates
to be made available. This robot control program reads and
responds to only one user-specified coordinate at a time and
ignores any newly sent user coordinates while performing the
sequence of operation for a previously received coordinate.

The complete system setup created for this proof-of-concept
(see Figure 10B) uses a Microsoft Surface Pro 4 computer as the

FIGURE 9 | System setup to estimate camera pose (A) isometric view and (B) top view.

FIGURE 10 | (A) HRI interface and (B) complete robot system setup.
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ICPT, running an application that mimics the functions of a
dialysis machine instrument control panel.

3 SYSTEM EVALUATION

An experimental study was conducted with participants to
evaluate the performance and usability of the proposed
system. The study was conducted with two groups of users,
referred hereafter as the in-person and remote groups. In the
in-person group, 17 participants performed the experiment in a
room adjacent to the room housing the robot, camera, and ICPT
monitor. Alternatively, in the remote group, 16 participants
performed the experiment from a remote location via the
internet. See http://engineering.nyu.edu/mechatronics/videos/
mhrifordialysis.html for a video illustrating a user interacting
with the prototype to complete a set of tasks. Prior to performing
the experiment, participants in both groups were briefed
individually on the purpose of the experiment, what it entails,
and how do the interactions take place. They were informed that
when the “Ready” prompt is shown on the TCT, the user can issue
a command to the robot and when the “Busy” prompt is shown, it
means that the robot is executing a task and will not accept any
user command until the task is completed. No pretrial was
conducted and each participant performed the experiment for
only one time. This was done to ensure that the participants did
not have any prior knowledge about the capabilities and the
overall responsiveness of the system.

The participants who performed the experiment in-person
were asked to use an Android tablet device with a touchscreen
and interact with its screen using a stylus. During the experiment,
the tablet device was connected to the same dedicated wireless
network that the robot was connected to, and each user
performed the experiment by staying in the same location in
the room.

To test whether controlling the robot from a remote location
has any influence over the system usability, system performance,
and the task load of the user, an online study was conducted
wherein the participants were asked to command the robot by
assuming control of a computer connected to the dedicated
wireless network shared by the robot. The participants were
briefed in a similar manner to those in the in-person
experiment, and no pretrial was conducted for this group
either. The only major difference between the two groups was
that the remote group of participants were interacting with the
video-feed using a mouse pointer on their computer, whereas
participants in the in-person group were interacting with a tablet
device using a stylus to issue commands to the robot.

During the experiment, the participants were asked to read a
set of instructions on a PDF document and perform the
experiment accordingly. The PDF instruction document listed
six numbered tasks and an accompanying annotated image of the
user interface (see Figure 11), where the six tasks correspond to
six different interactions that the users needed to perform. These
tasks were designed to mimic a set of user interactions that a
healthcare worker typically performs on a dialysis machine
interface. The details of the interactions are as follows.

(1) Press the red ON/OFF button.
(2) Change the value of the left slider to ‘0’ and the value of the

right slider to ‘100’.
(3) Press the toggle button.
(4) Increase/decrease the value displayed in the gray box using

the arrow buttons.
(5) Select the RX MGMT button.
(6) Return to the main display using the MAIN PAGE button.

After the participants performed the six tasks, they were asked
to respond to two questionnaires that assessed their experience
for qualitative evaluation. The first part of the evaluation required
the participant to respond to the NASA-Task Load indeX
(NASA-TLX) (Hart, 2006) to assess the workload experienced
by the participants while using the system. The NASA-TLX is
used to rate the perceived workload of an individual while
performing a task. It is divided into six categories that include
physical workload, mental workload, temporal workload, effort,
frustration, and performance. In this study, the Raw TLX (RTLX)
assessment was performed in which the TLX scores are
unweighted and the overall load of the task is calculated as the
average score of the six categories in the NASA-TLX. In the
second part of the evaluation, the participants were asked to
express their level of agreement on a SystemUsability Scale (SUS)
(Brooke, 1996) questionnaire. The questionnaire consists of the
following five positive and five negative statements with responses
on a 5-point scale (1: strongly agree and 5: strongly disagree).

(1) I think that I would like to use this system frequently.
(2) I found the system unnecessarily complex.
(3) I thought the system was easy to use.
(4) I think that I would need the support of a technical person

to be able to use this system.
(5) I found the various functions in this system to be well

integrated.
(6) I thought there was too much inconsistency in this system.
(7) I imagine that most people would learn to use this system

very quickly.
(8) I found the system to be very cumbersome to use.
(9) I felt very confident using the system.
(10) I needed to learn a lot of things before I could get going

with this system.

The participants were provided Uniform Resource Locators
(URL) to the NASA-RTLX and the SUS questionnaires and were
asked to complete them on the spot immediately after completing
the six-step interactive tasks provided above. The questionnaires
were kept anonymous and no personal information was asked
from the participants except their age group and their gender.

4 RESULTS

The performance and the user experience of the proposed system
was evaluated by conducting a study with 33 participants, of
whom 29 participants were either engineering students or
professionals working in a STEM related field and the
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remaining four were medical professionals. A majority of the
participants (72.73%) had operated or programmed a robotic
system while the rest 27.27% had neither operated nor
programmed a robot prior to their participation in the study.
Note that the four medical professionals were part of the remote
group and only one of them reported to have programmed or
operated a robotic system previously. Furthermore, qualitative
data obtained from the SUS questionnaire contained two outliers
and one participant from the remote group did not complete the
NASA-RTLX self assessment. Thus, the data obtained from these
three participants was not used for system evaluation and a total
of 30 participants’ data, 15 from each group, was used for the
results reported below.

4.1 System Performance
First, the performance of the system was evaluated by validating
the accuracy with which a user is able to select and interact
with desired points on the ICPT monitor using the proposed
HRI interface on the TCT. We considered five reference
points on the ICPT. These points were located at the center
(P1(u, v)) and near the four corners (Pi(u, v), i � 2, . . .,5) of the
screen. The experiment was conducted 50 times by a single user
for each of the five reference points. The user input when
interacting with TCT was recorded as pixel coordinates along
the u and v axes and referred to as the commanded value. The
point at which the robot interacted with the ICPT in response to
the commanded value is referred to as the measured value and it
was also stored as pixel coordinates along the u and v axes. The
pixel coordinates for the commanded values were scaled up to
the screen resolution of the ICPT so that a direct comparison
with the measured values could be made. The performance of the
HRI interface was evaluated by calculating the absolute
difference between the commanded and measured values for

each interaction. Then the average absolute error was calculated
for both the u and v coordinates. This was done for all five
reference points and the results are shown in Table 2. The results
indicate that for all five reference points, the highest average
absolute error was less than 18.54 pixels for the u coordinate and
26.98 pixels for the v coordinate. Given that the resolution of the
screen used for the ICPT is 2,736 × 1,824, with a diagonal screen
size of 12.3 inches (312.42 mm), the pixel-to-length ratio was
found to be 10.5 pixels/mm. Thus, the maximum average
absolute error was 2.56 mm in the v coordinate of the fifth
reference point P5(u, v). It is important to note that there was a
button located at each of the five reference points and all 50 tests
conducted on each button were successful, i.e., the button was
successfully pressed each time. The diameter of the buttons is 90
pixels which is approximately equal to 8.6 mm. This particular
size of buttons is chosen because it is considerably smaller than
all interactive elements on the touchscreen and the touch pad of a
dialysis machine, and therefore proves to be a reliable indicator
of the performance of the system.

The time taken by the robot to complete an interaction is
determined by the task time programmed for the robot. In
experimentation, it is measured as the difference between the
time when the robot receives a command and the time when the
robot returns to its home position after performing the
interaction. The robot took 12.036 s to complete an
interaction, without any significant difference in the times
spent for different interactions. Next, the time it takes for a
user to complete an interaction on the ad hoc wireless network is
calculated as the difference between the time when the command
is sent by the TCT and the time when the user receives the
“Ready” prompt again on the TCT. For each of the following
three scenarios, 15 tests were performed to measure the user
interaction completion time.

FIGURE 11 | Annotated image of the user interface hosted on the tablet computer.
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(1) The user holding the TCT and the robot are in the
same room.

(2) The user holding the TCT and the robot are in different but
adjacent rooms.

(3) The user holding the TCT is at the maximum working
distance from the wireless router (27 m), with multiple
rooms in between the user and the robot.

In all three scenarios, the average time to complete the user
interaction showed no significant difference and was found to be
12.077 s. Finally, in the last time measurement experiment, we
sought to determine the user interaction time when performing
interactions with the robot over the internet. With a user located
at a distance of approximately 1.5 mi from the robot, the average
interaction time for 15 tests was obtained to be 12.56 s. Note that
while the task completion time for the robot remains constant,
the task completion time for the user and the maximum allowable
interaction distance from the robot can change depending on user
location and Wi-Fi signal strength, respectively.

4.2 User Experience
While the results obtained using the system performance test
validated the utility of the proposed system from an accuracy and
precision point of view, it is important to consider the overall user
experience when the participants operate the system. Thus, three
different methods were used to perform the qualitative analysis of
the user experience. The first method involved measuring the task
load of the experiment using the NASA-RTLX self-assessment.
This was followed by administering a system usability
questionnaire, and finally the verbal/written feedback given by
the participants was reviewed.

4.2.1 Workload
The assessment of the workload was performed by analyzing the
results obtained from the NASA-RTLX self-assessment for the in-
person and the remote participant groups. All categories were
scored on a scale of 0–100 and the overall score for each
participant was computed as a mean of the score for the six
categories.

The score for each category was averaged and these
calculations were used to compute the mean overall workload
for both groups. Since there was no overlap between both groups,
and therefore both samples are independent, a Welch’s unequal
variances two-tailed t-test was performed on the individual
categories of the NASA-RTLX scores from both groups and
the tests yielded p > 0.05 for responses of in-person vs. remote
experimenters. Thus, it was concluded that there was no
statistically significant difference between the task loads

experienced by the participants in the two groups. The
combined average task load for both groups is computed and
reported in Figure 12A.

The collective task load values for two groups (Figure 12A) and
the raw data indicate that the frustration score was the highest for
the two groups. The high frustration value can be attributed to the
downtime that the participants experienced during the “Busy”
phase of the robot movement, when the participants could not
issue new commands to the robot. When we consider this factor
with the slow speed at which the robotmoves, it is plausible that the
frustration value would increase as a result. Upon further
examination of the raw task load data, it was observed that among
the six categories, the effort scores exhibited a relatively high inter-
group difference (in-person effort � 11.67, remote effort � 5.8). The
difference between the effort values of both groups can be
explained as a result of the type of interaction method with the
robot. Participants in the remote group issued commands to
the robot via a mouse pointer on a computer. This gave them
very fine control with pixel perfect accuracy and a large screen
size that definitely helped in the experiment. On the other
hand, participants in the in-person group were asked to use a
tablet device and a stylus to interact with the video-feed. The
stylus requires extra pressure to be applied on the tablet
computer screen to register a touch input and the smaller
screen size required the users to pay more attention to where
they were interacting with the screen of the tablet device.

4.2.2 System Usability
To gain an insight into the user experience of the participants,
they were asked to complete a system usability questionnaire
using a 5-point scale (1: strongly agree and 5: strongly disagree).
The participants’ individual responses were subjected to an
unequal variances two-tailed t-test and the responses for the
in-person group were compared with those of the remote group.
Out of the 10 questions on the SUS questionnaire, three questions
[(1), (5), and (6)] showed a statistically significant difference with
p � 0.03, p � 0.03, and p � 0.001, respectively. Upon close
examination of the data, two in-person group participants’
responses were identified as outliers due to the large distance
between their responses and themean response for questions [(1),
(3), (5), (7), and (9)]. Upon removing the outliers from the data,
an unequal variances two-tailed t-test was performed again on the
responses from the remaining 15 participants in the in-person
and 15 participants in the remote groups. The results are shown
in Figures 12B,C.

Out of the 10 questions, only question (6) showed a
statistically significant difference with p � 0.001. Although all
participants in the remote group disagreed or strongly disagreed

TABLE 2 | Performance test results.

Values in
pixels

P1 (u, v) P2 (u, v) P3 (u, v) P4 (u, v) P5 (u, v)

Ideal (1368,912) (568,1612) (2168,1612) (2168,212) (568,212)
Commanded (average) (1367.4,912.1) (569.7,1601.6) (2166.9,1612.1) (2163.2,211.4) (595.9,215.9)
Measured (average) (1385.9,905.7) (565.8,1596.9) (2162.6,1598.0) (2173.6,215.9) (599.8,189.1)
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that there was too much inconsistency in the system, some
participants from the in-person group had neutral responses
on this question. The neutral responses can be interpreted as
participant reservations on the responsiveness of the tablet device
when interacting with it using a stylus. Since the stylus used in this
experiment had a relatively large tip, it is possible that some
participants found inconsistencies when interacting with the
tablet device if they did not pay close attention to where they
touched the screen. This also explains why the participants in the
remote group did not find any inconsistencies despite controlling
the robot from a remote location. Since remote participants were
using a mouse pointer on a comparatively larger screen (using a
laptop or desktop computer), they could direct the robot more
precisely, therefore reducing the human input error. A viable
solution that would alleviate the problems faced by the in-person
group would be to use a tablet device with a larger screen size,
and/or use a stylus with a finer tip.

4.3 User Comments
From the participants who tested the prototype, remotely and
locally, we obtained different insights about their experiences
interacting with the system by reviewing their comments and
feedback. A total of 33 individuals participated in this study,
out of which 21 provided comments and suggestions about
their experience in controlling the manipulator. Some of the
comments praised the system as evidenced by the use of terms
such as “helpful,” “efficient,” “easy-to-use,” “pretty good,” “requires
very little experience,” among others. Although several other
participants did not express negatively biased comments, they
expressed some reservation with the speed of the robot in
executing the received commands, e.g., “the time taken by the
robot to execute the command slows the process down.” There

were also criticisms from users who tested the prototype from a
remote computer and on-site with a mobile device regarding the
smoothness of the robot movements and the camera image shown
in the HRI interface. Specifically, a participant who tested the
prototype in-person using a tablet, suggested making the robot
“more robust” and another participant who used the robot from a
remote computer, advised “make the system more accurate and
more stable [. . .] decrease the skew in the image from the camera.”

Since this study proposes a solution to be used by heathcare
workers, we also reached out to doctors who were willing to test the
prototype and provide a review based on their experience working
during the COVID-19 emergency. A total of four doctors remotely
interacted with the proposed system and provided their feedback
which included suggestions, criticisms, and compliments about the
system and its utility as a viable solution for the control of dialysis
machines during a pandemic. For example, one of the participant
doctors, who used the prototype from a computer outside the
United States, praised the system by commenting on its ease of
understanding, use, sensitivity, absence of errors, ability to avoid
contact with patient, etc. Another participant doctor offered insight
into how this solution is perceived from a medical perspective,
i.e., “interesting” and “of enormous use, especially when necessary
to avoid physical contact.”He also advised to improve the precision
of robot because sometimes “it was necessary to select the same
task until it was completed successfully.” Additionally, another
medical professional expressed his interest in how this system
would perform in a real situation. This doctor provided a verbal
review by stating that the system works very well but it will require
testing on a real dialysis machine to see how it controls it.

We found that the difference in these reviewer experiences is
partially explained by the variations of internet connection speeds
available on each participant’s respective location (when

FIGURE 12 | User study results (A) NASA-RTLX (B) SUS in-person study (C) SUS remote study, and (D) user opinion.
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controlling the system from a remote computer, off-site). In some
cases, this variable added delay to video streaming, which did not
let the users monitor how the robot was performing the tasks.

Figure 12D presents the percentages of each type of
comments provided by the participants using the proposed
system. We categorized the comments into “praise”,
“suggestion”, and “criticism” categories. Positively biased
comments were categorized as praises and accounted for 34%
of the commenters from the in-person group and 50% of the
commenters from the remote group. We categorized as
criticisms the comments that identified a shortcoming
without providing a recommendation. These accounted for
33% of the commenters from the in-person group and 8% of
the commenters from the remote group. Finally, comments that
provided recommendations to improve the system were
categorized as suggestions and accounted for 33% of the
commenters from the in-person group and 42% of the
commenters from the remote group. It is seen that most
participants were affected enough by their participation in
the study to leave meaningful comments. Moreover, a sizable
portion of participants was satisfied enough to praise their
experience in writing. We took these praises to confirm our
arguments for integrating mobile hardware and software as an
effective way to interact with medical machines remotely using
robot systems, such as the one proposed in this study. Many of
the praises expressed the satisfaction of completing a set of tasks
remotely, either using a “click” on a computer screen or tapping
a location on a mobile device screen.

On the other hand, criticisms gave us areas of opportunity
on which we can focus to improve our prototype to deliver
greater satisfaction in the use of HRI interfaces to control
robots remotely and to meet the expectations of the system
performance while executing a task. Observations regarding
the smoothness of the robot movements and precision allow
us to understand better how a system of this nature is
perceived. Even if the users complete a set of tasks
successfully, the speed while performing this task or lack of
smoothness on the manipulator movements creates some
distress. On the other hand, criticism about the skew of the
camera view confirms that there is also some level of
discomfort when a user perceives a distorted perspective of

a surface (touch screen) with which interaction is required.
While many of these suggestions for improvements will be
considered in developing and testing future prototypes, below
we offer one improvement to render a distortion-free
perception of the ICPT on the TCT.

4.4 Suggested Improvement Based on User
Tests
On the SUS questionnaire and in the comment section, several
participants provided written (and verbal) feedback
concerning the skewed perception of the camera video-feed.
In response, we have explored the potential of including an
additional feature to the hybrid approach of this study, which
uses a single reference marker, to correct and improve the
video-feed displayed on the TCT interface. Specifically, as
previously, when the users run the mobile UI App on the
tablet device, the raw live-stream of the ICPT is displayed on
the TCT with a distorted perception. Next, the App prompts
the user to touch (from the mobile device) or click (from the
remote computer) the four corners on the video-feed of the
surface plane of action of the ICPT in a clockwise manner,
starting from the corner closest to the fiducial marker (see
Figure 13A). These user-selected pixel coordinates,
corresponding to the corners of the ICPT, are used to get a
perspective transformation matrix and map the identified
ICPT plane to fit the screen of the TCT by performing a
perspective correction. This correction technique allows the
user to be presented with a distortion-corrected view of the raw
ICPT video-feed in the HRI interface (see Figure 13B). When
the user interacts with the corrected image displayed on the
TCT, the inverse of the perspective transformation matrix
computed above can be used to map the pixel coordinates
of the user interaction on the TCT to the original perspective
view captured by the camera, allowing the application to work
without any additional modifications. Figure 13 illustrates
that it is feasible to implement such a perspective correction
approach, however a complete set of user-tests with this
improved approach is beyond the scope of this study and
will be considered in a broader study with the two alternative
approaches suggested in subsection 2.4.

FIGURE 13 | (A) Raw image with corners selected by the user and (B) image with distortion corrected.
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5 CONCLUSION

In this paper, we proposed a system for remote control of a
dialysis machine with mobile HRI as part of COVID-19
emergency response. The proposed approach utilizes the
capabilities of a smartphone/tablet device as a mode of
interaction with a 4-DOF robot and explores the possibility of
manipulating the robot to remotely interact with the instrument
panel of a dialysis machine. This allows the medical professionals
to maintain social distancing when treating dialysis patients,
preventing potential exposure to pathogens for both the
healthcare staff and the patients. Such a system will also help
lower the use of PPE by doctors and nurses while performing
routine, simple procedures that could be performed by a robot.
To evaluate the proposed system, its performance, and the user
experience, a user study was conducted in which participants
remotely issued commands to a robot via a tablet device or a
computer. The participants received a live streaming video of a
mock dialysis machine ICPT that allowed them to command the
robot to manipulate the UI elements of the ICPT by touching
those elements on the video-feed on the TCT. Results of the study
show that the participants were able to remotely access the UI
elements of the ICPT and complete the tasks successfully. Based
on the feedback received on the SUS questionnaire from the
participants, an improvement to the proposed HRI interface was
suggested and implemented which corrected the perspective
distortion of the live-stream of ICPT and allowed the user to
interact with the corrected image for a more intuitive exprience.
Overall, the live streaming video of the instrument panel provides
a very natural and intuitive mode of interaction for the user and
does not require prior experience in programming or operating
robots. Most importantly, there is no need to develop a customUI
for the TCT since the user directly interacts with the video-feed
from the ICPT. This allows the proposed system to work with any
touchscreen and the development of custom TCT interfaces that
only work with their corresponding ICPT is not required. Finally,
the proposed approach can be deployed very rapidly and requires
minimum preparation work in case of an emergency, therefore
saving valuable time and resources that can be directed elsewhere.
Future work will incorporate force feedback control on the robot
end effector and multiple fiducial markers on the ICPT to
increase the accuracy of the robot. Furthermore, the possibility
of a mobile robot platform will be explored, which will allow the
user to interact remotely with multiple medical equipment in a
given environment. Finally, additional intuitive modes of
interaction involving wearable technologies and AR will be
explored to enhance the user experience and user efficiency
while minimizing the task load.
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The coronavirus disease (COVID-19) outbreak requires rapid reshaping of rehabilitation

services to include patients recovering from severe COVID-19 with post-intensive care

syndromes, which results in physical deconditioning and cognitive impairments, patients

with comorbid conditions, and other patients requiring physical therapy during the

outbreak with no or limited access to hospital and rehabilitation centers. Considering the

access barriers to quality rehabilitation settings and services imposed by social distancing

and stay-at-home orders, these patients can be benefited from providing access to

affordable and good quality care through home-based rehabilitation. The success of such

treatment will depend highly on the intensity of the therapy and effort invested by the

patient. Monitoring patients’ compliance and designing a home-based rehabilitation that

can mentally engage them are the critical elements in home-based therapy’s success.

Hence, we study the state-of-the-art telerehabilitation frameworks and robotic devices,

and comment about a hybridmodel that can use existing telerehabilitation framework and

home-based robotic devices for treatment and simultaneously assess patient’s progress

remotely. Second, we comment on the patients’ social support and engagement,

which is critical for the success of telerehabilitation service. As the therapists are not

physically present to guide the patients, we also discuss the adaptability requirement

of home-based telerehabilitation. Finally, we suggest that the reformed rehabilitation

services should consider both home-based solutions for enhancing the activities of daily

living and an on-demand ambulatory rehabilitation unit for extensive training where we

can monitor both cognitive and motor performance of the patients remotely.

Keywords: COVID-19, robotic rehabilitation, home-based monitoring, haptic, mental engagement, recovery

1. INTRODUCTION

COVID-19 has affected numerous sectors of society, particularly healthcare workers and patients.
In this regard, stroke patients are no exception, about 4 million stroke survivors live in the
United States today and as many as one-half struggles with chronic motor deficits (CDC, 2017).
Nearly one-third of all stroke survivors have a significant residual disability, with older individuals
generally experiencing slower functional recovery (Langhorne et al., 2011). These patients face
challenges in continuing their physical therapy due to access barriers to quality rehabilitation
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settings and services imposed by social distancing and stay at
home orders due to COVID-19 outbreak.

Besides, 32% of patients recovering from COVID-19 already
have comorbid conditions, such as stroke and some others suffer
from post-intensive care syndrome (PICS) due to prolonged
stay in ICU (Hermans and Van den Berghe, 2015; Sheehy,
2020). According to a systematic review performed on 18
Chinese studies and one Australian study, 20% of the infected
patients required intensive care unit (ICU) admissions, out of
which 33% suffered from acute respiratory distress syndrome
and 13% suffer from acute cardiac injury (Rodriguez-Morales
et al., 2020). Some of these patients show symptoms related to
central and peripheral nervous systemmanifestations (Mao et al.,
2020). Moreover, prolonged stay in ICU causes neuromuscular
complications that affect limbs, respiratory muscles, and sensory
nerves. These complications cause neurological impairments as
well as muscular impairments, such as severe muscle weakness,
reduced joint mobility, leading to the difficulties in performing
activities of daily living (ADL) (Korupolu et al., 2020). These
neuromuscular complications can be mitigated with the help
of mobility and interventions, such as (1) passive, active-
assisted, or resistive therapy; (2) repetitive therapeutic exercises;
(3) functional mobility; and (4) occupational therapy for the
activities of daily living (ADL) (Korupolu et al., 2020). Moreover,
there is a significantly greater incidents of acute ischemic stroke
in patient with COVID-19 infection compared to those without
infection pointing the vulnerability of COVID-19 patients
(Belani et al., 2020). Indeed, about 5% (Felten-Barentsz et al.,
2020) of the admitted COVID-19 patients to the hospital may
show severe symptoms and require extensive ICU stay.

However, the COVID-19 burden on the healthcare facilities
worldwide is causing an early discharge of the existing patients,
suspension of new patient admissions, and reduction in activities
to reduce contact. For instance, in Europe alone, COVID-
19 has affected access to rehabilitation services for about 2
million people (Andrenelli et al., 2020). The guideline offered
by the World Health Organization for inpatient rehabilitation
in COVID-19 requires daily health checks for personnel,
continuous staff training on changing protocols/guidelines, use
of personal protective equipment, cancellation of non-essential
therapies, following proper hand hygiene instructions, and use of
telecommunication for clinical interviews. Moreover, healthcare
workers will be required to attend early discharged patients from
acute care, decontaminate the shared equipment, prohibit group
therapy, allocate a separate unit to all the patients, and provide
one-on-one therapy (Bartolo et al., 2020; Sheehy, 2020). Even if
inpatient rehabilitation is remodeled and available at a healthcare
facility, the amount of time invested by the health care staff
in practicing infection control measures decreases their work
efficiency (Sheehy, 2020).

To reduce the burden on healthcare systems and provide
a safe space for the patient to continue the therapy, the
current rehabilitation programs should be transformed into
telerehabilitation. Telerehabilitation refers to the therapy being
conducted away from the hospital setting, mainly home-based
or community based, which allows the users to perform a
customized program of therapeutic activities. Almost, all research

or review articles published in response to the physical therapy
and rehabilitation needs during COVID-19 emphasize on the
importance of the tele-rehabilitation and home exercise (Bettger
and Resnik, 2020; Farzad et al., 2020; Zhu et al., 2020) and
some even provide a guideline on how to approach staff
training, patients evaluations, and discharge in such settings
(Rosen et al., 2020). In this review article, we propose a hybrid
model incorporating home-based telerehabilitation and inpatient
treatments through ambulatory robotic rehabilitation services
as a more effective solution during COVID-19 and similar
pandemic that may accrue in future.

In telerehabilitation, an occupational therapist or a healthcare
provider works closely with the patient and provides feedback
and instructions through web interfaces. By monitoring the
progress of the patient, they can also make necessary changes
to the exercise regime. However, the therapists might not have
enough time to monitor the patient’s progress online due to the
increased COVID hospitalizations. Nonetheless, thanks to the
technological advancements in the last two decades, considerable
effort has undergone toward building new physical platforms,
such as robotic and orthotic systems (Brennan et al., 2009;
Housley et al., 2018) to facilitate the telerehabilitation process
and also improve the outcome of motor function recovery
(Figure 1). In particular, using robots and orthotics equipped
with haptic feedback or haptic assistance is viewed as an
alternative solution to physical therapy (Krebs and Hogan, 2012;
Linder et al., 2013). These systems can be effectively used to
continue the rehabilitation procedure even during the COVID-
19 pandemic in-home and community centers. For patients
who face difficulties due to traveling disabilities or limited
transportation (Holden, 2005), community-based rehabilitation
can be extended to ambulatory robotic rehabilitation services.

Substituting the physical therapy with telerehabilitation
approach requires four key components (Figure 1). First,
delivering assistance: Since the therapists are not present to guide
the patient physically, there is a need for low-cost devices that
can provide necessary support (Frolov et al., 2018). In this regard,
as discussed previously, haptic devices and robotic systems offer
a promising solution. Second, enhancing engagement and social
support: Even with repetitive support from robotic systems, the
rehabilitation outcome may not be superior to physical therapy
without patient’s engagement (Blank et al., 2014). So, encouraging
and maintaining patient’s engagement in telerehabilitation is
of paramount importance. Third, assessing the progress: As
patients cannot access the hospital facilities frequently during
COVID-19 restrictions, periodic assessment of functional status
is impeded; thus, there is a requirement for remote assessment
devices and metrics (Nordin et al., 2014; Frolov et al., 2018).
Consequently, the telerehabilitation approach should support a
wide array of low-cost sensors through which the therapist can
assess the patient’s recovery. Finally, adaptation: As the patient’s
needs vary throughout the rehabilitation regime, robotic/haptic
systems’ ability to adapt plays a vital role in delivering necessary
rehabilitation assistance while adhering to social distancing
norms during COVID-19 outbreak. With this backdrop, in the
succeeding sections, we provide brief literature in these four
critical areas in the context of upper limb rehabilitation.
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FIGURE 1 | Schematic of tele-rehabilitation where patients can continue their rehabilitation with the help of an assistive device while therapist can monitor the

progress remotely.

In the subsequent sections, we will review the main
components of telerehabilitation (home or community based)
related to delivering assistance, enhancing engagement and social
support, assessing the progress, and providing adaptation to
provide successful therapy during COVID-19 outbreak.

2. ASSISTANCE DELIVERY

In the current pandemic, home environment serves as the best
solution to deliver remote rehabilitation to patients. It reduces the
burden on inpatient services and, at the same time, prevents the
spread of disease to the patient. The main objectives of delivering
therapy in such settings are to (1) facilitate repetitive task training
with real-time feedback about performance, and (2) maintain
high patient engagement during training (French et al., 2016).

2.1. Tele-Rehabilitation Framework
Tele-rehabilitation was first documented in 1959 when an
interactive video was first used at the Nebraska Psychiatric
Institute to deliver mental health services. With the advent
of the Internet and the availability of large medical records,
telerehabilitation/telemedicine received more attention in mid-
1990s focusing on the proof of concept with few clinical trials.
Since the early 2000, there has been a surge of tele-rehabilitation
mainly focused on rural areas. By 2016, around 125,000
stroke patients were reported to have used telerehabilitation
for treatment (Peretti et al., 2017). For years, researchers
and practitioners utilized telerehabilitation to reduce inpatient
hospitalization duration and reduce the cost of rehabilitation
for patients. Cramer et al. (2019) has shown that the efficacy
of upper limb home-based telerehabilitation is comparable to
the therapy delivered in clinical settings. Many ADL skills, such
as using a fork and spoon, twisting doorknobs, and being able
to manipulate simple objects, require fine motor control of the
patient’s hand and are better suited for home-based therapy.

Rehabilitation therapy also requires the patient to perform
high-intensity exercises and get periodic assessment from a
therapist, which is not generally feasible in home environments
due to the lack of equipment, thus, home-based rehabilitation

should be combined with outpatient rehabilitation services
offered by rehabilitation clinics and community rehabilitation
centers. Ru et al. (2017) and Dean et al. (2018) have
recently shown that patients participating in community-
based rehabilitation programs, when coupled with home-
based exercises, demonstrated enhanced motor function, daily
activity, and social activity. Community rehabilitation centers
or kiosks mentioned in the above studies use a video/audio
communication channel to connect the therapist to the patient
and allow a continuous exchange of information (Figure 1).
Patients perform the physical exercise while being remotely
monitored and assessed by a physiotherapist via video-
conferencing. Such telerehabilitation services provide a cost-
effective solution to deliver and monitor long-term therapeutic
interventions. In this context, Holden et al. (2007) developed
a telerehabilitation system that provides real-time interaction
between a patient at home and a therapist located at a
clinic. Reinkensmeyer et al. (2002) developed a web-based
telerehabilitation system for the patient to practice simple
movements using an adaptive joystick with force feedback. The
therapist can track improvements in training. Another low-cost
telerehabilitation platform is Habilis (Motus, 2020) developed for
the Clinical Leading Environment for Assessment and Validation
of Rehabilitation Protocols for Home Care (CLEAR) project
under the European Union. At home, these telerehabilitation
services can be accessed via mobile phones or tablets connected
to the Internet. These technological devices provide an affordable
solution to connect and directly interact with sensors (Ameer and
Ali, 2017). Such devices also enable offline use of services, such
as pre-recorded sessions by therapists and online services, such
as video-conferencing. In the absence of such services, patients
can follow some home exercise guides, such as one prepared by
Ambrose et al. (2020).

The development of telerehabilitation requires a reliable
communication network and tailored software systems to deliver
rehabilitation support effectively. In this regard, Hosseiniravandi
et al. (2020) provide a scoping review of different software
systems designed to address the delivery problems of home-
based telerehabilitation. The review included systems with
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various functional features, such as exercise plan management,
report generation, and task scheduling. On similar lines, Fiani
et al. (2020) provide a review on the development, usage, and
technological advances of telerehabilitation. The authors also
provide suggestions on advancements of telerehabilitation
during COVID-19. Additionally, the development of an effective
telerehabilitation service requires identifying methods and
material to evaluate patients’ existing functional status such
that the intensity of exercise can be modulated. The service
should efficiently collect and document patient data to monitor
exercise intensity and patients’ progress during therapy.
Tele-rehabilitation platforms, such as VidyoHealthTMand
HabilisTMenable synchronous and asynchronous data collection.
These services enable setting up automatic training schedules,
recording patients’ activity, evaluating their functional status,
and manipulating the factors to vary the intensity of therapy
based on their progress (Middleton et al., 2020).

In the remainder of this section, we will focus on the main
components of telerehabilitation necessary to assist, evaluate the
patient’s state, assess the patient’s engagement and compliance,
and suggest adaptation based on the patient’s functional status.

2.2. Robotic Devices
Robotic rehabilitation has shown promising results in
lab environments. During clinical trials, their validation
demonstrated huge potential in patients’ recovery (Maciejasz
et al., 2014) and can be used as an alternative to physical therapy.
These robots sense the user’s movement and use that information
to provide force feedback or plan subsequent motions. The robot
can interact with the patients in three possible ways: (1) passive
(patient-driven), (2) active (robot drives), and (3) challenge
(resist the forces applied by patients). In this regard, Frolov et al.
(2018) provide a scoping review of different robotic devices
used in rehabilitation. Even though much robotic rehabilitation
systems are in use, only a few robots have been developed for
home-based telerehabilitation. For instance, only robots, such as
Hand Mentor, Foot Mentor (Motus Nova, 2020), and SCRIPT
(Ates et al., 2017) have been successfully used in the home setting.
The Hand and Foot Mentor devices provide active assistance
to increase the range of motion in patients who have residual
upper and lower extremity impairments. The patient completes a
game-like training where the difficulty is modified depending on
the progress. The device provides audio and video feedback along
with remote monitoring through the clinician dashboard. Unlike
Hand and Foot Mentor, SCRIPT provides passive assistance
for finger and extension. This decreases the cost of deployment
and simplifies the software algorithm design. Similar to Hand
and Foot Mentor, SCRIPT provides an interactive game-like
interface. To expand further, Brewer et al. (2007); Housley
et al. (2018) provide a review of different telerehabilitation
robotic (TRR) approaches and clinical outcomes in home-based
settings. The review covers topics, such as ease of deployment,
cost-effectiveness, involvement from the patients, intervention
protocol, and dosing. The review concludes that future TRR
design should consider the cost analysis for wide adaptation of
TRRs in home-based settings.

However, most robotic rehabilitation setups are too expensive
and require monitoring by a skilled operator, and are most suited

for community-based rehabilitation centers and not home-
based settings. In the last two decades, new low-cost haptic
systems (e.g., Novint Falcon, 3dsystems Phantom, Quanzer
Pantograph, and so on) have emerged and adopted for home-
based rehabilitation. These haptic systems sense the user’s
movements and use them to assist subsequent motions by
providing force feedback. Such continuous feedback is shown to
enhance the rhythmic motor control by reducing the temporal
variability in repeated movements (Ankarali et al., 2014). Thus,
low-cost, ease of use, and low-maintenance haptic devices have
attracted a lot of attention for home-based rehabilitation (Oblak
et al., 2010; Piggott et al., 2016).

In addition to hardware, many researchers have studied
how different force feedback strategies elicit better rehabilitation
outcomes. The two most popular force feedback strategies are (1)
error-reduction (ER) strategy, which decreases the performance
error by providing active assistance to enable the patient to
perform the rehabilitation tasks better; (2) error-augmentation
(EA) strategy that increases the task difficulty to evoke a higher
voluntary involvement of the patient to accomplish the goal
(Israely and Carmeli, 2016). In a scoping review by Li et al. (2018)
on the effect of EA and ER strategies on upper limb post-recovery
showed that subjects under EA showed statistically significant
motor performance improvement compared to the ER. In fact,
the EA strategy aligns with the motor adaption principle, which
suggests that kinematic errors generate neural signals that drive
motor adaptation during movement (Schmidt et al., 2018). Even
though EA and ER are widely used strategies, such therapy’s
outcomes will not be superior to manual therapy if the patient
is not actively engaged in the therapy (Takeuchi and Izumi,
2013; Blank et al., 2014). Consequently, maintaining patients’
engagement through virtual reality (VR) or augmented reality
(AR) has gained significant traction.

2.3. Virtual Reality
VR in rehabilitation is explored as a modality to provide
feedback and engage patients through immersive environments.
VR refers to an artificial environment experienced through
sensory stimuli (as sights and sounds) provided by a computer,
and the user’s actions partially determine what happens in the
environment. In other words, any simulation on a computer
screen may be considered VR (Figure 2). These systems cannot
provide assistance/resistance to patient’s movements and require
a robotic or haptic system.

VR offers the capability of showing the trajectory of the
patient’s limb movements in real-time that enhances motor
learning during rehabilitation (Pareek, 2020). Moreover, tasks
designed using VR can be customized to patient’s needs at
different therapy levels, i.e., therapists can make the task easier
or challenging according to the recovery status (Figure 3).
Rose et al. (2018) provides a review on VR applications in
rehabilitation aiming at (1) how VR is beneficial in the health
outcomes, (2) how VR can influence the patients to adhere to the
rehabilitation plans, and (3) influence of haptic feedback on the
performance of an individual in the VR.

Display screens have been used for a long time to present
virtual environments during rehabilitation. In recent years,
head-mounted VR devices have attracted a lot of attention
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FIGURE 2 | Different virtual reality (VR) games that can emulate Activities of Daily Living (ADL), such as using a spoon (eating), pen (writing), knife (cutting), and glass

(pouring) in clockwise order from top-left.

FIGURE 3 | Schematic demonstrating a haptic device and virtual reality (VR)-based home rehabilitation setup.

in rehabilitation. Commercially available VR headsets (Oculus
Rift R©, Microsoft HoloLens R©, HTC Vive R©, and the Samsung
Gear VR R©) have added additional dimensions and intuitiveness
to the VR technology (Webster and Celik, 2014). Haptic
interfaces can augment the virtual interaction forces in the real
world and thus complement VR with force feedback during the
therapy. Moreover, tasks designed using VR can be customized to
the patient’s needs to adaptively challenge them according to their
progress and engage them in the therapy. Emerging companies,
such as Neuro Rehab VR and Peili Vision have already developed
VR stroke rehabilitation systems. These systems aim to increase
patient engagement by making physical therapy more enjoyable.
However, these systems currently rely on commercially available
gaming hardware that is not tailored for stroke patients, which
limit their practical use but promise a reliable framework for
home-based therapy.

3. ENGAGEMENT AND SOCIAL SUPPORT

Maintaining motivation to adhere to the therapy is challenging
for the patient during unsupervised therapy in home-based
and community-based settings. A combination of VR and

robotic systems can provide the necessary motivation by
making the exercisesmore comfortable, less dangerous, engaging,
and entertaining. Such customizability allows the therapist
to make high-intensity and repetitive training exercises more
motivating, engaging, and enjoyable for the patients (Rose
et al., 2018). Specifically, VR-based therapy can increase
patients’ engagement by creating interactive and competitive
tasks that provide frequent performance feedback during the
exercise (Zimmerli et al., 2013). In addition to the VR
visual feedback, multimodal feedback, such as auditory and
haptics can enhance the patient’s engagement during the
exercise. One of the promising modalities is brain–computer
interfaces (BCIs).

BCIs have proved to be a useful tool in evaluating patient’s
engagement during therapy. They can be used to objectively
assess task performance, engagement, and voluntariness (Sullivan
et al., 2017; Likitlersuang et al., 2018; Manjunatha et al., 2020).
Concretely, BCIs have attracted a lot of attention in quantifying
mental engagement as it directly measures the subject’s cognition
during rehabilitation (Berger et al., 2019). Such measures can
adaptively change the robot/haptic parameters to desired levels
(Bartur et al., 2017). The expense and setup procedure of BCIs
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makes it challenging to be used in home-based environments.
These sensors can be used in clinics or community-based setting
where the patient’s cognitive state can be monitored during
his/her visit.

Another factor that impacts patients’ participation in therapy
is social support. Patients suffering from stroke or COVID-
19 develop anxiety, depression, fatigue, and post-traumatic
stress disorder. In addition to the physical or cognitive state,
psychological health acts as an indicator of the surviving
population’s quality of living. For instance, a scoping review
by Essery et al. (2017) revealed that social support is a strong
predictor of home-exercise adherence. Along with social support,
other main factors included self-motivation, intention, self-
efficacy, and previous adherence. The study showed that social
support would increase adherence by providing encouragement,
boosting self-esteem, and buffering stress due to illness. Thus, as
the patients are motivated to adhere to an exercise regime, the
recovery is accelerated. The positive influence of social support
on the outcome of patient’s recovery is also in-line with previous
adherence studies (DiMatteo, 2004; Jack et al., 2010).

Physical therapy and rehabilitation can improve
neuromuscular functionality; however, the methods to prevent
or treat depression or cognitive impairment are still lacking.
Cognitive evaluation and behavioral therapy are slightly useful
in improving the psychological and cognitive state. A more
practical solution for enhancing psychological health is to
provide motivation and emotional support to decrease their
loneliness and coach them to compensate for diminished skills
or lacking abilities.

In home-based therapy, family members are the primary
caregivers who can provide social and moral support to the
patient throughout the recovery process. Proffitt et al. (2011)
indicated that activities incorporating family members might
facilitate compliance and reduce patients’ social isolation. The
therapist can also provide additional social assistance through
video-conferencing, virtual avatars (Borghese et al., 2013)
designed in VR, indulging and entertaining VR games, and
socially assistive robots (SAR).

3.1. Socially Assistive Robots
A social companion robot is defined as a robot that can
assist humans in daily activities at home, workplace, and
other environments (Dario et al., 2011) and possesses the
skills to interact with the people socially. Social companion
robots or SARs can benefit the elderly population, individuals
with physical, neurocognitive impairments, and individuals
suffering from depression (Lorenz et al., 2016). SAR provides
a stimulating or motivating influence on individuals and
reduces their loneliness. One of the main challenges of
rehabilitation during COVID-19 is contact. In this regard, SAR
creates a bridge between contact-based rehabilitation robotics
and non-contact functionalities of the companion robotics.
Therefore, SAR enables contact-free monitoring, coaching, and
encouragement while also providing detailed assessments of the
patient’s progress.

Some popular SARs that fulfill the role of a pet are
Paro (Shibata et al., 2001), NeCoRo (Libin and Libin, 2004),
and Huggable (Stiehl et al., 2005). Similarly, SARs made
for elderly care are Care-O-Bot (Graf et al., 2009), MobiNa,
Hector (Schroeter et al., 2013), and Hobbit (Fischinger et al.,
2016). These robots enable the independent living of the older
population by helping them with household tasks. In addition
to monitoring patients’ progress and motivating them, SAR
(Eriksson et al., 2005) and Clara (Kang et al., 2005) can help
in rehabilitation. For example, Bandit (Eriksson et al., 2005)
is a hands-off therapist robot that can navigate autonomously,
demonstrate the task, monitor patients’ arm activity, and remind
them to follow a rehabilitation program. Clara (Kang et al., 2005)
is another hands-off therapist robot that can assist patients in
repetitive spirometry exercises; thus, it can be very useful for
patients recovering from Acute Respiratory Distress Syndrome
(ARDS).

The major challenge of SARs is to identify the social abilities
from human and implementing them (Lorenz et al., 2013).
SARs have to be adaptive as the interaction with a non-adaptive
robot cannot result in movement synchronization (Lorenz et al.,
2013). Synchronous behavior between the patient and a robot is
essential for the emergence of compassion and positive emotions
(Lorenz et al., 2016). In this context, Bethel and Murphy (2010)
provided some measures to evaluate a robotic system in terms
of interaction.

4. PROGRESS ASSESSMENT

While delivering remote rehabilitation, the therapist needs
to monitor the functional progress of a patient to vary the
intensity to the desired level. Sarfo et al. (2018) reviewed the
commonly used metrics to monitor patients’ progress during
telerehabilitation interventions, of which ABILHAND, Ashworth
scale, Action Research Arm Test (ARAT), Fugl-Meyer Motor
scale for upper extremity (FMA-UE), Grip strength, Nine-Hole
Peg test (9-HPT), Shoulder strength, and Wolf motor function
test (WMFT) are used to assess upper limb functionality.
ABILHAND is a subjective measure of the ability to manage
activities of daily living. Ashworth scale is a subjective score
ranging from 0 to 4 based on the resistance to passive movement
about a joint. ARAT requires a kit to test the grasp, grip, and
pinch functionalities along with the gross movement capability
of the upper limb. FMA-UE provides a quantitative measure for
a range of functionalities involving the upper extremity, wrist,
hand, coordination, speed, sensation, passive joint motion, and
joint pain. 9-HPT is a standardized quantitative assessment to
measure finger dexterity and requires a wooden board with
nine holes and nine pegs. WMFT is a quantitative measure to
assess time, functional ability, and upper extremity motor ability
strength. These metrics have been extensively used for the remote
assessment of upper limb functionality in chronic stroke and
neuromuscular disorders, and can also provide a quantitative
prior for assessing COVID-19 patients during telerehabilitation.
In addition to these metrics, patients’ satisfaction and cognitive
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state should be examined to assess both mental and cognitive
engagement as they are vital aspects in the success of remote
rehabilitation (Pareek and Kesavadas, 2019).

In the absence of a therapist, sensors should measure and
quantify patients’ exercise in the home environment. Wearable
sensors have been utilized to measure and assess a wide range of
motor behaviors, such as fall detection, mobility characterization,
and activity recognition. Moreover, the information from these
sensors can act as biofeedback in automated training. The
most common information used for assessing the upper limb
functionality is the trajectory of the upper limb tracked by the
robot’s sensors. Moreover, inertial measurement units (IMUs)
provide a portable and low-cost solution to physical activity
detection (Wittmann et al., 2016). IMUs placed on the upper
limb can be used to monitor movements during therapy, and
when placed near the ankle, can be used to characterize patients’
gait. On the other hand, IMUs in mobile phones provide low-
cost alternatives to external IMUs. Force-sensitive sensors can
be incorporated in wearable gloves (Polygerinos et al., 2015)
and fabrics to detect grasp pressure during upper extremity
exercises. Moreover, force-sensitive sensors incorporated in foot-
ware can measure ground reaction forces and provide better fall
detection when used in combination with IMUs. IMUs and force
sensors can be easily incorporated into home-based rehabilitation
to detect voluntary forces from the patient. Moreover, the
trajectories obtained from the haptic and VR systems are useful
in tracking patients’ progress.

Non-invasive physiological sensors, such as surface
electromyography (sEMG) can also be used to assess changes in
neuro-motor control during robotic intervention (Clark et al.,
2010). A combination of sEMG sensors and IMUs has been
used to monitor movement quality while assessing patients’
muscle activity (Pareek et al., 2019). Such sensors provide a
low-cost solution for differentiating voluntary contractions from
spastic and enable automatic detection of functional ADLs,
such as feeding, grooming, dressing, transferring, locomotion,
and toileting in home-based therapy (Porciuncula et al., 2018).
Additional physiological sensors used during therapy can
record body temperature, respiratory rate, pulse rate, blood
pressure, muscle activity, cognitive state, and so on (Chen et al.,
2019). While these additional sensing technologies may seem
redundant for the home-based setting, they may be used in the
community-based rehabilitation center to provide additional
insight into the patient’s cognition.

New studies provide empirical evidence that closed-loop
sensorimotor systems that use brain activity and haptics in
robotic therapy improve the rehabilitation of upper limb (Frolov
et al., 2018). Non-invasive BCIs introduce EEG signals as
potential feedback capable of indicating the subject’s intentions
and providing his/her sophisticated cognitive state, such as
the level of engagement. Popular metrics include event-related
synchronization or desynchronization (ERS/ERD) (Jochumsen
et al., 2013) and sensory-motor rhythms (SMR). For instance,
Soekadar et al. (2015) suggested SMR as an ideal candidate for
non-invasive BCI-training in stroke neuro-rehabilitation. This
is because SMR is closely related to motor activities, accessible
through EEG signals, and has a high signal-to-noise ratio

(Soekadar et al., 2015). Moreover, studying motor learning after
stroke is also possible with motor imagery measures in a passive
setting (Meyer et al., 2012).

While the use of BCI in current clinical practice is
viable, the remote operations may seem impractical due to
setup and calibration requirements. The future generation
of remote rehabilitation system can potentially use them as
an alternative to traditional feedback in active rehabilitative
platforms (Bamdad et al., 2015). In this regard, van Dokkum
et al. (2015) conducted a literature review on different aspects of
BCI application for neuro-rehabilitation. The study considered
current methods useful for three applications: (1) providing
feedback to adjust training tasks, (2) quantifying and measuring
motor improvements, and (3) stimulating patients to encourage
and make them optimize and correct themselves to execute
their tasks. The authors recommended using BCI for motor
rehabilitation purposes according to its adaptability to a large
population and, at the same time, consider it necessary to study
for more clinical results based on controlled designs to validate
the impact of BCI on motor and functional recovery.

5. ADAPTIVE REHABILITATION

Due to the COVID-19 outbreak, the patient’s rehabilitation
should be shifted to a teleoperated home-based or community-
based approach to reduce the therapists and inpatient facilities’
burden. However, for such an approach, one of the major
priorities is to devise a reliable decision-making algorithm as an
alternative to the therapist (Figure 4). Such a decision-making
algorithm must determine when, how, and to what degree
the interventions must be modified and adapt accordingly to
improve the patient’s functional recovery. The adaptation should
be based on the patients’ existing state and recovery progress.
For inferring the patient’s state, physiological signals are an
indispensable modality. For example, the physiological signals,
such as EEG, EMG, and eye tracking can be used passively to
understand the state of the patients and their level of engagement.
They can also actively modify the rehabilitation parameters (e.g.,
assistance level provided by haptics/robotics system or VR game
difficulty). Some modalities cannot be obtained in home-based
settings as they desire low-cost sensors with a minimal setup
procedure. However, various sensors ranging from EEG to IMUs
can be used in the community or ambulatory rehabilitation.
In this regard, significant measures have been adopted by
researchers to implement adaptive rehabilitation services where
VR and haptic devices can be adapted using physiological signals.

5.1. Adaptation of Virtual Reality Interfaces
VR has facilitated the implementation of adaptive rehabilitation
approaches for two reasons. First, the relative ease and flexibility
in developing VR environments compared to building physical
interfaces in the real world. The VR systems can be easily adapted
to both home, community, and ambulatory rehabilitation.
Second, the patient’s performance and progress can be measured
easily with respect to the accomplishment of a mission through
a series of tasks or games. Moreover, being involved in a
game or even serious virtual tasks through an interactive
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FIGURE 4 | The burden of assistance and decision-making shared between experts and machines from traditional therapy to adaptive rehabilitation.

environment can significantly increase cognitive engagement,
which is traditionally provided by social communication between
a patient and the rehabilitation team members.

In VR, the game difficulty can be easily adjusted depending
on the patient’s engagement and progress. In this category,
Nirme et al. (2011) has designed a Rehabilitation Game System
(RGS) based on VR. They developed two algorithms capable
of controlling the task difficulty that an RGS user is exposed
to and provide controlled variation in the therapy. In this
regard, Hocine et al. (2015) have also recently studied related
works in the adaptive adjustment of task difficulty. They
hypothesized that a dynamic adaptation of task difficulty based
on the subject’s abilities and performance surpasses the other
two methods reported in previous works, which make either
an incremental or a random change in the task’s difficulty
level (Cameirao et al., 2010; Rabin et al., 2011). The results
of their study demonstrated that the stroke patients under
experiments with dynamic adaptation methods gained a higher
amplitude of movement, which is considered a positive sign of
recovery (Hocine et al., 2015).

An interesting result of the scoping review done by Bamdad
et al. (2015) is that the work based on VR control (VRC)
dedicates half of the research papers in BCI-based rehabilitation.
Barzilay and Wolf (2013) have recently proposed an effective
VR framework to improve triceps performance by designing a
set of adaptive rehabilitation games that work with respect to
some biofeedbacks. They provide these biofeedbacks through a
learning system that estimates the biological model from raw
data being acquired from hand motion and muscle activities.
In this regard, Pirovano et al. (2012) have also developed a
framework of self-adaptive games for rehabilitation at home.
In such a framework, they have considered the game design
to be (1) capable of being integrated into general-purpose
rehabilitation stations, (2) consistent with the constraints posed
by the clinical protocols, (3) inclusive of both effective and
functional movements to reach the rehabilitation goals, and (4)

adaptive to the patient’s current status and his/her estimated
progress. They utilized a fuzzy system to monitor the execution
of exercises and a Bayesian adaptive approach to modify the
gameplay with respect to the current performance and estimated
progress of the patient as well as the exercise plan that is each time
instructed by the therapist (Pirovano et al., 2012). This adaptive
game engine is extended in a more recent research conducted
by Pirovano et al. (2016), where they have also addressed how
the adaptation of task difficulty can be performed with respect
to the patient’s performance as well as real therapist inputs to
increase the level of engagement. To this end, a virtual therapist
(Borghese et al., 2013) guarantees the patient to be properly
challenged and, at the same time, motivated, safe, and supervised.
Pirovano et al. (2016) also introduced a more independent
autonomous rehabilitation game engine that provides a home-
based framework needless of close supervision by a therapist. In a
recent overview, Vaughan et al. (2016) presented state-of-the-art
self-adaptive technologies within VR training.

Despite the recent advances in VR, its feasibility in the clinical
rehabilitation setting is limited in terms of application, education,
and research (Laver et al., 2011). Although many studies aiming
at the development and evaluation of VR-based rehabilitation
systems exist, very few have been evaluated outside laboratory
settings. Three major limitations have been reported for the
use of VR in rehabilitation, latency between input and output
devices, underestimation of perceived distance in real world,
and motion sickness (Morel et al., 2015). Latency is the delay
between patient’s action using input device and its corresponding
reaction using output device in the virtual environment. Latency
affects rehabilitation efficacy by delaying the timing of stimulus
presented to the patient. Improper relation between the perceived
distance in real and virtual environments, motion sickness, eye
fatigue, headaches, nausea, and sweating caused due to prolonged
exposure to head mounted displays limit the efficacy of VR
systems (Laver et al., 2011; Yates et al., 2016; Park et al., 2019).
Additionally, the cost of VR development, aggravated by the
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poor reception of these technologies by older stroke patients,
inhibits these systems’ feasibility. However, these limitations
should be evaluated using studies with larger sample sizes and
post-intervention follow-up measures (Yates et al., 2016).

5.2. Adaptation of Haptic/Robotic System
The success of rehabilitation robots in physical therapy
encourages the researchers to develop an adaptive robotic
rehabilitation strategy (Mounis et al., 2019). For instance, Kan
et al. (2011) proposed an automated rehabilitation robotic system
that guides stroke patients through an upper limb reaching task.
They used a decision-making algorithm to automatically modify
exercise parameters, which account for different individuals’
specific needs and abilities. They have also used these parameters
to make appropriate decisions about the rehabilitation exercises.

Another common understanding of adaptive rehabilitation
mainly used in robotic and haptic systems is to actively adapt
the assistance provided to the patient by a robot. This assistance
is provided as per the physical needs of the patient. Wolbrecht

et al. (2008) researched to examine different hypotheses on how
to maximize the participation of the motor system through
robotic assistance. Their findings reveal that a minimally assistive
intervention previously introduced by Cai et al. (2006) termed
as “assist-as-needed” is an appropriate strategy that can be used
as the core for many assistive robots. Surprisingly, the “assist-
as-needed” strategy coincides with a motor learning principle
realized by Hasson et al. (2012), explaining that a human evolves
his/her motor skills by minimizing the required force to control
dynamically complex objects. A hypothesis is that the way an
experienced therapist assists a motor-impaired patient is very
similar to how the patient deals with high dynamical complexity
objects. Thereby, the “assist-as-needed” strategy is comparable to
traditional therapies. This can be the main reason underlying the
effectiveness of assistive robots working based on the “assist-as-
needed” strategy. Krebs and Hogan (2012) has mentioned that
robotic therapy (RT) is reaching its tipping point and that RT
practices, particularly based on motor learning principles, such
as the “assist-as-needed” strategy, have been successful.

TABLE 1 | Different adaptive rehabilitation approaches using virtual reality (VR) and robots.

Publication Adaptive rehabilitation

technique

Modalities used for adaptation Rehabilitation

interface

Upper (U)/Lower (L)

body

Feedback from human Feedback to human

Hocine et al. (2015)
Parameter adjustment Estimation of task performance in

terms of

success rate of task completion

Evaluation of subject’s abilities in

terms of

maximum zone of 2D movements

Dynamic adjustment of task

difficulty w.r.t.

subject’s ability and performance

Virtual Reality U

Pehlivan et al. (2015)
Assistive control

AAN (Assist-as-needed)

Subject performance Modification of permissible error

and

assistance during movement

execution

Robot U

Perez-Ibarra et al.

(2015)

Assistive control

+ Parameter adjustment

Estimation of force contribution

and task performance using

dynamic and kinematic feedback

Adjustment of level of assistance

as well as

the stiffness of impedance

control

Robot L

Squeri et al. (2014)
Assistive control Subject’s ability to keep up with

target oscillations

Assistance adapted to residual

capacities

of motion while avoiding

over-assistance

Robot U

Barzilay and Wolf

(2013)

Autonomous intervention

planning

Estimation of task performance

inferred

by a trained neural network from

biofeedback (EMG and Kinematic

Info)

Planning rehabilitation tasks w.r.t.

expectations of clinicians and

feedbacks inferred from human

Virtual reality

(Serious Games)

U

Pirovano et al. (2012)
Parameter adjustment Estimation of task performance

inferred by a fuzzy engine based on

patients actions and

Therapist’s knowledge

Adjustment of task parameters,

such as

speed and range of motions+

Visual and voice effects are

generated

via an animated virtual therapist

Virtual reality

(serious games)

U and L

Nirme et al. (2011)
Parameter adjustment Estimation of the user model based

on different parameters of task

performance

Adjustment of task difficulty w.r.t.

the estimated user model

Virtual Reality U

Duff et al. (2010)
Autonomous intervention

planning + Parameter

adjustment

Estimation of task performance and

recovery progress using kinematic

feedback

Visual and musical stimulation

are adapted by clinicians

Virtual reality

(reaching task)

U
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FIGURE 5 | Schematic showing the rehabilitation therapy in three different setups: (1) community-based, (2) home-based, and (3) ambulatory. Present robotic

systems are geared toward hospital or home-based approaches. However, due to COVID pandemic, we need to modify and adapt the current system taking into

account social distancing norms, emotional stress due to lockdown, and safety of health care workers and patients.

Most recently, Heuer and Lüttgen (2015) considered the
assistive control strategies that work toward or against the
motor recovery across trajectory and transformation learning
skills. Their survey is accompanied by a classification of clinical
results obtained from different strategies in terms of their
effectiveness toward gaining certain motor skills. Maciejasz et al.
(2014) adopted assistive control as one of the main high-level
strategies of robotic therapy and added three more: challenge-
based control, haptic stimulation, and couching control. To
consolidate, Table 1 provides an overview of different adaptive
rehabilitation approaches.

6. DISCUSSION

In our opinion, the telerehabilitation procedure can serve as a
safe and effective medium to continue the rehabilitation process

while adhering to the safety guidelines during the COVID-
19 outbreak. In teleoperated systems, patients and therapists
interact through web-interfaces, and the clinical team can
remotely monitor the progress of the patient and tune the
system’s parameters accordingly. Advances in robotic research
have facilitated haptic devices that can sense the environment and
adapt to it. Consequently, these devices can be used to collect the
patient’s information and provide necessary feedback effectively.
This promotes lesser intervention from a clinical entity during
the training process. Tele-rehabilitation can be conducted in-
home, community, and as an ambulatory service catering to the
needs of the patients (Figure 5).

Home-based rehabilitation has attracted many research
studies in recent years due to its cost effectiveness and
reliability. Moreover, patients can use it without any additional
clinical assistance. Most of the therapy is concentrated in
home environments to reduce the traffic toward clinical
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facilities. The therapists can provide rehabilitation instructions
synchronously (real-time feedback) or asynchronously (exercise
regime evaluated periodically). For such a setup, the basic
requirements are a mobile phone and an Internet connection.
Other simple sensors like EMG, IMU, and Kinect can also
collect physiological signals for assessment. However, the haptic
therapy outcome need not be superior unless the patient is
actively engaged in the therapy. In this context, VR acts as a
successful medium to promote active patient participation. VR
can be hosted in-home environment easily without requiring
any expensive setup. The therapy can use VR to deliver game-
based exercises that are highly engaging for the patients and
provide emotional support. Under certain circumstances, the
patients must participate in high-intensity therapy sessions that
the home-based setups cannot provide.

Intensive robotic therapy sessions can be easily accessed
by the patients in community-based robotic rehabilitation
centers. Community-based centers can accommodate heavy and
expensive robots for intensive therapy. Patients can access these
rehabilitation setups following social distancing guidelines and
under a clinician or a volunteer’s supervision. Any of the accessed
systems can be sanitized and kept ready for the next patient.
When patients access these community centers, clinicians can
record necessary physiological information, such as EEG to
examine patients’ cognitive state otherwise not feasible in home-
based environments. This allows for high-level monitoring
and the metrics calculated through telerehabilitation services.
For patients who have travel difficulties, the community-based
rehabilitation can be extended as an ambulatory vehicle service
with an onboard therapist to emulate the similar intensive robotic
therapy experience provided in the community-based robotic
therapy. The ambulatory vehicle can be equipped with high-end
assistive devices (robotic) along with high-density physiological
sensors (EEG, EMG) to assess the patient’s state. In terms
of health-guidelines, the ambulatory vehicle can be sanitized
using UV light between two consequent therapy sessions. These
vehicles can be accessed periodically to assess the patient’s
functional state better and simultaneously deliver high-intensity
exercises using the equipped larger bandwidth robotic devices.

However, most of the robotic systems are not adaptive as
they do not directly record feedback from the subjects or

assess the patient’s state. Hence, they require the intervention
of clinical teams or doctors who can assess the improvements
in the patients’ functional state, which is difficult during the
COVID-19 outbreak. Thus, there is a need for an adaptive
strategy that synergistically combines humans’ intentions and
robots’ dynamics; inevitably, VR is a great resource for such
applications. With recent advances in user experience, VR
and AR technology had provided an immersive environment
during rehabilitation. This approach increases the patients’
willingness to take part in the rehabilitation process, thus
speeding up the recovery. Adaptive rehabilitation provides
required assistance as needed and is a chief strategy underlying
successful robotic rehabilitation. Such an adaptive robotic
rehabilitation framework should assess and consider the
patient’s state as one of the main factors for providing
appropriate assistance. In this direction, physiological signals
have attracted a lot of attention as a reliable modality
to assess the patient’s state. The physiological signals, such
as EEG, EMG, and eye-tracking can be used passively or
actively to understand the patients’ condition and modify
rehabilitation parameters.

7. CONCLUSION

This paper presented a brief review of different telerehabilitation
services that can be effectively used during the COVID-19 or
similar pandemic and can serve as a reliable alternative to
physical therapy. However, the rehabilitation service will be
successful if the patients adhere to the routine and are engaged
with the exercise regime. For this purpose, telerehabilitation
should consider a reliable and cost-effective approach to measure
the patient’s engagement. Finally, as the therapists cannot deliver
one-on-one therapy to patients due to the threat of spreading the
virus, an adaptive rehabilitation setup is required with minimal
intervention to deliver quality remote care and simultaneously
assess the patient’s progress.
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Modelling the Impact of Robotics on
Infectious Spread Among Healthcare
Workers
Raul Vicente1,2*, Youssef Mohamed2, Victor M. Eguíluz3, Emal Zemmar4, Patrick Bayer4,
Joseph S. Neimat4, Juha Hernesniemi1, Bradley J. Nelson5 and Ajmal Zemmar1,4*

1Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Henan University School
of Medicine, Zhengzhou, China, 2Institute of Computer Science, University of Tartu, Tartu, Estonia, 3Instituto de Física
Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain, 4Department of Neurosurgery, University of
Louisville, School of Medicine, Louisville, KY, United States, 5Multi-Scale Robotics Laboratory, Swiss Federal Institute of
Technology (ETH) Zurich, Zurich, Switzerland

The Coronavirus disease 2019 (Covid-19) pandemic has brought the world to a standstill.
Healthcare systems are critical to maintain during pandemics, however, providing service
to sick patients has posed a hazard to frontline healthcare workers (HCW) and particularly
those caring for elderly patients. Various approaches are investigated to improve safety for
HCW and patients. One promising avenue is the use of robots. Here, we model infectious
spread based on real spatio-temporal precise personal interactions from a geriatric unit
and test different scenarios of robotic integration. We find a significant mitigation of
contamination rates when robots specifically replace a moderate fraction of high-risk
healthcare workers, who have a high number of contacts with patients and other HCW.
While the impact of robotic integration is significant across a range of reproductive number
R0, the largest effect is seen when R0 is slightly above its critical value. Our analysis
suggests that a moderate-sized robotic integration can represent an effective measure to
significantly reduce the spread of pathogens with Covid-19 transmission characteristics in
a small hospital unit.

Keywords: robotics, COVID-19, epidemiology, healthcare, biomedical robots

INTRODUCTION

The Coronavirus disease 2019 (Covid-19) pandemic has had a devastating impact on global
healthcare and economy. The rapid global spread of the Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV-2) is owed to its high transmissibility (van Doremalen et al., 2020),
transmission prior to symptom onset (Tindale et al., 2020), and infectious spread through
asymptomatic carriers (Bai et al., 2020). These features have posed significant challenges in
various sectors, especially essential services such as the healthcare sector. Several measures are
taken to reduce infectious spread for patients and healthcare worker (HCW) protection while
maintaining healthcare services (The Lancet, 2020). Nevertheless, infection rates of up to 20% among
HCW are reported in certain countries (Remuzzi and Remuzzi, 2020). As of October 2020, 7,000
HCW have died of Covid-19 worldwide (https://www.amnesty.org/en/latest/news/2020/09/
amnesty-analysis-7000-health-workers-have-died-from-covid19/), of which 1,077 deaths and
almost 80,000 HCW positive cases have been confirmed within the United States (https://www.
washingtonpost.com/graphics/2020/health/healthcare-workers-death-coronavirus/), where various
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FIGURE 1 | Robotization scenarios and their impact on the probability of pathogen spread through the network and number of infected individuals (R0 � 4.4). The
networks on the left side depict sketches of the networks of close contacts at the geriatric ward under different scenarios. The colors indicate the categories: patients
(red), nurses (orange), doctors (blue), administration (dark blue), and robots (green). (A) In scenario (i) no robotic assistance is provided and the network of close contacts
remains intact. (B) Scenario (ii) is illustrated by a random nurse being replaced by a robot. (C) In scenario (iii) high-risk nurses are being replaced. (D) Scenario (iv) is
illustrated by the robotic replacement of a high-risk nurse and a random doctor. (E) In scenario (v) the robotization affects the interactions between nurses and patients.
The right side of each panel shows the distribution of prevalence of infection (percentage of individuals infected) under the different scenarios. All simulations were
repeated 100 times to obtain the distributions shown in the violin plots and percentile statistics. For each violin plot, the dashed black lines indicate the different quartiles
of the distribution while dashed color lines mark the mean. (A) In the absence of robotic intervention, the distribution of the number of infected cases is bimodal with 10%
of trials in which the infection does not spread. Across all trials, an average of 71% of the personnel and patients become eventually infected. In general, the nurses and
doctors are more vulnerable to becoming infected than patients and administrative workers. (B) Random replacement of five nurses increases the percentage of non-
spreading trials to 16%. This intervention has the effect of decreasing the average number of infected individuals (66%). (C) The situation improves further when the five
nurses are selected according to the number of contacts. In this case, the probability that the infection does not spread increases to 21% (more than doubling the case

(Continued )
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infection control measures including a lockdown, social
distancing and personal protective equipment (PPE) have been
implemented. In another study, 50% of HCW have reported their
work setting as the single source of exposure (Burrer et al., 2020).
Among patients, the elderly generation in geriatric units and
nursing homes has been primarily affected by the pandemic.
Prolonged close contact between patients and HCW, e.g.,
assistance in patient care and daily needs such as eating,
bathing, walking or lifting, are among the prevailing causes
that expose the elderly community and their caregivers to
increased risk of contamination (McMichael et al., 2020).

The use of robotics as a shielding layer between patients and
caregivers is a promising approach to reduce infectious spread in
healthcare (Yang et al., 2020). While some hospitals have started
to use robotic technology to combat the pandemic and one ward
was entirely staffed by robots (O’Meara, 2020), modelling data in
real-hospital scenarios is lacking to investigate the efficiency and
timing of robotic implementation for reduction of pathogen
contamination (Heesterbeek et al., 2015). Here, we utilized a
temporally and spatially precise dataset of close personal contacts
of 29 patients and 46 HCW in a geriatric unit (Vanhems et al.,
2013). We identify nodes of high contact representing increased
contagion risk, replace these high-risk nodes and model
contamination rates. The model demonstrates that strategically
placed robotic assistance to high-risk HCW can significantly
reduce and delay the number of infections in a hospital unit
in diseases with similar transmissibility to Covid-19. In the
studied scenario, robotic integration is shown to be effective
across a wide range of reproductive number R0 from slightly
above 1 to at least 4.4.

RESULTS

Effects of Robotic Replacement of
Healthcare Workers
Robots can be utilized to assist HCW in a variety of tasks
(Supplementary Table S1) and hence, to reduce the number
and duration of interactions among different types of HCW and
patients. To effectively mitigate pathogen contamination and
operate cost-efficient, it is critical to determine high-risk
groups of individuals and interactions and deploy robotic
assistance specifically to these nodes. In a previous study,
nurse-to-patient interactions accounted for 21.1% and nurse-
nurse interactions resulted in 39.2% of the total number of close
contacts (>20 s and <1.5 m) in a geriatric unit (Vanhems et al.,
2013). Data from the same study shows that five nurses were
responsible for 36.1% of all close contacts with patients. Based on
these observations, we focused on replacing nurses with robots
and simulate pathogen transmission in a geriatric unit with a

model tailored to the state, transmissibility, and latency of SARS-
CoV-2 (Ivorra et al., 2020; Eguíluz et al., 2020). Infectious spread
was modelled under five scenarios: (i) no robotic assistance, and
four scenarios in which robots replaced five random nurses (ii),
the top five high-risk nurses (iii), the top 3 high-risk nurses and 2
randommedical doctors (iv) and finally, when robots replaced all
interactions between nurses and patients (v) (Figure 1). The
model was run for 100 trials, results were averaged. Each
simulation describes the pathogen spreading over the network
and timing of close contacts in a geriatric unit, while we collect
statistics of the transmission for the curse of an outbreak, which
often lasted more than 90 days. A non-spreading state was
defined when less than 10% of the individuals become infected
within a single trial, whereas a spreading state was defined when
more than 10% of individuals become infected. Without use of
robotic technology, only 10 of 100 trials (10%) resulted in a non-
spreading case. (Figure 1A). The probability of a non-spreading
dynamics is augmented by 6% (i.e. from 10 to 16%) if five random
nurses are replaced by robots (Figure 1B). In scenarios iii, iv and
v, a strategic process was used by first identifying the nurses with
the highest number of contacts (i.e. high-risk nurses) and
selectively replacing them with robots. When robots replaced
the five high-risk nurses (iii) (Figure 1C), the probability to
contain the virus was 22%, or in other words, the probability of
non-spreading dynamics increased by 110% when compared to
the baseline scenario (i) without any robotic assistance (from 10
to 22%). To compare the impact of the five high-risk nurses with
other medical staff, we replaced the top 3 high-risk nurses and 2
random medical doctors (MD) with robots, which resulted in a
21% probability to contain the virus (scenario iv, Figure 1D). In
the last scenario, robotic assistance was applied to all interactions
between nurses and patients, i.e., no nurse had direct contact with
a patient, but nurses can still interact with other staff. This
measure resulted in a 23% probability not to spread the
pathogen (Figure 1E). Detailed numerical results of these and
other measures of infection are collected in Supplementary
Table S2.

Temporal Evolution of Infectious Spread
The temporal evolution of the infectious spread is also a key
aspect for the management of an outbreak. For example, the
speed of propagation and the peak number of active infected cases
are important challenges to the limited reaction time and capacity
for a response to the outbreak. Here, we focus on how pathogen
contamination propagates across the network in the geriatric unit
and describe how the different robotic assistance scenarios affect
the temporal dynamics of the infectious spread. We measured the
number of days from outbreak onset until the 10th infection
occurs (T10), and the number of infections on the 30th day from
outbreak onset (I30). As observed in Figure 2, no robotic

FIGURE 1 | without robotization). Patients and nurses benefit from the targeted intervention with an increase in the number of non-infected cases when the infection
spreads. On average, the fraction of infected individuals decreases to 57%. (D)Replacement of high-risk nurses and randomdoctors resulted in a similar probability of no
propagation through the network (22%), while resulting in an average of 60% infected individuals. (E) Interaction replacement led to a probability that the infection does
not spread in 23% of the trials, and an average of only 47% of individuals being infected. For patients the impact is most significant with the majority of simulations
predicting that less than 25% of patients of the geriatric unit become eventually infected.
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assistance leads to the highest and earliest peak in the number of
infected cases, with T10 � 10.1 ± 0.7 days (average ± s.e.m., n � 100),
and I30 � 32.5 ± 0.8 active infected cases (average ± s.e.m., n � 100).
Robotic replacement of the top five high-risk nurses leads to a
significant delay of 1 week to reach the 10th infection in the
population (T10 � 17.1 ± 0.8 days, n � 100; pval � 0, permutation
test for statistical difference with T10 without robotic assistance), and
also results in a significant reduction of the number of active infected
cases by day 30 (I30 � 19.2 ± 1.0 cases, n � 100; pval � 0, permutation
test for statistical difference with I30 without robotic assistance).
Strikingly, this scenario shows both, the slowest initial growth of
infection propagation and the slowest final decay, and hence it
produces the largest flattening of the curve of active infections
(Figure 2, green line). Robotic replacement of all nurse-patient
interactions results in the earliest termination of the outbreak,
while its rise time is not significantly different from the baseline
scenario without any robotic implementation (Figure 2, red curve; T10
� 12.0 ± 0.7 days, pval � 0.074, permutation test). Table 1 and
Supplementary Table S3 contain more details on the temporal
evolution of active infections for each robotic scenario.

The Impact of the Basic Reproductive
Number R0
Another important factor for infectious spread prediction is the
basic reproductive number R0. During the first wave of Covid-19,
R0 ranged between 2 and 6 considering all countries (Sanche et al.,
2020), values of 3.2–3.4 were reported for China (Alimohamadi
et al., 2020), Austria, Switzerland (Karnakov et al., 2020), Italy,
Korea (Zhuang et al., 2020) and Germany (Dehning et al., 2020).
Measures including the use of personal protective equipment
(PPE), social distancing and frequent sanitization have reduced
the basic reproductive to values as low as 0.6 (Fisman et al., 2020).
After investigating the role of robotic integration for pathogen
spread, we analyzed how different reproductive numbers R0 affect
these measures. To this end, we simulated the virus spread in the
above-mentioned scenarios for different R0 values. R0 values
around 3.15 were reported in a meta-analysis from China (He
et al., 2020). R0 values around 1.1–1.2 are estimated after the first
wave of Covid-19 infections (Karnakov et al., 2020) (Figure 3).
Basic reproductive numbers between 1.2 and 0.6 have also been
used to model the effect of using personal protective equipment,

FIGURE 2 | Temporal evolution of infection spread across the network for difference scenarios.(R0 � 4.4). Number of active infected cases in five different scenarios
as a function of the days passed since the first infection in the population on day zero. No robotic integration (blue line) yields in the fastest onset and highest number of
active infected cases. In contrast, robotic replacement of the five nurses with the highest number of contacts with other Health Care Workers (HCW) and patients results
in the slowest increase and the overall lowest number of active cases (green line). Replacing five random nurses with robots leads to more peak active cases and a
steeper slope (orange curve). Replacing all nurse-to-patient contacts (red line) and the top three high-risk nurses and two randommedical doctors (purple line) resulted in
a similar peak for active cases.

TABLE 1 | Measures of the temporal evolution of infection spreading for a baseline case of R0 � 4.4.

Scenario R0 after intervention Individuals infected T10 I30

Reproductive number (R0 � 4.4)
No robotic assistance 4.4 ± 0.3 71 ± 2.4 10.1 ± 0.7 32.5 ± 0.8
Assist rand 5 NUR 3.8 ± 0.3 63 ± 0.7 11.9 ± 0.8 26.8 ± 1.0
Assist top 5 NUR 2.7 ± 0.2 54 ± 2.9 17.1 ± 0.8 19.2 ± 1.0
Assist top 3 NUR-Rand 2 MD 3.2 ± 0.3 57 ± 3.0 14.2 ± 0.7 24.3 ± 0.9
Assist all NUR-PAT contacts 3.1 ± 0.2 47 ± 2.5 12.0 ± 0.7 23.8 ± 0.7

The measures consist of the effective R0 for each robotic implementation scenario, the total number of individuals infected by the end of the outbreak, the number of days until the 10th
infection occurs (T10), and the number of active infections on the 30th day of the outbreak (I30).
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such as masks, depending on the compliance and viral reduction
rate provided. Therefore, in the model, we have focused on fitting
the basic reproductive numbers of 3.4, 1.2, and 0.6, respectively,
and studied the impact of robotic implementation under each of
these epidemiological conditions. For R0 � 3.4, the targeted
scenarios of replacing high-risk nurses or the interactions
between nurses and patients result in the largest non-
spreading probability (see Table 2 and Supplementary Figure
S1). These two scenarios also lead to the smallest number of
infected individuals by the end of the outbreak. The impact of
robots on R0 � 3.4 is thus qualitatively similar to that obtained
when R0 � 4.4. On the other hand, the benefit of robotic
integration is limited when R0 � 0.6 since the baseline case
(i.e. no robotic intervention) already results in 92% of non-
spreading trials. However, we note that in some robotic
scenarios the pathogen propagation can be stopped in 100% of
the trials. It is also important to note that when R0 < 1, each
infected individual infects less than 1 other individual on average
and therefore, pathogen spread is relatively well controlled.
Interestingly, basic reproductive numbers near the critical
value of 1, such as R0 � 1.2, provide the largest gain for
robotic scenarios, even more than for larger R0 that we have
considered (i.e., 3.4 and 4.4). The probability not to spread the

virus increased from 67% at baseline to 96% with targeted robotic
replacement. Overall, these results indicate that the qualitative
effects of robotic scenarios are robust across a range of basic
reproductive numbers with significant benefit occurring at
regimes with a relatively large value of R0, and specially with
R0 slightly above its critical value of 1.

DISCUSSION

Our model investigates whether robotic assistance to a moderate
number of HCW influences the pathogen spread rate in a
geriatric ward. We find that targeted robotic replacement of
nurses with the largest number of personal close contacts
results in the largest effect to control infectious spread. This
scenario not only decreases the probability of viral spread but
also slows down its outbreak. The most optimal R0 to integrate
robots into clinical use is when the reproductive number is
slightly higher than the critical value of R0 � 1, while
significant effects are still observed for relatively high values
(at least up to 4.4).

Limitations and Shortcomings of the Model
The present model is limited in several aspects. First, it only
considers pathogen spread due to close personal contact.
However, growing evidence suggests that aerosol and fomite
transmission are additional routes of infection of Covid-19 (Lu
et al., 2020; Shen et al., 2020). Detailed models simulating the
physics of aerosol and fomite transmission have been applied to
hospital infrastructures during outbreaks of other diseases such as
influenza (Kraay et al., 2018; Wong et al., 2010), and could be
integrated to refine our basic model on the impact of robotic
scenarios on pathogen spread. Robots such as for example those
used as companion robots can be in frequent contact with several
patients and thus also be a source of pathogen contagion via
fomite transmission. Maintenance and cleaning of robots,

FIGURE 3 | Development of the basic reproductive number R0 in Germany. While R0 was at 1.3 on April 7th, 2020, it decreased below the critical value of R0 � 1
shortly after April 7th until June 21st, where it surged to 2.03. For the majority of time thereafter, R0 stayed above 1, at the time of writing it is 1.22. Source: Reprinted with
permission from Robert-Koch-Institute.

TABLE 2 | Results for the probability of pathogen spread across the network for
different reproductive numbers.

Scenario Reproductive number R0

4.4 3.4 1.2 0.6

Ratio of non-spreading trials
No robotic assistance 0.1 0.22 0.67 0.92
Assist rand 5 NUR 0.16 0.2 0.83 1.0
Assist top 5 NUR 0.22 0.28 0.96 1.0
Assist top 3 NUR-Rand 2 MD 0.21 0.24 0.96 0.99
Assist all NUR-PAT contacts 0.23 0.27 0.75 0.96
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including disinfection robots, are other potential sources of
transmission for healthcare and maintenance personnel. These
effects can also be modeled for an accurate balance of the effect of
robotic integration in the spread of infectious diseases with
surface contact as a major via of transmission. Second, our
spreading model runs on real proximity contact data obtained
from a geriatric unit during a non-pandemic state. While we
considered a range of values of the reproductive number that
occurred at different stages of the Covid-19 pandemics, it will be
necessary to also test the model with contact data obtained at such
stages. Third, detailed proximity contact data of HCW and
patients are not publicly available for larger healthcare
infrastructures such as entire hospitals. How the predictions of
the effects of robotic assistance scale to larger nursing homes and
geriatric units will require further data. Fourth, modeling a
specific robotic system integration within the real network of
proximity contacts would require a refined annotation of the
activity conducted during each contact to determine which
interactions can be replaced by specific types of robot and
tasks. Our model abstracted from the specific robotic system
including the network of specific personnel and patients, and
assumed that robotic integration operated at the level of an
effective number of node replacement or removal of interactions.

Overall, we believe that the present model is a step in modeling
the potential impact of robotic assistance in pathogen spread, and
that new data will make possible models tailored to specific
situations and robotic systems.

Yield, Timing and Cost of Robotic
Integration Into Clinical Use
Robots have been utilized to assist humans in a variety of
hazardous tasks, including visual aid (Xing et al., 2017) for
firefighters (Tuffield and Elias, 2003), in nuclear environments
and in mountain rescue (Sugiyama et al., 2013). The use of robots
for infectious diseases has come into the spotlight with the Covid-
19 pandemic. Acquisition of new robotic technology considers
two major factors for hospital administrations: Yield and cost.
Our study suggests that robots can significantly reduce infectious
spread to protect healthcare workers and patients. Our data
points out that the determination of HCW with a high
number of contacts and targeted replacement of these HCW
yields the most effective reduction in pathogen spread. While
robots have been used during Covid-19 to employ an entire unit
of a hospital (https://hbr.org/2020/04/how-hospitals-are-using-
ai-to-battle-covid-19. https://www.medicaldevice-network.
com/features/coronavirus-robotics/), our results demonstrate
that integration of a smaller number of robots focused on high-
risk HCW can significantly reduce cost and effectively decrease
spreading probability. The basic reproductive number R0 also plays
an important role in the efficiency of robotic implementation.
During times, when R0 is below the critical number of 1,
application of robots does not have a significant value,
whereas with R0 values just above one or higher, robots
can reduce infectious spread effectively. Thus, monitoring

of R0 (Figure 3) and selection of appropriate time windows is
a critical factor. Another important consideration is the use
of personal protective equipment (PPE). PPE shortage has
been a key concern during the Covid-19 pandemic, creating
competition between governments and prioritizing certain
countries over others. The integration of robots reduces the
need for PPE since less HCW work within the unit. This can
alleviate pressure during PPE shortage. In addition, robots
can serve at maximum capacity to meet the increased need
during extraordinary times.

METHODS

Simulation of Infectious Spread
For pathogen spread, we consider a model with six states
according to the disease status of the individual: Susceptible
(S), exposed (E), latent (L), infected undetected (Iu), infected
diseased (Id), and recovered (R) (Ivorra et al., 2020). See Figure 4
for the graphical depiction of the model and transitions between
states. The model is a recent variation of the well-established
Susceptible-Exposed-Infected-Recovered (SEIR) model, adapted
to the epidemiological characteristics of Covid-19, including the
latencies (Eguíluz et al., 2020; Flaxman et al., 2020; Bi et al., 2020;
Lauer et al., 2020) and the reported large fraction of
asymptomatic cases occurring in this disease (Ivorra et al.,
2020). All individuals start with a susceptible status. Upon
close contact with an infected or latent case, an individual in
susceptible state (S) will transition to the state of exposed (E) with
probability β, which controls the transmissibility of the disease.

FIGURE 4 | Model of Covid-19 transmission. Transition model used to
simulate the spread of infectious disease with epidemiological characteristics
of Covid-19 on a real sequence of contact data in a geriatric unit. Upon close
contact with a latent (L) or infected case (Iu and Id stand for infected
asymptomatic and diseased states, respectively), an individual in susceptible
state (S) will transition to the state of exposed (E) with probability β, which
controls the transmissibility of the disease. The individuals in the E state remain
in such a state for a time interval τE before entering into the latent state (L).
After a duration τL an individual in the latent state will transition with probability
α to an infected undetected (or asymptomatic) state (Iu), and with probability 1-
α to an infected diseased (Id) state. Each infected individual remains in its
infected state for latencies τIu and τId, respectively, before being effectively
removed from the spreading population after becoming removed or recovered
(R). The model operates until all individuals belong to either the S or R states,
the moment in which the local outbreak ends. All latencies are probabilistically
sampled from Gamma distributions fitted for the dynamics of Covid-19 (Lauer
et al., 2020).
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An individual will remain in the E state for a time interval of
duration τE before entering into the latent state (L). After a
duration τL an individual in the latent state will transition with
probability α to an infected undetected (or asymptomatic) state
(Iu), and with probability 1-α to an infected diseased (Id) state.
Each infected individual remains in its infected state for latencies
τIu and τId, respectively, before being effectively removed from
the spreading population after becoming removed or
recovered (R).

Under different scenarios, we quantify the infectious spread
occurring from a single individual. The model is based on a real
sequence of close proximity contacts obtained from a geriatric
unit as described in the section Proximity contact dataset.

The proximity contact network is critical to simulate the
model in a real setting and avoid the assumption of random
or homogeneous mixing of individuals in a population that is
characteristic of models used at larger scales. As the propagation
of Covid-19 takes longer than 4 days (duration of the recordings
of the real sequence of close contacts), we repeat the interaction
sequence in a loop when running the infectious spread model.

For each scenario simulated, we randomly select one nurse to
become infected at day zero and run the spread model until all
individuals eventually belong to the S or R state. That is, the
spread and simulation stop when only susceptible and recovered
individuals remain. We repeat each simulation 100 times to
account for the variability of the spread dynamics (measured
by the standard error of the mean; s.e.m.) and collect averaged
statistics. The average computer running time for the 100 trials
was 8 h per scenario on Google Collab (on machines that use
single core hyper-threaded Xeon processors running at 2.3 GHz).
The simulations are implemented in python as interactive python
notebooks and can be found at the repository: https://github.com/
Mo-youssef/Robotic-Impact-Simulation.git.

Incubation Period and Latencies
The incubation period, which includes the E and L compartments, is
estimated at around 6 days (Bi et al., 2020) Specifically, the incubation
period considers an average latency of 2 days in exposed (E
compartment) and 4 days in the latent state (L compartment), in
which the infected person is undetected but still contagious. All
latencies are randomly sampled from Gamma distributions
(Flaxman et al., 2020). The Gamma distributions have a shape
parameter of 3, and we fit their scale parameter to adjust the
mean of the distribution to the reported values. All default model
parameters are described in Supplementary Table S4.

Proximity Contact Dataset
Infectious spread is modelled based on real data of personal
contacts among patients, as well as between patients and
HCW in a geriatric unit (Vanhems et al., 2013). The dataset
was obtained using unobstructive wearable badges
embedded with small active radiofrequency devices that could
exchange ultra-low-power radio packets when facing another tag
within a distance of 1.5m. The dataset includes proximity contact
data for 29 patients (PAT) and 46HCW.Out of these 46HCWs, there
are 27 nurses (NUR), eleven doctors (MD) and eight administrators
(ADM). A contact was recorded when two individuals faced each

other for more than 20 s. The contacts were recorded during
4 days and four nights. There was a total of 14,037 contacts in
this period, including contacts extending 20 s, for a total of
10,808 min of contact.

Scenarios
We study the effect of robotic assistance by simulating four
scenarios and comparing them to the case without robotics
intervention.
In total, the five scenarios are:

1. No robotic assistance.
2. Assistance to five random nurses.
3. Assistance to Top 5 high-risk nurses.
4. Assistance to Top 3 high-risk nurses and 2 random medical

doctors.
5. Assistance in all interactions between nurses and patients.

In all cases, it is assumed that the robotics assistance allows
interactions of the specific HCW being assisted to not be of a
close-contact type and hence, to not lead to contagion by personal
proximity with an infected individual.

Measures Used to Characterize the
Infectious Spread
R0. R0 is the basic reproduction number and is calculated as the
average number of people who are directly infected by one person
with the disease.

Number of susceptible cases. It refers to the number of
subjects remaining in the susceptible state, i.e. who have not
been infected by the end of the outbreak episode.

Propagating trials. We define the infection dynamics as
propagating when the spread is such that the fraction of
susceptible individuals by the end of the episode is less than
90% of the total population. For the scenarios described above, we
report the fraction of trials in which the spread dynamics are
propagating and the average percentage of infected individuals.

I30. I30 is calculated as the number of active infection cases
(individuals in states E, L, Iu or Id) on day 30 after the first
infection among the population.

T10. T10 is the number of days elapsed from the first to the 10th
infection in the population.

In all cases, we always report the values for these metrics as
their mean value over 100 trials together with their respective
standard error of the mean.

Calibrating the Probability of Disease
Transmission Upon Proximity Contact
The probability of disease transmission of disease upon close contact
(β) is the main parameter controlling the spread of infection in the
model. To determine a reasonable estimate for this parameter, we
scanned a range of values of β from 0.0001 to 0.0095 at steps of 0.001.
For each value of β, we repeat 10 simulations of the model for
50 days to determine the basic reproductive number. We determine

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6526857

Vicente et al. Modelling Robot Impact in Healthcare

304

https://www.google.com/url?q=https://github.com/Mo-youssef/Robotic-Impact-Simulation.gitsa=Dsource=editorsust=1617908573467000usg=AOvVaw2g--Ro6avKP0yZYjJoelZn
https://www.google.com/url?q=https://github.com/Mo-youssef/Robotic-Impact-Simulation.gitsa=Dsource=editorsust=1617908573467000usg=AOvVaw2g--Ro6avKP0yZYjJoelZn
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


that the range of β between 0.0001 and 0.0025 results in spreading
simulations displaying a basic reproductive number R0 in the most
frequent ranges reported along the pandemic for Covid-19 (Flaxman
et al., 2020).
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The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading
and causing hundreds of thousands of deaths around the world as of its first emergence in
late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures
and arises the need to allocate medical equipment and resources more efficiently. The
early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-
COVID cases, which will be helpful for health care authorities to optimize resource
allocation plans and early prevention of the disease. In this regard, a growing number
of studies are investigating the capability of deep learning for early diagnosis of COVID-19.
Computed tomography (CT) scans have shown distinctive features and higher sensitivity
compared to other diagnostic tests, in particular the current gold standard, i.e., the
Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-
based algorithms are mainly developed based on Convolutional Neural Networks (CNNs)
to identify COVID-19 pneumonia cases. CNNs, however, require extensive data
augmentation and large datasets to identify detailed spatial relations between image
instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level
predictions to patient-level ones using a simple thresholding mechanism or rely on a
sophisticated infection segmentation to identify the disease. In this paper, we propose a
two-stage fully automated CT-based framework for identification of COVID-19 positive
cases referred to as the “COVID-FACT”. COVID-FACT utilizes Capsule Networks, as its
main building blocks and is, therefore, capable of capturing spatial information. In
particular, to make the proposed COVID-FACT independent from sophisticated
segmentations of the area of infection, slices demonstrating infection are detected at
the first stage and the second stage is responsible for classifying patients into COVID and
non-COVID cases. COVID-FACT detects slices with infection, and identifies positive
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COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community
acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT
achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and
an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and
annotation, in comparison to its counterparts.

Keywords: capsule networks, COVID-19, computed tomography scans, fully automated classification, deep learning

1 INTRODUCTION

The recent outbreak of the novel coronavirus infection (COVID-
19) has sparked an unforeseeable global crisis since its emergence
in late 2019. Resulting COVID-19 pandemic is reshaping our
societies and people’s lives in many ways and caused more than
half a million deaths so far. In spite of the global enterprise to
prevent the rapid outbreak of the disease, there are still thousands
of reported cases around the world on daily bases, which raised the
concern of facing a major second wave of the pandemic. Early
diagnosis of COVID-19, therefore, is of paramount importance, to
assist health and government authorities with developing efficient
resource allocations and breaking the transmission chain.

Reverse Transcription Polymerase Chain Reaction (RT-PCR),
which is currently the gold standard in diagnosing COVID-19, is
time-consuming and prone to high false-negative rate (Fang et al.,
2020). Recently, chest Computed Tomography (CT) scans and
Chest Radiographs (CR) of COVID-19 patients, have shown
specific findings, such as bilateral and peripheral distribution
of Ground Glass Opacities (GGO) mostly in the lung lower lobes,
and patchy consolidations in some of the cases (Inui et al., 2020).
Diffuse distribution, vascular thickening, and fine reticular
opacities are other commonly observed features of COVID-19
reported in (Bai et al., 2020; Chung et al., 2020; Ng et al., 2020; Shi
et al., 2020). Although imaging studies and their results can be
obtained in a timely fashion, such features can be seen in other
viral or bacterial infections or other entities such as organizing
pneumonia, leading to misclassification even by experienced
radiologists.

With the increasing number of people in need of COVID-19
examination, health care professionals are experiencing a heavy
workload reducing their concentration to properly diagnose
COVID-19 cases and confirm the results. This arises the need
to distinguish normal cases and non-COVID infections from
COVID-19 cases in a timely fashion to put a higher focus on
COVID-19 infected cases. Using deep learning-based algorithms
to classify patients into COVID and non-COVID, health care
professionals can exclude non-COVID cases quickly in the first
step and allow for paying more attention and allocating more
medical resources to COVID-19 identified cases. It is worth
mentioning that although the RT-PCR, as a non-destructive
diagnosis test, is commonly used for COVID-19 detection, in
some countries with high number of COVID-19 cases, CT
imaging is widely used as the primary detection technique.
Therefore, there is an unmet need to develop advanced deep
learning-based solutions based on CT images to speed up the
diagnosis procedure.

1.1 Literature Review
Convolutional Neural Networks (CNNs) have been widely used
in several studies to account for the human-centered weaknesses
in detecting COVID-19. CNNs are powerful models in related
tasks and are capable of extracting distinguishing features from
CT scans and chest radiographs (Yamashita et al., 2018). In this
regard, many studies have utilized CNNs to identify COVID-19
cases from medical images. The study by (Wang and Wong,
2020), is an example of the application of CNN in COVID-19
detection, where CNN is first pre-trained on the ImageNet dataset
(Krizhevsky et al., 2017). Fine-tuning is then performed using a
CR dataset. Results show an accuracy of 93.3% in distinguishing
normal, non-COVID-19 pneumonia (viral and bacterial), and
COVID-19 infection cases (Sethy et al., 2020). have also explored
the same problem with the difference that the CNN is followed by
a Support Vector Machine (SVM), to identify positive COVID-19
cases. Their obtained results show an overall accuracy of 95.38%,
sensitivity of 97.29% and specificity of 93.47%. Another study by
(Mahmud et al., 2020) proposed a CNN-based model utilizing
depth-wise convolutions with varying dilation rates to extract
more diversified features from chest radiographs. They used a
pre-trained model on a dataset of normal, viral, and bacterial
pneumonia patients followed by additional fine-tuned layers on a
dataset of COVID-19 and other pneumonia patients, obtaining
an overall accuracy of 90.2%, sensitivity of 89.9%, and specificity
of 89.1%.

Chest radiograph acquisition is relatively simple with less
radiation exposure than CT scans. However, a single CR image
fails to incorporate details of infections in the lung and cannot
provide a comprehensive view for the lung infection diagnosis. CT
scan, on the other hand, is an alternative imaging modality that
incorporates the detailed structure of the lung and infected areas.
Unlike CR images, CT scans generate cross-sectional images
(slices) to create a 3D representation of the body. Consequently,
there has been a surge of interest on utilizing 2D and 3DCT images
to identify COVID-19 infection. For instance (Yang et al., 2020),
proposed a DenseNet-based model to classify manually selected
slices with COVID-19 manifestations and pulmonary parenchyma
into COVID-19 and normal classes. The underlying study
achieved an accuracy of 92% on the patient-level classification
by averaging slice-level probabilities followed by a threshold of 0.8
on the averaged values. Furthermore, the dataset used to train and
test the model does not include other types of pneumonia.
Identified Drawback 1: Such methods require manual selecting
slices demonstrating infection to feed the model, which makes the
overall process time-consuming and only partially automated. To
extract features from all CT slices (Li et al., 2020), first segmented
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the lung regions using a U-net based segmentation method
(Ronneberger et al., 2015), and then used them to fine-tune a
ResNet50 model, which was pre-trained on natural images from
the ImageNet dataset (Deng et al., 2009). Extracted features are
then combined using a max-pooling operation followed by a fully
connected layer to generate probability scores for each disease type.
Their proposedmodel achieved sensitivities of 90%, 87%, and 94%
for COVID-19, Community Acquired Pneumonia (CAP), and
non-pneumonia cases respectively. Identified Drawback 2: Such
methods combine extracted features from all slices of a patient,
with or without infection, which potentially results in lower
accuracy as there are numerous slices without evidence of
infection in a volumetric CT scan of an infected patient.

In the study by (Hu et al., 2020), segmented lungs are fed into a
multi-scale CNN-based classification model, which utilizes
intermediate CNN layers to obtain classification scores, and
aggregates scores generated by intermediate layers to make the
final prediction. Their proposed method achieves an overall
accuracy of 87.4% in the three-way classification (Zhang et al.,
2020). proposed a two-stage method consisting of a Deeplabv3-
based lung-lesion segmentation model (Chen et al., 2017)
followed by a 3D ResNet18 classification model (Hara et al.,
2017) to identify lung lesions and abnormalities and use them to
classify patients into COVID-19, community acquired
pneumonia, and normal findings. They manually annotated
chest CT scans into seven regions to train their lung
segmentation model, which is a time-consuming and
sophisticated task requiring high level of thoracic radiology
expertise to accomplish. Their proposed method achieves the
overall accuracy of 92.49% in both three-way and binary
(COVID-19 vs. others) classifications.

1.2 Problem Statement
At one hand, we aim to address the two identified drawbacks of the
aforementioned methods. More specifically, existing solutions
either require a precise annotation/labeling of lung images,
which is time-consuming and error-prone, especially when we
are facing a new and unknown type of disease such as COVID-
19, or assign the patient-level label to all the slices. On the other
hand, CNN, which is widely adopted in COVID-19 studies, suffers
from an important drawback that reduces its reliability in clinical
practice. CNNs are required to be trained on different variations of
the same object to fully capture the spatial relations and patterns. In
other words, CNNs, commonly, fail to recognize an object when it is
rotated or transformed. In practice, extensive data augmentation
and/or adoption of huge data resources are needed to compensate
for the lack of spatial interpretation. As COVID-19 is a relatively
new phenomenon, large datasets are not easily accessible, especially
due to strict privacy preserving constraints. Furthermore, most
COVID-19 cases have been reported with a specific infection
distribution in their image (Bai et al., 2020; Chung et al., 2020;
Ng et al., 2020; Shi et al., 2020), which makes capturing spatial
relations in the image highly important.

1.3 Contributions
As stated previously, structure of infection spread in the lung for
COVID-19 is not yet fully understood given its recent and abrupt

emergence. Furthermore, COVID-19 has a particular structure in
affecting the lung, therefore, picking up those spatial structures are
significantly important. Capsule Networks (CapsNets) (Hinton
et al., 2018), in contrast to CNNs, are equipped with routing by
agreement process enabling them to capture such spatial patterns.
Even without a large dataset, capsules interpret the object
instantiation parameters, besides its existence, and by reaching a
mutual agreement, higher-level objects are developed from lower-
level ones. The superiority of Capsule Networks over their
counterparts has been shown in different medial image
processing problems (Afshar et al., 2018; Afshar et al., 2019a;
Afshar et al., 2019b; Afshar et al., 2020b; Afshar et al., 2020d; Afshar
et al., 2020c). Recently, we proposed a Capsule Network-based
framework (Afshar et al., 2020a), referred to as the COVID-CAPS,
to identify COVID-19 cases from chest radiographs, which
achieved an accuracy of 98.3%, a specificity of 98.6%, and a
sensitivity of 80%. As stated previously, CT imaging is superior
for COVID-19 detection and diagnosis purposes when compared
to chest radiographs. However, as in the case of CT imaging, we are
dealing with 3D inputs and several slices per patient (compared to
one chest radiograph per patient), the learning process is
significantly more challenging. As such, accuracies of deep
models trained over CT scans cannot be directly compared with
those obtained based on chest radiographs.

Following our previous study on chest radiographs, in the
present study, we take one step forward and propose a fully
automated two-stage Capsule Network-based framework,
referred to as the COVID-FACT, to identify COVID-19
patients using chest CT images. Based on our in-house
dataset, COVID-FACT achieves an accuracy of 90.82%,
sensitivity of 94.55%, specificity of 86.04%, and Area Under
the Curve (AUC) of 0.98. We developed two variants of the
COVID-FACT, one of which is fed with the whole chest CT
image, while the other one utilizes the segmented lung area as the
input. In the latter case, instead of using an original chest CT
image, first a segmentation model (Hofmanninger et al., 2020) is
applied to extract the lung region, which is then provided as input
to the COVID-FACT. This will be further clarified in Section 3.
Experimental results show that the model coupled with lung
segmentation achieves the same overall accuracy compared to the
other COVID-FACT variation working with original images.
However, using the segmented lung regions increases the
sensitivity and AUC from 92.72% and 0.95 to 94.55% and
0.98, respectively, while slightly decreasing the specificity from
88.37% to 86.04%.

COVID-FACT benefits from a two-stage design, which is of
paramount importance in COVID-19 detection using CT scans,
as a CT examination is typically associated with hundreds of slices
that cannot be analyzed at once. At the first stage, the proposed
COVID-FACT detects slices demonstrating infection in a 3D
volumetric CT scan to be analyzed and classified at the next stage.
At the second stage, candidate slices detected at the previous stage
are classified into COVID and non-COVID (community
acquired pneumonia and normal) cases and a voting
mechanism is applied to generate the classification scores in
the patient level. COVID-FACT’s two-stage architecture has
the advantage of being trained by even weakly labeled dataset,
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as errors at the first stage can be compensated at the second stage.
As a result, COVID-FACT does not require any infection
annotation or a very precise slice labeling, which is a valuable
asset due to the limited knowledge and experience on the novel
COVID-19 disease. In fact, manual annotation is completely
removed from the COVID-FACT. The only information
required from the radiologists to train the first stage is the
slices containing evidence of infection. In other words,
COVID-FACT is not dependent on the manual delineation of
specific infected regions in the slices, which is a complicated and
time-consuming task compared to only identifying slices with the
evidence of infection. This issue is more critical in the case of a
novel disease such as COVID-19, which requires comprehensive
research to identify the disease manifestations. It is worth noting
that the pre-trained lung segmentation model used as the pre-
processing step in our study is related to the well-studied lung
segmentation task, which is totally different from the infection
segmentation. As a final note, we would like to mention that the
radiologist’s input is not required in the test phase of the COVID-
FACT and the trained framework is fully automated.

The reminder of the paper is organized as follows: Section 2
describes the dataset and imaging protocol used in this study.
Section 3 presents a brief description of Capsule Networks and
explains the proposed COVID-FACT in details. Experimental
results and model evaluation are presented in Section 4. Finally,
Section 5 concludes the work.

2 MATERIALS AND EQUIPMENT

In this section, we will explain the in-house dataset used in this
study, along with the associated imaging protocol.

2.1 Dataset
The dataset used in this study, referred to as the “COVID-CT-
MD” Afshar et al. (2021), contains volumetric chest CT scans of
171 patients positive for COVID-19 infection, 60 patients with
Community Acquired Pneumonia (CAP), and 76 normal patients
acquired from April 2018 to May 2020. The average age of
patients is 50 ± 16 including 183 men and 124 women. This
dataset and the related annotations are publicly available through
Figshare at https://figshare.com/s/c20215f3d42c98f09ad0.

Diagnosis of COVID-19 infection is based on positive real-time
reverse transcription polymerase chain reaction (rRT-PCR) test
results, clinical parameters, and CT scan manifestations by a
thoracic radiologist, with 20 years of experience in thoracic
imaging. CAP and normal cases were included from another
study and the diagnosis was confirmed using clinical parameters,
and CT scans. A subset of 55 COVID-19, and 25 community
acquired pneumonia cases were analyzed by the radiologist to
identify and label slices with evidence of infection as shown in
Figure 1. This labeling process focuses more on distinctive
manifestations rather than slices with minimal findings. The
labeled subset of the data contains 4, 962 number of slices
demonstrating infection and 18, 447 number of slices without
infection. The data is then used to train and validate the first
stage of our proposed COVID-FACT model to extract slices

demonstrating infection from volumetric CT scans to be used in
the second classification stage.We have randomly divided this subset
into three separate components for training, validation, and testing.
60% of the labeled data is used for training, 10% for validation, and
30% for the test. The unlabeled subset is also randomly divided with
the same proportion and used along with the labeled data to develop
the second stage of the COVID-FACT model and evaluate the
overall method. The data leakage between the train and test sets has
been prevented. In other words, all slices related to a patient are
included either in the train or the test dataset. This research work is
performed based on the policy certification number 30013394 of
Ethical acceptability for secondary use of medical data approved by
Concordia University. Furthermore, informed consent is obtained
from all the patients. Finally, the dataset is complied with the
DICOM supplement 142 (Clinical Trial De-identification Profiles)
DICOM Standards Committee, Working Group 18 Clinical Trials
(2011), indicating that all CT studies are de-identified by either
removing or obfuscating the patient and center-related information
such as names, UIDs, dates, times, and comments based on the
directions specified in DICOM Standards Committee, Working
Group 18 Clinical Trials (2011).

2.2 Imaging Protocol
All CT examinations have been acquired using a single CT
scanner with the same acquisition setting and technical
parameters, which are presented in Table 1, where kVP
(kiloVoltage Peak) and Exposure Time affect the radiation
exposure dose, while Slice Thickness and Reconstruction

FIGURE 1 | (A,B): Infected and non-infected sample slices in a COVID-
19 case; (C,D): Infected and non-infected sample slices in a non-COVID
Pneumonia case.
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Matrix represent the axial resolution and output size of the
images, respectively Raman et al. (2013). Next, we describe the
proposed COVID-FACT framework followed by the
experimental results.

3 METHODS

The COVID-FACT framework is developed to automatically
distinguish COVID-19 cases from other types of pneumonia
and normal cases using volumetric chest CT scans. It utilizes a
lung segmentation model at a pre-processing step to segment
lung regions and pass them as the input to the two-stage Capsule
Network-based classifier. The first stage of the COVID-FACT
extracts slices demonstrating infection in a CT scan, while the
second stage uses the detected slices in first stage to classify
patients into COVID-19 and non-COVID cases. Finally, the
Gradient-weighted Class Activation Mapping (Grad-CAM)
localization approach (Selvaraju et al., 2017) is incorporated
into the model to highlight important components of a chest
CT scan, that contribute the most to the final decision.

In this section, different components of the proposed COVID-
FACT are explained. First, Capsule Network, which is the main
building block of our proposed approach, is briefly introduced.
Then the lung segmentation method is described, followed by the
details related to the first and second stages of the COVID-FACT
architecture. Finally, the Grad-CAM localization mapping
approach is presented.

3.1 Capsule Networks
A Capsule Network (CapsNet) is an alternative architecture for
CNNs with the advantage of capturing hierarchical and spatial
relations between image instances. Each Capsule layer utilizes
several capsules to determine existence probability and pose of
image instances using an instantiation vector. The length of the
vector represents the existence probability and the orientation
determines the pose. Each Capsule i consists of a set of neurons,
which collectively create the instantiation vector ui for the
associated instance. Capsules in lower layers try to predict the
output of Capsules in higher levels using a trainable weight matrix
W ij as follows

ûj|i � W ijui, (1)

where ûj|i is the predicted output of Capsule j in the next layer by
the Capsule i in the lower layer. The association between the
prediction ûj|i and the actual output of Capsule j, denoted by vj, is
determined by taking the inner product of ûj|i and vj. The higher
the inner product, the more contribution of the lower level
capsules to the higher level one. The contribution of Capsule i

to the output of the Capsule j in the next layer is determined by a
coupling coefficient cij, trained over a course of few iterations
known as the “Routing by Agreement” given by

aij � vj . ûj|i, (2)

bij � bij + aij, (3)

cij �
exp(bij)

∑k exp(bik)
, (4)

sj � ∑

i

cijûj|i, (5)

and
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�sj
�
�
�
�

2
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�
�
�sj
�
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�

2

sj
�
�
�
�sj

�
�
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�

, (6)

where aij is referred to as the agreement coefficient between the
prediction and actual output, and bij denotes the log prior of the
coupling coefficient cij. Vector sj denotes the Capsule output
before applying the squashing function. As the length of output
vectors represents probabilities, the ultimate output of Capsule j
(vj) is obtained by squashing sj between 0 and 1 using the
squashing function defined in Eq. 6. In order to update weight
matrixW ij through a backward training process, the loss function
is calculated for each Capsule k as follows

lk � Tk max(0,m+ − ||vk||)2 + λ(1 − Tk)max (0, ||vk|| −m−)2,
(7)

where Tk is 1 when the class k is present and 0 otherwise.m+,m−,
and λ are hyper parameters of the model and are originally set to
0.9, 0.1, and 0.5, respectively. The overall loss is the summation of
all losses calculated for all Capsules.

3.2 Proposed COVID-FACT
The overall architecture of the COVID-FACT is illustrated in
Figure 2, which consists of a lung segmentation model at the
beginning followed by two Capsule Network-based models and
an average voting mechanism coupled with a thresholding
approach to generate patient-level classification results. The
three components of the COVID-FACT are as follows:

• Lung Segmentation: The input of the COVID-FACT is the
segmented lung regions identified by a U-net based
segmentation model (Hofmanninger et al., 2020), referred
to as the “U-net (R231CovidWeb)”, which has been initially
trained on a large and diverse dataset including multiple
pulmonary diseases, and fine-tuned on a small dataset of
COVID-19 images. The Input of the U-net (R231CovidWeb)
model is a single slice with the size of 512 × 512. The output is
the lung tissues, which will be normalized between 0 and 1 to

TABLE 1 | Imaging device and settings used to acquire the in-house dataset.

Scanner manufacturer and
model

Slice
thickness (mm)

Image
type

kVP
(kV)

Exposure
time (ms)

Reconstruction
matrix

Window
center

Window
width

SIEMENS, SOMATOM scope 2 Axial 110 600 512 × 512 (50,−600) (350, 1200)
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generalize the features and help the model to perform more
effectively. Following the literature (Hu et al., 2020; Zhang
et al., 2020), we down-sampled the output from 512 × 512 to
256 × 256 size to reduce the complexity and memory
allocation without losing any significant information. Slices
with no detected lung regions are removed and the remaining
are fed into the first stage of the COVID-FACT model.

• COVID-FACT’s Stage One: The first stage of the COVID-
FACT, shown in Figure 3 is responsible to identify slices
demonstrating infection (by COVID-19 or other types of
pneumonia). Using this stage, we discard slices without
infection and focus only on the ones with infection.
Intuitively speaking, this process is similar in nature to the
way that radiologists analyze a CT scan. When radiologists
review a CT scan containing numerous consecutive cross-
sectional slices of the body, they identify the slices with an
abnormality in the first step, and analyze the abnormal ones to
diagnose the disease in the next step. Existing CT-based deep
learning processing methods either use all slices as a 3D input
to a classifier, or classify individual slices and transform slice-
level predictions to the patient-level ones using a threshold on
the entire slices (Rahimzadeh et al., 2021). Determining a
threshold on the number or percentage of slices demonstrating
infection over the entire slices is not precise, as most
pulmonary infections have different stages with involvement
of different lung regions (Yu et al., 2020). Furthermore, a CT

scan may contain different number of slices depending on the
acquisition setting, which makes it impossible to find such a
threshold. In most methods passing all slices as a 3D input to
the model, the input size is fixed and the model is trained to
assign higher scores to slices demonstrating infection.
However, the performance of such models will be reduced
when testing on a dataset other than the dataset on which they
are originally trained (Zhang et al., 2020).

The model used in stage one of the proposed COVID-FACT is
adapted from the COVID-CAPSmodel presented in our previous
work (Afshar et al., 2020a), which was developed to identify
COVID cases from chest radiographs. The first stage consists of
four convolutional layers and three capsule layers. The first and
second layers are convolutional ones followed by a batch-
normalization. Similarly, the third and fourth layers are
convolutional ones followed by a max-pooling layer. The
fourth layer, referred to as the primary Capsule layer, is
reshaped to form the desired primary capsules. Afterwards,
three capsule layers perform sequential routing processes.
Finally, the last Capsule layer represents two classes of infected
and non-infected slices. The input of stage one is set of CT slices
corresponding to a patient, and the output is slices of the
volumetric CT scan demonstrating infection. The output of
stage one may vary in size for each patient due to different
areas of lung involvement and phase of infection.

FIGURE 2 | The two-stage architecture of the proposed COVID-FACT.

FIGURE 3 | Architecture of the COVID-FACT at stage one.
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In order to cope with our imbalanced training dataset, we
modified the loss function, so that a higher penalty rate is given to
the false positive (infected slices) cases. The loss function is
modified as follows

loss � N+

N+ + N− × loss− + N−

N+ + N− × loss+, (8)

where N+ is the number of positive samples, N− is the number of
negative samples, loss+ denotes the loss associated with positive
samples, and loss− denotes the loss associated with negative
samples.

• COVID-FACT’s Stage Two: As mentioned earlier, we need to
apply classificationmethods on a subset of slices demonstrating
infection rather than on the entire slices in a CT scan. It is
worth noting that, lung segmentation (i.e., extracting lung
tissues) is performed in one of the variants of the COVID-
FACT as a pre-processing step. The first stage of the COVID-
FACT, on the other hand, is tasked with this specific issue of
extracting slices demonstrating infections.

The second stage of the COVID-FACT takes candidate slices
of a patient detected in stage one as the input, and classifies them
into one of COVID-19 or non-COVID (including normal and
pneumonia) classes, i.e., we consider a binary classification
problem. Stage two is a stack of four convolutional and two
capsule layers shown in Figure 4. The output of the last capsule
indicates classification probabilities in the slice-level. An average
voting function is applied to the classification probabilities, in
order to aggregate slice-level values and find the patient-level
predictions as follows

P( pk ∈ c) � 1
Lk

∑

Lk

i�1
P (ski ∈ c), (9)

where P(pk ∈ c) refers to the probability that patient k belongs to the
target class c (e.g., COVID-19), Lk is the total number of slices
detected in stage one for patient k, and P(ski ∈ c) refers to the
probability that the ith slice detected for patient k belongs to the

target class c. It is worth noting that while, initially, the COVID-
FACT performs slice-level classification in its second stage, the
output is patient-level classification (through its voting
mechanism), which is on par with other works that COVID-
FACT is compared with. As a final note to our discussion, we
would like to add that, corona virus infection is, typically, distributed
across the lung volume as such manifests itself in several CT slices.
Therefore, having a single slice identified as COVID-19 infection can
not necessarily lead to a positive COVID-19 detection.

Similar to stage one, the loss function modification in Eq. 8 is
used in the training phase of Stage two. The default cut-off
probability of 0.5 is chosen in Stage two to distinguish
COVID-19 and non-COVID cases. However, it is worth
mentioning that the main concern in the clinical practice is to
have a high sensitivity in identifying COVID-19 positive patients,
even if the specificity is not very high. As such, the classification
cut-off probability can be modified by physicians using the ROC
curve shown in Figure 5 in order to provide a desired balance
between the sensitivity and the specificity (e.g., having a high
sensitivity while the specificity is also satisfying). In other words,
physicians can decide howmuch certainty is required to consider a
CT scan as a COVID-19 positive case. By choosing a cut-off value
higher than 0.5, we can exclude those community acquired
pneumonia cases that contain highly overlapped features with
COVID-19 cases. On the other hand, by selecting a lower cut-
off value, we will allow more cases to be identified as a COVID-
19 case.

To further improve the ability of the proposed COVID-FACT
model to distinguish COVID-19 and non-COVID cases and
attenuate effects of errors in the first stage, we classify all
patients with less than 3% of slices demonstrating infection in
the entire volume as a non-COVID case. These cases are more
likely normal cases without any slices with infection. The few slices
with infection identified for these cases might be due to the model
error in the first stage, non-infectious abnormalities such as
pulmonary fibrosis, or motion artifacts in the original images,
which will be covered by this threshold. Based on (Yu et al.,
2020), it can be interpreted that 4% lung involvement is the

FIGURE 4 | Architecture of the COVID-FACT at stage two.
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minimumpercentage for COVID-19 positive cases. In addition, the
minimum percentage of slices demonstrating infection detected by
the radiologist in our dataset is 7%, and therefore 3% would be a
safe threshold to prevent mis-classifying infected cases as normal.

As a final note, it is worth mentioning that the role of Stage 1 is
critical to achieving a fully automated framework, which does not
require any input from the radiologists, especially when an early and
fast diagnosis is desired. However, the COVID-FACT framework is
completely flexible and Stage 1 can be skipped if the slices
demonstrating infections have already been identified by the
radiologists, meaning that the normal cases are already identified
in this case and Stage 2merely separates COVID-19 and CAP cases.

• Grad-CAM: Using the Grad-CAM approach, we can visually
verify the relation between the model’s prediction and the
features extracted by the intermediate convolutional layers,
which ultimately leads to a higher level of interpretability of
the model. Grad-CAM’s outcome is a weighted average of the
feature maps of a convolutional layer, followed by a Rectified
Linear Unit (ReLU) activation function, i.e.,

Lc
Grad−CAM � RelU⎛⎝

∑

k

αc
k A

k
⎞⎠, (10)

where LcGrad−CAM refers to the Grad-CAM’s output for the target
class c; αck is the importance weight for the feature map k and the
target class c, and; Ak refers to the feature map k of a
convolutional layer. The weights αck are obtained based on the
gradients of the probability score of the target class with respect to
an intermediate convolutional layer followed by a global average
pooling function as follows

αc
k �

1
Z
∑

i

∑

j

zyc

zAk
ij

, (11)

where yc is the prediction value (probability) for target class c, and
Z refers to the total number of feature maps in the
convolutional layer.

4 EXPERIMENTAL RESULTS

The proposed COVID-FACT is tested on the in-house dataset
described earlier in Section 2. The testing set contains
53 COVID-19 and 43 non-COVID cases (including 19
community acquired pneumonia and 24 normal cases). We
used the Adam optimizer with the initial learning rate of
1e − 4, batch size of 16, and 100 epochs. The model with the
minimum loss value on the validation set was selected to evaluate
the performance of the model on the test set. The proposed
COVID-FACT method achieved an accuracy of 90.82%,
sensitivity of 94.55%, specificity of 86.04%, and AUC of 0.97.
The obtained ROC curve is shown in Figure 5. The training and
validation loss curves are also illustrated in Figure 6.

In a second experiment, we trained our model using the complete
CT images without segmenting the lung regions. The obtainedmodel
reached an accuracy of 90.82%, sensitivity of 92.72%, specificity of
88.37%, andAUCof 0.95. The correspondingROCcurve is shown in
Figure 5. This experiment indicates that segmenting lung regions in
the first step will increase the sensitivity and AUC from 92.72% and
0.95 to 90.82% and 0.98 respectively, while slightly decreases the
specificity from 88.37% to 86.04%. Although the numerical results
show a slight improvement achieved by segmenting the lung regions,
further investigating the sources of errors demonstrates the
superiority of using segmented lung regions over the original CT
scans. In the COVID-FACT model using lung segmented regions,
none of COVID-19 and community acquired pneumonia cases have
been mis-classified as a normal case by the 3% thresholding after the
first stage, and 95.84% (23/24) of normal cases have been identified
correctly using this threshold, while for the model without the lung
segmentation, there is one mis-classification of a COVID-19 case by
the 3% thresholding, and 91.66% (22/24) of normal cases were
identified correctly using this threshold.

Furthermore, we compared performance of the Capsule
Network-based framework of COVID-FACT with a CNN-
based alternative to demonstrate the effectiveness of Capsule
Networks and their superiority over CNN in terms of number
of trainable parameters and accuracy. In other words, the CNN-
based alternative model has the same front-end (convolutional
layers) as that of COVID-FACT in both stages. However, the
Capsule layers are replaced by fully connected layers including
128 neurons for intermediate layers and two neurons for the last
layer at each stage. The last fully connected layer in each stage is
followed by a sigmoid activation function and the remaining
modifications and hyper-parameters are kept the same as used in
COVID-FACT. The CNN-based COVID-FACT achieved an
accuracy of 71.43%, sensitivity of 81.82%, and specificity of
58.14%. The COVID-FACT performance, and number of
trainable parameters for examined models are presented in
Table 2. It is worth noting that in designing the CNN-based
COVID-FACT described above, the complexity and structure
have been kept similar to its capsule-based version. The goal is to
evaluate and illustrate potential advantages of capsule network
design over its CNN-based counterpart. Alternative models using
CNN architecture and fully connected layers such as the
DenseNet model (Yang et al., 2020), however, consist of
several convolutional layers and a high degree of complexity,

FIGURE 5 | ROC curve of the proposed COVID-FACT.
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as such it is expected from such complex models to outperform
the CNN-based COVID-FACT.

As mentioned earlier, the ROC curve provides physicians with a
precious tool to modify the sensitivity/specificity balance based on
their preference by changing the classification cut-off probability. To
elaborate this point, we changed the default cut-off probability from
0.5 to 0.75 and reached an accuracy of 91.83%, a sensitivity of 90.91%,
and a specificity of 93.02%. Further increasing the cut-off probability
to 0.8 results in the same accuracy of 91.83%, a lower sensitivity of
89.01%, and a higher specificity of 95.34%. On the other hand,
decreasing the cut-off probability from 0.5 to 0.35 will increase the
accuracy and the sensitivity to 91.83% and 98.18% respectively, while
slightly decreases the specificity to 83.72%. The performance of the
COVID-FACT for different values of cut-off probability are presented
in Table 3.

While performance of the COVID-FACT is evaluated by its
final decision made in the second stage, the first stage plays a
crucial role in the overall accuracy of the model. As such,
performance of the COVID-FACT in the first stage is also
reported in Table 4. As shown in Table 4, ∼ 91% of the slices
demonstrating infection are identified correctly by the COVID-
FACT at the first stage, while there are some mis-classified slices
that will be passed to the next stage as the infectious slices. It is also
evident that the CNN-based model cannot properly identify
infectious slices, which in turn led to the low performance of
the second stage. It is worth mentioning that stage one is only
responsible to detect candidate slices, while stage two classifies the
slices into COVID and non-COVID categories. The second stage is
followed by an aggregationmechanism, which takes all the slices of
a patient into account and consequently decreases the impact of
mis-classified slices at the first stage. We have also investigated the
performance of the model when the commonly used focal loss
function (Lin et al., 2017) is utilized to train the model. The

COVID-FACT framework trained by the focal loss function
(c � 2, α � 0.25) achieved the same patient-level performance
compared to our proposed model while the performance of the
first stage was lower with the accuracy of 92.79%, sensitivity of
87.69%, and the specificity of 97.03%. The lower sensitivity in the
first stage shows benefits of using the modified loss function as the
role of the first stage in the pipeline is to detect slices with the
evidence of infection to be analyzed in the second stage. As such,
the model, which is trained using our modified loss function has
been selected as the final model due to its higher accuracy and
sensitivity in detecting slices demonstrating infection.

As another experiment, performance of stage two is evaluated
without applying the first stage to provide a better comparison of
the models used in the second stage. More specifically, the stage
two model is trained based on the infectious slices identified by
the radiologist and evaluated on the labeled test set including
17 COVID-19 and 8 CAP cases. The numbers of correctly
predicted cases in this experiment are presented in Table 5.
The experimental results obtained by the COVID-FACT
framework using the lung segmentation achieved quite a
similar performance compared to the case in which the model
was trained based on the outputs of stage one. This result further
demonstrates that the Capsule Network and the aggregation
mechanism used in stage two can cope with errors in the
previous stage and achieve desirable performance. It is worth

FIGURE 6 | Training and Validation loss curves obtained for the COVID-FACT stage one and stage two.

TABLE 2 | Results obtained from COVID-FACT and the alternative CNN-based model.

Method Accuracy Sensitivity Specificity AUC Trainable parameters

COVID-FACT with lung segmentation 90.82 94.55 86.04% 0.98 406,880
COVID-FACT without lung segmentation 90.82 92.72% 88.37 0.95 406,880
CNN-based COVID-FACT 71.43% 81.82% 58.14% 0.67 365, 806, 660

TABLE 3 | Performance of COVID-FACT for different values of cut-off probability.

Cut-off probability 0.35 0.5 0.6 0.7 0.75 0.8

Accuracy (%) 91.83 90.82 91.83 90.82 91.83 91.83
Sensitivity (%) 98.18 94.55 92.73 90.91 90.91 89.01
Specificity (%) 83.72 86.04 90.70 90.70 93.02 95.34
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mentioning that this experiment was performed using only the
labeled dataset, which consequently provided a smaller dataset to
train the model.

The localization maps generated by the Grad-CAM method
are illustrated in Figure 7 for the second and fourth
convolutional layers in the first stage of the COVID-FACT. It
is evident in Figure 7 that the COVID-FACTmodel is looking at
the right infectious areas of the lung to make the final decision.
Due to the inherent structure of the Capsule layers, which
represent image instances separately, their outputs cannot be
superimposed over the input image. Consequently, in this study,
the Grad-CAM localization maps are presented only for
convolutional layers.

4.1 K-Fold Cross-Validation
We have evaluated the performance of the COVID-FACT and
its variants based on the 5-fold cross-validation (Stone, 1974) to
provide more objective assessments. In this experiment, the
COVID-FACT achieves the accuracy of 87.61 ± 2.00%, the
sensitivity of 88.30 ± 3.22%, and specificity of 86.75 ± 1.91%.
Using the same 5-fold cross-validation technique, the COVID-
FACT without using the segmented lung areas achieves the
accuracy of 87.31 ± 3.37%, sensitivity of 88.32 ± 5.00%, and
specificity of 86.03 ± 3.18%. Finally, the CNN-based COVID-
FACT achieves the accuracy of 64.49 ± 1.61%, sensitivity of
79.58 ± 6.61%, and specificity of 46.67 ± 8.48%. The results
confirm the superiority of the COVID-FACT using the
segmented lung areas over its variants as was demonstrated
in the previous experiments based on randomly selected test
dataset. Moreover, similar to the previous experiments,
modifying the cut-off probability is beneficial in the cross-
validation case to adjust the capability of the model to focus
on COVID or non-COVID cases depending on radiologists’
priorities. More specifically, in the aforementioned 5-fold cross-
validation, decreasing the cut-off probability to 0.35 increases
the sensitivity to 92.97 ± 2.96% while the overall accuracy
remains the same. Increasing the cut-off probability to 0.6,
on the other hand, increases the specificity to 91.16 ± 3.73%
and provides the same accuracy similar to the previous case.

5 DISCUSSION

In this study, we proposed a fully automated Capsule Network-
based framework, referred to as the COVID-FACT, to diagnose
COVID-19 disease based on chest CT scans. The proposed
framework consists of two stages, each of which containing
several layers of convolutional and Capsule layers. COVID-
FACT is augmented with a thresholding method to classify
CT scans with zero or very few slices demonstrating infection
as non-COVID patients, and an average voting mechanism
coupled with a thresholding approach is embedded to extend
slice-level classification into patient-level ones. Experimental
results indicate that the COVID-FACT achieves a satisfactory
performance, in particular a high sensitivity with far less trainable
parameters, supervision requirements, and annotations
compared to its counterparts.

We further investigated mis-classified cases to determine
the limitations and possible improvements. Table 6 shows
the number of the mis-classified cases for each type of the
input disease (COVID-19, CAP, normal) obtained at stage two,
as well as the number of normal cases that were not identified
correctly by the 3% threshold after the first stage. The low rate of
errors obtained by the 3% threshold in the first stage
demonstrates the capability of COVID-FACT to identify
normal cases in the first stage, which is very helpful for
physicians and radiologists to exclude normal cases at the
very beginning of their study.

As in the case of highly contagious diseases such as COVID-
19, the False-Negative-Rate (FNR) is of utmost importance, we
have further analyzed such errors to explore the possible sources
of the mis-classification. As shown in Table 6 there are 3/55
COVID-19 cases that are mis-classified by the COVID-FACT
framework. We found that one mis-classified COVID-19 case
contains unifocal infection manifestation with consolidation
predominance rather than GGO, which are more common in
CAP cases rather than COVID-19 ones. One other case of error
was identified as an incomplete CT scan with missing slices,
which has consequently made the correct identification difficult
for the framework. In addition, we have reviewed the
aforementioned errors in the case of image quality and lung
segmentation as other potential causes of the error. The
assessment results showed that the image qualities are
adequate and the segmentation model performed well without
removing or cropping the infection manifestations. Therefore,
some errors are likely to be caused by the similarities between the
infection patterns in CAP and COVID-19 cases. It is worth noting
that decreasing the cut-off probability from 0.5 to 0.35, as shown
in Table 3, will result in the correct classification of the two false-
negative cases, which contain similar characteristics to other

TABLE 4 | The performance of stage one in diagnosis of slices demonstrating infection.

Method (stage one) Accuracy (%) Sensitivity (%) Specificity (%) AUC

COVID-FACT with lung segmentation 93.14 90.75 94.01% 0.96
COVID-FACT without lung segmentation 92.78% 87.59% 94.36 0.96
CNN-based COVID-FACT 79.74% 33.00% 91.28% 0.64

TABLE 5 | Correctly predicted cases using only stage two without applying the
first stage.

Model COVID-19 CAP

Stage 2 with lung segmentation 94.1% (16/17) 87.5% (7/8)
Stage 2 without lung segmentation 88.2%(15/17) 62.5%(5/8)
Stage 2 CNN-based 82.4%(14/17) 25%(2/8)

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 59893210

Heidarian et al. COVID-FACT

316

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


infections. This can be considered as a remedy, when FNR is of
the main concern.

We also identified that errors in stage one are mainly caused by
non-infectious abnormalities such as pulmonary fibrosis and
artifacts. In this regard, we have further explored slices with
the evidence of artifact where no infectionmanifestation presents.
In some cases, the motion artifact or the artifacts caused by the
presence of metallic components inside the body have generated
some components in the image that were mis-classified as
infectious slices. Figure 8 illustrates 4 samples of such slices in
which images A) and B) belong to a mis-classified normal case
while images C) and D) are related to two CAP cases, where
classified correctly in the second stage. It is worth mentioning
that, the number of such slices is negligible especially when they
appear in cases that have multiple infectious slices (caused by
CAP or COVID-19). In those cases, the influence of such slices
with the evidence of artifact will be diminished by the second
stage and the following aggregation mechanism. Motion artifact
reduction algorithms can be investigated as a future work to cope
with undesired impacts of the artifacts on the final result. It is
worth mentioning that during the labeling process accomplished
by the radiologist to detect slices demonstrating infection, we

noticed that in some cases the abnormalities are barely visible
with the standard visualization setting (window center and
window width). Those abnormalities have been detected by
changing the image contrast (by adjusting the window center
and width) manually by the radiologist. This limitation will arise
the need to research on the optimal contrast and window level use
in future studies. As another limitation, we can point to the
retrospective study used in the data collection part of this
research. Although the provided dataset is acquired with the
utmost caution and inspection, a retrospective data collection
might add inappropriate cases to the study at hand. The potential
improvement to address this limitation could be the collaboration
of more radiologists in analyzing and labeling the data to assess if
the interobserver agreement is satisfying or not.

As a side note to our discussion, we would like to mention that
while both CT and CR can decrease the false negative rate at the
admission and discharge times, the CR is less sensitive, and less
specific compared to CT. Some studies such as Reference (Wong
et al., 2020) report that CR often shows no lung infection in
COVID-19 patients at early stages resulting in a low sensitivity of
69% for diagnosis of COVID-19. Therefore, chest CT has a key
role for diagnosis of COVID-19 in the early stages of the infection
and also to set up a prognosis. Furthermore, a single CR image
fails to incorporate details of infections in the lung and cannot
provide a comprehensive view for the lung infection diagnosis.
Unlike CR images, CT scans generate cross-sectional images
(slices) and create a 3D representation of the body (i.e., each
patient is associated with several 2D slices). As a result, CT images
can show detailed structure of the lung and infected areas.
Consequently, CT is considered as the preferred modality for
grading and evaluation of imaging manifestations for COVID-19
diagnosis. It is worth adding that as CT scans are 3D images, as

FIGURE 7 | Localization heatmaps for the second and forth convolutional layers of the first stage obtained by the Grad-CAM for two slices.

TABLE 6 | The number of the mis-classified cases for each type of the input
disease and the number of cases that were not identified correctly by. the 3%
threshold.

Input Errors (thresholding) Errors (stage two)

COVID-19 0/55 3/55
CAP 0/19 5/19
Normal 1/24 1/24
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opposed to 2D chest radiographs, they are more difficult to be
processed using ML and DL techniques, as the currently available
resources cannot efficiently process the whole volume at once. As
such, slice-level and thresholding techniques are utilized to cope
with such limitations, leading to a reduced performance
compared to the models working with CR (e.g., the COVID-
CAPS (Afshar et al., 2020d), which deals with 2D chest
radiographs). The focus of our ongoing research is to further
enhance performance of CT-based COVID-19 diagnosis models
to fill the gap between the radiologists’ performance and that of
volumetric-based DL techniques.

As a final note, unlike our previous work on the chest
radiographs (Afshar et al., 2020a), where we used a more
imbalanced public dataset, the dataset used in this study
contains a substantial number of COVID-19 confirmed cases
making our results more reliable. Upon receiving more data from
medical centers and collaborators, we will continue to further
modify and validate the COVID-FACT by incorporating new
datasets.
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Several challenges to guarantee medical care have been exposed during the current

COVID-19 pandemic. Although the literature has shown some robotics applications to

overcome the potential hazards and risks in hospital environments, the implementation

of those developments is limited, and few studies measure the perception and the

acceptance of clinicians. This work presents the design and implementation of several

perception questionnaires to assess healthcare provider’s level of acceptance and

education toward robotics for COVID-19 control in clinic scenarios. Specifically, 41

healthcare professionals satisfactorily accomplished the surveys, exhibiting a low level of

knowledge about robotics applications in this scenario. Likewise, the surveys revealed

that the fear of being replaced by robots remains in the medical community. In the

Colombian context, 82.9% of participants indicated a positive perception concerning

the development and implementation of robotics in clinic environments. Finally, in

general terms, the participants exhibited a positive attitude toward using robots and

recommended them to be used in the current panorama.

Keywords: robotics, healthcare professionals’ expectations, COVID-19, hospital environments, robot applications,

UV robot, telemedicine, survey

1. INTRODUCTION

The recent outbreak of COVID-19, caused by the new severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has spread globally in an unprecedented way around the world
(World Health Organization, 2020c). In the last months, the number of infections and deaths
worldwide was alarming. Thus, the efforts of most countries were focused on containing
and mitigating the effects of the pandemic (United Nations Development Programme, 2020;
World Health Organization, 2020c). Given the transmission rate of the virus, the World Health
Organization (WHO) recommended several strategies, such as physical distancing to prevent the
transmission of COVID-19 (World Health Organization, 2020a). However, some countries are now
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resuming economic activities, and compliance with bio-safety
protocols is still necessary to prevent the spread of the virus
(Center for Disease Control and Prevention, 2020; Favero et al.,
2020). In this context, to mitigate the effects of the COVID-19
pandemic, different public health measures have been adopted
around the world with multiple impacts on the social, economic,
and political sectors (Douglas et al., 2020; TheWorld Bank, 2020;
World Health Organization, 2020b).

Regarding the health sector, all levels and stakeholders of
the world’s health systems have been mainly committed to
provide medical care during the pandemic (Barroy et al., 2020;
Government of Canada, 2020; World Health Organization,
2020b). Hence, numerous challenges have arisen, such as (1)
the vulnerability and overloading of healthcare professionals,
(2) the decongestion and reduction of the risk of contagion in
intra-hospital environments, (3) the availability of biomedical
technology, and (3) the sustainability of patient care (Chatterjee
and Kagwe, 2020; Government of Canada, 2020; Yang et al.,
2020). Under this scenario, multiple strategies have been
proposed to address such challenges. For instance, robotics
that is a promising solution to help control and mitigate
the effects of the COVID-19 pandemic (Boston Dynamics,
2020; EuRobotics, 2020; Javaid et al., 2020; Yang et al., 2020).
Historically, robotics has assisted humans in a large number
of fields, given its ability to execute tasks with precision,
carry out industrial operations efficiently, interact in hostile
environments, and execute highly complex works (Siciliano and
Khatib, 2016; Cresswell et al., 2018; Nayak et al., 2020). Therefore,
the applicability of robotics in society has been evident and is
significantly growing (Siciliano and Khatib, 2016).

Overall, as multiple experts have discussed, robotics are
potentially applicable in hospital environments during the
pandemic for: (1) disinfection and sterilization of facilities,
(2) handling and delivery of drugs, food, and waste, (3)
telemedicine and remote assistance, as well as (4) detection and
identification of new cases (Cresswell et al., 2018; Aymerich-
Franch, 2020; Demaitre, 2020; Yang et al., 2020). For the
first application, the implemented robot types commonly use
ultraviolet (UV) lights, vaporization techniques, and vacuuming
to guarantee disinfection or sterilization. This way, those
devices show advantages in pathogen elimination and cleaning
places, which could result in reduction of contagion risk
(Yang et al., 2020).

Within the logistics and service context, robotic devices
mainly apply mobile and aerial systems in delivery and supply
production tasks (Yang et al., 2020). However, aerial robots
could be unworkable for hospital environments. On the other
hand, devices based on manipulators and hybrid systems
(i.e., mobile base and manipulators) can also work in this
application, focusing on these same tasks and supporting patient
management (Yang et al., 2020). In telemedicine and telepresence
applications, social robots and virtual agents are commonly
implemented (Aymerich-Franch, 2020; Yang et al., 2020). Thus,
these robotic systems allow providing benefits in aspects, such
as accompanying, monitoring, and patrolling (Yang et al., 2020).
Finally, for the detection and control applications, the motivation
lies in monitoring of vital signs for clinical environments (Yang

et al., 2020). Therefore, devices focused on this application covers
hybrid mechanisms, aerial systems, or social robots.

Table 1 summarizes the most common types of robotic
applications mentioned above applied to clinical environments
and their potential benefits during the COVID-19 pandemic.

Despite the above, only a few studies have been focused on
measuring the perception and acceptance of healthcare providers
toward robotic tools in the COVID-19 pandemic (Betriana et al.,
2020; Miner et al., 2020; Viswanathan et al., 2020). Several
studies analyzing the acceptability and adherence of technology
in healthcare, such as home healthcare robots and information
systems, have shown that more than 40% of these technologies
have failed or have been abandoned in the last two decades
(Alaiad and Zhou, 2014; Greenhalgh et al., 2017). One of the
primary adoption barriers is an inadequate understanding of
the socio-technical aspects of the technology, as well as users’
knowledge and perception (Aarts, 2004). Due to this reason,
differentmethods tomeasure attitudes and perceptions have been
implemented (Krägeloh et al., 2019). Measuring such parameters,
robot developers and engineering teams can understand the
users’ needs and expectations (Macdonald, 2009), as well as to
have an initial insight into the usability of robot applications
within the involved scenarios (Shinohara, 2012; Riek, 2017).

Accordingly, the current study aims to measure clinicians’
knowledge and perception toward healthcare robotics for
the COVID-19 pandemic. It is expected that a positive
perception/attitude toward robotics and a high level of
knowledge might promote better acceptability, adherence, and
adoption of robots. Hence, a Knowledge, Attitudes, and Practices
(KAP) questionnaire was developed. This questionnaire collects
the data on the knowledge (i.e., what is known), attitudes (i.e.,
what is perceived), and practices (i.e., what is done) of a particular
population (World Health Organization, 2014). In this case,
41 healthcare professionals (e.g., nurses, doctors, biomedical
engineers, among others) participated in the study, assessing
three categories: (DIS) Disinfection and cleaning robots, (ASL)
Assistance, Service, and Logistics robots, and (TEL) Telemedicine
and Telepresence robots 1.

The remainder of this work is organized as follows. Section
2 describes multiple robotic devices that have been reported
in the literature to be useful for disinfection, assistance, and
telemedicine. Section 3 outlines the experimental protocol and
the perception questionnaires carried out in the study. Section
4 and 5 describes the primary outcomes of this study and
the discussion. Finally, section 6 shows the main findings of
this work.

2. ROBOTICS FOR COVID-19 PANDEMIC

As described in Table 1, robotics for COVID-19 in hospital
environments covers a wide range of possibilities. In this sense,
multiple research groups worldwide have focused their efforts on
developing strategies against the pandemic (Boston Dynamics,
2020; EuRobotics, 2020; Maxon Motors Inc., 2020; Robotnik,
2020; SoftBank Robotics, 2020), as the following sections show.
Mainly, reported solutions vary from the design of new robots,
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TABLE 1 | Medical robotics applications that are potentially useful in combating the spread of COVID-19.

Application Robot type Benefits Suitable for hospitals? Category in this study

Disinfection,

and cleaning

UV Pathogen elimination. Yes DIS

Vaporization Reduction of the risk of contagion. Yes DIS

Vacuuming Cleaning Yes –

Logistics and

service

Mobile Waste and/or sample management.

Delivery of food and medicines.

Delivery of instrumentation.

Yes ASL

Aerial No –

Manipulator Supply production.

Waste and/or sample management.

Yes –

Hybrid Supply production.

Waste and/or sample management.

Delivery of food and medicine

Delivery of instrumentation.

Patient management

Yes ASL

Telemedicine

and

telepresence

Virtual agents Accompanying.

Remote monitoring.

Yes TEL

Social Accompanying.

Remote monitoring.

Yes TEL

Hybrid Patrolling and awareness. Yes TEL

Detection

and control

Hybrid Vital signs monitoring

Patrolling and awareness

Yes ASL

Social Yes –

Aerial No –

TEL stands for Telemedicine, DIS stands for Disinfection and Cleaning, and ASL stands for Assistance, Service, and Logistics.

the adaption of existing devices for different purposes, to the
implementation of commercial robotic platforms. Overall, the
primary goal of those groups consists of providing efficient tools,
exploiting the advantages of applying robotics or technology in
the context of the COVID-19 pandemic (Brohi et al., 2020).
This work focuses on three main categories (see Figure 1),
which mainly seek to avoid propagating the virus, support
the clinical staff, and ensure clean areas for both clinicians
and patients.

2.1. Disinfection and Cleaning (DIS) Robots
Considering the high level of COVID-19 spread risk, the
development and deployment of robots for clinical environment
disinfection and decontamination have increased lately. The
leading causes of infection in these areas include aspects as
prolonged periods of exposure (unavoidable for clinical staff),
conventional methods for cleaning (i.e., ineffective chemical
inputs and human error), survivance of pathogens for long
periods, and transmission through the hands between coworkers
(Kramer et al., 2006; Otter et al., 2014; Boyce, 2016).

In this way, the inclusion of systems based on no-touch
automated roomdisinfection (NTD) seeks to reduce the infection
risk, removing human error, improving the effectiveness of the
cleaning, and optimizing the disinfection times (Otter et al.,
2013; Boyce, 2016; Marra et al., 2018). Robotic solutions of
both commercial industries and research groups take strength
in this period employing two cleaning principles: (1) spraying of
chemicals and (2) ultraviolet (UV) light (Otter et al., 2013; Marra
et al., 2018).

In the commercial context, specific-designed robots for

disinfection and decontamination can be found, such as UVD
Robot (UVD Robots, Odense, Denmark), Indoor Disinfection

RoboCop (Milagrow Robotics, Gurgaon, India), SEIT-UV
(Milvus Robotics, Ankara, Turkey), Anscer UVDR ALPHA

(Anscer, Bangalore, India), ARIS-K2 (YOUIBOT, Shenzhen,
China), CONNOR UVC Disinfection Robot (RobotLAB, San

Francisco, USA), WDR01A (Wellwit Robotics, Shenzhen,
China), LightStrike Germ-Zapping (Xenex, San Antonio,

USA), Glosair 400 (Glosair, Champigny-sur-Marne, France), or

Bioquell ProteQ (Bioquell, Andover, UK).
Robotic solutions have also been developed in scientific

institutions, based on previous developments ofmobile platforms
and coupling disinfection mechanism as spraying or radiation.

Moreover, although the interest in implementing those solutions

has recently increased (e.g., XDBOT developed by the Nanyang
Technological University), this field had previously presented

significant advances in robotic systems (Andersen et al., 2006;

Couto et al., 2017; Kovach et al., 2017; Yang et al., 2019).
For the Latin American autonomous robots, e.g., EXO-

Andes UV-72 (EXO, Buenos Aires, Argentina), UVR-bot
(UVRobotics, Buenos Aires, Argentina), Robot-UV (NFM

Robotics, Callao, Peru), LD OMRON (Asahi, Aguascalientes,
Mexico), RSD (Gesedic, Ciudad de Mexico, Mexico), and Thalon

UV (Millenium BPO, Bogotá, Colombia) are also supporting the

disinfection process. Furthermore, research projects in the region
are providing robotic systems like the device developed by the

Institute of Physics of Sao Carlos at the University of São Paulo

for air decontamination.
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FIGURE 1 | Categories of robotics application considered in this study: (1) Telemedicine (TEL), Disinfection (DIS), and Assistance (ASL). The exhibited characteristics

refer to the main advantages of using robots of the corresponding category (i.e., the yellow section for TEL, orange for DIS, and gray for ASL) in clinic environments.

2.2. Assistance, Service, and Logistics
(ASL) Robots
Scenarios focused on assisting the clinical staff implies the use
of robotics profiting characteristics as weight support capacity,
smart navigation for mobile platforms, and precision in task
execution, to name a few (Cremer et al., 2016). Recently, the
development of robots for this application has not been very
popular within the scientific community, resulting in the use
of industrial platforms or social robots to support those tasks
(Bloss, 2011).

Among the robotic tools that support the clinical staff in
hospital environments for assistive applications, the following
examples are found: Techi Buter (Techmetics Robotics, Santa
Clara, USA), MiR100 (Mobile Industrial Robots, Odense,
Denmark), TUG robot (Aethon, Pittsburgh, USA), RB-1
(Robotnik, Valencia, Spain), and Robotino (Festo, Esslingen am
Neckar, Germany). Moreover, several studies have reported the
use of these robots for logistic tasks, such as medication and
food delivery (Kirschling et al., 2009; Takahashi et al., 2010, 2012;
Bloss, 2011; Sermeus et al., 2016), patients transportation (Hu

et al., 2011), medical equipment transportation (Wang et al.,
2009; Ilias et al., 2014), environmental monitoring (Cremer et al.,
2016; Mahdy et al., 2018), among others.

Regarding the Latin American context, few robotic

applications for ASL have been reported. In Colombia, a
food delivery startup is using a fleet of Kiwibot mobile robots
(Kiwibot, Medellín, Colombia) to provide contactless deliveries

(Meisenzahl, 2020). Although these robots are not being used in

hospital environments, they can be easily adapted for healthcare
support, as they are already equipped with sensing technologies

for semi-autonomous navigation (Meisenzahl, 2020). Likewise,
multipurpose robots are being implemented in this environment,
such as RSD (Gesedic, Ciudad deMexico, Mexico), whose mobile
platform can be used in disinfection and assistance applications.

In the pre-pandemic period, the primary motivations
consisted of delegating irrelevant activities to the robots to
optimize the clinicians’ time in patients’ attention and executing
heavy-weight tasks. Nevertheless, reducing the direct interaction
of people with positive cases is also an attractive characteristic to
implement this technology nowadays.
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2.3. Telemedicine and Telepresence (TEL)
Robots
Telemedicine is a general concept that encompasses any medical
activity involving an element of distance (Wootton, 2001).
Thus, this concept uses technology to provide a wide variety of
clinical services through robots, the Internet, wireless devices,
satellite, and telephone media (Achenbach, 2020). The expected
benefits of telemedicine are mainly related to the faster access to
health professionals, leading to optimization and improvement
of the clinician’s attention capacity (Hjelm, 2005; Achenbach,
2020). However, telemedicine takes hold in this pandemic time,
changing a previously known drawback in its most significant
advantage: the social distancing.

Different social robots are being adapted and applied to
the telemedicine concept with significant growth in this period
(Khan et al., 2020). Renowned platforms, such as Pepper
(SoftBank Robotics, Tokyo, Japan) heads the list of robots to be
called to keep the patient-clinician communication, even without
representing a contagion risk (Podpora et al., 2020). This task is
not unknown by the platform, since several studies have shown
the potential of Pepper working in this application (Pandey and
Gelin, 2018; Stock and Merkle, 2018).

In general terms, the common factor in the use of
telemedicine robots involves mobile platforms integrated with
videoconferencing hardware, such as RP-7 (Petelin et al., 2007;
Rincon et al., 2012; Bettinelli et al., 2015; Garingo et al., 2016),
RP-Vita (Sucher et al., 2011), Telepresence (Dao et al., 2019),
Robotino (Tonin et al., 2011; Dobrev et al., 2018), BESSY (Murray
et al., 2014). Similarly, humanoid-type robots are also found
within this category, such as Stevie (McGinn et al., 2020), XR-
1 (CloudMinds, Cayman Islands), Roy the robot (Smith et al.,
2005), SCITOS (Hebesberger et al., 2017), among others.

Furthermore, Latin American initiatives, e.g., RED (Gesedic,
Ciudad de Mexico, Mexico), RoomieBot COVID-19 (Roomie IT
Services, Ciudad de Mexico, Mexico), as well as collaborative
projects like EVA (PwC—RoboticsLab, Chile), have high
potential and they are already being used in Telemedicine
applications in this pandemic time. Similarly, a higher education
institution of the Colombian government has developed a mobile
robot to assist isolated patients due to COVID-19 (SENA, 2020).
The robot of the National Learning Service (SENA) allows
temperature taking and videoconferencing with family members
and health professionals (SENA, 2020).

3. MATERIALS AND METHODS

According to the above, this work presents the design
and implementation of a perception questionnaire to assess
healthcare providers’ level of acceptance and education toward
robotic solutions for the COVID-19 pandemic. In particular,
several questionnaires were proposed to evaluate the perception
of medical robotics, as well as of three types of robotics platforms
for COVID-19 mitigation and control: (DIS) Disinfection
and cleaning robots, (ASL) Assistance, Service, and Logistic
robots; and (TEL) Telemedicine and Telepresence robots.

This section describes the designed questionnaires and the
experimental protocol.

3.1. Perception Assessment
A qualitative survey-based study was designed to assess health
professionals’ concepts, ideas, perceptions, and attitudes toward
robotics in the management of the COVID-19 pandemic. The
proposed surveys and questions are described below.

3.1.1. Knowledge, Attitude, and Practice (KAP)

Questionnaire
A quantitative questionnaire was developed to gather
information on what health professionals know, how they
feel and how they behave about disinfection (DIS), assistance
(ASL), and telemedicine (TEL) robotic tools. In this sense, this
study was based on the formulation of questions about the
knowledge, attitudes, and practices of health care professionals
regarding robotic tools for COVID-19 pandemic management
and control. The first part of the survey was designed using
knowledge-oriented questions. These questions measure the level
of awareness and understanding that healthcare professionals
have regarding robotic tools for DIS, ASL, and TEL. The second
part was designed using attitude-oriented questions. These
questions measure how healthcare professionals feel about
robotic tools for DIS, ASL, and TEL, as well as any preconceived
ideas or beliefs they may have about this topic. The third part
was designed using practice-oriented questions. These questions
provide insight into how healthcare professionals apply their
knowledge and attitudes regarding robotic tools for DIS, ASL
and TEL through their everyday actions.

Table 2 describes the proposed questions for the Knowledge,
Attitude, and Practice (KAP) survey. Remarkably, yes or no
questions were rated using 1 and −1 scores, respectively.
Regarding the questions asking to rate experience or knowledge
about a topic, a 5-point Likert scale was used, which were then
converted to a scale from −2 to 2 points. Finally, questions
formulated as statements were also evaluated using 5-point likert
scales, and then they were converted to a scale from −2 to 2.
Table 2 also illustrates the minimum and maximum score for
each type of question.

3.1.2. Perception Toward Robotics for COVID-19 in

Colombia
To assess healthcare professionals’ perceptions of the possibilities
and scope of robotics for pandemic management in Colombia,
an additional short questionnaire was proposed. The purpose
of this questionnaire was to determine whether participants
considered Colombia to have potential capabilities to develop
robotic solutions for disinfection, care and telemedicine, or
whether there are barriers to the development of these platforms.

Table 3 describes the proposed questions. These questions
were formulated as statements and participants were asked to
respond at what level they agreed with them, using a 5-point
Likert scale. These questions were then converted to a scale from
−2 to 2.
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TABLE 2 | Designed questions for the Knowledge, Attitude, Perception (KAP) survey used in this study.

Category Question Type of robot Minimum score Maximum score

K

Have you ever heard of medical robotics? ROB −1 1

Have you ever seen a health care robot? ROB −1 1

Have you ever interacted with a health care robot? ROB −1 1

Did you know about cleaning and disinfection robots? DIS −1 1

Rate your experience with robots for cleaning and disinfection. DIS −2 2

Rate your knowledge about the benefits of cleaning and

disinfecting robots.

DIS −2 2

Did you know the robots for assistance and logistics? ASL −1 1

Rate your experience with robots for assistance and logistics. ASL −2 2

Did you know the robots for telemedicine? TEL −1 1

Rate your experience with telemedicine robots TEL −2 2

Rate your knowledge about the benefits of robots for telemedicine. TEL −2 2

A

In general, robots are useful. ROB −2 2

I consider robots to be useful in medicine and health care. ROB −2 2

I think robots in medicine and health care could replace people. ROB 2 −2

I think robots in medicine and health care improve service delivery. ROB −2 2

I believe that disinfection and cleaning robots can mitigate and

control the effects of the COVID-19 pandemic.

DIS −2 2

I believe that robotic assistance and logistics in hospital settings

can mitigate and control the effects of the COVID-19 pandemic.

ASL −2 2

I believe that telemedicine robots can mitigate and control the

effects of the COVID-19 pandemic.

TEL −2 2

P

How often do you discuss about health robots in your work? ROB −2 2

How often do you use or interact with robots for disinfection

and cleaning?

DIS −2 2

I would recommend robotic tools for disinfecting and cleaning

in my work.

DIS −2 2

How often do you use or interact with robots for assistance

and logistics?

ASL −2 2

I would recommend robotic tools for assistance and logistics

in my work.

ASL −2 2

How often do you use or interact with robots for telemedicine? TEL −2 2

I would recommend robotic tools for telemedicine in my work TEL −2 2

ROB stands for questions oriented to assess robotics in general. DIS stands for questions oriented to assess disinfection and cleaning robots. ASL stands for questions oriented to

assistance and logistics robots. TEL stands for questions oriented to telemedicine and telepresence robots.

TABLE 3 | Proposed questions to assess the perception of healthcare providers toward medical robotics for COVID-19 in Colombia.

Tag Question Minimum score Maximum score

QCOL1 I believe that Colombia can develop robots to mitigate

and control the effects of the COVID-19 pandemic

−2 2

QCOL2 In the case of Colombia, I believe that there are barriers

to implement the robots that are in the international market

2 −2

QCOL3 I believe that robotic tools for disinfection, assistance and

telemedicine should be acquired in Colombia

−2 2

3.1.3. Open Questions
Finally, three additional open questions were designed to
identify the functionalities that clinicians consider useful and
necessary in DIS, ASL, and TEL robots. Table 4 describes the
proposed questions.

3.2. Experimental Protocol
This section describes the designed experimental procedure
to apply the questionnaires for perception assessment
in a group of healthcare professionals. Similarly, this
section summarizes the session environment and the
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demographic information of the volunteers who took part
in this study.

3.2.1. Session Environment
This study was carried out in two private healthcare institutions
in the city of Bogotá D.C., Colombia. The two clinics were
selected because they have been treating patients with COVID-
19 since the beginning of the pandemic. Additionally, selecting
the clinics for this study also required professionals working in
intensive care units.

3.2.2. Session Procedure
Participants were asked to virtually fill out the perception
questionnaires, using the Google Forms online tool. At the
beginning of the form, participants were presented with the
informed consent, which they had to read carefully and accept
before proceeding with the form. Afterward, participants were
asked for demographic information about their profession and
their work environment. Preceding the questionnaires, a brief
description of each type of robot was presented (i.e., DIS,
ASL, and TEL), to homogenize the definition of such devices
among the participants. Table 5 describes the definitions that
were used with the participants. Moreover, the questionnaire also
included the visual description presented in Figure 1. Finally, the
questionnaires were applied.

TABLE 4 | Proposed open questions to identify key functionalities of disinfection,

assistance, and telemedicine robots.

Tag Question

QO1 Briefly describe the features that you think a cleaning and

disinfection robot should have.

QO2 Briefly describe the features that you think a robot should have for

assistance and logistics.

QO3 Briefly describe the features that you think a telemedicine robot

should have.

3.2.3. Participants Recruitment
Before the recruitment of volunteers, this study was approved
by the Escuela Colombiana de Ingeniería Julio Garavito ethics
committee. The subjects were all formally recruited to participate
in this study voluntarily, and provided their signed consent form.
The informed consent clarified that participants would not have
any repercussions on their job because of the responses collected.
Moreover, the data was stored without any identifier to determine
the source of the answers.

The inclusion criteria were as follows: adults over 18 years old,
healthcare professionals working in hospital environments can
read and sign the informed consent form. The exclusion criteria
were as follows: subjects with declared conflicts of interest with
this study.

From the two clinics, 41 healthcare professionals voluntarily
participated in this study, who were contacted by email. This
sample size follows the criteria reported in previous studies
that involve the use of surveys Vasileiou et al. (2018). Table 6
summarizes the demographic information of the subjects. In
particular, 20 women and 21 men with an average age of 35.39
± 8.48 years were involved in the study. Approximately 83%
of the participants indicated a work experience of more than
2 years. Additionally, 43.9% of participants indicated that they
work in intensive care units or surgery, and 70% of participants
responded that their daily work activities implied contact with
COVID-19 patients.

3.3. Data Analysis
All data was virtually collected and then processed using
Microsoft Excel and R Studio software. In relation to the
KAP questionnaire, quantitative indicators related to the scores
obtained by each participant were estimated. To determine
if there were differences between participants with positive
and negative knowledge levels about robotics, all scores
were separated and compared between these two conditions.
To assess the existence of significant differences the non-
parametric Mann-Whitney U test was used. This test was
selected, considering that it has been reported to have minimal

TABLE 5 | Brief description of the different robot categories that were used in the study.

Tag Category name Description provided to participants

TEL Telemedicine and

telepresence

robots

During this survey, robots for telemedicine will be understood as those

robots that allow accompanying patients who are in isolation, monitoring

patient’s vital signs remotely, and performing patrol and awareness tasks.

This category does not include surgical robots.

DIS Cleaning and

disinfection robots

During this survey, cleaning and disinfection robots will be understood as

those devices that allow the decontamination, sterilization and elimination

of pathogens in different environments. Generally, these robots use

ultraviolet light technology, chemical spraying systems or cleaning systems

with disinfectant substances.

ASL Assistance and

logistics robots

During this survey, robots for assistance and logistics will be understood as

those devices that allow the distribution of medicines in an automated way,

automated catering or food distribution, sample and/or waste management,

delivery of medical instruments and patient management.

This information was provided to the participants prior to the fulfillment of the questionnaires.
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TABLE 6 | Demographic data of the healthcare personnel who participated in

the study.

Participants 41

Gender 20 female 21 male

Age, mean (SD) 35.39 (8.48) years

Healthcare profession

- Physiatrist 4.87%

- Physical therapist 14.64%

- Occupational therapist 9.75%

- Biomedical engineer 9.75%

- Health technologist 4.87%

- Nursing auxiliary 7.31%

- Surgical instrumentalist 4.87%

- Anesthesiologist 19.57%

- Respiratory therapist 19.57%

- Nurse/Medical intensivist 4.86%

Experience

- 0–2 years 17.07%

- 3–5 years 24.39%

- 6–7 years 24.39%

- 8–10 years 9.75%

- Over 11 years 24.39%

Educational level

- Bachelor’s degree 48.78%

- Master’s degree 2.43%

- Post-graduate studies 36.58%

- Technologist 12.19%

Healthcare working area

- Rehabilitation 21.95%

- Hospitalization 9.75%

- Imageology 4.87%

- Surgery 21.95%

- Sterilization 4.87%

- Intensive care 21.95%

- NA 14.65%

type I error rates, as well as, equivalent power with t-
test for Likert scales (Joost and Dodou, 2010). Likewise, for
small sample sizes this test presents better results than t-test
(Blair and Higgins, 1980).

4. RESULTS

A total of 41 surveys were satisfactorily fulfilled, with all
participants completing the proposed form. No survey was
discarded and all participants reported that the questions
were clear and understandable. As a further result, none of
the participants reported being infected with SARS-CoV-2.
The data of this results are available in a public repository
at https://doi.org/10.6084/m9.figshare.13373741. This section
describes and illustrates the primary outcomes of this study.

4.1. Knowledge, Attitude, and Practice
(KAP) Questionnaire
Regarding the KAP survey, Figure 2 summarizes the primary
outcomes of the proposed questions. For each type of robot
(i.e., ROB, DIS, ASL, and TEL), the questions were grouped
into three categories: knowledge-oriented questions, attitude-
oriented questions, and practice-oriented questions. Moreover,
considering the maximum and minimum scores described in
Table 2, the scores obtained for questions of the same category
and type of robot were averaged for each participant. The data
was normalized through themaximum andminimum values that
can be obtained in each question, being inverted for questions
formulated negatively. Finally, an overall normalized score was
obtained by averaging the scores of all the participants. In
Figure 2, the normalized scores are displayed between −1 and
1, indicating a negative to positive perception scale. For analysis
purposes, such an scale was equally divided into three zones,
namely negative, neutral, and positive perception.

Moreover, to assess if there was a difference in perceptions
between those participants who reported a negative knowledge
about robotics and those who reported a positive one, a
comparison of the average scores obtained with the KAP survey
was performed between these conditions. Table 7 illustrates
the comparison between the scores for all participants, the
scores for participants with negative knowledge, and the
scores for participants with positive knowledge about robotics.
Furthermore, to determine the existence of significant differences
between these conditions, the non-parametric Mann-Whitney U
test was performed. Thus, Table 7 also describes the obtained
p-values with this test.

4.2. Robotics for COVID-19 in Colombia
To identify the perceptions of the healthcare professionals about
the scope of medical robotics during COVID-19 in Colombia,
the questions presented in Table 3 were applied. Figure 3

summarizes the average score for each question.

4.3. Open Questions
Finally, Figure 4 presents the results of the open questions
proposed in Table 4.

5. DISCUSSION

All the subjects successfully completed the online questionnaires,
and no cases of misunderstanding were reported. The outcomes
from the KAP survey, the Colombian context, and the open
questions are discussed as follows.

5.1. Knowledge, Attitude, and Practice
(KAP) Questionnaire
Regarding the KAP survey, several outcomes related to the three
constructs of the questionnaire can be assessed (i.e., knowledge,
attitude and practice). First, it can be established that there is
a positive level of knowledge about medical robotics in general
for the surveyed population. However, concerning robots for
disinfection (DIS), assistance (ASL), and telemdicine (TEL),
participants indicated that they have a low level of knowledge and
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FIGURE 2 | Results of the Knowledge, Attitude, and Practice (KAP) survey. The scores for each type of robot were grouped and normalized to identify the overall

perception. ROB stands for questions oriented to medical robotics. DIS stands for questions oriented to disinfection robots. ASL stands for questions oriented to

assistance, service, and logistics robots. TEL stands for telemedicine and telepresence robots. The data standardization used the possible maximum and minimum

values of each question, being inverted the values for questions formulated negatively.

TABLE 7 | Comparison of average scores obtained for the participants with a negative knowledge about robotics (ROB) and the participants with a positive knowledge

about robotics (ROB).

Category Type of robot
Scores

Negative vs. Positive p-value

All (n = 41) Negative knowledge (n = 16) Positive knowledge (n = 25)

K

ROB 0.24 −0.38 0.63 0.00001

DIS −0.84 −0.75 −0.90 0.04136

ASL −0.16 −0.34 −0.05 0.02144

TEL −0.37 −0.53 −0.26 0.20766

A

ROB 0.43 0.40 0.45 0.55520

DIS 0.43 0.50 0.38 0.38430

ASL 0.45 0.41 0.48 0.62414

TEL 0.34 0.34 0.34 0.96012

P

ROB −0.35 −0.81 −0.06 0.00022

DIS −0.41 −0.28 −0.50 0.05486

ASL −0.22 −0.39 −0.11 0.01140

TEL −0.55 −0.63 −0.50 0.03078

P-values in bold indicate significant differences (p < 0.05) between participants with negative and positive knowledge.

experience with these types of robots. This result may imply that
although professionals recognize medical robotics as a potential
tool to assist their work, they do not have sufficient awareness
or education about robots’ functions and features for DIS, ASL,
and TEL.

Conversely, although the level of awareness was low,
participants reported a positive attitude toward robots’ usefulness
and benefits in managing and controlling the COVID-19
pandemic. In particular, one of the attitude-oriented questions
sought to determine whether health professionals believed
robotics could replace them. If participants responded that

they agreed with the statement, it was considered to be a
negative attitude. In this case, 60.9% of the participants answered
“neither agree nor disagree,” and only 29.3% responded that they
disagreed with the statement. This result may imply that it is
necessary to carry out education and awareness processes in
the medical community (Goh and Sandars, 2020), to strengthen
the idea that robots can enhance and improve their work, but
they cannot replace the healthcare professionals fundamental
activities. For instance, Coombs (2020) recommends performing
a familiarization stage based on culture theory to understand
individuals’ social practices when interacting with the technology
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FIGURE 3 | Results of the perception questions toward the scope of Robotics for COVID-19 in Colombia. QCOL1 assess the perception of the potential to develop

robotic solutions in Colombia. QCOL2 assess the perception of barriers to implement robotic solutions. QCOL3 assess the need for robotic solutions for disinfection,

assistance and telemedicine during COVID-19 pandemic.

FIGURE 4 | Results of the proposed open questions to identify key functionalities of disinfection, assistance, and telemedicine robots. (A) Disinfection and Cleaning

Robots. (B) Assistance, Service, and Logistics Robots. (C) Telemedicine and Telepresence Robots.

and their preferences within its usages. This culture theory will
increase their motivation and trust toward technology, such as
medical robotics. Additionally, following design methods, such

as Design Thinking and Design Sprint can be useful to create
user-friendly applications, and more acceptable devices within
the medical community (White et al., 2020).
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Regarding practice-oriented questions, the common
denominator among the participants’ answers indicates that
healthcare professionals do not frequently use nor interact with
robots in their work. An interesting result was obtained regarding
whether participants would recommend using robots for DIS,
ASL and TEL in their work. In particular, for disinfection (DIS)
robots, only 19.5% of the participants agreed to recommend
them in their work. For assistance, service, and logistics (ASL)
robots, 65.8% of participants agreed to recommend them in
their work. However, for telemedicine (TEL) robots, 48.8% of
participants did not agree to recommend them in their work.
These outcomes follow the ideas highlighted by some researches
in the use of robotics mostly to assist the patients through
platforms that could navigate in hostile clinical environments
(Yang et al., 2020), and perform medical delivery tasks (Feil-
Seifer et al., 2020). Furthermore, to reduce the reluctance to DIS
and TEL robotics platforms is essential to include healthcare
personnel in training programs to elucidate robots’ importance
and capabilities during the pandemic. Also, a challenge could be
DIS and TEL comprehensive tools that can integrate features of
ASL platforms.

Finally, to evaluate if there were differences in the perceptions
of participants with positive (61%) and negative (39%) knowledge
about robotics, the results of the KAP survey were separated and
compared accordingly. For analysis purposes, the participants
that reported positive knowledge will be referred to as the positive
group, and the participants that reported negative knowledge will
be referred to as the negative group. As presented in Table 7,
comparing the knowledge scores (K) for disinfection (DIS)
and assistance (ASL) robots, significant differences were found
between negative and positive groups. Regarding DIS robots,
Although the positive group scored more negatively than the
whole group, this result may be explained by the fact that health
professionals, who have notions of robotics, have commonly
worked with or seen robots related to surgery, rather than robots
associated with disinfection tasks. Conversely, regarding ASL
robots, the positive group reported a neutral knowledge about
them, whilst the negative group reported more negative scores
than the whole group, as expected.

In relation to the attitude questions, no significant differences
were found between the positive and negative groups for any type
of robot. This result can be explained because in spite of the level
of knowledge and conscientiousness of the health professionals,
their attitude remains positive, as they recognize the robotics’
usefulness and benefits in hospital environments.

In relation to the practice questions, significant differences
were found for all types of robots between the positive and
negative groups. For robotics in general (ROB), the positive
group reported neutral scores, similar to the whole group.
However, the negative group reported very negative scores,
indicating that owing to the little knowledge about robotics,
robots are not commonly used in their daily activities. Regarding
DIS robots, the positive group reported negative scores, while
the negative group reported neutral scores. This result suggests
that regardless of knowledge about robotics in general, the level
of awareness and in healthcare professionals about the benefits
of robots for disinfection (DIS) is still low. With regards to ASL

robots, the positive group exhibited a neutral distribution, similar
to the whole group. In contrast, the negative group consequently
reported the absence of practices and use of ASL robots in their
daily tasks. Lastly, both the positive and negative groups reported
poor practices related to TEL robots; however the scores from the
negative group were slightly more negative.

5.2. Robotics for COVID-19 in Colombia
With regards to the perception of the participants toward
the capacities and needs for robotics amid the COVID-19 in
Colombia, several aspects were identified. First, question QCOL1
was aimed at determining if the participants considered that
Colombia has enough technological advances to develop robotic
solutions for the COVID-19 pandemic. In particular, 82.9% of
participants indicated that they agreed that Colombia could
develop such robotic solutions. Second, question QCOL2 was
intended to determine if the participants considered barriers to
the deployment of robotic platforms available in the international
market. In this case, a slightly positive perception was obtained,
where 40% of the participants indicated that they disagreed
that there were barriers to the implementation of robots from
the international market for the COVID-19 pandemic. Finally,
question QCOL3 sought to identify if participants considered
that robotic tools for DIS, ASL and TEL should be acquired
in Colombia. In this case, 87.8% of participants agreed with
this statement.

There are few publications related to robotic-tools for the
COVID-19 pandemic in Colombia. Some of the applications,
propose the use of robotic arms to sustain physical distancing
between patients and doctors (Guerra et al., 2020), disinfection
robots to support clinical neurophysiology studies (San-Juan
et al., 2020), and teleoperation robots to monitor patients and
connect doctors (Forbes Staff, 2020). Thus, the opportunities
for developing robotics tools in Colombia during and after the
pandemic are increasing to answer the healthcare sector needs.

5.3. Open Questions
Finally, this study also sought to provide insights into the features
that robots should have for COVID-19 management, according
to the opinions of healthcare professionals. Particularly, question
QO1 was focused on identifying the expectations regarding
the functionalities of disinfection robots. As it can be seen,
the healthcare personnel answered that the robot must provide
cleaning tasks, be safe and accurate. In a lower percentage, the
clinicians recommended that the device has to be noiseless and
user friendly. On the other hand, Question QCOL2 was intended
to assess the clinicians’ expectations regarding assistance and
logistics robots. The healthcare personnel highlighted the
importance of these robots, to support clinicians’ tasks, and
to trigger alerts as advice for emergency or important events.
Finally, Question QCOL3 was focused on evaluating the
clinician’s opinions regarding the telemedicine and telepresence
robots for the COVID-19 pandemic. The outcomes showed that
the healthcare staff expects that these robots can socially interact
within hospital environments, and communicate with users,
connecting patients and doctors.
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Overall, the healthcare personnel seeks for safe and accurate
robotic systems. Therefore, the efforts of deploying robotics
for COVID-19 have to be focused on optimizing and building
tools with high precision, and increase safety strategies (Otter
et al., 2013; Marra et al., 2018). Similarly, the work by (Tavakoli
et al., 2020) remarked the features that robotics should have
(i.e., autonomy, monitor, provide support and interaction) to
collaborate in healthcare scenarios, not only to manage the
adverse effects of the COVID-19 pandemic but also to support
prevention processes.

5.4. Final Remarks
In this work, the sample size might be considered as small,
however it follows the criteria reported in previous studies
that involve the use of surveys (Vasileiou et al., 2018).
Moreover, although the participants were only recruited from
two healthcare institutions in Bogotá D.C., Colombia, this is
the first study that describes the perceptions and expectations
of healthcare professionals toward robotics for COVID-19 in
Colombia. Particularly, several KAP surveys on COVID-19
have been reported in literature; however, they were aimed at
assessing the overall perception toward COVID-19 in patients
and survivors, and they did not evaluate robotics perception for
COVID-19 outbreak management (Ferdous et al., 2020; IFRC
Turkish Red Crescent, 2020; REACH, 2020).

6. CONCLUSIONS

This paper presented clinician’s perception toward DIS, ASL,
and TEL robots amidst the COVID-19 pandemic. A total of
41 participants completed an online KAP (i.e., Knowledge,
Attitudes, and Perception) survey, as well as two short
questionnaires about medical robotics.

In general, the outcomes showed that participants have a
positive level of knowledge regarding medical robots in general.
However, the clinicians’ experience and knowledge regarding
DIS, ASL, and TEL platforms are shallow. Consequently, their
awareness and education have to be increased in order to
understand the opportunities, functions, and features of these
tools. Furthermore, as reported in the literature, a familiarization
stage in the first instance is recommendable to increase healthcare
personnel’s trust and motivation. This stage will achieve the
successful adaptation of the technology during the COVID-19
pandemic and after the outbreak.

Despite this level of awareness, participants elucidate a
positive attitude toward robots in managing and mitigating
the effects of the COVID-19 pandemic. In particular, 65.8%
of clinicians recommend using ASL robots in the pandemic,
which remark the clinicians’ preferences for platforms capable
of supporting logistic tasks, medication and food delivery,
and monitoring the environment. In the case of DIS and
TEL platforms a lower perception was presented. Hence, the
efforts concerning these technologies have to be in increase the
clinicians’ trust and develop comprehensive platforms capable of
providing assistance and disinfection or teleoperation.

Additionally, a very encouraging result is the healthcare
positive perception regarding the capabilities in Colombia

to develop these tools. Although few studies propose the
development of robotic platforms to assist medical procedures in
Colombia, the opportunity to increase the research and advances
regarding DIS, ASL, and TEL robots are very high.

Regarding the robot’s functionalities. The participants
highlight the importance of building safe and accurate systems
in general. For DIS robots, the healthcare staff ’s primary
characteristic is that the robot provides reliable cleaning and
autonomy. In the ASL robots case, the significant features were
to provide support and provide alerts to attend emergency
events. Finally, for TEL the results suggest that the main
capabilities are to provide interaction and communication.
Concluding, these results demonstrate that DIS, ASL and
TEL platforms hold the promising potential to be a feasible
approach to support COVID-19 pandemic from different
approaches. One last interesting result of this work is related
to the fear in health professionals to be replaced by robots. In
particular, the participants’ opinions were not very conclusive
since ∼60% of the participants assumed a neutral position
when asked if they considered that they could be replaced.
However, when relating the findings of the functionalities that
robots should provide to improve health service, participants
agreed that robots should perform repetitive and non-critical
tasks, such as transporting medications and cleaning. In this
sense, it can be stated that “being replaced” by a robot does not
necessarily imply a negative perception if robots assist in less
essential tasks.

Future works will address the validation and implementation
of this survey in multiple Latin American countries to provide a
more deep comparison and assessment of healthcare providers’
perception. Moreover, future studies will also be focused on
identifying the specific opinions of healthcare professionals
toward existing DIS, ASL, and TEL robotic platforms in both
national and international markets.
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A Computational Framework Towards
the Tele-Rehabilitation of Balance
Control Skills
Kubra Akbas and Carlotta Mummolo*

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States

Mobility has been one of the most impacted aspects of human life due to the spread of the
COVID-19 pandemic. Home confinement, the lack of access to physical rehabilitation, and
prolonged immobilization of COVID-19-positive patients within hospitals are three major
factors that affected the mobility of the general population world-wide. Balance is one key
indicator to monitor the possible movement disorders that may arise both during the
COVID-19 pandemic and in the coming future post-COVID-19. A systematic quantification
of the balance performance in the general population is essential for preventing the
appearance and progression of certain diseases (e.g., cardiovascular,
neurodegenerative, and musculoskeletal), as well as for assessing the therapeutic
outcomes of prescribed physical exercises for elderly and pathological patients.
Current research on clinical exercises and associated outcome measures of balance is
still far from reaching a consensus on a “golden standard” practice. Moreover, patients are
often reluctant or unable to follow prescribed exercises, because of overcrowded facilities,
lack of reliable and safe transportation, or stay-at-home orders due to the current
pandemic. A novel balance assessment methodology, in combination with a home-
care technology, can overcome these limitations. This paper presents a computational
framework for the in-home quantitative assessment of balance control skills. Novel
outcome measures of balance performance are implemented in the design of
rehabilitation exercises with customized and quantifiable training goals. Using this
framework in conjunction with a portable technology, physicians can treat and
diagnose patients remotely, with reduced time and costs and a highly customized
approach. The methodology proposed in this research can support the development
of innovative technologies for smart and connected home-care solutions for physical
therapy rehabilitation.

Keywords: telehealth, physical rehabilitation, balance assessment, margins of balance, balanced region, center of
mass, balance perturbation, biped stability

INTRODUCTION

The COVID-19 pandemic and subsequent stay-at-home orders put in place have caused a general
reduction in physical mobility among countries across the globe (World Health Organization, 2020a;
World Health Organization, 2020b; World Health Organization, 2020c). The fundamentally altered
daily routine of the healthy young, adult, and elderly populations has been preventing them from
performing the usual daily motor exercise. A direct effect of home confinement is the alteration of
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normal muscle activation during daily motion, which can cause
muscular atrophy and other problems in motor function in
otherwise healthy people of all ages. The negative impact that
this reduction in mobility due to the COVID-19 pandemic has on
muscles, neuromuscular junctions, and nerves has been especially
stressed (Narici et al., 2020). As a secondary effect, the pandemic
has made it particularly difficult for the pathological populations
needing regular physical therapy and rehabilitation sessions to
receive treatment. This can cause a deterioration of physical
health in low-mobility patients, leading them to be more
prone to falls and injuries (Visser et al., 2008; Levinger et al.,
2017; Gandolfi et al., 2018). In addition, COVID-19 has also
caused prolonged immobilization of patients within the hospital
environment, leading researchers and medical professionals to
brainstorm proper treatment protocols for these “secondary”
mobility ailments (Iannaccone et al., 2020). The physical
rehabilitation during this bedridden stage takes on passive and
active modes, including resistance training and both static and
dynamic balance training exercises (Iannaccone et al., 2020). In
summary, sedentarism due to stay-at-home orders, lack of access
to proper physical therapy, and prolonged immobilization during
COVID-19-positive hospitalizations are the three main factors
causing reduced mobility of various populations during COVID-
19. These circumstances will continue to impact mobility in the
medium/long term after the pandemic and motivate the need for
alternative solutions for the delivery of physical therapy and
rehabilitation in remote settings.

The use of telehealth and telerehabilitation can help
counteract the above-mentioned challenges. Many benefits
exist within switching to remote care: increased access to
healthcare, reduction in overall cost, increased interaction with
providers and patient engagement, the ability to provide both
synchronous and asynchronous treatment, and the eventual
generation of large datasets for broader scientific investigation
and impact. Though many approaches to telemedicine currently
exist (Ruiz et al., 2020; Seshadri et al., 2020), proper telemedicine
for use in motor rehabilitation requires more functional
components in combination with a computational framework
that can systematically quantify specific aspects of motor
performance, such as balance control skills.

Within the circumstances caused by the pandemic, there is a
focus on restoring motor function in the following areas:
deconditioning, strength, balance, and the ability to perform
daily activities (Iannaccone et al., 2020). In particular, static
and dynamic balance training must be performed to help
restore the compromised postural stability due to the reduced
exercise and exposure to proprioceptive stimuli (Iannaccone
et al., 2020; World Health Organization, 2020b; World Health
Organization, 2020c). Balance is influenced by many subsystems
of the body (i.e., musculoskeletal, vestibular, ocular). This
interconnectedness is why balance assessment within motor
rehabilitation is critical to understanding the components of
falling and how to prevent injury due to falls. Poor balance
capabilities are among the leading causes for falls in the
elderly (Visser et al., 2008; Levinger et al., 2017; Gandolfi
et al., 2018), often resulting in limited mobility and reduced
engagement in physical activities. Balance assessment methods

are useful in helping practitioners determine the proper
customized rehabilitation plan for their patients and allow
researchers to develop better technology to conduct these
assessments. Currently used methods range from subjective
observations performed by medical professionals to more
quantitative approaches, using medical devices specifically
designed for computerized dynamic posturography (CDP)
analysis. While many balance exercises are qualitatively
designed and assessed in the clinical setting (e.g., Berg Balance
Scale (Stevenson, 2001), Balance Error Scoring System (Bell et al.,
2011), Activities Balance Confidence Scale (Raad et al., 2013), Y
Excursion Balance Test (Kinzey and Armstrong, 1998), Star
Excursion Balance Test (Glave et al., 2016)), the score
subjectivity and variance across physical therapists can lead to
inconsistencies in the rehabilitation outcomes. Furthermore, this
qualitative approach is less feasible in a home-care setting, where
the physical presence of a therapist is removed. Many clinics use
CDP to determine a patient’s progress based on a quantitative
type of assessment. For example, the NeuroCom SMART Balance
Master can score a user’s performance through the sensory
organization test of equilibrium and motor control test
(Wagner et al., 2016). The sensory organization test evaluates
postural stability under various sensory conditions, where the
visual, proprioceptive, and vestibular senses are altered (Wagner
et al., 2016; Olchowik and Czwalik, 2020). A final “equilibrium
score” based on the center of gravity sway is associated to the
sensory organization test to evaluate postural stability.
Additionally, the motor control test uses a “latency score” to
quantify the user’s postural response time in reaction to platform
perturbations (Wagner et al., 2016).

Although the existing CDP devices are considered to be the
best currently available technologies, these machines are too
costly and substantial in size for in-home use, and they
require a trained clinician to supervise the machine setup and
operation. Technologies for home care rehabilitation must be
portable, compact, and must have a user-friendly interface so that
the general patient can operate the device with minimal training.
Commercial balance training technologies aimed for the home
environment are typically presented as “exergames” (exercise
games), which utilize the body’s motion as a method of
controlling gameplay and were developed to encourage activity
through fun activities. For example, Wii Fit uses the body’s weight
distribution on the balance board as a proxy indicator of balance
(Wikstrom, 2012); the Kinect’s balance training games, based on
body motion tracking, can provide a low-cost and accessible form
of rehabilitation (Sápi et al., 2019); Neofect’s Smart Balance
technology uses virtual environments and other visualizations
to aid in stroke recovery by measuring center of pressure (COP),
center of mass (COM), pressure distribution, and the traveled
path during walking (Neofect, 2020); the Togu Challenge Disc
made by MFT Bodyteamwork uses games and visual targets to
train balance and tracks the general motion of the user (MFT
Bodyteamwork, 2020); the Boditrak2 Balance Assessment System
also uses games to assist with training and tracks balance through
pressure mapping. These platforms have been proposed as
portable solutions for increasing physical activity and for
balance assessment and training (Kennedy et al., 2011; Goble
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et al., 2014; Sápi et al., 2019). However, they have limitations in
both their technology (e.g., sensor quality, resolution, processing
power) and assessment approach (e.g., simple tracking of body
motion and pressure distribution as proxies for the evaluation of
balance control). Research efforts are beingmade to developmore
accurate portable and wearable technologies for quantitative
balance assessment (Conforti et al., 2020; Torricelli et al.,
2020) by including, for instance, inertial measurement units or
electromyographic devices (Zampogna et al., 2020).

The limitations on the CDP and exergames technologies
prevent simultaneous balance assessment and training from
being properly performed at home. Specifically, existing
assessment metrics and testing protocols need to be improved
to better understand the mechanisms that affect postural control
(Keshner and Fung, 2019). The theoretical/computational
framework employed in any given technology to quantify
rehabilitation outcomes must be both specific and
comprehensive enough to capture the balance skills across
multiple subjects and multiple exercises. At the same time, the
systematic outcomes evaluation must not be too computationally
intensive. Current balance assessments focus on selected specific
measures, which provide only partial information on human
balance control and may omit important components of
balance related to the risk of falls (Sibley et al., 2015). Few
specific indicators are typically captured in CDP or exergames
(i.e., reaction time, movement velocity, endpoint excursion, COM
and COP sway), whose deviation from a baseline only partially and
indirectly characterizes the balance control ability of a subject
(Chaudhry et al., 2004; Ganesan et al., 2015). Each of these
mechanical indicators alone do not capture the state of balance
of a system (i.e., whether the subject is balanced or not) nor do they
characterize the overall capability of the subject to recover from
general perturbations. As a result, the perspectives of quantification
of human balance have not yet reached a golden standard (Sibley
et al., 2015) and identifying a comprehensive set of quantifiable and
customized targets for balance rehabilitation remains a challenge.
Furthermore, the existing assessment metrics and technologies
pose a limit to the type of movements that can be analyzed. In
typical CDP protocols, movements are restricted to the device’s
narrow platform and postural stability is assessed during periods of
quiet standing (Glave et al., 2016). While numerous stability
analyses have been proposed during general movements (e.g.,
sit-to-stand (Holmes et al., 2020), walking (Young et al., 2012),
stair climbing (Herman et al., 2009), etc.), these have not been
translated into a unified approach for the design of exercise
protocols (and associated technology) involving multiple motor
tasks. Assessment sessions typically analyze balance during the
upright standing posture (postural stability) and tend to be
independent from the physical therapy training sessions, which
usually involve different types of dynamic motor tasks (Bayouk
et al., 2006; Marioni et al., 2013; Levinger et al., 2017). For effective
rehabilitation, assessment and training protocols should be
simultaneously performed and combined into a unified
technology-based framework for a broad range of balance
exercises with quantifiable custom targets.

Recent studies have addressed the limited scope of
quantification of existing balance assessment methods by

addressing the stability of biped systems from a dynamic
system perspective. In this context, balance is defined as the
ability to maintain the state of a dynamic system inside a defined
desired region of the state space (Pratt et al., 2017). The
quantification of balance capabilities consists in the
evaluation of a balanced region in the state space (Mummolo
et al., 2017), also called basin of attraction or viability kernel
(Aubin et al., 2011; Koolen et al., 2012; Zaytsev et al., 2015;
Smith et al., 2017). The resulting balance stability criterion is a
threshold that can discriminate between the conditions of
balance and imbalance of a given biped system (Koolen
et al., 2012; Mummolo et al., 2017; Koolen, 2019) by
considering all possible factors that could lead to a loss of
balance. These are more comprehensive approaches for
monitoring the state of balance of a system and predicting
fall, as opposed to tracking individual balance-related
indicators. Furthermore, they can be generalized to various
movements and translated into a broader range of static and
dynamic exercise goals for simultaneous balance assessment and
training.

In this study, a state-space balance criterion (Mummolo et al.,
2017) is used to formulate metrics of balance that can serve as
quantitative outcomes, as well as customized goals for the
simultaneous assessment and training of balance control skills.
This computational framework can be customized for a given
patient in a rehabilitation regimen that involves multiple motor
exercises. The evaluation of the proposed balance performance
metrics relies on computational models of the human subject and
associated balanced regions and requires capturing the subject’s
COM motion and foot stance during the performed balance
exercise. Based on these requirements, the proposed
framework has the potential to be integrated with an
affordable portable technology solution for customized tele-
rehabilitation needs, in which the novel performance metrics
can be evaluated on- and off-line to visually guide the patient
during the balance exercises. The outcome of this research can
contribute to tackling the issue of compromised mobility and
motor performance of people living at the time of the COVID-19
pandemic.

SIMULTANEOUS BALANCE ASSESSMENT
AND TRAINING METHOD

A computational framework is proposed in which novel
balance performance measures are formulated and
implemented in exercises for simultaneous balance
assessment and training. The use of the balance
performance measures is twofold: 1) they are used as
quantitative outcomes for general balance assessment and 2)
they define customized and quantifiable balance training goals
across multiple exercises. This novel rehabilitation paradigm
requires the integration of the following components: 1) the
theoretical formulation of the novel balance performance
measures, 2) the design of exercises for which the balance
performance is quantified, 3) a computationally tractable
model of the user (human subject).
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Theoretical Formulation of Balance
Performance Measures
A stability criterion based on the concept of balanced regions in
the COM state space (Mummolo et al., 2017) is adopted in this
study for the formulation of two categories of balance
performance measures. This criterion uses nonlinear
optimization for the numerical construction of a balance
threshold in the state space of biped systems; it can be applied
to general bipeds in various stance configurations, as well as to
generic three-dimensional dynamic motor tasks.

The balanced region is the set of all possible COM balanced
states from which a given subject can reach an upright rest state,
while avoiding a change in foot stance (Mummolo et al., 2017).
The balance stability criterion states that a COM state located
within the balanced region, i.e., balanced state, is the necessary
condition for dynamic balance in generic biped models
(Mummolo et al., 2017). A COM state outside of this region is
defined as unbalanced and it predicts an inevitable change in foot
stance at some time in the future. The boundary of the balanced
region, called boundary of balance (BoB), represents the
maximum limits of balance recovery of a subject while
maintaining a given foot stance and is quantified in terms of
maximum feasible range of COM velocity perturbations. The BoB
is formed by the COM velocity extrema (minimum and
maximum) calculated iteratively at various COM sampled
positions, Pi, i � 1, . . ., N, and along any specified direction;
hence the balanced region is a partition of the six-dimensional
state space of COM Cartesian position and velocity. For practical
analysis and visualization, the BoB can be evaluated for a specified
plane (e.g., sagittal plane) and projected onto a single direction of
interest (e.g., anterior/posterior) (Figure 1).

The BoB is generated numerically by solving a series of
constrained optimization problems. For each sampled COM

initial position Pi, optimization finds the limiting balance
recovery trajectories in the joint space that drive the biped
system from its extreme initial conditions (i.e., sampled COM
initial position and minimum/maximum COM initial velocity) to
a rest state, without a change in foot stance. The extremized COM
initial state of each trajectory solution represents a point of the
BoB. From any point of the BoB, there exists at least one
controlled trajectory from which the subject can reach upright
quiet stance without changing contacts. Alternatively, if the
optimization finds no solution at a given Pi, the feasible range
of COM initial velocity that guarantees the COM will return to a
stationary upright position without altering foot stance is null; in
this case, any COM state at that specified Pi is unbalanced,
i.e., outside of the BoB. The balancing trajectories generated
from each point of the BoB satisfy the following constraints:
1) a final rest state (e.g., upright static posture), 2) various system
and physics constraints (e.g., joint and torque limits, COP
constraints), and 3) the preservation of the original stance
(i.e., base of support). The resulting BoB is a stance-specific
threshold that is customized using subject-specific body and
joint parameters in the modeling, capturing the balance
capabilities of a subject as predicted by the model. Details of
the numerical optimization algorithm and its solution via
sequential quadratic programming can be found in previous
work (Mummolo et al., 2018b). The construction method of
the balance threshold has been demonstrated for the study of gait
and posture stability of human, robot, and exoskeleton systems
(Mummolo et al., 2017; Mummolo et al., 2018a; Mummolo et al.,
2018b; Mummolo and Vicentini, 2020; Mummolo et al., 2021).

In this study, the BoB is constructed point by point, by
calculating the feasible range of COM velocity at various COM
positions Pi sampled in the sagittal plane at a selected COM
height, i.e., Pi � (xi, y) (Figure 1A). The COM initial velocity is
extremized along the anterior/posterior direction of interest (X)

FIGURE 1 | (A) Illustration of the balanced region concept (blue volume) and its boundary (BoB) in the sagittal plane of a biped system. At each sampled COM
position (circles), themaximum feasible range of COM velocitiy perturbations are calculated and shownwith respect to local velocity frames. Examples of balanced states
at positions P1 and P2 and unbalanced states at positions P3 and P4 are shown, whose COM velocities fall inside and outside of the BoB, respectively. (B) The BoB is
projected onto the (X, _X ) plane to illustrate the concepts of viable and reachable boundary margins and their relationship with the base of support. The
instantaneous state margin (eMOS) is also illustrated.
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and the BoB results into the following set of limiting COM initial
conditions in the sagittal plane: (xi, y, _x

ANT/POS
i,lim , _yANT/POSi ), for i �

1−N. The three-dimensional BoB can then be projected onto the
state space of COM X position and velocity (Figure 1B) for
practical analysis.

Two categories of balance performance metrics are formulated
in the COM state space, based on the balanced region concept
described above:

1) Boundary Margins are numerical indicators that characterize
the dimension of a balance region relative to the base of
support (Figure 1B). These indicators include the reachable
(ΔR) and viable (ΔV ) boundary margins, which quantify the
capability of a subject in a given stance to recover from
internal and external perturbations, respectively, along a
specified direction. Similar to the balanced region, both
boundary margins do not depend on a specific motor task
but are a property of the selected models for both the subject’s
body and the desired stance configuration.

The reachable boundary margin ΔR is the distance between the
point of the BoB with zero velocity and the edge of the base of
support, measured in both anterior and posterior directions. It
predicts how far the body can displace its COM outside of the
footprint and then invert its motion (hence, zero velocity) to
recover balance without any external impulse or change of
contact. This margin identifies a limit to the amount of self-
induced perturbations (i.e., internal) that a subject can sustain
from a given stance; hence it is analogous to a maximum
voluntary COM sway in dynamic conditions (i.e., out of the
base of support (Mummolo et al., 2013)).

The viable boundary margin ΔV is the distance between the
point of the BoB with maximum COM position and the edge of
the base of support, measured in both anterior and posterior
directions. It quantifies the range of COM positions outside of the
footprint for which a feasible COM velocity exists. The balanced
states included in between the reachable and the viable margins
cannot be attained through the body internal dynamics alone, but
they are viable initial conditions resulting from an external
impulse. Therefore, the viable margin identifies a limit to the
amount of externally induced perturbations that a subject can
sustain while in a given stance.

2) State Margins are numerical indicators that characterize the
instantaneous state of balance for a given trajectory, by
measuring its relative distance to the BoB. Depending on
how this distance is measured in the state space, these
indicators can include position, velocity, or mixed margins.
In this study, the extended Margin of Stability (eMOS)
(Mummolo et al., 2021) is used as a position margin that
quantifies the distance from a given state to the BoB along the
position coordinate of the state space (Figure 1B). The eMOS
is equivalent to the Margin of Stability (MOS) for a linear
inverted pendulum (LIP) model (Hof et al., 2005; Mummolo
et al., 2021), but it can be applied to any generic biped system.
This indicator, unlike the boundary margin, is specific to the
motor task performed by the subject in a given stance,

allowing for the continuous evaluation of the COM state of
balance.

Design of Balance Assessment and Training
Exercises
The application of the balanced region and balance performance
measures within the rehabilitation context is presented. The two
categories of balance performance measures are used as design
criteria for rehabilitation exercises in which balance performance
is simultaneously quantified and trained. For a given subject and
foot stance, the balanced region and boundary margins predicted
by the optimization-based algorithm provide a reference map for
defining customized target states across multiple exercises.

The intersections of the BoB with the edges of the base of
support and the boundary margins in both anterior and posterior
directions identify three partitions of the balanced region
(Figure 2):

1) The portion of the balanced region characterized by a COM
ground projection within the edges of the base of support
(Mummolo et al., 2013) is the set of statically balanced states: a
state in this partition can be driven to a static equilibrium
configuration by controlling the COP position within the
given base of support and/or through the regulation of
whole-body linear and angular momentum. From a
statically balanced state the motion could in theory be
stopped instantaneously without causing the system to lose
balance.

FIGURE 2 | The reachable and viable boundary margins in both the
anterior (ANT) and posterior (POS) directions divide the balanced region into
three partitions, each identifying a type of balanced states: statically,
reachable, and viable balanced states. For each type of balanced state,
an illustration of the corresponding balance control strategy is shown using a
simple legged system with a point mass, flywheel, and foot link.
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2) The portion of balanced region included within the reachable
margins is the set of reachable balanced states: each of these
states has a COM position outside of the footprint, hence is
dynamically balanced. Because this partition contains both
positive and negative COM velocity, the COM can enter it
from a statically balanced state using internal dynamics and
then invert its motion to recover balance. Balance recovery
from reachable balanced states is only possible through the
rotation of multiple body segments about the COM that
generates a stabilizing angular momentum and its derivative,
similar to the effect of a flywheel.Within this partition, the COP
cannot be controlled and balancing must rely on a combination
of favorable (i.e., balanced) COM initial conditions and whole-
body inertial effects over a finite interval of time.

3) The portion of balanced region characterized by COM positions
that are outside of the reachable margins, but within the viable
margins, is the set of viable balanced states: similar to the
reachable states, they are also dynamically balanced and must
rely on favorable initial conditions and whole-body inertial
effects in order to reach a static equilibrium within a finite
interval of time. The difference from reachable states is that the
system’s COM can enter this partition only through externally
imposed perturbations, e.g., external impulse. However, once the
COM state is inside this partition (i.e., it becomes viable) the
external push can cease and the system in the given stance can
recover balance by means of its initial conditions and actuation
capacity.

The above partition-based analysis of the balanced region
provides a reference map that characterizes the different
stability nature and means of control for a COM state
within each partition (Figure 2). Statically, reachable, and
viable balanced states are three categories of exercises
targets that can be assigned to the subject’s COM during a
rehabilitation exercise. The amount of sustainable perturbations
and recovery strategy associated with each target category is known
a priori; this constitutes a novel approach to the design of balance
exercise as compared to traditional balance perturbation
experiments, in which there is no a priori knowledge of the
effects of a given perturbation on the COM stability, hence no
clear and meaningful balance target can be established.

Two types of balance exercises (perturbation-based and motor
task-based) are proposed in which the requirements of a desired
user’s motion are imposed in terms of COM initial, target, and
final states. For each exercise, the final state is a statically balanced
state, while the initial and target states are assigned to the different
partitions of the balanced region, based on the exercise desired
outcome. In addition, each exercise has a prescribed foot contact
(or sequence of contacts), used to evaluate the associated contact-
dependent balanced region.

The first type of balance exercise consists in perturbation
experiments guided by target states placed progressively closed to
the boundaries of the balanced region (i.e., the BoB) (Targets A and
B, Figure 3). This exercise has the purpose of determining the
amount of internal and external perturbations that can be attained
by the subject in experimental conditions (i.e., experimental
reachable and viable margins), where internal perturbations are

the impulses generated by the subject when initiating or
performing a movement, whereas external perturbations require
the impulse generated through contact with another object, such as
pushing off from a wall or the ground. The experimental boundary
margins are then compared with the exercise targets, i.e., themargins
predicted by the simulated numerical boundary (i.e., numerical
boundary margins).

Two examples of perturbation-based balance exercises during
standing posture are described:

1) Example training exercise to reject internal perturbations
from upright stance—Starting from rest, the subject is
asked to initiate a forward/backward motion, come as close
as possible to reachable Target A, and then invert its motion to
reach a final rest state, all while maintaining a double stance
configuration. Experimental reachable margins resulting from
this exercise are quantified as the maximum anterior/posterior
position reached by the subject’s COM before inverting its
motion. The experimental and numerical reachable margins
are compared to have a relative measure of the subject’s
maximal COM sway capacity along a specific direction.

2) Example training exercise to reject external perturbations
from upright stance—Starting from rest, the subject is
asked to perform a pre-balancing task in which the COM
should attain initial conditions as close as possible to viable
Target B using the external impulse generated, for instance, by
a hand-push on a fixed handle. The subject’s state at the end of
the push-off motion is recorded as the initial viable state of the
balancing motion, which will terminate at upright equilibrium
with no change in foot stance. The most extreme viable initial
state that can be successfully attained by the subject gives the
experimental viable margin, which is compared with the
numerical counterpart to have a relative measure of the
subject’s limits of recovery from external perturbations.

This first type of perturbation-based exercises aims at
simultaneously quantifying and training the general
perturbation rejection capability of a subject relative to a given
stance. Using the reference map, specific portions of the balanced
region can be targeted for a given patient, to enhance a particular
type and direction of balance control.

The second type of balance exercise is specific for a motor task and
focuses on quantifying the balance performance of a specific trajectory.
Multiple target states are assigned either inside or outside (e.g., Target
C, Figure 3) of the BoB, as via-points of a desiredmotor task placed at
selected distances from the boundary as quantified by the state margin
eMOS. Throughout the exercise, the state margin is also utilized to
quantify a subject’s instantaneous level of balance/imbalance. As the
subject’s COM state trajectory remains within the boundary
(i.e., balanced), the resulting eMOS values are positive, while states
that exit the boundary result in negative eMOS values, leading to an
inevitable foot contact change in the future. Given the general
applicability of the BoB, the motor tasks for this type of exercise
can be selected among common daily lives activities, including
standing, frontal and lateral stepping, walking, and sit-to-stand actions.

In summary, the boundary and state margins are used in the
proposed exercises as balance targets relative to the overall subject’s
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balance capabilities quantified by the balanced regions. At the same
time, the experimental boundary/state margins are evaluated as
balance performance outcomes of a given exercise and compared
to the respective numerical values predicted by the model, to assess
a patient’s relative level of balance performance in a given stance
and during a specific motor task, respectively.

When implementing these exercises within tele-rehabilitation
settings, the desired and current COM state and foot stance
information must be recorded and visualized by the patient.
The patient’s COM motion can be captured by existing
methods (Lafond et al., 2004) and will be visually guided by
targets prescribed within the different partitions of a balanced
region (i.e., statically balanced, reachable, and viable). Meanwhile
the COM state and foot stance information can be displayed as an
overlay on the subject’s balanced region. This would allow the
patient and the physician to receive visual feedback on their
balance performance during the exercises, in which a change in
foot stance and/or a COM state crossing the BoB will signal an
unbalanced motion. Additionally, the physician (remotely) could
adjust the initial, final, and target states with respect to the balanced
region maps, according to the patient’s training status and needs.

Human Subject Modeling Approach
The theoretical/computational framework described above can be
applied to any generic human body model, ranging from whole-
body (Mummolo et al., 2019) to reduced-order (Mummolo et al.,
2015b) biped mechanisms, and to various contact configurations
between the feet and the environment (Mummolo et al., 2018b).
The balance criterion and performance indicators can therefore
be implemented in a broad range of balance rehabilitation
protocols, including static, dynamic, and multi-stance exercises.

The construction of a subject’s BoB via the optimization-based
algorithm previously described requires the establishment of the
dynamic model of the subject’s body. Links’ length and mass
distribution, joint strengths and range of motions, ground
contact modeling, and stance-specific constraints are specified
and the subject’s dynamics can then be described using common
robotic modeling approaches for floating-base robotic systems with
multiple degrees-of-freedom (DOF) (Figure 4A). The dynamics
and stability of systems in multi-contact stances is usually more
challenging to describe (Del Prete et al., 2018; Orsolino et al., 2020),
given the indeterminacy in the system’s foot reactions when the legs
form a closed loop with the ground (Mummolo et al., 2015a).
Different modeling choices (e.g., number of DOF, single vs. double
stance, planar vs. three-dimensional) lead to different BoB and
balanced regions. The complexity of the established biped model
should reflect a good balance between the accuracy in the numerical
prediction of the subject’s balanced region and the computational
performance of the BoB algorithm. In practice, when a balance
region is sought for a specific motor task, a task-oriented modeling
approach can be pursued for higher computational efficiency.
Depending on the motor task requirements of a given exercise
(e.g., range of desired COM displacement, anatomical plane and
direction of interest, and expected foot contacts), the simplest model
that fits those criteria should be selected.

In this study, balance exercises during standing posture are
considered for demonstration purposes, which are characterized
by a symmetric double stance, small variation of COM height,
and significant COM perturbations in the sagittal plane along the
anterior/posterior direction. Three increasingly complex models
of human body that satisfy the exercise requirements are
implemented in the balance assessment framework: a 1-DOF
linear inverted pendulum (LIP) model, with a single mass and a
flat foot (Figure 4C); a 4-DOF model with upper and lower body
segments and a rigid foot (i.e., without metatarsal joint;
Figure 4B); a 5-DOF model with upper and lower body
segments and a two-link foot (i.e., with metatarsal joint;
Figure 4B). All three models are in the sagittal plane and are
reasonable candidates to analyze dynamic balance in the anterior-
posterior direction. The balanced regions and their margins
provide a systematic approach to evaluate the effects of each
modeling assumption on the predictive capability of the model’s
balance stability. An accurate model would result in a balanced
region that encompasses all experimental COM state trajectories
resulting from the exercises in which balance is preserved.

DEMONSTRATIVE RESULTS AND
DISCUSSION

The novel paradigm for simultaneous balance assessment and
training is demonstrated with the results of balanced regions and
balance performance measures calculated for different models of
human standing posture. Experimental balance recovery
trajectories extracted from published literature (Patton et al.,
1999) are used to exemplify the proposed perturbation-based
and motor task-based exercises and associated margins
calculation.

FIGURE 3 | Design of motor task for balance exercises (perturbation-
based andmotor task-based), where the COM is guided through initial, target,
and final states. Targets A are selected progressively close to the reachable
boundary margin, to find the experimental maximum COM sway of a
given subject, i.e., the capacity of withstanding internal perturbations. Targets
B are selected progressively close to the viable boundary margin, to find the
experimental limits of external perturbations that a subject can withstand.
Targets C are selected to drive a motor task at a known distance either inside
or outside of the BoB and determine in real time the instantaneous state
margin throughout the motion.
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Nondimensional Balanced Regions and
Boundary Margins for Standing Posture
The balanced region results are presented for three increasingly
complex models of a human subject in the sagittal plane, i.e., the
LIP, 4-DOF, and 5-DOF models, to illustrate the effects of body
and foot modeling choices on the predicted range of allowable
perturbations during standing posture (Figure 5A). The
anthropometric parameters and joint angle/torque limits of the
reference subject are from the literature (Winter 2005; Mummolo
and Vicentini, 2020). The LIP and the 4-DOF models have a rigid
foot link with no metatarsal joint, which is assumed to maintain a
fixed contact with the ground at all times; the 5-DOF model
includes a two-link foot, where a metatarsal joint and a
multimodal foot-ground interaction model (Mummolo et al.,
2021) allow the foot to rotate about its heel and metatarsal. All
models have a total foot length fl � 0.23m.

For the higher-order models, the BoB is numerically
constructed using the proposed algorithm. The COM velocity
extrema are calculated along the anterior (+X) and posterior (−X)
direction, by sampling the COM initial positions at a constant
height y � 1.12 m, corresponding to the subject’s COM
Y-coordinate in the upright standing configuration. The BoB
of the LIP model can be found analytically using the linear
inequalities that limit the position of the extrapolated center of
mass (XCoM � x + _x/ω) within the base of support [0, fl]
(Mummolo et al., 2021), i.e., −ωx ≤ _x ≤ − ωx + flω, where x
and _x are the COM position and velocity, respectively, y and
ω � ���

g/y
√

are the pendulum’s length and natural frequency.

Fitted models of the BoB and enclosed balanced regions are
obtained in the nondimensional COM state space for each of the
three biped models considered (Figure 5B), where the COM
position and velocity are normalized with respect to fl and flω,
respectively. The nondimensional formulation of the BoB
provides a general characterization of the balanced regions for
upright standing posture in three different subject modeling
approaches. These nondimensional linear models can used for
multiple individuals, with different anthropometric parameters,
when adopted in a home-care rehabilitation context.

The three balanced regions are representative of the different
balance control strategies that can be employed by each biped
model. This is demonstrated quantitatively through the calculation
of the nondimensional boundary margins (Table 1), which give a
relative measure of maximum balanced COM displacement as a
percentage of foot size. The only means of balance control for the
LIP model is the regulation of the COP within the limits of its flat
foot; as a result, the LIP reachable boundary margins are zero,
indicating that the COM sway cannot exceed the base of support in
order to preserve balance, according to this reduced-order model
predictions. In addition, the linear inequalities for the XCoM do
not provide limits to the range of feasible COM positions, therefore
the LIP viable margins are undefined. On the other hand, the
higher-order models show a greater range of sustainable COM
velocity perturbation for a given COM position and along both
anterior and posterior directions. The 4-DOF and 5-DOF models
have posterior reachable boundary margins equal to 11 and 28.8%
of the foot size, respectively, predicting that the COM sway can

FIGURE 4 | (A) General human body models take into consideration individual anthropomorphic parameters, joint strengths and actuations, mass distributions,
range of motions, ground contact modeling, and stance-specific constraints. Whole-body models are valid for the representation of any general motor task, although
their simulation can be computationally intractable. In practice, task-oriented models can give a practical computation of the balanced region for the specific task
considered. For balance stability during standing posture, both higher- and reduced-order models in the sagittal plane can be established. The higher-ordermodels
(B) include more detailed subject-specific parameters at the link and joint level, upper and lower body segments, as well as multi-segment feet (5-DOF model), as
described in previous work (Mummolo and Vicentini, 2020). The LIP model (C) constrains the motion of the COM at a fixed height y, equal to the Y-coordinate of the
body’s COM while standing and does not include joint-level design parameters.
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exceed the rear edge of the base of support while retaining the
ability to invert its motion thanks to angular momentum
inertial effects. The posterior viable margins in both higher-
order models quantify the range of viable negative COM
positions at which an external impulse can be applied to
stabilize the system. The anterior reachable margin for the 5-
DOF model predicts that the COM sway can exceed the front
edge of the base of support by 35.2% of foot size, and then
recover balance. The negative values for the anterior
boundary margins in the 4-DOF model indicate that the
set of reachable and viable balanced states is null in the
anterior direction, due to the kinematic restrictions of a
rigid foot, which do not allow significant COM
displacement at the given COM height y.

The greater perturbation rejection capability predicted by the
higher-order models is due to the multiple balancing strategies
that can be employed by a multi-DOF system (e.g., ankle, hip,
upper-body, and general angular momentum regulation) in
addition to COP control. In particular, the largest boundary
margins are for the 5-DOF model, due to the presence of a
two-link foot that enables the additional balancing strategy of
heel-to-toe foot rocking, which increases the range of feasible
COM positions and velocity perturbations.

The above boundary margins values predicted by the three
models of human posture can be used as both targets and
outcomes in COM perturbation experiments in tele-
rehabilitation settings, to simultaneously assess and train a

subject’s overall balance performance ability to reject internal
and external perturbations.

Use of Boundary and State Margins during
Balance Exercises
To showcase the role of boundary margins in a balance
rehabilitation exercise, empirical data relative to push recovery
exercises published in the literature (Patton et al., 1999) is
partially extracted and adapted to the proposed framework. In
the experiments of the reference study (Patton et al., 1999),
subjects were asked to pull on a horizontal handle, targeting
various percentages of their maximum pulling force in order to
attain perturbed COM initial conditions in the posterior
direction. At the end of the pull, the balancing trajectories of
the subjects’ COM as they recovered balance while standing on
two feet were recorded. It should be noted that, although derived
from a different study, the experimental data illustrated is the
result of perturbation-based balancing exercises analogous to
those proposed in this framework, with the difference that the
experiments in (Patton et al., 1999) are guided by force-based
targets, while the proposed experiments would be conducted
using the viable and reachable margins as novel balance-
related targets.

Here, 35 perturbed COM states for one subject of the reference
study are extracted, normalized, and represented against the
nondimensional balanced regions (Figure 6A). The most

TABLE 1 | Anterior (ANT) and posterior (POS) nondimensional boundary margins of the general linear models of BoB calculated for the reduced- and higher-order body
models.

Reachable boundary margin Viable boundary margin

ΔPOS
R ΔANT

R ΔPOS
V ΔANT

V

5-DOF MODEL two-link foot 0.288 0.352 0.591 0.808
4-DOF MODEL rigid foot 0.110 −0.047 0.248 −0.047
LIP MODEL rigid foot 0.0 0.0 n.a. n.a.

FIGURE 5 | (A) Numerical construction of the BoB for a reference subject in upright stance, when the subject’s body is modeled with a 5-DOF mechanism with a
two-link foot, a 4-DOF mechanism with a rigid foot, and a 1-DOF LIP with flat foot. (B) Nondimensional fitted lines provide a general model of BoB for the three types of
biped mechanism considered (R2 > 0.99). The nondimensional upper and lower BoB limits are −x ≤ _x ≤ − x + 1 (LIP), −0.89x − 0.099≤ _x ≤ − 0.88x + 1.01 (4-DOF), and
−1.02x − 0.29≤ _x ≤ − 1.19x + 1.61 (5-DOF).
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extreme COM initial state is used to estimate the subject’s
experimental viable margin in the posterior direction (0.519),
which is closely predicted by the posterior viable margin of the 5-
DOF model (0.591). The 4-DOF posterior viable margin fails to
enclose eight highly dynamic initial states, hence the model
underestimates the subject’s balance performance in terms of
rejection of external perturbations. Four initial states are either
outside or on the boundary of the LIP balanced region; while this
indicates that the reduced order model predicts balance in about
88% of the selected initial states, it should be noted that the LIP
analytical boundaries did not provide quantifiable target viable
states. These results demonstrate how the balance performance of
a subject can be assessed and trained based on perturbation
experiments and the evaluation of experimental boundary
margins. In the current results and reference study, no data is
available to demonstrate the experimental evaluation of reachable
margins, which is left to future work.

Lastly, the evaluation of balance performance in the motor task-
based exercise is illustrated by two example trajectories extracted
from the reference study (Patton et al., 1999), which exemplify the
analysis of a generic balancing trajectory with respect to the balanced
regions of the subject (Figure 6B). In both experimental trajectories,
the subject was able to recover upright static equilibrium without
altering the double foot stance. The reachable balanced trajectory
starts from initial conditions within the reachable boundarymargins
of the higher-order models and well within the LIP balanced region.
The first half of the reachable balanced trajectory starts from a
dynamic reachable state (with COM outside of the base of support)
and reaches an upright statically stable state (with COM
approximately aligned with the ankle joint); this segment of
trajectory appears close to the linear passive dynamics of the LIP,
suggesting that the first part of the balancing motion may rely
mostly on the favorable initial conditions, while angular momentum
effects may not be relevant. Conversely, the viable balanced
trajectory starts from initial conditions outside of all reachable
boundary margins and even outside of the LIP and 4-DOF

balanced regions; however, the initial state is viable with respect
to the boundarymargins predicted by the 5-DOFmodel, which is an
indication that the balancing motion must rely on multiple
strategies, including the angular momentum and foot rocking
strategy, in addition to the favorable initial conditions. These
results suggest that for such a highly dynamic balancing motion,
a higher-order mechanism with a multi-segment foot model gives a
better prediction of an individual’s balance performance, as
compared to biped models with lower DOF and rigid foot.

The state margin eMOS is calculated for the two example
trajectories to evaluate their instantaneous level of balance or
imbalance (Figure 7). The nondimensional eMOS quantifies the
distance from a given state of the trajectory with respect to both the
upper and lower bounds of each balance threshold,measured along
the position coordinate; here, the smallest distance from either
lower (dashed lines, Figure 7) and upper (solid lines, Figure 7)
bounds is shown, since it represents the most critical balance
condition. A positive eMOS value indicates that the trajectory is
within a balanced region, where a greater eMOS absolute value
corresponds to a greater balance safety margin, while a smaller
eMOS absolute value indicates a closer proximity to the
unbalanced region; the opposite is true for negative eMOS.
When the LIP is used the eMOS coincides with the MOS
(Mummolo et al., 2021), and its positive values range from 0 to 1.

The eMOS of the reachable trajectory indicate that all three
bipedmodels correctly predict a balanced trajectory that is closer to
the lower BoB boundaries for approximately 65% of the motion,
after which the COM state results closer to the upper BoB lines
(Figure 7; left). Throughout the reachable trajectory, the BoB of the
4-DOF and LIPmodels underestimate the instantaneous margin of
balance, as compared to the 5-DOF model, hence predicting a
smaller level of balance throughout the motion. The eMOS of the
viable trajectory indicates that only the 5-DOF model correctly
predict a balanced motion, with a state margin always closer to the
lower BoB limits (Figure 7; right). The 4-DOF and LIP models
present negative eMOS values at the beginning of the viable

FIGURE 6 | (A) A collection of initial states of a subject during externally-imposed perturbation experiments (Patton et al., 1999), compared with the nondimensional
models of balanced region for standing posture. (B) Two experimental balance recovery trajectories extracted from (Patton et al., 1999), where the subject standing on
two feet recovers balance and reaches static equilibrium after receiving an external impulse the subject standing on two feet recovers balance and reaches static
equilibrium after receiving an external impulse.
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trajectory, which would wrongly predict the subject’s inability to
recover balance from those initial conditions, without external help
and without changing foot stance.

The above analysis of balanced regions, boundary and state
margins demonstrates an objective method of assessing a patient’s
progress throughout treatment. The nondimensional boundary
margins have highlighted the differences between the different
modeling approaches of human standing posture: the inclusion of a
multi-segment foot can lead to a more accurate balance
characterization in real human subjects. Boundary margins
allow the selection of customized and quantifiable targets for
training balance recovery from internal and external
perturbations, while state margins provide a numerical
benchmark of the subject’s balance capabilities during a
particular trajectory. All proof-of-concept results demonstrate
the benefits of having a balance criterion that can be extended
to higher-order models that can more accurately predict dynamic
stability, as compared with reduced-order models.

CONCLUSIONS AND FUTURE WORK

This study proposed a novel balance training and assessment
computational technique, illustrated through an example subject
performing a postural stability exercises obtained from a reference
study (Patton et al., 1999). By using the balanced regions as
reference maps, new balance exercises can also be developed for
the furthering of current physical rehabilitation approaches. The
application of the proposed framework to home-care
rehabilitation, which is essential during and after the COVID-19
pandemic, is briefly discussed. The balance performance indicators
are proposed as both targets and outcomes of balance exercises that
require only tracking and visual feedback of desired vs. current
COM motion and foot stance, as opposed to, for example, the
measurement of COP, ground reactions, and external impulse
forces profiles, which may not be easily integrated into an
affordable and portable device. For this reason, the proposed
theoretical/computational framework could be a promising

initial step for the development of innovative devices for the
remote assessment and rehabilitation of balance performance in
patients affected by reduced mobility. The integration of the
presented criterion for quantitative balance assessment with a
portable instrumented platform would contribute to the
advancement of postural stability analysis in three ways: first, it
would allow patients and the general population to participate in
highly customized in-home physical therapy treatment plans to
prevent or treat mobility disorders while also being systematically
evaluated; second, it could open the way for clinicians to design and
test balance exercises that can include dynamic stance changes and
other general motor tasks; third, it has the capability to generate a
unified benchmarking dataset of significant volume acrossmultiple
populations (e.g., of different ages and pathological conditions),
which would boost further investigation on the medium/long term
effects of COVID-19 on people’s balance ability and the associated
fall risk.
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Robotic Home-Based Rehabilitation
Systems Design: From a Literature
Review to a Conceptual Framework
for Community-Based Remote
Therapy During COVID-19 Pandemic
Aylar Akbari†, Faezeh Haghverd† and Saeed Behbahani*

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to
infection calls for extra safety precautions. Despite the imposed restrictions, early
neurorehabilitation cannot be postponed due to its paramount importance for
improving motor and functional recovery chances. Utilizing accessible state-of-the-art
technologies, home-based rehabilitation devices are proposed as a sustainable solution in
the current crisis. In this paper, a comprehensive review on developed home-based
rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper
and lower limb devices and considering both commercialized and state-of-the-art realms.
Mechatronic, control, and software aspects of the system are discussed to provide a
classified roadmap for home-based systems development. Subsequently, a conceptual
framework on the development of smart and intelligent community-based home
rehabilitation systems based on novel mechatronic technologies is proposed. In this
framework, each rehabilitation device acts as an agent in the network, using the internet of
things (IoT) technologies, which facilitates learning from the recorded data of the other
agents, as well as the tele-supervision of the treatment by an expert. The presented design
paradigm based on the above-mentioned leading technologies could lead to the
development of promising home rehabilitation systems, which encourage stroke
survivors to engage in under-supervised or unsupervised therapeutic activities.

Keywords: home based rehabilitation, stroke rehabilitaiton, COVID 19 pandemic, conceptual framework,
rehabilitation robotics

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious disease with serious public health risk
declared a global pandemic by WHO on March 11, 2020. In the present time of the COVID-19
pandemic, the lives of individuals have been drastically affected due to the imposed restrictions
such as social distancing, curfews, and travel restrictions. This situation has had a considerable
impact on the lives of certain more vulnerable groups on a larger scale, namely people living
with chronic diseases such as stroke. In a pooled data analysis published in the International
Journal of Stroke (IJS), Aggarwal et al. emphasized that COVID-19 puts post-stroke patients at
a greater risk of developing complications and death. In fact, the odds of severe COVID-19
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infection increase by 2.5 times in patients with a history of
cerebrovascular disease (Aggarwal et al., 2020). This calls for
consideration of extra safety precautions for this vulnerable
population to protect them from infected environments,
namely strictly abiding by the quarantine rules and social
distancing, as breaking them could prove fatal (Markus and
Brainin, 2020).

Stroke is accounted one of the dominant causes of severe and
long-term disability. It leads to a total or partial loss of aptitude
to trigger muscle activation to perform any activity (Borboni
et al., 2016). The broad spectrum of induced disabilities
includes a reduced range of motion (ROM), strength of the
affected limb, and abnormal inter-joint coordination (Chen
J. et al., 2017). The sensitive/motor deficits impede the
performance of activities of daily living (ADLs), such as
reaching, grasping, and lifting objects, as well as walking,
etc., in the surviving individuals (Chen J. et al., 2017; Heung
et al., 2019). Patients must be subjected to rehabilitative
treatment to help them regain the ability to perform daily
activities independently. As Martinez-Martin et al. stated,
“Rehabilitation can be defined as the step-by-step process
designed to reduce disability and to optimize functioning in
individuals with health conditions, enabling them to better
interact with their environment.” (Martinez-Martin and
Cazorla, 2019). In the post-stroke rehabilitation process, the
period between the first and the sixth months after stroke,
known as the post-stroke sensitive period, has been proved to
bear the maximum recovery impact, both spontaneous and
intervention-mediated. Indeed, according to the statistics
presented in Krakauer et al. article, during the first four
weeks of rehabilitation, failure of reaching an arm Fugl-
Meyer score of at least 11 would indicate only a 6%
possibility of regaining dexterity at six months (Krakauer
2006). Regarding the aforementioned issues, in the current
restrictive climate of COVID-19, the crucial question to be
addressed for post-stroke patients would be how to use this
critical and limited window of time to achieve the best possible
recovery.

Robot-mediated therapy for post-stroke rehabilitation
offers highly repetitive, high-dosage, and high-intensity
alternatives, while reducing labor intensity and the manual
burden on therapists. Hence, myriads of studies have focused
on exploring robotics technologies for post-stroke
rehabilitation. An increasing amount of research has
investigated the efficiency of different types of robotic
rehabilitation systems and found that these interventions
can effectively complement conventional physical therapy,
e.g., Mehrholz et al. and Bertani et al. investigated the
effects of robot-assisted gait and upper-limb training,
respectively, and both concluded that using robotic
technologies positively affects post-stroke recovery (Bertani
et al., 2017; Mehrholz et al., 2020). To tackle the recent rising
issues associated with restrictions caused by the pandemic,
there is a need to speed up the process of providing
autonomous and affordable care that can be transferred out
of inpatient or out-patient facilities into home environments.
This study reviews the existing home-based robotic

rehabilitation interventions and proposes reliable concepts
that can be used to confront the discussed problems.

Home-based rehabilitation systems can be considered viable
options capable of promoting care delivery while adhering to
physical distancing measures and reducing the potential exposure
to the infectious virus along with protecting vulnerable stroke
survivors. Besides, even prior to this pandemic, the demand for
home-based rehabilitation far exceeded its availability, further
emphasizing the importance of this form of rehabilitation as a
sustainable solution. According to WHO, demand for
rehabilitation is approximately ten times that of the capacity
of the service that the current healthcare system can provide, in
terms of both rehabilitation professionals and rehabilitative tools
(Gupta et al., 2011;World Health Organization, 2017). This poses
a clear priority on further extension of home-based rehabilitation,
which could prove to be a better alternative than conventional
care by maintaining physical distancing and ameliorating the
saturated health service.

Home-based systems offer a platform for unsupervised or
under-supervised therapy, in which the need for the physical
presence of a therapist is reduced. Rehabilitative treatments need
to be intensive with long duration to improve functional
outcomes and motor recovery (Bütefisch et al., 1995).
Compared to clinical therapy, home therapy potentially
augments standard care and enables consistent treatment by
increasing the frequency and duration of training sessions.
Performing rehabilitation at home provides patients with a
comfortable setting. It gives them a sense of control of therapy
as it reduces their reliance on external assistance (Chen et al.,
2019). This can result in the patients demonstrating enhanced
motivation and engagement (Borghese et al., 2013). In terms of
the associated costs, home-based therapy reduces the expenses
compared with clinical-based therapy; for example, in statistics
provided by Housley et al., a saving of $2,352 (64.97%) was
reported (Housley et al., 2016).

However, deployment in the unsupervised context of home-
based rehabilitation poses risks to patients. Therapists perceive
risks to patients regarding the training/acquisition of harmful
movements when unsupervised at home—abnormal movement
can be damaging or slow recovery (Borghese et al., 2014). Careful
system design and deployment measures need to be taken, such as
providing adequate feedback on proper task execution, to
preclude these movements. On the other hand, in robotic
medical devices the occurrence of errors that cannot be
accounted for or predicted during device design leads to
patient injuries and more severe incidents in some cases (Kim,
2020), e.g., crashes in device operability, both in hardware and
software, and errors induced by contextual barriers in patients
home environment. In clinical settings, in case of such incidents,
the physical presence of healthcare professionals could mitigate
the risk, yet such an option is not available at home.

Due to the benefits mentioned above, robot-mediated home
therapy has gained attraction in recent years. Its feasibility has
been evaluated through several studies using state-of-the-art
home robots. The literature surveys indicated the feasibility of
self-administered treatment at home using rehabilitation robots
in terms of functional outputs, training duration, user acceptance,
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TABLE 1 | Summary of state-of-the-art robotic systems for home-based upper-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

HandSOME Brokaw
et al. (2011); Chen and
Lum (2016b); Chen
et al. (2017a)

Only assists with
extension; adjustable
hard stops to limit
ROM; assists with
hand opening, grasp,
grip, pinch, and gross
movements

Extension
passive
assistance

11-Passive 5 fingers E 0.22
(version 1)
and 0.128
(version 2)

Moderate to
severe

FM; MAS; MAL;
ARAT

>6 months
after stroke

HandMATE Sandison
et al. (2020)

Customizable 3D
printed components;
both manual and
automated calibration
sequence options for
a facilitated home-
use; using force
sensitive resistors
(FSR) for intention
detection; android
app with 4
customized game

Passive
assistance;
triggered
passive
assistance

11-(One
actuator for
each finger)

5 fingers FE 0.34 Moderate to
severe

N/A Chronic

X-glove Fischer et al.
(2016); Ghassemi et al.
(2018)

Facilitated two-
component donning;
custom GUI; multi-
user VR exercises;
haptic feedback

Passive
assistance;
partial
assistance;
resistance

N/A 5 fingers E
(assisted)/F
(resisted)

N/A Severe CMSA-H;
FMUE; ARAT;
CAHAI-9
GWMFT-func;
GWMFT-time;
EXT; FMUE; GS;
LPS (N); PPS;
MMAS;
MAL QOM

Subacute
phase

My-HERO Yurkewich
et al. (2020)

EMG-based intention
detection; automated
calibration

Triggered
passive
assistance

2 actuators 5 fingers FE 0.377 Severe FMA-UE; FMA-
Hand;
CAHAI-13

>6 months
post stroke

HERO Yurkewich et al.
(2019)

Ease of donning/
doffing (3/1 minutes
with assistance)

Passive
assistance

1 actuator 5 fingers FE 0.192 Broad range
of severe
hand
impairments

MMAS; MTS;
BBT; CAHAI

Acute and
chronic

IOTA Aubin et al.
(2013)

Targeting pediatric
population; portable
control box

Passive
assistance;
triggered
passive
assistance

2 Thumb FE; thumb
add-abduction

0.23 N/A N/A N/A

Grasping rehabilitation
device Park et al.
(2013)

Pressure sensors for
intention detection

Passive
assistance;
triggered
passive
assistance;
partial
assistance

2 actuators N/A N/A N/A N/A N/A

Vanderbilt Gasser et al.
(2017)

Bidirectional under-
actuated tendon
system; simultaneous
fingers actuation;
adjustable thumb
design

Passive
assistance

1-Active 4 fingers FE 0.4 N/A N/A N/A

WearME Zhou et al.
(2019)

Performing resistive
motion tasks

Resistance 3 actuators Wrist FE; finger
opposition

0.5 N/A N/A Chronic

Soft robotic
exomusculature glove
Delph et al. (2013)

sEMG-based
intention detection;
moving weight off
hand by housing
actuating
components in a
backpack

Partial
assistance;
resistance

5 actuators 5 fingers FE 6 N/A N/A N/A

(Continued on following page)
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TABLE 1 | (Continued) Summary of state-of-the-art robotic systems for home-based upper-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

BCI-controlled
pneumatic glove
Coffey et al. (2014)

Adaptable BCI-based
controller

BCI-based
passive
assistance

1 actuator/
15 DOF

Finger E 2 N/A N/A N/A

Soft robotic glove
Polygerinos et al.
(2015)

Size customizable;
easy to don/doff;
minimal ADL
interference

Partial
assistance

3 per finger 5 fingers FE 0.285 N/A N/A N/A

Anthropomorphic soft
exosuit Klug et al.
(2019)

sEMG-based
intention detection;
cascade control

Passive
assistance;
triggered
passive
assistance

4 actuators 4 fingers FE 0.13 N/A N/A N/A

Exo-glove (in et al.,
2015)

Bend sensors for
intention detection;
extremely lightweight;
soft tendon routing
system designed for
zero pretension of the
tendons; introduced
a slack prevention
mechanism; pinch
and grasping
assistance/training

Triggered
passive
assistance

3 actuators/
9 DOF

Index, middle
finger and
thumb FE

0.194 N/A N/A N/A

Wrist rehabilitation
device Ambar et al.
(2017)

Android-based game
application; mouse-
like joystick suitable
for patients with
grasping difficulties

N/A 3-Passive Wrist FE; wrist
add-abduction;
forearm PS

N/A N/A N/A N/A

e-Wrist Lambelet et al.
(2020)

Easy one-handed
donning/doffing

Partial
assistance
(AAN)

1-Active Wrist FE Distal
module
0.238

N/A N/A Acute or
subacute

Proximal
module
0.224

SCRIPT
Amirabdollahian et al.
(2014); Nijenhuis et al.
(2015); Ates et al.
(2017)

Easy don/doffing;
motivational game
environment based
on AD; a tele-robotic
support platform with
a reach and user-
friendly user-
interfaces

Triggered
passive
assistance

6-Passive (1-
unactuated
for thumb ab-
adduction)

Wrist FE; 5
fingers FE

0.65 Mild to severe FM; ARAT;
MAL; SIS

Chronic
(>6 months
post-stroke)

Ambidexter Wai et al.
(2018)

IoT-enabled;
aesthetically
appealing; 3D printed
standard
components; offers
gamification

Passive
assistance;
partial
assistance

3 DOF Hand opening/
closing; forearm
PS; wrist FE

3 N/A N/A N/A

(HAL-SJ) Hyakutake
et al. (2019)

Hybrid control
algorithm, both for
voluntary and
autonomous control;
interactive
biofeedback

Passive
assistance;
triggered
passive
assistance

1-Active Elbow FE 1.3 Mild MAL; FMA-UE;
ARAT

Chronic
(>6 months
post-stroke)

A home-based bilateral
rehabilitation system
Liu et al. (2020); Liu
et al. (2018)

Bilateral rehabilitation;
sEMG-based real-
time stiffness control

Triggered
passive
assistance

1-Active Elbow FE (active);
shoulder add-
abduction;
shoulder FE;
shoulder IE
rotation

3.1 N/A N/A N/A
3-Passive

Soft robotic elbow
sleeve Koh et al. (2017)

Passive
assistance;

1-Active Elbow FE N/A N/A N/A N/A

(Continued on following page)
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motivation, and safety concerns. Remotely supervised
participants of these studies exhibited increased motivation
and autonomy in completing the prescribed task with no
adverse events or edema. They also self-reported increased
mobility, improved mood, and an outlet for physical and
mental tension and anxiety (Sivan et al., 2014; Nijenhuis et al.,
2015; Cherry et al., 2017; Bernocchi et al., 2018; Catalan et al.,
2018). Catalan et al. compared the performance of a

commercialized clinical upper-limb rehabilitation device and
its newly developed home-based counterpart, which showed
that functional outcomes of treatment are similar for home
users and clinic patients (Catalan et al., 2018). This suggests
that, although both groups would reach the task’s goals similarly
in terms of session numbers, due to the higher frequency of
home-based therapy, users are able to master tasks in a shorter
timespan (Godlove et al., 2019).

TABLE 1 | (Continued) Summary of state-of-the-art robotic systems for home-based upper-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

EMG for intention
detection; motion
capture system

triggered
passive
assistance

SpringWear Chen and
Lum (2018)

Spring operated Passive
assistance

5 DOF Shoulder F; elbow
E; forearm PS

1.2 N/A Shoulder FE
ROM; elbow FE
ROM; forearm
PS ROM

Chronic
(>6 months
post-stroke)Shoulder

Horizontal abd-
adduction;
shoulder IE
rotation

PACER Alamdari and
Krovi (2015)

Various control
modes; parallel
platform; 3D
workspace

Passive
assistance;
partial
assistance;
resistance

N/A Arm FE, add-
abduction,
medial/lateral
rotation; elbow
FE, forearm PS;
wrist FE, and wrist
add-abduction

N/A N/A N/A N/A

HomeRehab Díaz et al.
(2018); Catalan et al.
(2018)

Cloud-based
communication
system; VR and
gamification;
wearable devices to
record the
physiological state of
the user

Partial
assistance
(AAN);
resistance

3-Active Shoulder FE;
shoulder
Horizontal abd-
adduction;
elbow FE

7 N/A N/A N/A

ArmAssistJung et al.
(2013); Perry et al.
(2012); Tomić et al.
(2017); Butler et al.
(2017); Perry et al.
(2016)

Portable device table;
interactive games
operating on a web-
based platform; a
global position and
orientation detection
mat; visual and
auditory feedback;
grasp and pinch
exercises

Partial
assistance
(AAN)

4 DOF Shoulder
Horizontal abd-
adduction; elbow
FE; wrist PS

N/A Moderate to
severe

FMA-UE; BI;
WMFT

Subacute

Active therapeutic
device (ATD)
Westerveld et al. (2014)

Arm weight support;
3D end-point
manipulator;
functional training of
reaching tasks;
inherently safe design

Passive
assistance;
resistance

N/A N/A 25 N/A N/A N/A

PaRRo Washabaugh
et al. (2019)

Inherently safe due to
using passive
actuators: eddy
current brakes;
adjustable resistance

Resistance 4 actuators Planar 2D
motions

N/A N/A N/A N/A

RUPERT Zhang et al.
(2011); Huang et al.,
2016)

VR; GUI for remote
supervision; size
adjustable; built-in
safety mechanism

Passive
assistance;
partial
assistance

5 DOF Shoulder FE;
humeral IE
rotation; elbow
FE; forearm PS;
wrist FE

N/A Mild to
moderate

FMA; WMFT Chronic
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This article is intended to be used as a general guideline for
developing robotic home-based rehabilitation systems. For this
purpose, first, the authors conducted a comprehensive review on
developed home-based rehabilitation technologies of the last
10 years (2011–2020), categorizing them into upper and lower
limb devices and considering both commercialized and state-of-
the-art realms. The literature review analyzes and synthesizes the
current knowledge of home-based robotic systems. This aims to
provide a categorized comparison among reviewed literature
leading to a classified roadmap to help guide current research
and propose recommendations for advancing research
development in this field. By addressing current challenges
and shortcomings, three main aspects are considered in the
proposed design paradigm, i.e., mechatronics, control, and
user interface. While existing reviews take a generalized
approach on home-based rehabilitation solutions—e.g., Chen
et al. provided a systematic review based on the utilized
technology types (Chen et al., 2019)—we focus and expand on
robotic devices. In contrast to solutions relying solely on VR and
game-based technologies, this paper addresses robotics-based
technologies to cover the need for a significantly wider range
of post-stroke patients, including patients who require external
assistance reflecting the therapist’s role in unsupervised settings.

In the end, a conceptual community-based robotic rehabilitation
framework, offering smart rehabilitation, is also introduced.

HOME-BASEDREHABILITATION SYSTEMS

Over the last decade, researchers have been addressing existing
challenges and requirements to design and develop rehabilitation
robots suitable for home therapy. As a result, many at-home
rehabilitation devices have been designed within the research
realm, and some have been commercialized (Tables 1–4). In the
following subsections, a comprehensive review of developed
home-based rehabilitation technologies of the last ten years
(2011–2020) is presented.

We conducted a literature review in the PubMed search
engine. The search included the following terms:
“Rehabilitation Robotics,” “Home-Based Rehabilitation,” and
“Stroke Rehabilitation.” Secondary references and citations of
the resultant articles were checked to further identify relevant
literature and other available sources providing information on
commercially available solutions. Reviewers screened the
abstracts of the collected articles for extracting those satisfying
the eligibility criteria. Studies were excluded if they were not

TABLE 2 | Summary of commercialized robotic systems for home-based upper-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

Saebo SaeboVR 2017;
Adams et al. (2018);
Doucet and Mettler
(2018); Franck et al.
(2019); Runnalls et al.
(2019)

Fine motor skills, grasp, grip,
pinch and release training;
virtual world-based
rehabilitation software for
ADL; provides various
additional treatment kits;
arm weigh support; non-slip
surface

N/A N/A Wrist FE and PS;
5 fingers FE

N/A Mild to
severe

WMFT; FMUE;
ROM; ARAT; SIS

Subacute
to chronic

WeReha Bellomo et al.
(2020)

Simultaneously stimulating
the cognitive aspect; fine
movement training of the
hand

N/A N/A Shoulder F;
elbow FE;
forearm PS;
wrist PS

N/A Mild to
moderate

BBS; BI; FM; mRS Chronic

SEM glove Osuagwu
et al. (2020); Nilsson
et al. (2012)

Pressure sensor for intention
detection logic; tactile
sensor and force sensor;
power unit backpack

Partial
assistance

3
Actuators/
9 DOF

3 fingers F 0.7 N/A N/A N/A

IronHand Radder et al.
(2019); Radder et al.
(2018)

Pressure sensors for
intension detection logic;
assistive and therapeutic
platform; motivating game-
like environment

Partial
assistance

9 DOF 3 or 5 fingers F 0.07 N/A Use time; SUS;
BBT; JTHFT;
maximal pinch
strength; maximal
handgrip strength

N/A

Gloreha lite Bernocchi
et al. (2018)

3D animations for simulated
preview of the movement;
dynamic arm supports;
grasping, reaching and
picking tasks; audio and
visual feedback

Passive
assistance;
partial
assistance

5-Active 5 fingers F 0.25 N/A FIM; MAS N/A

The motus hand Wolf
et al. (2015); Butler et al.
(2014); Linder et al.
(2013a); Linder et al.
(2013b)

Visual biofeedback; offers
gamification; FDA class 1
device

Partial
assistance

N/A Wrist and
fingers FE

control
box: 6.37

Mild to
severe

FMA; WMFT;
ARAT; SIS; MAS

Subacute
to chronic
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TABLE 3 | Summary of state-of-the-art robotic systems for home-based lower-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

Soft robotic sock
Low et al. (2018);
Low et al. (2019)

Not size adjustable;
not customizable for
treatment
parameters; offers
early bedside care;
improves venous flow
during inpatient usage
(fabric-based form
factor and silicone-
rubber-based
actuator design
provide a greater
chance of user
acceptance due to its
compliant nature)

Pneumatic-actuated
assistance

N/A Ankle PD N/A Severe Ankle ROM Acute and
subacute

Wearable ankle
rehabilitation robotic
device Ren et al.
(2017)

Size adjustable;
progressive
augmented real-time
feedback; sensory
stimulus

Triggered passive
assistive; partially
assistive (AAN); resistive
(active assistive training;
resistance training;
passive stretching)

1-Active Ankle PD N/A N/A FMLE; MAS Acute

Motorized ankle
stretcher (MAS)
Beom-Chan et al.
(2017); Yoo et al.
(2019)

Equipped with a
customized software

Passive assistance 2-Active
per leg

Ankle PD and
eversion/
inversion

N/A N/A Ankle ROM,
gait
parameters

At least
6 months
post stroke

EMG-controlled
Knee exoskeleton
Lyu et al. (2019)

Provides multisensory
feedback; EMG
record for intention
detection;
customized gaming;
ensures safety at
software, electrical
and mechanical
levels; simplified setup
process with setup
time of around 1
minute

Triggered passive
assistance

2-Active
per leg

Hip FE;
Knee FE

20 (total including
the electronic

components and
battery),0.92 (the
exoskeleton’s
lower leg)

N/A N/A Tested on
healthy
subjects

Lower limb
rehabilitation
wheelchair system
Chen et al. (2017b)

Equipped with a tele-
doctor; patient
interaction module
including user
interfaces for both
patients and
therapist; customized
virtual reality game

Passive assistance N/A Knee FE-
standing/lying
(movement of
back)

N/A N/A N/A N/A

Lower limb
rehabilitation robot
(LLR-Ro) Feng et al.,
2017)

Intelligent human-
machine cooperative
control system;
mechanical, electrical,
and software safety
features

Passive assistance 3-Active
per leg

Hip FE; Knee
FE; ankle PD

N/A N/A N/A Early
phase of

i-Walker Morone
et al., 2016)

Used either for
training or as an
assistive device

Partial assistance (AAN);
progressive assistance

N/A N/A N/A Mild to
moderate

Tineti’s scal-
MAS- BI-
6MWT-
10MWT

Subacute
<90 days

Curara
®
Mizukami

et al. (2018);
Tsukahara et al.
(2017)

Non-exoskeletal
structure

Synchronization-based
assistance

2-Active
for
each leg

Hip FE;
Knee FE

5.8 N/A N/A N/A

Highly repetitive
without fatigue;

Triggered assistance 2-Active
per leg

Hip FE;
Knee FE

25 (including
battery)

Mild FMAS-BBS-
TUGT-SPPB

Mean
1 year after

(Continued on following page)
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TABLE 3 | (Continued) Summary of state-of-the-art robotic systems for home-based lower-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

WA-H Moon et al.
(2017); Sung et al.
(2017)

facilitates weight
shifting by passive hip
joints in coronal plane

GEMS-H Hwang-
Jae Lee et al.
(2019); su-Hyun Lee
et al. (2020)

Flexible exoskeleton Partial assistance (AAN) 1-Active
(per leg)

Hip FE 2.8 Mild to
moderate

FMA, BBS,
K-FES

Chronic
stroke

2-
Passive

Eddi current braking
knee brace
Washabaugh and
Krishnan (2018);
Washabaugh et al.,
2016)

Inherently safe due to
utilization of passive
actuators: eddy
current brakes

Resistance 1-
Passive

Knee FE 1.6 Mild to
moderate

10MWT Chronic

TABLE 4 | Summary of commercialized robotic systems for home-based lower-limb rehabilitation.

Device Main
features

and drawbacks

Control
strategy

DOF Supported
movements

Weight
(kg)

Stroke
severity

Outcome
measures

Time
after
stroke

Stride management
assist (SMA) (by
Honda) Buesing et al.
(2015)

Single-charge operation
time of 2 hours; not size
adjustable but available 3
sizes: M, L and XL; only
provides assistance in
sagittal plane; one
functional upper limb side
is required for putting it on

Uses a mutual rhythm
scheme to generates
assist torques at
specific instances
during the gait cycle to
regulate the user’s
walking pattern

1-
Active
per leg

Hip FE 2.8 N/A N/A Chronic (more
than one year)

ReWalk ReStore™ (by
ReWalk robotics)
Awad et al. (2020)

Offers an optional textile
component for patients
who require medio-lateral
ankle support; a hand-
held real-time monitoring
device with a graphical
interfaces; some adverse
events involving pain in
lower extremity and skin
abrasions were reported
by users

Partial assistance 1-
Active
per leg

Ankle
plantarflexion/
Dorsiflexion

5 N/A 10MWT > two weeks

EksoNR (by ekso
bionics) Carlan and
singleorigin (2020)

Variable assistance
modes

N/A 3-
Active
per leg

Hip FE and
knee FE

N/A N/A N/A N/A

HAL(by CYBERDYNE
inc.) Nilsson et al.
(2014); Kawamoto
et al. (2013);
Kawamoto et al.
(2009)

Hybrid control algorithm,
both for voluntary and
autonomous control

Passive assistance;
triggered passive
assistance

3-
Active
per leg

Hip FE; Knee
FE; ankle PD

14
(double
leg

model)

N/A 10MWT; BBS;
TUGT; FM-LE;
FES; BI; FIM

Early onset;
chronic (more
than a year)

AlterG bionic leg
Wright et al. (2020);
Iida et al. (2017); Stein
et al. (2014)

Auditory and sensory
feedback; easy and fast
donning and doffing
(approximately of 2
minutes); standardized
overground functional
tasks including sit to
stand transfer

Partial assistance 1-
Active

N/A 3.6 N/A 10MWT; 6MWT;
TUGT; DGI; BBS;
mRS;;
accelerometry

Chronic stroke
(>3 months
since stroke
diagnosis)

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6123318

Akbari et al. Robotic Home-based Rehabilitation Systems

355

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


implemented and/or did not demonstrate implementation
potential in home settings, based on the criteria introduced by
authors in the following subsections.

Approximately 70% of stroke patients experience impaired
arm function (Intercollegiate Working Party for Stroke, 2012).
Hemiparesis is prevalent in up to 88% of post-stroke patients,
which mostly leads to gait and balance disorders, that even
persists in almost one-third of patients even after
rehabilitation interventions, leaving them with the inability in
independent walking (Gresham et al., 1995; Duncan et al., 2005;
Díaz et al., 2011; Morone et al., 2016). Lower-limb devices face
critical challenges for home use, making the upper-limb the
primary focus of early efforts in this field. The following
subsections were set to cover both state-of-the-art and
commercialized devices by categorizing based on the upper or
lower targeted limb.

Upper-Limb
State-of-the-Art: Systems in the Literature
Due to the significant results of active participation between
patients and robots in functional improvement, the majority of
current rehabilitative robots are equipped with electrical or
pneumatic motors (Pehlivan et al., 2011). However, the
inherent considerable weight of mounted motors precludes the
device from being used during daily activities, since proximal arm
weakness is prevalent among individuals with stroke. Thus, to
allow hand rehabilitation during the performance of ADLs,
HandSOME (Brokaw et al., 2011), a passive lightweight
wearable device has been developed. The design is based on
the concepts of patient-initiated repetitive tasks to rehabilitate
and assist during ADL performance by increasing assistive torque
with increasing extension angle. To help with opening the
patient’s hand and assisting with finger and thumb extension
movements, HandSOME uses a series of elastic cords, as springs,
to apply extension torques to the finger joint. For safety
precautions, adjustable hard stops are used to control the
ROM. Studies demonstrated that HandSOME could benefit
stroke patients with ROM improvement. While patients
commented that the device was generally comfortable for use
at home (Chen J. et al., 2017), there is a need to develop a remote
communication system instead of weekly clinical visits. Yet, one
of the disadvantages of the device is its inability of assistance level
adaptation to patient performance. Addressing this issue,
Sandison et al. built a wearable motorized hand exoskeleton,
HandMATE, upon HandSOME. This device benefits from 3D
printing technology for manufacturing the components; hence it
can be optimally adjustable and customizable to fit the patients’
physiological parameters (Sandison et al., 2020). Combining
hand orthosis with serious gaming, Ghasemi et al. have
integrated eXtention Glove (X-Glove) actuated glove orthosis
with a VR system to augment home-based hand therapy. For a
facilitated donning, the device design allows for being put on by
two separate components (Ghassemi et al., 2018). The glove
provides both stretching therapy and extension assistance for
each digit independently while allowing free movements and
interaction with real-world objects (Fischer et al., 2016). Gasser
et al. presented compact and lightweight hand exoskeleton

Vanderbilt intended to facilitate ADLs for post-stroke hand
paresis. The design includes an embedded system and onboard
battery to provide a single degree of freedom (DOF) actuation
that assists with both opening and closing of a power grasp
(Gasser et al., 2017).

The Hand Extension Robot Orthosis (HERO) Glove is another
wearable rehabilitation system that provides mechanical
assistance to the index and middle fingers and thumb
(Yurkewich et al., 2019). Linear actuators control the artificial
tendons embedded into the batting glove’s fingers for finger
extension and grip assistance. Yurkewich et al. proceeded with
their research by introducing My-HERO, a battery-powered,
myoelectric untethered robotic glove. The new glove benefits
from forearm electromyography for sensing the user’s intent to
grasp or release objects and provides assistance to all five fingers
(Yurkewich et al., 2020). Addressing the pediatric disorders, such
as stroke, causing thumb deformation, lightweight hand-
mounted rehabilitation exoskeleton, the Isolated Orthosis for
Thumb Actuation (IOTA), offers 2 degrees of freedom thumb
rehabilitation at home while allowing for significant flexibility in
the patient’s wrist (Aubin et al., 2013). The device is patient-
specific and can be securely aligned and customized to the
patient’s hand. The portable control box of the design
enhances user freedom and allows rehabilitation exercises to
be executed virtually anywhere. For recovering hand grasp
function, Park et al. developed a robotic grasp rehabilitation
device integrated with patient intention detection utilizing
handle-embedded pressure sensors (Park et al., 2013). The
device was designed for home use by being small in size,
portable, and inexpensive. As one of the first wearable robots
performing resistive training, Wearable Mechatronics-Enabled
(WearME) glove was developed coupled with an associated
control system for enabling the execution of functional
resistive training. The soft-actuated cable-driven mechanism of
the power actuation allows for applying resistive torque to the
index finger, thumb, and wrist independently (Zhou et al., 2019).

Targeting individuals with functional grasp pathologies, Delph
et al. developed an sEMG-based cable-driven soft robotic glove
that can independently actuate all five fingers to any desired
position between open and closed grip using position or force
control and simultaneously regulate grip force using motor
current (Delph et al., 2013). Coffey et al. integrated a soft
pneumatic glove with a novel EEG-based BCI controller for an
increased motor-neurorehabilitation during hand therapy at
home (Coffey et al., 2014). In contrast to clinical BCI-
mediated solutions, it is an inexpensive and simplified
alternative for training the subject’s wrist and fingers at home
together with a haptic feedback system. Polygerinos et al.
presented a portable soft robotic glove that combines
assistance with ADL and at-home rehabilitation (Polygerinos
et al., 2015). Hydraulically actuated multi-segment soft
actuators using elastomers with fiber reinforcements induce
specific bending, twisting, and extending trajectories when
pressurized. The soft actuators are able to replicate the finger
and thumb motions suitable for many typical grasping motions,
to match and support the range of motion of individual fingers.
Furthermore, the device has an open palm design in which the
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actuators are mounted to the dorsal side of the hand. This
provides an open-palm interface, potentially increasing user
freedom as it does not impede object interaction. The entire
compact system can be packaged into one portable waist belt pack
that can be operated for several hours on a single battery charge.
Gross and fine functional grasping abilities of the robotic glove in
free-space and interaction with daily life objects were qualitatively
evaluated on healthy subjects. Compared to other robotic
rehabilitation devices, the soft robotic glove potentially
increases independence, as it is lightweight and portable. An
electrically actuated tendon-driven soft exosuit was developed for
supporting and training hand’s grasp function. The device offers
versatile rehabilitation exercises covering motion patterns,
including both power and precision grip, on each
independently actuated finger (Klug et al., 2019). The Exo-
Glove, a soft wearable robot using a glove interface for hand
and finger assistance, developed by In et al., employs a soft tendon
routing system and an underactuated adaptive mechanism (In
et al., 2015). Inspired by the human musculoskeletal system, Exo-
Glove transmits the tension of the tendons routed around the
index and middle finger at the palm and back sides to the body to
induce flexion and extension motions of the fingers.

The majority of upper-limb devices are dedicated to wrist
rehabilitation due to its importance for peoples’ daily work and
life (Wang and Xu, 2019). By combining sensing technology with
an interactive computer game, Ambar et al. aimed at developing a
portable device for wrist rehabilitation (Ambar et al., 2017). To
consider difficulties of stroke patients in firm grasping, the design
was based on a single-person mouse-like joystick. The third DOF
is considered for forearm pronation/supination, adding to
standard flexion/extension and adduction-abduction
movements for wrist rehabilitation. Clinical trials on healthy
subjects using the device have shown task completion through
a smooth recorded trajectory. In 2020, they also developed an
android-based game application to enable patients to use the
rehabilitation device at home or anywhere while making the
therapy systematic and enjoyable (Ail et al., 2020). Lambelet et al.
developed a fully portable sEMG-based force-controlled wrist
exoskeleton offering extension/flexion assistance, eWrist. Given
the prominence of the donning aspects of rehabilitation robots in
unsupervised settings, the device was iteratively designed
emphasizing attachment mechanism and distal weight
reduction to enable one-hand and independent donning of the
device (Lambelet et al., 2020).

One of the first projects dedicated to enabling home
rehabilitation is the SCRIPT project. SCRIPT
project—Supervised Care, and Rehabilitation Involving
Personal Tele-robotics—is based on designing a passive finger,
thumb, and wrist orthosis for stroke rehabilitation
(Amirabdollahian et al., 2014). SPO-F, the final design, is
equipped with novel actuation mechanisms at the fingers and
wrist and a motivational game environment based on ADL,
combined with remotely monitored consistent interfaces (Ates
et al., 2017). To make the devices inherently safe and integrable to
home environment, a dynamic but passive mechanism is
implemented, providing adaptable and compliant extension
assistance. The device is targeted at patients who are able to

generate some residual muscle control. Also, it utilizes physical
interfaces developed by Saebo Inc. due to its proven track record
in providing safe and comfortable interaction. An evaluation
study on post-stroke patients using the device training with
virtual reality games indicated the feasibility of home training
using SPO-F, providing reports on the compliance and
improvement of hand function after training (Nijenhuis et al.,
2015) (Figure 1).

Liu et al. integrated a powered variable-stiffness elbow
exoskeleton device with an sEMG-based real-time joint
stiffness control to offer bilateral rehabilitation to patients
suffering from hemiparesis (Liu et al., 2021). For a patient-
specific approach ensuring human-like behavior patterns and
facilitated coordinated movements, the device mirrors the
dynamic movement captured from the unaffected side to
generate stiffness-adapted motion to the contralateral side (Liu
et al., 2018). The device also benefits from five passive DOFs for
providing natural range of motion and minimizing
misalignments between the robot and hand joints. Koh et al.
introduced a soft robotic elbow sleeve for enabling flexion and
extension of the elbow through passive and intent-based assisted
movement execution. Further investigation is required to assess
the efficiency of the device in neuro-muscular training (Koh et al.,
2017).

Motivated by their prior research with HandSOME, Chen
et al. attempted to target another population of patients with arm
weakness instead of grasping impairment and developed a spring-
operated wearable upper limb exoskeleton, called SpringWear,
for potential at-home arm rehabilitation (Chen and Lum, 2018).
With a total of five DOFs, SpringWear applies angle-dependent
assistance to the forearm supination, elbow extension, and
shoulder extension while incorporating passive joints for two
other shoulder movements to allow complex and lifelike multi-
joint movement patterns (Chen J. P. S. and Lum P. S., 2016). Over
a ten-year iterative research cycle, Zhang et al. developed the
wearable exoskeleton RUPERT—Robotic Upper Extremity
Repetitive Trainer—for both clinical and in-home post-stroke
upper-extremity therapy that incorporates five degrees of
freedom of shoulder, humeral, elbow, forearm, and wrist
(Zhang et al., 2011). Each DOF is supported by a compliant
and safe pneumatic muscle (Huang et al., 2016). The device
employs adaptive sensory feedback control algorithms with
associated safety mechanisms. The developers claim that
easiness in donning and operating the device and its graphic
user interface excludes the need for the presence of a physical
therapist.

As the end-effector of the human body, the hand takes the lead
of ADL (Ates et al., 2017). Hence, improving the ability to
perform ADLs is regarded as one of the main goals of
physical/occupational therapy. To this end, Ambidexter, an
end-effector type three DOF robotic device, has been
developed for training hand opening/closing, forearm
pronation/supination, and wrist flexion/extension (Wai et al.,
2018). To meet the essential requirements for home systems, the
cost was reduced while maintaining the effectiveness, the set-up
process is easy and fast—taking less than one minute—and
compactness and aesthetics were practiced carefully during the
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design process. A universal and ambidextrous grip is utilized to
allow both left- and right-hand usage and to be adjustable to
different hand sizes without changing the attachment. Both active
and passive motion assistance in a game context is provided based
on the ability of the user. Also, automatic customization is
allowed by receiving user information from a mobile
interfacethrough an integrated internet of things (IoT)
network to monitor and communicate with the therapist.
Ambidexter is lighter and smaller compared to its commercial
counterparts, ReachMan and ReachMan2.

A novel home-based End-effector-based Cable-articulated
Parallel Robot, PACER—Parallel articulated-cable exercise
robot—, was developed by Alamdari et al. for post-stroke
rehabilitation (Alamdari and Krovi, 2015). The device features
a modular and reconfigurable design and is easy to assemble/
disassemble. The device is able to assist and train the muscles
involved in arm, forearm, and wrist motions. In 2018, Díaz et al.
(2018) conducted research on converting a large pneumatic
commercialized device, which had been designed for clinical
therapy, into an electric and compact system for home
rehabilitation by making it smaller, lighter, and cheaper, but
maintaining the functionality (Díaz et al., 2018). It resulted in the
development of HomeRehab, a desktop-type 2DOF robotic
system intended to improve ROM and strength of the paretic
hand in stroke patients. Designed for the home environment, all

the components are concentrated in a small portable box, and the
device can easily be placed on a home table. VR and gamification
are also enabled through a standard PC communication and a
novel low-cost force sensor. Force feedback allowed both
assistive—the assist-as-needed approach—and resistive
scenarios to be implemented during the therapy, depending on
the therapist’s assigned task. Remote management is enabled by
using wearable devices to record patient’s biosignals and
providing a cloud-based communication system. A
comparison between PupArm, a commercialized rehabilitation
device for clinical settings, and HomeRehab indicated that, while
offering similar outcomes, the latter is significantly lighter; 80 vs.
7 kg (Catalan et al., 2018) (Figure 2).

ArmAssist (Tecnalia R&I, Spain) is a portable, modular,
easy-to-use, low-cost robotic system consisting of a tabletop
module using omni-wheels, an arm, and hand gravity
compensator orthosis aimed at post-stroke shoulder and
elbow rehabilitation. Also, at the University of Idaho, add-on
modules for wrist prono-supination and hand grasping training
have been presented. Over the years, the device has been
iteratively redesigned based on the updated requirements
gained from clinical interviews, expert focus groups, and
pilot tests with patients and therapists (Perry et al., 2012;
Jung et al., 2013; Perry et al., 2016; Butler et al., 2017; Tomić
et al., 2017).

FIGURE 1 | Robotic gloves and exoskeleton devices for home-based hand rehabilitation: (A) SCRIPT project (Ates et al., 2017), (B) My-HERO (Yurkewich et al.,
2020), (C) HERO (Yurkewich et al., 2019), and (D) X-Glove (Triandafilou, 2014).
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As an intermediate step between high-power active and passive
assistive robots, Westerveld et al. developed a low-power three-
dimensional damper-driven end-point robotic manipulator, called
active therapeutic device (ATD) (Westerveld et al., 2014). ATD
provides a combination of passive arm weight support and
assistance for functional reaching training. Increasing its
potential for home-based therapy, the device deployed an
inherently safe and compact system design. Washabaugh et al.
designed a planar passive rehabilitation robot, PaRRo, that is fully
passive yet providesmulti-directional functional resistance training
for the upper-limb (Washabaugh et al., 2019). This happens
through integrating eddy current brakes with a portable
mechanical layout that incorporates a large reachable workspace
for a patient’s planar movements. The considered kinematic
redundancies of the layout allow for posing direct resistance to
the patients’ trajectories.

Commercially Available Devices
Based on the premise that the best way to reacquire the capability
to perform a task is to practice that task repeatedly, Saebo Inc.

proposed SaeboVR, a non-immersive VR rehabilitation system
incorporating motivating games. These games are designed to
simulate activities of daily living (ADL) and engage patient’s
impaired arm in meaningful tasks aiming to evoke functional
movements (Recover From Your Stroke With Saebo, 2017). The
goal of the customizable tasks is to test and train user’s cognitive
and motor skills such as endurance, speed, range of motion,
coordination, timing, and cognitive demand, e.g., visual-spatial
planning, attention, or memory, under the supervision of a
medical professional in a home setting. The device includes a
Provider Dashboard application that enables the medical
professional to view patient performance metrics and
participation history while providing audiovisual feedback and
graphic movement representation for patients.

To target a specific group of patients with various treatment
options, this device can be upgraded with additional technologies,
e.g., SaeboMas, SaeboRejoyce, or SaeboGlove, which can be
integrated into the virtual environment. SaeboGlove, a
functional hand orthosis, combined with electrical stimulation,
has been shown to be beneficial for functional use of moderately

FIGURE 2 |Robotic exoskeleton and end-effector devices for home-based upper-limb rehabilitation: (A) SpringWear (Chen and Lum, 2018), (B)RUPERT (Tu et al.,
2017), (C) eWrist (Lambelet et al., 2020), (D) Soft robotic elbow sleeve (Koh et al., 2017), (E) Portable device for wrist rehabilitation (Ambar et al., 2017), and (F)
HomeRehab (Díaz et al., 2018).
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to severely impaired hands in sub-acute stroke patients (Franck
et al., 2019). SaeboMAS, a zero-gravity upper extremity dynamic
mobile arm support device, provides the necessary weight
support in a customizable manner, facilitating exercise drills
and functional tasks for the individuals who have arm
weaknesses (Runnalls et al., 2019). The usage of this
technology will potentially allow patients with proximal
weakness to reach a larger anterior workspace and engage in
more versatile functional tasks and exercises that would have
otherwise been difficult or impossible. The SaeboReJoyce is an
upper extremity rehabilitation computerized workstation that
includes pre-installed neurogaming software and offers task-
oriented and customizable games. The workstation is
composed of two components. A lightweight height-adjustable
and portable gross motor component makes the device useful for
sitting, standing, and lying positions and enables the execution of
exercises and tasks in all directions and planes. A fine motor
component aims at improving necessary dexterity for daily tasks
by incorporating various grip and pinch patterns, such as
spherical grasp, grip strength, wrist flexion/extension, tip to tip
pinch, and pronation/supination, among others. Several studies
have been conducted to prove the efficacy and results of Saebo
products (Adams et al., 2018; Doucet and Mettler, 2018; Runnalls
et al., 2019).

Another home rehabilitation device for post-stroke patients is
WeReha, which is intended to be used for hand impairments with
the possible remote supervision of physiotherapists (Bellomo
et al., 2020). The primary purpose of this device’s invention is
to train the fine movements of the hand and simultaneously
stimulate the cognitive aspect, exploiting the biofeedback
technology. It can track patient movements with the 3D
printed “smart” objects equipped with inertial sensors while
transmitting data via Bluetooth to the software. The software
processes the data and produces visual-auditory feedback to guide
the patient. Such guidance enables the patients to correctly
execute various motor tasks through the exercises in the
specially designed and studied video games that allow them to
exercise the grip of finer or larger objects. Moreover, simple and
effective gamification is based on indexes of rotation, flexion-
extension, and prono-supination of the upper-limb.

The soft extra muscle (SEM) Glove by Bioservo Technologies
AB, Sweden (BIOSERVO, n.d.), was developed to improve the
hand’s grasping capacity by providing additional finger flexion
strength. This novel technical solution simultaneously mimics a
biological solution and functions in symbiosis with the biological
system that excludes the need for an external mechanical
structure to achieve controlling and strengthening effects. The
servo device uses artificial tendons connected to electrical motors
that actuate finger movements by creating pulling forces. The
device features intention detection to apply proportional finger
flexion strength facilitating grip or object manipulation,
benefitting from control algorithms that are based on tactile
sensor signals located on the tip of fingers. The efficacy of
SEM Glove has been evaluated for improving gross and fine
hand motor functions for at-home rehabilitation for people with
impaired hand function after high-level spinal cord injury, yet
further investigation is required for its efficiency for post-stroke

rehabilitation (Nilsson et al., 2012; Osuagwu et al., 2020). Based
on the SEM Glove technology and with the aim of extending its
application for stroke rehabilitation at home, Radder et al.
designed IronHand, a lightweight and easy-to-use soft robotic
glove that thanks to the soft and flexible materials used for its
fabrication, accommodates wearable applications (Radder et al.,
2019). The IronHand, formerly known as HandinMind (HiM)
project, offers an easy-to-use combination of assistive
functionality during ADL and therapeutic functionality
through a training context within a motivating game-like
environment (Prange-Lasonder et al., 2017). They allow
individuals with reduced hand function to use their hand(s)
during a large variety of functional activities. The therapeutic
functionality of the device incorporates a therapeutic software
platform for patient assessment and database and it covers
therapy goals of simultaneous finger coordination, hand
strength and sequential finger coordination (Radder et al.,
2018). The assistive functionality provides extra strength to the
grip of fingers after the active contribution of the user’s grip force,
and an intention detection logic ensures that extra force
proportional to that of the user is activated. IronHand is one
of the first user trials that applied and tested a fully wearable
robotic system in an unsupervised home setting to support hand
function during an extended period of multiple weeks. Findings
from this extensive trial indicated improvements in unsupported
handgrip strength and pinch strength (Radder et al., 2019).

In an attempt to transfer Gloreha—Hand Rehabilitation
Glove—Professional, a wearable hand rehabilitation hospital
device, to a home setting, Gloreha Lite has been miniaturized
and specifically designed for home use in a safe and feasible way
for hand rehabilitation (Bernocchi et al., 2018). Gloreha Lite is a
portable, lightweight, and space-saving glove-brace (Aggogeri
et al., 2019). The robotic glove represents a relevant adjunct
intervention to intensify activity-based therapy, integrating the
principle of neuroplasticity with the intensity of treatment
(Proulx et al., 2020). It provides computer-controlled passive
mobilization of the fingers. Before each exercise drill, a 3D-
simulated preview of the movement is presented on the
monitor, and during the performance of the movement, a
simultaneous 3D simulation of the movement is displayed as
it is being performed. Bernocchi et al. evaluated and
demonstrated the feasibility and safety of the device for in-
home therapy and indicated improvement of functional
capacity of the paretic hand. They also demonstrated that the
acquired benefits on strength and dexterity were maintained over
time. The majority of patients completed the entire course of the
program while performing all the prescribed home exercises.

TheMotus Hand (Motus Nova, n.d.) (https://motusnova.com/
hand), previously known as Hand Mentor Pro, is a portable
robotic device designed to enhance active flexion and extension
movements of wrist and fingers along with motor control of the
distal upper limb. The device deploys pneumatic artificial muscles
for simulating dorsal muscle contraction and relaxation. The
Motus Hand has been classified as an FDA class 1 device
presenting non-significant risk (NSR). Several clinical trials
investigated and supported the clinical efficiency, feasibility,
and user-friendliness of the Motus Hand for in-home
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telerehabilitation among subacute to chronic post-stroke (Linder
et al., 2013a; Linder et al., 2013b; Butler et al., 2014; Wolf et al.,
2015) (Figure 3).

Hyakutake et al. investigated the efficiency and feasibility of
home-based rehabilitation involving the single-joint hybrid
assistive limb (HAL-SJ) (Hyakutake et al., 2019). Drawing on
the “interactive biofeedback” theory, HAL-SJ is a lightweight
power-assisted exoskeleton on the elbow joint triggered by
biofeedback for assisting the patient in the voluntary
movements of the affected upper limb.

Lower-Limb
State-of-the-Art: Systems in the Literature
Many developed lower-limb robotic systems offer rehabilitation in
sitting/lying positions for stroke patients who cannot stand or walk
safely (Eiammanussakul and Sangveraphunsiri, 2018). In this
approach, the patients may exercise more independently with
no safety concerns like falling. Therefore, compared to the other
lower-limb rehabilitation principles, such as treadmill gait trainers,
this kind of lower-limb device shows considerable potential for in-
home therapy. Moreover, these robots are potentially suitable for
home environments, as they can be smaller, lighter, and portable.

Spasticity of the limbs is one of the most common
impairments ensuing onset of stroke. It puts patients at a high

risk of developing foot deformity. Hence, treating the spasticity of
lower extremities to prevent any deformity and facilitate ankle
muscle activities during the acute phase and even after the long
bedridden period is of utmost importance. In order to reduce or
prevent the occurrence of spasticity at later stages, Low et al.
developed a soft robotic sock, which can provide compliant
actuation to simulate natural ankle movements in the early
stage of stroke recovery. The soft robotic sock controls the
internal pneumatic pressure of the soft extension actuators to
assist the patient in ankle dorsiflexion and plantarflexion (Low
et al., 2018; Low et al., 2019). For the same purpose, Ren et al. also
developed a wearable ankle rehabilitation robotic device capable
of delivering in-bed stroke rehabilitation in three training modes,
active assistive training, resistance training, and passive stretching
(Ren et al., 2017). These aforementioned devices mainly target
people with acute stroke; Nonetheless, to treat chronic stroke
survivors who have already developed ankle-foot deformities or
imbalanced ankle muscles, Lee et al. developed a relatively small,
lightweight, and user-friendly rehabilitative system, called
Motorized Ankle Stretcher (MAS) (Beom-Chan et al., 2017;
Yoo et al., 2019). The MAS consists of two linear in-line
actuators, each connected to a platform for generating ankle
dorsiflexion and eversion. The system requires patients to
perform exercises in the standing position, with a walker

FIGURE 3 |Commercialized robotic devices for home-based upper-limb rehabilitation: (A) TheMotus Hand (Butler et al., 2014), (B) IronHand (Radder et al., 2019),
and (C) SaeboVR (Recover From Your Stroke With Saebo 2017).
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positioned in front of them for safety concerns. The above-
mentioned devices have not yet been implemented in home-
setting but are deemed potentially feasible by the authors in terms
of safety, size, portability, complexity, and user-friendliness.
However, the clinical efficiency of these devices for in-home
treatment requires further investigation.

As one of the first home-based EMG-controlled systems, Lyu
et al. (2019) developed a knee exoskeleton within a game context
to be used while the subject was seated on the chair wearing the
exoskeleton. Utilizing four active DOF at both hip and knee, the
exoskeleton improves knee joint movement stability and accuracy
by strengthening anti-gravity knee extensor muscles. The robot
can be generally considered a successful effort at designing a
home-based system by being adjustable to the wearer’s leg length,
with a quick setup time of approximately 1 min, and considering
safety cautions in all stages of software, electrical, andmechanical.
Initial testing on healthy subjects represented promising results
on the possibility of carrying out early rehabilitation by this
device, the amount of muscle activation by the participants, and
the timing of that activation.

Another example of lower-limb devices is a multi-posture
electric wheelchair developed by Chen et al. with a lower-limb
training function. Combined with virtual reality games and a
tele-doctor–patient interaction, this device forms an intelligent
rehabilitation system suitable for home therapy (Chen S. et al.,
2017). Apart from rehabilitation training, it can be used as an
everyday wheelchair. This hybrid nature of the design has made

it economically efficient. The wheelchair is equipped with four
linear motors to carry out the training function and the lying/
standing process, and is controlled by a cell phone interface. The
system also benefits from a communication platform through
web-based interfaces for patients and doctors. As another genre
of lower-limb rehabilitation robots seemingly viable for home
implementation, a sitting/lying Lower Limb Rehabilitation
Robot (LLR-Ro) was developed containing a moveable seat
and bilaterally symmetrical right and left leg mechanism
modules, each comprising the hip, knee, and ankle joints.
This device benefits from mechanical, electrical, and software
safety features and an amendment impedance control strategy
to realize good compliance (Feng et al., 2017) (Figure 4).

One of the most prevalent lower-limb impairments following
hemiplegia in post-stroke patients is asymmetric gait patterns and
balance dysfunction. These impairments can adversely affect the
quality of life as they lead to compensatory movement patterns,
slowed gait speed, limited functional mobility, which results in
reduced performance of the activities of daily living and increased
risk of experiencing falls. Therefore, regaining autonomous gait
and improving independent walking ability should be among the
top priorities of rehabilitation interventions post-stroke. Aimed
at improving stability and walking capacity, Morone et al.
introduced i-Walker, a robotic walker for overground training
with embedded intelligence that provides asymmetrical assistance
as needed by detecting the imposed force by the user to adjust the
amount of help to the impaired side (Morone et al., 2016).

FIGURE 4 | Robotic devices for sitting/lying home-based lower-limb rehabilitation: (A) EMG-Controlled Knee Exoskeleton (Lyu et al., 2019), (B) Soft Robotic Sock
(Low et al., 2019), and (C) LLR-Ro (Feng et al., 2017).
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Developing wearable robots for lower-limb treatments has
increasingly gained traction for their capability to facilitate
ambulatory rehabilitation delivery. Among them, Gait
Exercise Assist Robot (GEAR), proposed by Hirano et al. in
collaboration with Toyota Motor Corporation, is a wearable
knee-ankle-foot robot (only for the paralyzed leg) integrated
with a low floor treadmill and a safety suspending device
(Hirano et al., 2017; Tomida et al., 2019). The Lokomat
(Hocoma AG, Volketswil, Switzerland) is a commercial
widely used exoskeleton-type robot for gait training worn
over both lower extremities, consisting of a combination of
adjustable orthoses, a dynamic bodyweight support system, and
virtual reality for providing sensory-motor stimulation (van
Kammen et al., 2017). Although the clinical efficacy of
wearable devices for lower extremity is supported by a
growing body of evidence (Hidler et al., 2009; Tomida et al.,
2019; Mehrholz et al., 2020), only a number of them are
realizable in a home setting with modifications addressing
various factors, e.g., safety issues, size, weight, portability,
complexity, and cost. Among robotic rehabilitation devices of
the past ten years, those provisioned for home therapy only
requiring further investigation validating their clinical efficiency
at home are presented.

Walking Assist for Hemiplegia (WA-H) is a portable,
lightweight, modular, and wearable exoskeletal robot
supporting the hip and knee joint movements that, by
providing customized gait training, can be used in various
environments depending on the degree of impairment in
patients. WA-H has an inherently safe design in which all
robot joints mechanically limit the movements occurring
beyond the natural range of motion. The device features a
passive joint simulating the weight shift occurring during

walking in the hip joint in the coronal plane (Moon et al.,
2017; Sung et al., 2017).

As both rehabilitation and welfare robot, Curara® is a wear
robot that assists hip and knee joints in both impaired and
unaffected legs simultaneously with no rigid connection
between joint frames, resulting in a higher degree of freedom.
Prioritizing user-friendliness in terms of ease in don/doffing and
minimizing the restraining stress against the natural human
movement, Mizukami et al. adopted a non-exoskeletal
structure coupled with a synchronization-based control
system, introducing the ability to feel what natural movement
would be like. Due to the absence of any rigid connection between
joint frames, the device provides a high degree of freedom for
patient movement (Tsukahara and Hashimoto, 2016; Tsukahara
et al., 2017; Mizukami et al., 2018). Lee et al. developed a smart
wearable hip-assist robot for restoring the locomotor function,
the Gait Enhancing and Motivating System (GEMS, Samsung
Advanced Institute of Technology, Suwon, South Korea). GEMS
is equipped with an assist-as-needed algorithm for delivering
active-assistance in hip extension and flexion (Lee et al., 2019; Lee
et al., 2020) (Figure 5).

Interposed between active and passive training robots,
Washabaugh et al. proposed their eddy current braking device
on a knee brace as a wearable passive alternative that provides
functional resisted gait training while adhering to features
required for home-based devices (Washabaugh et al., 2016;
Washabaugh and Krishnan, 2018).

Commercially Available Devices
There are several commercially available lower-extremity
rehabilitation robots, and those exhibiting potential for home
therapy are presented. The wear overground robotic Stride

FIGURE 5 | Robotic devices for in-home walking training: (A) AlterG Bionic Leg (Wright et al., 2020), (B) HAL lower-limb exoskeleton (Anneli Nilsson et al., 2014),
and (C) SMA (Buesing et al., 2015).
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Management Assist (SMA®) is developed and available for
purchase (Honda Global, 2020) by Honda that assists hip joint
movements for increasing walking performance independence
(Buesing et al., 2015). The ReWalk ReStore™ is a soft exosuit
designed and introduced by ReWalk (2019) for actively assisting
paretic ankle plantarflexion and dorsiflexion for the propulsion
and ground clearance walking subtasks (Awad et al., 2020).
ReWalk Robotics also proposed the ReWalk Personal 6.0
System as a customizable exoskeleton with motors at the hip
and knee joints specifically designed for all day home-use
(ReWalk, 2015). EksoNR is an FDA-cleared ambulatory
exoskeleton featuring adaptive gait training and posture
support, yet it is currently being tested in a clinical trial with
stroke patients for evaluating its clinical efficiency (Carlan and
singleorigin, 2020) (https://eksobionics.com/eksonr/).

Different exoskeletons have been developed based on the
HAL’s technology to offer active motion support systems with
a hybrid control algorithm, Cybernic Voluntary Control for
providing physical support associated with the patients’
voluntary muscles activity and Cybernic Autonomous Control
that utilizes characterized movements of healthy subjects and
adopts the motion patterns in accordance. One such device has
been described in the prior section for elbow rehabilitation.
Kawamoto et al. also, based on this technology, developed the
single-leg version of the HAL, an exoskeleton-based robotic suit
for independent supporting of the ankle, knee and hip joints
(Kawamoto et al., 2009). Kawamoto et al. and then Nilsson et al.
investigated the efficiency of this exoskeleton for intensive gait
training for chronic and acute, respectively, hemiparetic patients
(Kawamoto et al., 2013; Nilsson et al., 2014). The device is
commercially available in Japan (Cyberoyne, 2021).

The AlterG Bionic Leg (AlterG, 2015; AlterG, n.d), a portable
dynamic battery-operated over-ground wearable lower extremity
orthosis, provides adjustable progressive mobility training by
supplementing existing muscle strength, providing audio-
sensory feedback and mobility assistance during rehabilitation
(Stein et al., 2014; Iida et al., 2017; Wright et al., 2020). This
dynamic orthosis supports knee mobility when standing or
walking by providing external support to the lower extremity
and assisting the patient in aid of weight shifts and knee
movement and can be worn in a manner similar to an
orthopedic knee brace.

DESIGN PARADIGM

The interdisciplinary field of rehabilitation requires the
simultaneous employment of a range of expertise, including
engineering, medicine, occupational therapy, and neuroscience,
especially due to the lack of enriched research in motor learning
principles for optimized post-stroke motor recovery (Krakauer,
2006; Brewer et al., 2007). A successful home rehabilitation device
can be designed within a certain sequence of steps that
incorporate all of the aforementioned expertise, as skipping
one could prevent achieving optimum outcomes.

Mechatronic home-based systems for post-stroke therapy are
based on four basic components: 1) a mechatronic device

delivering rehabilitation intervention, 2) a control system
ensuring proper performance of the system, 3) interactive
interfaces for patients and medical professionals who provide
remotely supervised therapy, 4) a communication system gluing
the whole system together.

To provide a classified roadmap for assisting researchers who
aim at further developing this field, a design paradigm is proposed
to form a guideline on developing each component based on the
engineering design process.

Post-Stroke Rehabilitation and Treatment
Interventions
Among different post-stroke symptoms, motor deficits are the
most commonly recognized impairments that affect the face, arm,
and leg motor functions. These impairments result in various
manifestations, including impaired motor control, muscle
weakness or contracture, changes in muscle tone, joint laxity,
spasticity, increased reflexes, loss of coordination, and apraxia
(Basteris et al., 2014; Hatem et al., 2016). To recover lost function
and aid motor recovery, many rehabilitation interventions have
been developed based on neurorehabilitation principles (Basteris
et al., 2014). So as to develop a robot-assisted therapy that offers
maximal motor function recovery, it is essential to employ
interdisciplinary research on the broad spectrum of post-
stroke disabilities and their corresponding rehabilitation
protocols. The outcomes could help create a clear picture of
the target users, establish target and rehabilitation program
specifications, and derive requirements from the needs of all
stakeholders, the largest being the therapists and the patients.
Note that it is essential for the device to be accepted by medical
professionals. From the therapists’ point of view, the crucial
features for iterative design and modification of each
rehabilitation robot must be surveyed and practiced carefully.

Engineers should develop the rehabilitation system based on
multiple contributing factors, including the part of the limb being
trained, the targeted stage of recovery, the severity of initial motor
deficit, range of movements in the paretic limb, grade of
spasticity, age, and individual patient’s characteristics.
Depending on the patient, it is known that motor
impairments can induce disabilities in several functions, such
as range of motion, speed, coordination, cadence (steps/minute),
balance, precision, the ability to regulate forces, muscle strength,
and energy efficiency (Perry et al., 2011). Physiological
measurements during rehabilitation, i.e., heart rate, blood
pressure, body temperature, etc., assist in sensing the patient’s
status during therapy and their capability to do exercise, and in
turn, offer a foundation for determining the dosage of assigned
tasks based on one’s capability (Solanki et al., 2020). Monitoring
physiological parameters could also be utilized for detecting the
user’s psychological state, in terms of mood, motivation,
engagement, etc., and lead to modification of the course of
therapy accordingly (Novak et al., 2010). It is important to
tailor treatment strategies to the goals of improving one or a
combination of these functional disabilities. Current robotic
rehabilitation systems incorporate a variety of
neurorehabilitation strategies. These strategies include
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constraint-induced movement therapy (CIMT), repetitive
movement training, impairment-oriented training, explicit
learning paradigms such as bilateral training, implicit training,
and functional task paradigms (Brewer et al., 2007). Given
training goals as guidelines, a combination of these
interventions can be utilized in order to develop a reasonable
user-specific program with respect to the aforementioned critical
factors (Hatem et al., 2016), as different types of tasks are
necessary to retrain all lost function.

Recovery would benefit if scientific principles behind post-
stroke motor learning were incorporated into the design of the
rehabilitation device. Under the assumption that performance
improvement is dependent on the amount of practice, most
current mechatronic devices for post-stroke therapy are solely
based on the repetition of a single task, termed “massed practice”
(Brewer et al., 2007). It is important to note that, although
repetition is the key to improving within-session performance,
other critical factors must be considered while scheduling
rehabilitation protocols. As Krakour et al. state, there are two
crucial questions to ask before developing any rehabilitation
system: “whether gains persist for a significant period after
training and whether they generalize to untrained tasks”
(Krakauer, 2006; Kitago and Krakauer, 2013). There is
evidence that “distributed practice,” which means inserting
more extended rest periods between repetitions, e.g., increasing
the number of sessions while decreasing session duration,
promotes retention (Krakauer, 2006; Kitago and Krakauer,
2013). While limitations of clinical therapy preclude the
proper implementation of this method, home-based therapy
provides the opportunity of distributed task scheduling in a
way that it can always be at the patients’ disposal.

For rehabilitation interventions to be meaningful, learned
tasks must generalize to new tasks or contexts, especially real-
world tasks. Introducing variability to training sessions, though
worsening the patients’ performance in the short term, improves
their performance in retention sessions and also increases
generalization by representing each task as a problem to be
solved rather than just memorized and repeated (Krakauer,
2006; Kitago and Krakauer, 2013). Contextual interference is a
concept used to introduce variability to the task by random
ordering between several existing tasks. Moreover, recovery of
function to increase patient autonomy is another important
aspect of rehabilitation. It seeks to consider training for true
recovery, as well as, compensatory mechanisms—respectively
accomplishing task goals by recruiting the affected muscles or
alternative muscles (Krakauer, 2006; Kitago and Krakauer, 2013).
Nevertheless, when establishing goals for rehabilitation
interventions, there has to be a clear distinction in mind
between these two, true or compensatory recovery, as they
may make differential contributions to the treatment plan.

Mechatronic System
Once the target group and treatment plan have been identified,
the design criteria, including requirements and constraints, need
to be established and prioritized to fit the need. Since the device is
being designed for the home setting, certain factors are
introduced, and some others become more prominent—safety,

adaptability to the home setting, the autonomy of patients,
aesthetic appeal, affordability, to name a few (Carbone et al.,
2018; Chen et al., 2019).

Design Criteria for Home-Use
In addition to the general criteria, the adoption of each home
rehabilitation solution requests specific features of the device
itself. For example, in the case of exoskeletons, besides absolute
safety when worn, lightness, wearing ease, comfortability, and
smoothness, there should be an absence of friction and allergenic
factors as it is in contact with the skin. So the device should
guarantee a high tunability and reliability (Borboni et al., 2016).
Considering all of the factors and criteria, a solution has to be
adopted, which offers a satisfactory compromise to each of the
existing issues and requests of all parties involved, as all of the
requirements affect the device’s structure. Also, there are some
optional and preferable criteria, among which expandability and
upgradability are favorable to cover a wide range of disabilities
and possible treatment methods. To this end, modularization
benefits both manufacturers and customers for it increases
diversity and a variety of available options and enables
interchangeability and compatibility. This way, various gadgets
could be developed to be integrated into a wide range of existing
home-based devices, which in turn enhances both acceptability
and functionality. For example, Amirabdollahian et al. in the
SCRIPT project and Kutlu et al. in their home-based FES
rehabilitation system utilized commercialized Saebo module,
SaeboMAS arm support (Amirabdollahian et al., 2014; Kutlu
et al., 2017). Moreover, the donning aspect of robotic devices in
an unsupervised context should be underlined. Therefore,
attachment mechanisms should be designed to enable
facilitated and independent donning and doffing of the device
by the patient. In this regard, Lambelet et al. designed the eWrist
to offer easy and fast donning/doffing to enable single-handed
mounting of the device for hemiparetic patients, significantly
promoting the autonomy of the patient were they to train
independently (Lambelet et al., 2020). Equivalently, Fischer
et al. realized facilitated donning of X-Glove by means of
adopting a two-separate component design, a zipper on the
palmar side, and a flexed wrist posture (Fischer et al., 2016). It
should be flexible to be used in different positions, such as sitting/
lying for bedridden or chaired individuals, and also light enough
to be easily transportable. Another criterion that needs to be
taken into account is that the device’s functioning noise must be
as low as possible to be acceptable by the patient (Borboni et al.,
2016).

Mechanism Type
Having design criteria and target functionality in mind, the
designer has to decide the mechanism type. The type of the
mechanism and the treatment options are correlated; for
example, additional movement protocols can be utilized based
on the number of arms. In general, human limb rehabilitation
robots are divided into two groups based on the target limbs:
upper-limb rehabilitation devices and lower-limb rehabilitation
devices, each divided into several subgroups. Based on motion
systems, upper-limbs are categorized into exoskeletons or end-
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effector devices. Based on the patient’s posture, lower-limb
devices can be designed to be used in sitting/lying positions or
standing positions with the help of body and robot weight
support.

In his study in 2019, Aggogeri et al. categorize robotic
rehabilitation technologies into end-effector or exoskeleton
devices based on design concepts (Aggogeri et al., 2019). End-
effector devices, also known as endpoint control, determine the
joint level movements by recreating dynamic environments
corresponding to ADL. End-effector devices may be dedicated
to hand rehabilitation or integrated into more complex structures
for arm recovery. Attached to the user’s limbs, exoskeletons are
wearable robots aiming at enhancing their movements. Focusing
on the patient’s anatomy, each degree of freedom of the device is
aligned with the corresponding human joint. Exoskeletons should
be compliant with the user’s movements and deliver part of the
power required by the movements. Therefore, the mechanical
axes of exoskeleton joints and anatomical joints should be aligned
to prevent patient discomfort and not obstruct natural limb
movement (Fischer et al., 2016). In designing exoskeletons, the
high sensitivity of stroke survivors to the applied mechanical load
on their paretic limb makes the weight of the device an important
factor to be considered. Reducing the applied load on the
impaired limb can be achieved through locating the
components not directly involved in actuation—e.g., battery
and controller—on more proximal rather than distal body
parts. For example, Fischer et al. provided an upper arm
module for locating the battery and electronics, resulting in
the reduced weight of the forearm module located on the
distal part of the arm (Fischer et al., 2016). Equivalently, in
the ReWalk Restore lower-limb exosuit, the actuation pack is
worn at the waist so that the larger proportion of device weight is
located proximally (Awad et al., 2020).

Comparing these two different approaches, end-effector
robots are more flexible than exoskeleton devices in fitting the
different sizes, require less setup time, and increase the usability
for new patients. Besides, end-effector mechanisms are also
generally ambidextrous. On the contrary, exoskeletons should
be fully user-adjustable and therefore require more complex
control systems. While both distal and proximal joints are
constrained in exoskeleton devices, end-effector robots merely
constrain the distal joints (Aubin et al., 2013). Therefore, explicit
control of each individual joint is only possible with exoskeleton
devices. The limited control of end-effector robots could result in
abnormal movement patterns in patients. In contrast, due to the
direct controllability of individual joints in exoskeletons, these
abnormal postures or movements are minimized (Aggogeri et al.,
2019).

In conventional exoskeleton mechanisms, the rigidity of the
frames and fixed straps poses an issue on their wearability and
usability. The heaviness and bulkiness of such frames result in
high energy cost and also affects the natural gait dynamic and
kinematics of the patient. Hence, soft orthotic systems have been
developed as an alternative to traditional rigid exoskeletons (Lee
et al., 2019). In this regard, soft robots have shown promising
potential to be adopted for at-home rehabilitation. In their study,
Polygerinos et al. argue that soft wearables could further advance

home-based rehabilitation in that they provide safer human-
robot interaction due to the use of soft and compliant materials, a
larger range of motion and degrees of freedom, and increased
portability. The materials used for the fabrication of these robots
are inexpensive, making these devices affordable. Also, soft
material makes these devices inherently lighter and, therefore,
more suitable for rehabilitation purposes. Another advantage of
soft robotic devices over conventional rehabilitation robots is that
they can be fully adapted to the patient’s anatomy offering a more
customizable actuation (Polygerinos et al., 2015).

In rehabilitation devices, it is essential to improve physical
human-robot interaction (pHRI). For each type of rehabilitation
device, the recruitment of different engineering methods is
required for such improvements. This interaction is
fundamentally affected by the mechanisms that should be
designed by taking sophisticated biological features and
activities into account. By considering the compliance/stiffness
factor, modes of actuation and transmission need to be selected in
a systematic way. Control methods also affect pHRI (Gull et al.,
2020).

Degrees of Freedom
The number of active and passive DOFs determines the system’s
functionality. They condition the workspace in which the joints
are capable of moving, indicating the assistance/rehabilitation,
which is needed to be delivered to each joint (Shen et al., 2020).
Patients’ anatomy should be incorporated into the design when
determining a reachable workspace based on anthropometric
norms of the end-user (Washabaugh et al., 2019). By reviews
on upper and lower-limb devices, it can be figured out that the
majority of the developed devices profit from certain degrees of
freedom that are compatible with the human body’s anatomy.
Anatomically speaking, in the upper extremity, often simplified to
have seven degrees of freedom, the shoulder is simplified as three
rotary joints achieving extension/flexion, adduction/abduction,
and internal/external rotation. Elbow and forearm are simplified
to provide extension/flexion and pronation/supination
movements, respectively. Lastly, the wrist achieves extension/
flexion and radial/ulnar deviations. The seventh DOF in the
upper extremity’s joint space poses challenging complications
since the maximum DOFs in the task space is six. Not only does
this require us to have a firm understanding of how a human
resolves this redundancy issue, but also such understanding must
be taken into consideration when designing rehabilitation device
mechanisms (Shen et al., 2020). Furthermore, fingers are
simplified as joints capable of achieving flexion/extension and
abduction/adduction movements.

In the lower extremity, the hip is simplified as three rotary
joints to achieve flexion/extension, abduction/extension, and
internal/external rotation. The knee achieves pure sagittal
rotation and flexion/extension. And finally, the ankle,
simplified into three rotation joints, achieves plantar/dorsiflexion,
eversion/inversion, and internal/external rotation (Shi et al., 2019).
The kinematic models should be developed by considering the
anthropometric and morphology of human body structure in
accordance with the command-and-control possibilities of
actuated joints (Dumitru et al., 2018; Cardona and Garcia Cena,
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2019). Joint movements during upper and lower-limb movements
cause misalignments between the exoskeletal and human joint axes
that need to be adjusted and fit to the position of joints. Some
exoskeletal devices have addressed this issue by providing passive
joints to trace the joint movements to enable of the wearer’s natural
range of motion. For example, Sung et al. equipped WA-H with
passive hip joints in the coronal plane to enable weight shifting
during walking (Sung et al., 2017). Also, Liu et al. incorporated three
passive shoulder joints in their design to minimize the
misalignments (Liu et al., 2021).

Modeling Tools
Modeling tools are of paramount importance in the design of
rehabilitation devices for both robot and musculoskeletal
modeling. Rigid body simulation programs or general-purpose
simulation software such as Adams, Matlab, and Modelica can be
used to evaluate the mechanics and control aspects. Also,
computer-aided design software, such as CATIA and
SOLIDWORKS, could be used to design, simulate, and analyze
these robotic mechanisms. To simulate and control soft robots,
SOFA, an open-source framework, can be used. It provides an
interactive simulation of the mechanical behavior of the robot
and its interactive control. It is also possible to model a robot’s
environment to be able to simulate their mechanical interaction.

On the other hand, the heavy dependence of design
parameters upon the targeted application requires careful
analysis of the human body anatomy to design the device by
considering the end-user application (Gull et al., 2020). In turn,
programs such as OpenSim and AnyBody can evaluate and
predict the effect of the device on the human musculoskeletal
system for any given motion. For example, in order to generate a
digital exoskeleton model, Bai et al. exported the designed
exoskeleton in CAD, SolidWorks, to AnyBody (Bai and
Rasmussen, 2011). When it comes to musculoskeletal systems,
software tools can significantly facilitate the process of derivation
of the motion equations to model muscle force and path. Various
musculoskeletal software packages are commercially available
such as SIMM, OpenSim, AnyBody, and MSMS. Among these
software packages, OpenSim is free and open-source software,
and MSMS is a free software (Cardona and Garcia Cena, 2019).
Muscle activation and muscular contraction dynamics of
musculoskeletal models can also be used as a reference input
signal for real-time controlling methods. For example, Liu et al.
utilized an s-EMG-driven musculoskeletal model to adjust the
stiffness control based on the patient’s physical status and
assigned task requirements (Liu et al., 2018).

Two commonly used dynamic modeling methods are
Newton-Euler and Lagrange’s methods. In the Newton Euler
method, by solving the Newton-Euler equation, the robot’s
internal and external forces are extracted. In Lagrange’s
method, which is based on the system’s energy, the external
driving force/torque of the system can be calculated. In 2019
Zhang et al. drew a comparison between these two methods and
provided a table to demonstrate the differences between these
methods. Derivation analysis in the Newton-Euler method is
more complicated than the Lagrange method, but calculations in
the Newton-Euler method are large and heavier to compile, while

in the Lagrangemethod, are easily compiled. In the Newton-Euler
method, in addition to the driving force/moment, internal forces
can be obtained (Zhang et al., 2019). Dynamic simulation can be
carried out in Adams environment while theoretical calculations
are performed in MATLAB. Zhang et al. use these simulations to
provide a basis for the optimal design of the structure and the
selection of the motor (Zhang et al., 2019).

Actuation and Transmission
The design of the device, further completed and integrated with
the detailed design of chosen actuators, the transmission system,
and the sensing system, should be presented at the next step. As
there are myriad options to choose from, the designer has to
weigh his/her options against the design criteria and their
allocated importance and priority.

Efficient actuator design is important for home-based
rehabilitation systems since these systems should be compact.
Therefore, as the main powering elements, small-sized actuators
that have a high power-to-weight ratio are required as they are
capable of producing high torques with precise movement (Gull
et al., 2020). Actuators should be chosen based on the target
application. Three main categories of actuators are electric
motors, hydraulic/pneumatic actuators, and linear actuators.

Electric motors are used for their quick responses and
capability of providing high controllability and controlled
precision. However, they have a low power-to-mass ratio and
are usually expensive. Pneumatic actuators can yield high torques
but could save self-weight. Nevertheless, by using these types of
actuators, the portability of the system is compromised due to the
accompanying inherent components such as pump, regulators,
valves, and reservoirs. Another factor that makes these types of
actuators unsuitable for home-based systems is that they require
maintenance since lubricant/oil leakages could be problematic for
users. In hydraulic and pneumatic actuators, control is less
precise, and hence the safety cannot be ensured. According to
Shen et al. and Gul et al., these actuators are not suitable for
providing assistance or therapy or for rehabilitation purposes due
to their possessing high impedances; however, some studies
utilize them because of their ability to provide high power.
Ultimately, based on the studies done by Gull et al., Series
Elastic Actuators (SEAs) by reducing inertia and user interface
offer a safe pHRI and can achieve stable force control (Gull et al.,
2020). Tuning the stiffness of the transmission system is one of
the approaches to achieve a specific level of compliance. In this
regard, Jamwal et al. suggest using variable/adjustable stiffness
actuators for rehabilitation purposes since these actuators offer
safer human-robot interaction due to their ability to minimize
large forces caused by shocks (Jamwal et al., 2015). Especially,
employing SEA in lower-limb robots offers the advantage of a
facilitated control-based disturbance rejection by improving
tolerance to mechanical shocks, e.g., resulting from foot-ground
impacts (Simonetti et al., 2018). According to Hussain et al.,
compliant actuators enable lightweight design with low
endpoint impedance for wrist rehabilitation, while
electromagnetic actuators are bulky and have high endpoint
impedance (Hussain et al., 2020). Also, based on the study done
byChen et al., in 2016, compliant actuators are regarded as safe and
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human-friendly. These actuators are preferable over stiff actuators
for various reasons. For example, such systems can deliver
controlled force with back-drivability and low output
impedance and are tolerant against shock and impacts. Chen
et al. suggest using SEAs for assistive and rehabilitation robots
(Chen et al., 2016).

On the other hand, passive robots must be equipped with
passive actuators to enable scalable resistance and assistance
based on the patient’s mobility status. There are various types
of passive actuators such as friction brakes, viscous dampers, and
elastic springs to name a few (Washabaugh et al., 2019).

Power transmission may be realized through the utilization of
direct drive, gear, linkages, or cable-driven methods. Cable-
driven transmission means allow for a more lightweight and
compliant design. Backlash and transmission losses render the
control of such systems challenging (Fischer et al., 2016). Sanjuan
et al. classify cable-driven transmission into two categories of
open-ended cables and closed-loop cables (Sanjuan et al., 2020).
According to this study, open-ended cable systems exert forces in
one direction, while close-ended cable systems exert friction
forces (Sanjuan et al., 2020).

Sensing
In order to provide proper guidance for the device’s movement to
execute the required tasks, the system should utilize sensing
methods as input signals. Generally, four main sensors are
used in rehabilitation devices, namely Motion and Position
sensors, Force/Torque sensors, Electromyograms (EMG), and
Electroencephalogram (EEG) (Shen et al., 2020). Since the
rehabilitation devices are directly in contact with the human
body, they should be reliable and highly accurate to provide the
control system with real-time feedback of moving components
(Zheng et al., 2005; Porciuncula et al., 2018).

The spatial configuration of the device is needed in order to
analyze its kinematics and dynamics. For this purpose, position
sensors are used to measure and indicate this spatial
configuration. Among the sensors used for this purpose are:
encoders, potentiometers, flex sensors, and transducers. For
haptic applications like rehabilitation in VR, force/torque
sensors are required. Usually, extra force/torque sensors are
added to the system to provide additional safety levels. Gyro
and acceleration sensors can be mounted on the mechanical
structure for measuring the patient’s posture, for example, in
HAL (Kawamoto et al., 2013).

Moreover, EMG and EEG could be used for measurements in
noninvasive ways. The received signals in these two methods are
often noisy and thus require further processing. Also, sensor
fusion, in which the data frommultiple sensors are merged, could
provide a safer andmore stable intention detection for the system.

Safety Measures
Last but not least, in the unsupervised context of home-based
rehabilitation, safety is the most crucial criterion to be considered.
Multiple redundant safety features must be incorporated in
different modules of the device. In designing the mechanism
stage, the device could be designed to offer intrinsic mechanical
safety so as not to transfer excessive force to the patient’s body.

Also, abnormal reactions of the patient should not be transferred
to the actuator. For example, in Gloreha, these eventual reactions
are absorbed by the mechanical transmission (Borboni et al.,
2016). In “Design Issues for an Inherently Safe Robotic
Rehabilitation Device,” Carbone et al. maintain that there are
three major aspects that significantly affect the safety of the
rehabilitation device, namely operation ranges, operation
modes (speed, accelerations, paths), and operation force/torque
(Carbone et al., 2018). Other measures could be taken to ensure
safety; for example, Kim et al. utilized emergency stop buttons for
both the user and the operator, hard stops at every joint, and also
at the software level added safety features limiting the ROM and
joint velocity and stopping the robot in case of excessive force/
torque interaction (Kim and Deshpande, 2017). Feng et al.
designed LLR-Ro to tackle the safety issue in three levels,
i.e., mechanical limit, the electrical limit, and the software
protection, to fully guarantee the limb safety of the patient in
the whole training process (Feng et al., 2017). The device took
advantage of inherent mechanical joint range of motion limits
and limit switches placed on joint extreme positions to effectuate
electrical limits and realizes the software protection according to
the recorded patient information. Biomechanical, physiological,
and even psychological information of patients can be utilized at
software level safety checks to limit forces, motion, speed, and
user adjustments to control parameters (Van der Loos and
Reinkensmeyer, 2008).

Ultimately, at the end of each step, following the suit of the
engineering design process, iterative optimization is needed to
redefine the design process based on the predefined criteria. All of
these design steps are highly interconnected and, therefore,
should be considered from different aspects (Kruif et al.,
2017). The HERO Glove was iteratively modified and
redesigned based on evaluations and feedbacks from
occupational therapists, specialized in stroke therapy,
engineers, and stroke survivors (Yurkewich et al., 2019).

Control System
After considering the mechatronic aspects, the control system has
to be developed to ensure the proper behavior of the device
(Desplenter et al., 2020). From the hierarchy point of view, it is
suggested to group the control system into three levels, mission
planning, trajectory planning, and state space control, where the
state space control can itself be in two levels of supervisory control
and low-level control. The mission planning level is responsible
for task assignment and completion. Task assignment includes
enabling the therapist or task planning algorithms on the therapy
control unit to customize task details such as treatment strategy,
initial angles and positions, movement period and dwell,
movement velocities, motion patterns, number of repetitions,
range of motion, to name a few. At this level, IoT technology can
be utilized to provide proper feedback from the treatment and
identification of muscloskeletal parameters for the therapist, as
well as therapist supervision. To this end, a mission planning
module must be developed proposing a wide variety of options
applicable to the mechatronic design; including multiple
modalities and training protocols can increase the chance of
adoption by medical professionals (Desplenter and Trejos, 2020).
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According to the specified task, the trajectory planning level plans
the kinematic and kinetic parameters of the motion to meet the
objectives of the planned mission. For example, if the robot is
supposed to provide a motion from an initial to a final
configuration, the trajectory planning level designs the detailed
variation of position, velocity and acceleration of the joints at
each moment. If a force control mission is given, the force
trajectory to be given to the control level is designed in the
trajectory planning level. In the last level, the planned mechanical
motion has to be implemented via the state space control level.
Since the robot dynamic equations are normally nonlinear with
unknown parameters and considerable uncertainties, a high-level
supervisory control may be required to adaptively tune the
control parameters recursively. This requirement can be
handled easily by fuzzy logic or neural network schemes (Lin
and Lee, 1991; Bai et al., 2018). The low-level control can then be a
model-based control, where the computed torque method (CTM)
is one of the most effective and convenient method for this level
(Yıldırım, 2008).

During the last two decades, many solutions have been
proposed to provide motion tasks suitable for post-stroke
motor recovery. Priotteti et al. categorized existing global
strategies for robotic-mediated rehabilitation into three groups
of assistive, corrective, and resistive controllers (Proietti et al.,
2016).

Passive assistance, where the device moves a muscle rigidly
along the desired path by adopting different techniques, is the
most common treatment strategy for acute patients due to the
unresponsiveness of the paretic limb at early post-stroke stages.
As soon as patients regain some degrees of mobilization,
switching to other assistive solutions, such as triggered passive,
where the patient initiates the assistance, or partial assistance,
where the device assists the patient as needed (AAN), as utilized
by Díaz et al. in HomoRehab (Díaz et al., 2018), may lead to better
functional outcomes. Wai et al. provided a combination of the
two mentioned assistive strategies in Ambidexter (Wai et al.,
2018). Active initiation and execution of movements are the
cornerstones of these strategies due to their proven effectiveness
in stimulating neuroplasticity to enhance functional therapy.

The corrective mode is linked to the rehabilitation situation in
which the patient is not performing the movement correctly, and
the robot intervenes by forcing the impaired limb to the correct
orthogonal direction. However, it is not easy to clearly
differentiate assistive and corrective techniques. Hence,
combined assistive-corrective controllers are mostly recurrent
among existing controllers (Proietti et al., 2016).

When patients have recovered enough motor capacity,
undergoing resistive therapies, which make tasks more difficult
in some ways, may result in more significant rehabilitation gains
(Ali et al., 2016). Added to the assistive controller, HomoRehab is
also equipped with a resistive controller (Díaz et al., 2018).
Resistive control, also termed as “challenge-based control,” can
be achieved by merely applying constant resistance to the
movement or error-based methods such as error augmenting
and error amplification strategies (Ali et al., 2016). Existing
devices mostly provide a combination of these three categories
to offer a span variety of motion tasks adaptable to the patient’s

degree of rehabilitation and the targeted impairment (Proietti
et al., 2016). The control system of HAL exoskeletons is based on
a hybrid control algorithm, consisting of two subsystems; one for
voluntary control according to the patient’s voluntary muscles
activity and another for autonomous control, which provides
predefined physical passive assistance when patients are not able
to generate required voluntary signals (Kawamoto et al., 2013).
For asymmetrical gait rehabilitation, Curara® employed a
synchronization-based assistance control strategy using neural
oscillators based on a central pattern generator network. The
synchronization-based controller detects the user’s movement
and measures the mutual gap between the user and the device,
and then achieves a desired joint angle trajectory to be
synchronized with human movements (Mizukami et al., 2018).
Ren et al. proposed three different control strategies in their in-
bed wearable ankle rehabilitation robotic device, namely triggered
passive assistance for the early stages of recovery, and partial
assistance and resistance when the patient gained some mobility
(Ren et al., 2017). Their robot-guided rehabilitation protocol is
capable of automatically switching between the control modes
based on the patient situation and recovery status during the
therapy.

Different control strategies can be realized by different
methods and algorithms, such as position control, force
control, force/position hybrid control, impedance/admittance
control, or other control methods (Zhang et al., 2018). Due to
their ability to provide natural, comfortable, and safe interaction
between robots and patients, impedance control and its dual
admittance control are two of the most common control
algorithms currently used for rehabilitation exoskeletons,
mostly for active training approaches (Proietti et al., 2016).

The difficult task of translating physiotherapist’s experience in
manipulating the paretic limb into the desired trajectory for
rehabilitative devices has made trajectory planning one of the
issues for researchers in this field (Proietti et al., 2016). Proietti
et al. summarized three main methods for defining reference
trajectories, teach/record-and play (Pignolo et al., 2012), motion
intention detection (Lyu et al., 2019), and optimization
algorithms (Su et al., 2014).

Considering the type of human-machine interaction, control
system inputs can be divided into bioelectric signals, e.g., EMG,
and biomechanical signals, e.g., joint position, or a combination
of these two types of signals (Desplenter et al., 2020).
Biomechanical signals provide an accurate and stable
interaction, especially for patients with high-level
impairment, while biosignals are used for their potential in
intention detection and neurological clinical applications due to
their favorable effects on nerve rehabilitation treatment (Zhang
et al., 2018).

Given the underlying significance of the control system in
motor control recovery, some characteristics must be carefully
practiced during design steps. Especially when designing for the
home setting, providing an appropriately shared control between
the device and the patient is of paramount importance. Such
control enables a favorable autonomous therapy, including
predictable behaviors for patients and never taking control
when undesired by the user (Beckerle et al., 2017). It is also
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required for addressing neurorehabilitation issues not to suppress
or hinder patients’ motor capabilities (JarrassÃ© et al., 2014).

Regarding the safety concerns of home therapy due to the
absence of the therapist, highly adaptive control systems need to
be developed to consider the differences of the human bodies, the
motion tasks during the recovery process for each patient, and the
nature of the injury between patients (Desplenter and Trejos,
2020). The control solution has to show an adequate amount of
active compliance to avoid hurting the patient in the case of
trajectory errors due to abnormal or excessive muscle
contraction, spasticity, or other pathological synergies (Proietti
et al., 2016). Impedance-based control schemes provide a
dynamic relationship between force and position and could be
utilized for adopting a safe, compliant, and flexible human-
machine relationship. In this regard, LLR-Lo benefits from an
amendment impedance control based on position control to
realize motion compliance for patients in case of patient’s
discomfort, which leads to aching movement of their leg while
the mechanism leg is still moving (Feng et al., 2017). Analyzing
the kinesthetic biomechanical capabilities of the target limb is also
necessary for developing safe human-robot interaction (Atashzar
et al., 2017). Compared to conventional therapy, relying on time
or position-dependent trajectories can restrict rehabilitation
therapy from the generalization of learning to new tasks.
Thus, targeting goal-independent strategies would increase
therapy’s efficacy, as patients are not constrained by following
rigidly planned trajectories (Proietti et al., 2016).

As control system development tools, there are software
frameworks designed to provide developers with a platform
for the design and implementation of the control system, (e.g.,
Tekin et al., 2009; Coevoet et al., 2017; Desplenter and Trejos,
2020). The use of such frameworks supports the idea of
standardization across different studies and devices. This
enables a more efficient evolution and comparison of control
systems, reduces the current ambiguity in classification, and
neuters existing poor attention in documenting the control
strategy of developed devices (Basteris et al., 2014), all
assisting in identifying which strategy provides better results.
WearMECS is a recently developed control software design and
implementation tool available as an open-source software library.
The framework provides a foundation for regulating the motion
behavior of therapeutic mechatronic devices by considering three
main control functionality groups, i.e., task-level control,
estimation-level control, and actuation-level control
(Desplenter and Trejos, 2020).

User-Interfaces
The concept of remote supervision is entangled in home-
rehabilitation. Developing a platform for tele-patient-doctor
interaction is the key enabling factor for home-based therapy,
in which the interaction of three parties of the patient, the
therapist, and the device is provided (Desplenter et al., 2019).
Harmonious completion of the rehabilitation program relies on
the interaction between each of these parties, which takes place
through two main user interfaces of the therapist and the patient.
Therapists need to have access to the interface to prescribe
treatment regimens and monitor patient’s progress in a

scheduled plan through detailed reports containing the
qualitative and quantitative evaluation of exercises. Patients
also would have access to the prescriptions in their interface
and move forward through the exercises. In the interface, the
correct execution of motions should be displayed (Pereira et al.,
2019). Before each exercise, visual and auditory descriptions need
to be provided for the patient regarding how he/she is supposed to
carry out the activity. The patient’s interface must provide
feedback on the correctness of the performed activities, as well
as a qualitative evaluation of his/her movement. All
measurements and relevant data are collected, processed, and
stored during each session and are remotely available. For
example, in PAMAP the data is stored in the user’s electronic
health record (EHR) (Martinez-Martin and Cazorla, 2019). In the
end, IoT technologies can be utilized to connect the entire system
together. These IoT-enabled software interfaces enable the
therapist to remotely monitor a patient’s progress and tailor a
customized treatment plan for him/her (Agyeman and Al-
Mahmood, 2019).

Due to differences in patient demographics, needs, and
characteristics of the target group must be carefully mapped to
a set of general design principles. So as for considering the
common cognitive impairments resulting from stroke or
normal aging, there are certain factors to have in mind. These
factors include ensuring clear directions, providing larger letters
and numbering for improved readability, and avoiding
vagueness, complexity, and involvement of what Egglestone
et al. introduce as abstract thought (Egglestone et al., 2009;
Cavuoto et al., 2018). Also, people with other pre-existing
disabilities should also be taken into account, e.g., a text to
speech component could be added to the interface for people
with vision problems and sign language for people with hearing
problems (Gomez-Donoso et al., 2017b).

To successfully replace the direct involvement of a therapist
with a virtual one, the interfaces should provide options
resembling those of traditional methods. Each interface has to
be designed to replicate the traditional rehabilitation in a clinical
setting, which means the therapist should be able to track the
patient’s movements, assess his/her performance and analyze his/
her progress to be able to prescribe the right treatment plan.
Therefore, there is a need for careful evaluation of all of the steps
that a therapist takes in a traditional setting to identify the
parameters he needs to access. Once these parameters have
been identified, user interface software through graphical
interfaces (GUIs) provides access for displaying and editing
stored data. This provides a base for therapists upon which
they can make more educated decisions and choose the best
treatment plan for their patients. Also, it is possible to add
reminders to the system for notifying the patient to do his/her
daily practices. In the end, the system uses this information to
adapt the treatment program focusing on the parts that require
more recovery to increase therapeutic value.

There are some other crucial principles to be considered for
offering software interfaces that assist home-based systems in
providing structured training sessions. A user-friendly interface
in terms of environment and layout of features and components is
the starting point of having a well-established interaction between
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patients and the device. This friendliness arises from patients’, as
well as their caregivers’, ability to interact easily with the device in
a familiar environment and to have quick and straightforward
access to the training and monitoring components
(Amirabdollahian et al., 2014). Enabling the patient to
personalize the user interface environment, for example, in
terms of shape or size of components or layout of different
parts and modules, may increase the user-friendliness and
create a sense of comfort and control.

For patients to be engaged and challenged during home
rehabilitation in the physical absence of the therapist, there is
a significant need for careful study and practice of motivational
scenarios and features that ensure patient’s adherence to the
treatment program. The most commonly identified and
mentioned barriers to motivation are that rehabilitation
scenarios are inherently repetitive and boring, having in mind
that stroke patients themselves are prone to depression due to
several factors such as social isolation and fatigue that is common
among them (Egglestone et al., 2009; Borghese et al., 2013). The
intrinsic entertaining characteristic of Virtual/Augmented Reality
(VR, AR) and gaming present an alternative world in which
mundane rehabilitation exercises are disguised in the shape of
appealing fantasies. Integrating these methods into home
rehabilitation is a common practice aimed at encouraging
motivation in patients. The score-based nature of gaming
further motivates patients—by rewarding points, coins, and
badges as immediate feedback—and reinforces confidence and
positivity through achievements (Hatem et al., 2016). VR, AR,
and gaming offer plausible environments for versatile game
design. Tuning the game content to the interests and needs of
users (Egglestone et al., 2009), introducing variability and
unpredictability to the tasks, e.g., by contextual interface
concept, and programming real-world tasks by simulating
real-life objects and events (Martinez-Martin and Cazorla,
2019), may encourage motivation even further. Another great
feature of these methods, which makes them preferable to
traditional ones, is that during therapy, the enjoyable
experience distracts the patients from the prevalent potential
pain induced by stroke (Gama et al., 2016). However, an
important question remains regarding the efficacy and
generalization of this virtual recovery to real world activities.
Several studies have been conducted addressing this issue and
found that training in a virtual environment offers equal, if not
better, motor recovery compared to real-life training (Rose et al.,
2005). According to Gama et al. (2016), AR might be more
effective than VR, for it provides auto visualization during task
execution and this, in turn, can improve patient corporal
conscience and potentially engage additional visuospatial
networks of the cortex; hence, it leads to more precision and
accuracy respectively during interactive exercises and path
traveling.

Designing games specifically for rehabilitation purposes,
serious games, requires the incorporation of both entertaining
and therapeutic goals. Games should offer fully customizable task
options and hierarchical order of difficulty for each task. During
the recovery process, patients’ mental and functional abilities
improve, and tasks must be adapted to this variability to keep

patients motivated by challenging yet achievable tasks at each
stage of the recovery. In other words, by careful modification of
the current skill level of the patient and challenge posed by the
game, e.g., tuning assistance level and therapy intensity and
difficulty, patients may go through a flow-like experience
which in turn could potentially increase their active
participation (Egglestone et al., 2009). In order to create a
unified experience for the patient, it is preferable to develop
games around a resonant theme, like Egglstone et al. approach,
rather than unrelated minigames. In this approach, the systems
do not merely offer video games but complete environments
(Agyeman, Al-Mahmood, et al., 2019; Egglestone et al., 2009). It is
also suggested to design flexible systems to have the capacity to
integrate and support various devices. For example, audio-visual
and haptic interfaces will enable the therapists to customize
interaction mechanisms and to choose the proper device to
deliver the best treatment regime with optimum efficacy for
covering the wide range of disabilities, be it upper or lower. In
this regard, Egglestone et al. developed a game that could be
played by feet, hands, or whole body (Egglestone et al., 2009). In
this way, a standardized game platform could be proposed to the
entire community of therapists.

Training in home settings requires interface developers to
design meaningful and consistent feedback, which should be
similar to therapists’ clinical feedback—both on the quality of
movement and their progress in performing tasks and achieving
long-term and personal goals. Providing clear and customized
feedback is another way of increasing engagement and
motivation in patients, positively affecting retention and
recovery (Kitago and Krakauer, 2013). Indeed, creating
awareness in patients of their progress and offering a progress
tracking module is one crucial approach toward stimulating
internal motivation (Chen et al., 2019). Designing both
immediate feedback during the therapy and after-session/long-
term feedback must be taken into consideration as well.
According to Guadagnoli et al., the immediacy of the feedback
should be proportional to the task difficulty, i.e., the easier the
task, the less frequent the feedback (Guadagnoli et al., 1996). Most
current devices, as seen in the previous section, provided
immediate visual, auditory, and haptic feedback to the patient
(Lyu et al., 2019), which showed improved motivation, for
example, by congratulation alarms after each correctly
performed task, as well as educating and correcting task
performances. Should the patient execute an exercise
incorrectly, the system warns the patient and provides
graphical help to guide the patient to perform it correctly. For
instance, Gloreha provides a 3D simulated preview of the
movement on the monitor as well as when the exercise is
being performed (Bernocchi et al., 2018), PHAROS provides
audio-visual descriptions (Martinez-Martin and Cazorla, 2019),
and Lyu et al. generated haptic feedback through vibratingmotors
as punishment (Bernocchi et al., 2018; Lyu et al., 2019).

Daily and long-term summaries of patient records are another
critical form of feedback, termed “knowledge of results” by
Schmidt and Lee (1999), and it is a major source of
motivation for patients. According to Chen et al. review study,
a number of developers of home-based devices described how
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patients came motivated to proceed with therapy when they
found themselves recovering (Chen et al., 2019). Progress
tracking and visual feedback are better provided by graphical
representation such as bar or pie charts, rather than numerical or
analytical representation, to make a clearer sense of change at first
glance. This can be particularly useful when the patients are
mostly among elderlies, and it may be difficult for them to analyze
the results. Note that patients’ dependence on feedback is not
favorable, and to avoid that, it is suggested to lower the feedback
frequency over time (Kitago and Krakauer, 2013).

When designing for home use, particularly due to the absence
of a medical professional, it is essential to consider therapeutic
and clinical requirements from the therapists’ perspective. Based
on the premise that adoption of mechatronic rehabilitation
devices heavily relies on the acceptability of the device from
the therapist’s point of view, Despleneter et al.surveyed Canadian
therapists to extract design features that successfully convey the
needs of the therapists. Then they mapped the derived data into
software requirements for an enhanced therapist-device
relationship (Desplenter et al., 2019). A good therapist-device
relationship is desirable for equipping therapists with an
extensive data set of patient history to be assessed and
analyzed toward optimized and educated planning of
treatment strategies. Participants mentioned the five areas of
patient history, pain, motion, activities, or strength as their
most favorable data to be tracked over time for patients’
assessment. Desplenter et al. concluded that the designed
software system should have features such as standard data
records, treatment plan templates, and patient evaluation
scales. The user should also be able to design and customize
these templates and scales to meet the needs of a particular
treatment strategy, both qualitative and quantitative. For this
purpose, time-stamped data should be collected, and numerical
analyses and visualizations should be generated based on the
quantitative data to provide reports. Visualization, particularly in
graphs and tables, facilitates data assessment, and puts them into
perspective for the therapists. Eventually, a cumulative report
must be provided in the therapist’s interface in which session
history, the patient’s history, and progress tracker are among its
most important components.

CONCEPTUAL FRAMEWORK

In the previous sections, some of the existing home-based
rehabilitation devices were briefly reviewed, and after a general
analysis of current challenges and shortcomings, a guideline for
designing the components of these systems, in particular for
utilizing new advanced technologies, was discussed. As described
before, there is a need for a telerehabilitation platform that
concerns remote supervision implementation by
interconnecting all described modules. To this end, reviewed
home-based systems have leveraged different approaches. For
example, HomeRehab benefited from a cloud service for
exchanging performance and therapy information between the
patient and the therapist (Díaz et al., 2018). Amirabdollahian
et al. utilized a tele-robotic support platform in their SCRIPT

project consisting of a replicated database, a healthcare
professional web portal, and a decision support system
(Amirabdollahian et al., 2014). Chen et al. also benefited from
a web server for the Tele-Doctor-Patient Interaction module in
their proposed rehabilitation wheelchair system (Chen S. et al.,
2017). Ambidexter provides remote rehabilitation through IoT
technologies (Wai et al., 2018). While the aforementioned
systems undoubtedly help with remote supervision and
patient-therapist interaction, most of them are case-specific for
their device and do not offer an interoperable platform allowing
for supporting other devices. On the other hand, telehealth
platforms for in-home interventions, which need more
supervision, information exchange, and online communication,
have gained significant traction over the recent years, (e.g., Wang
et al., 2017; Kouris et al., 2018; Hilty et al., 2019; Tun et al., 2020;
Tsiouris et al., 2020). Among existing telehealth frameworks, they
either do not specifically and comprehensively address post-
stroke robotic rehabilitation interventions or do not cover the
beyond-physical-rehabilitation demands of this population.
Therefore, to address the aforementioned limitations as well as
to cover the real-life needs of post-stroke individuals, we propose
a versatile conceptual framework for community-based robotic
in-home rehabilitation. Our proposed framework conceptually
provides a unified interoperable solution for interconnecting
various rehabilitation robots, lays a foundation for in-home
rehabilitation and supports beyond-rehabilitation needs of the
post-stroke community—like the need for socialization and
assisting in gaining independence for daily activities like
shopping, especially during pandemics. Our framework offers
a comprehensive solution addressing the multi-faceted needs of
involved parties in post-stroke rehabilitation, including patients,
healthcare professionals and researchers. To this end, some
existing telehealth frameworks, e.g., HOLOBALANCE
(Tsiouris et al., 2020), could potentially be modified and
adapted for implementing our conceptual framework.

This framework’s central concept is based on the development
of a multi-agent IoT communication system in which patients,
therapists, and administrators each represent an agent of their
community interacting with each other over the provided
platform (Figure 6). This interaction utilizes cloud-based
methods for computation, storage and analysis of data
collected from each agent. The acquired data is initially
processed before being transmitted to cloud and fog servers,
where they form a large data set. According to Sahu et al. (2020),
due to the sensitive nature of medical data, security, privacy, and
confidentiality, as well as the integrity of these data, are of critical
importance. Hence, to monitor these concerns, precautionary
safety measures must be developed in advance. Also, policies and
rules, defining and authorizing the access level of each agent, need
to be carefully established and implemented in order to ensure
and enhance the security and privacy of the system (Sahu et al.,
2020).

The acquired data can be initially processed before being
transmitted to cloud and fog servers, where they form a large
data set. For example, online identification of musculoskeletal
parameters and their variation during treatment can be
conducted and plotted in the smartphone, PC, or any other
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digital processor which is connected to the rehabilitation robot.
These preprocessing features can be based on either model-based
approaches, or artificial intelligence (AI) algorithms such as
artificial neural networks. Although training of such systems
can be computationally very demanding for these processors,
the training process is performed mostly offline. Applying the
trained AI feature and even its required recursive update does not
involve significant computation, and can be easily handled on the
processor of a smartphone, PC, or any other available digital
processor.

Acquired data from agents should be comparable with each
other, and therefore it is critical to bring the collected data into a
common format which occurs through data standardization. By
providing internally consistent data with the same content and
format, any confusion and ambiguity are avoided. This ensures
that all parties involved have mutual understanding, and view the
results in the same way which leads to reliable measurements and
decision plans. Standardized quantitative and qualitative data
should be collected for reliable and educated assessment of
patients’ performance through evaluation forms and outcome

measurements. From a therapist’s point of view, the prescribed
tasks, reports, and evaluations should be offered in a standard
format. To do so, there needs to be a predetermined data
extraction on which the community of healthcare professionals
has reached a consensus. However, in case of any ambiguity or to
provide further details and explanations, therapists should have
the option of attaching notes to the data (Desplenter et al., 2019).

The proposed community-based rehabilitation framework
facilitates knowledge sharing and provides comprehensive data
to ensure educated judgment regarding the best treatment
regimen yielding the best recovery outcome. This massive pool
of information—both from recorded data and also normalized
datasets from already existing medical center
repositories—generates big data. By applying machine
learning, meaningful information from these large data sets
can be extracted. This extensive database can be beneficial for
various applications, one of which could be providing a research
base enabling further studies in fields of neurorehabilitation,
engineering, and occupational/physical therapists. Thus, in this
IoT-enabled rehabilitation system, data analysis is performed by

FIGURE 6 | The proposed conceptual framework for community-based home rehabilitation.
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intelligent algorithms and knowledge-based methods to provide
intelligent suggestions to the therapists, creating a basis for the
best treatment plan assignment.

In the framework, the capability of communication among
agents of each community is also feasibly provided. The
interaction of healthcare professionals gives them the
opportunity to clarify any issues or ambiguities, gain
additional expertise, discuss possible treatments, and share
their knowledge. The provided platform can also enable
socialization among patients. Social restrictions imposed by
stroke and exacerbated by the COVID-19 pandemic, have
adversely affected patients’ lives. Therefore, any means of
social interaction could potentially improve their quality of
life, which in turn could further motivate them to adhere to
the therapy (Egglestone et al., 2009). This community-based
rehabilitation allows the possibility of performing
rehabilitation in the connected groups, for example, through
multiplayer gaming. By optional assignment of a social media
profile to each patient ID, they could also share their
achievements and support each other.

We suggest an alternative approach in which the purpose of
the framework goes beyond rehabilitation to contribution to
society and household chores. The virtual environment tasks
should be designed so that, along with rehabilitation, they can
offer patients the opportunity to learn real-life and daily living
skills—cooking, gardening, and housekeeping, to name a few. For
example, learning the cooking skill takes place in a virtual kitchen
where all of the ingredients and utensils are available along with
cooking instructions in the form of video and audio to enable the
patient to learn and practice simultaneously. The theme-based
free world gameplay would be one of the best options as it can be
flexible enough to reflect various aspects of daily life. For example,
Saebo Inc. has developed a virtual reality environment in which in
the cooking scenario, should the virtual kitchen lack any of the
ingredients or utensils required to complete the task, the game
enables the patient to go grocery shopping; this way through a
comprehensive experience, patient not only goes through therapy
but gets to enhance his/her life skills. Integrating this free world
environment with our suggested community-based framework
adds an additional social layer where patients can teach and learn
these skills from each other. For instance, if a patient knows a
particular recipe, she/he can teach and share it with the patient
community. This provides the patients with a sense of control
over their treatment and fosters a sense of usefulness, purpose,
and contribution to society. Also, in this time of COVID-19,
where everybody, especially elders, feels disconnected from the
world, this will excite the feelings of inclusion and connection,
which in turn will further motivate the patients to partake more
frequently and actively in their treatment sessions.

To go one step further, this virtual environment could be
linked to existing online shops allowing the patient to contribute
to household chores by purchasing the required and essential
items for the house and facilitating the acquisition of his/her own
necessities. According to Brenner and Clarke (2019), shopping
difficulty is one of the most common self-reported difficulties
with daily activities among individuals with disabilities. Thus, the
enhanced autonomy and independence in patients alleviates the

prevalent feeling of being a burden to their family which in turn
promotes a sense of achievement and self-worth. The suggested
alternative approaches and rehabilitation are not mutually
exclusive, as maintaining engagement in daily life activities is
critical for functional and motor recovery (Brenner and Clarke,
2019). As of 2020, due to restrictions caused by the COVID-19
Pandemic and the importance of adhering to social distancing
measures, online shopping has become ubiquitous, making this
option ever-increasingly plausible.

Finally, the framework has the capacity to incorporate an
ambient assisted living ecosystem that can provide patients,
specifically elders, with personalized options. These options
include remote monitoring, assessment, and support based on
their unique profiles and surrounding context. The purpose of
such options is to enhance the independence of elderly or
disabled individuals in their own secure and convenient space
of living (Al-Shaqi et al., 2016; Sahu et al., 2020; Stavropoulos
et al., 2020).

Rehabilitation programs, even in the clinical setting, are often not
fully supported by public health systems, and hence not all post-
stroke patients can afford this option, and due to the enormous
socioeconomic impact and high costs, not just on the patient but also
on their families, patients opt to drop out (Borghese et al., 2014).
Additionally, implementing the proposed framework for post-stroke
telerehabilitation, imposes extra costs to the patients for providing
the required hardware and software basis of the telehealth
framework. For home-based rehabilitation to be acceptable by all
end-users involved (patients, clinicians, therapists, and health
administrators), these challenges and limitations need to be
addressed both by healthcare providers and technology
developers. Burden and strain potentially imposed on caregivers
are other limiting concerns. However, implementation of the
proposed telerehabilitation framework could offer valuable
functional outcomes for motor recovery of the wide range of the
post-stroke population. Future work should focus on evaluating the
proposed telerehabilitation framework for community-based remote
therapy during and beyond the pandemic, in terms of different use
dimensions, technological acceptance by the stakeholders, clinical
efficacy of the system and its economic efficiency.

CONCLUSION

Early-stage post-stroke rehabilitation, a crucial phase of
rehabilitation, could be a direct indicator of the possibility of
motor recovery. In the current restrictive climate of the COVID-
19, due to the restrictions associated with social distancing and
limitations for commuting, it has become more difficult for patients
to use this sensitive window of time for rehabilitation treatments. In
this context, home-based rehabilitation can be a solution.

Several home-based rehabilitation devices have been
developed in recent years, both at the research and
commercial levels. Although there are some challenges in the
research and development of these devices, based on a technical
evaluation of aspects such as mechatronics, the control system,
and software, these devices can be tuned to be suitable for home-
based rehabilitation therapy. Eventually, such systems can be
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utilized in a framework aiming at creating a comprehensive
network for therapists, patients, engineers, and researchers. To
this end, standardization in every aspect of home-based systems,
from design criteria to performance evaluation, is required.

The COVID-19 pandemic has proved the necessity of further
deploying the power of the internet and computers, not only for
the purpose of communication but also for big data analysis. Such
technologies can be feasibly integrated with mechatronic systems
such as rehabilitation robots to enable new applications such as
remote home-based therapies. The outcome of such an
interconnected framework would be significantly vital for the
recovery of post-stroke patients, promoting the quality of their
lives, and eventually reducing the associated burdens on the
healthcare system in the long term.
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GLOSSARY

MAL Motor activity log

MAL QOM Motor activity log (quality of movement)

BBS Berg balance scale

FMAS Fugl-Meyer assessment scale

FMUE or FMA-UE The Fugl-Meyer assessment for motor recovery after
stroke for the upper extremity

FMA-Hand The Fugl-Meyer assessment for hand

FMLE or FM-LE The Fugl-Meyer assessment for motor recovery after
stroke for the lower extremity

FM Fugl-Meyer assessment of motor recovery

TUGT Timed up and go test

SPPB Short physical performance battery

DGI Dynamic Gait index

mRS Modified Rankin scale

CMSA-H Chedoke McMaster stroke assessment stage

FES(S) Falls-efficacy scale Swedish version

BI Barthel index

FIM Functional independence measure

ARAT Action research arm test

WMFT Wolf motor function test

GWMFT or GWMFT-func The graded wolf motor function test

GWMFT-time Graded wolf motor function test (completion time)

CAHAI The Chedoke arm and hand inventory

MAS The motor assessment scale

MMAS The modified Modified ashworth scale

EXT Finger extension force

GS Grip strength

LPS Lateral pinch strength

PPS Palmar pinch strength

MTS Modified Tardieu scale

SIS Stroke impact scale

SUS System usability scale

BBT Box and blocks test

JTHFT Jebsen-Taylor hand function test

10MWT 10 minute walk test

6MWT 6 minute walk test

K-FES Korean falls-efficiency scale

FE Flexion/Extension

F Flexion

E Extension

PS Pronation/Supination

IE Inversion/Eversion

PD Plantarflexion/Dorsiflexion
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Telerobotic Operation of Intensive
Care Unit Ventilators
Balazs P. Vagvolgyi 1, Mikhail Khrenov2, Jonathan Cope3, Anton Deguet1, Peter Kazanzides1,
Sajid Manzoor3, Russell H. Taylor1 and Axel Krieger1,2*

1Laboratory for Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD,
United States, 2Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College
Park, MD, United States, 3Anaesthesia and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, United States

Since the first reports of a novel coronavirus (SARS-CoV-2) in December 2019, over 33
million people have been infected worldwide and approximately 1million people worldwide
have died from the disease caused by this virus, COVID-19. In the United States alone,
there have been approximately 7 million cases and over 200,000 deaths. This outbreak
has placed an enormous strain on healthcare systems and workers. Severe cases require
hospital care, and 8.5% of patients require mechanical ventilation in an intensive care unit
(ICU). One major challenge is the necessity for clinical care personnel to don and doff
cumbersome personal protective equipment (PPE) in order to enter an ICU unit to make
simple adjustments to ventilator settings. Although future ventilators and other ICU
equipment may be controllable remotely through computer networks, the enormous
installed base of existing ventilators do not have this capability. This paper reports the
development of a simple, low cost telerobotic system that permits adjustment of ventilator
settings from outside the ICU. The system consists of a small Cartesian robot capable of
operating a ventilator touch screen with camera vision control via a wirelessly connected
tablet master device located outside the room. Engineering system tests demonstrated
that the open-loop mechanical repeatability of the device was 7.5 mm, and that the
average positioning error of the robotic finger under visual servoing control was 5.94 mm.
Successful usability tests in a simulated ICU environment were carried out and are
reported. In addition to enabling a significant reduction in PPE consumption, the
prototype system has been shown in a preliminary evaluation to significantly reduce
the total time required for a respiratory therapist to perform typical setting adjustments on a
commercial ventilator, including donning and doffing PPE, from 271 to 109 s.

Keywords: robotics, telerobotics and teleoperation, coronavirus (2019-nCoV), intensive care unit, ventilator,
personal protective equipment, visual servoing, touch screen

1 INTRODUCTION

Since the first reports of a novel coronavirus (SARS-CoV-2) in December 2019, over 33 million
people have been infected worldwide and approximately 1 million patients across age groups
worldwide have died from the disease caused by this virus (COVID-19) according to the World
Health Organization (2020). COVID-19 is a respiratory viral disease with transmission via
respiratory aerosols and micro-droplets. This places clinicians and nurses at risk of contracting
the virus when caring for patients infected with COVID-19. The primary morbidity and mortality of
COVID-19 is related to pulmonary involvement, and according to data from the United States
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Centers for Disease Control and Prevention (2020), pneumonia
was the primary cause of death in 45.2% of COVID-19 cases
between February 1, 2020 and September 26, 2020 in the
United States. 8.5% of patients who develop COVID-19 will
require ventilation in an intensive care unit (ICU) at some
point during their illness according to a recent meta-analysis
by Chang et al. (2020).

This pandemic has shown that the scarcest resources necessary
to fight COVID-19 are personal protective equipment (PPE),
ventilators to combat poor oxygenation, and trained clinical staff.
The infection risk for staff and the strain on PPE resources is
exacerbated by the fact that for an infectious disease such as
COVID-19, healthcare workers must don and doff PPE every
time they enter an ICU, even if only to perform a simple task such
as changing a setting on a ventilator. Most ICU ventilator patients
will require some sort of manipulation of the ventilator
touchscreen between 3 and 12 times per 12-h shift. Depending
on the patient needs, many of these can be done without physical
interaction with the patient. Patient response to minor ventilator
setting changes can be safely assessed by ventilator waveforms
and measured parameters, as well as the patient vital signs
monitor. There will still be occasions that require physical
presence in the room to assess the patient or care for them,
such as endotracheal suctioning, airway care, or other respiratory
treatments, but this is generally the minority of the visits to a
patient room for ventilator management. Although ICU
equipment may eventually be controlled remotely through an
in-ICU network, this is not currently the case, and the installed
equipment base is not amenable to this solution.

Medical robots can play a key role in reducing the infectious
risk for staff by reducing the amount of close encounters with
patients. A recent paper by Yang et al. (2020b) categorizes the role
of robotics in combating infectious diseases like COVID-19 in
four areas, including clinical care, logistics, reconnaissance, and

continuity of work/maintenance of socioeconomic functions.
Since the beginning of the pandemic, companies and
researchers proposed several such robotic systems for
automated temperature screening, Gong et al. (2020), remote
cardiopulmonary imaging, Ye et al. (2020), taking nasal swabs, Li
et al. (2020) and Biobot Surgical Pte Ltd. (2020), autonomous
vascular access, Chen et al. (2020), facilitating rapid COVID-19
testing, IGI Testing Consortium (2020), addressing mental health
challenges and supplementing distanced education, Scassellati
and Vázquez (2020), promoting social well-being, Henkel et al.
(2020), and for general telepresence with bimanual teleoperation
in ICUs, Yang et al. (2020a). However, none of the current robotic
systems are capable of converting the existing installed base of
ventilators and other ICU equipment to remote operation.

The goal of this work is to develop a rapidly deployable
solution that will allow healthcare workers to remotely operate
and monitor equipment from outside the ICU room, saving
valuable time and PPE resources, as operators will not need to
don, wear, and doff PPE while remotely operating medical
devices, enabling the clinician to spend more time seeing
patients rather than donning and doffing. As shown in
Figure 1, these robots are controlled from outside the ICU
room by a healthcare worker via a tablet, using encrypted
communications to ensure security and patient privacy. Tablet
computers are ideal for the healthcare settings because they can
be easily cleaned with well-defined infection-control procedures,
according to Hollander and Carr (2020). To meet the urgency of
the crisis we prioritized the development and deployment of a
remote controlled Cartesian robot dedicated to the most
prevalent touchscreen controlled ventilator at Johns Hopkins
Hospital (JHH), the Maquet Servo-U (Getinge AB,
Gothenburg, Sweden), with plans to then expand capabilities
and robots to other ventilators and infusion pumps. The
proposed robotic device is not designed for portability, as it

FIGURE 1 | System overview: ventilator-mounted camera streams video to master touchscreen; healthcare worker outside patient room presses buttons on video
displayed on master touchscreen, which sends commands to ventilator-mounted robot to move to and press buttons on the actual ventilator touchscreen.
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requires expert installation by a trained professional. However, its
affordability would allow hospitals to mount a separate unit on
each ventilator.

The Servo-U comprises approximately 75% of the standard
ventilator fleet at JHH. In surge conditions more Hamilton
(Hamilton Medical Inc., Reno, NV, United States) models are
used, which may reduce the ratio of Servo-U usage to closer to
60%. The Hamilton C1, Hamilton G5, and the Carefusion
Avea (CareFusion Inc., San Diego, CA, United States, no
longer in business) all use a combination of touchscreen
and rotating dial. According to Morita et al. (2016), the
Servo-U is one of the market leading ventilators used in
many health systems around the world due to its safety
and user experience. Many hospitals only have only one
brand of ICU ventilator, so their entire fleet may be a fit
for the current design. However, other ICU equipment, like
infusion pumps also have physical buttons, therefore, in order
to support a wider range of devices, the proposed robotic
system will have the added capability to interact with physical
controls in the future.

Robotic control of touch screens is not unprecedented, but the
application of these existing systems is exclusively for touch
screen reliability testing in an industrial setting. Such systems
include MATT by mattrobot. ai (Bucharest, Romania), SR-
SCARA-Pro by Sastra Robotics (Kochi, Kerala, India), and
Tapster by Tapster Robotics (Oak Park, IL, United States). All
of these systems use a capacitive stylus to interact with the touch
screen, but the robot kinematic structures are different from the
Cartesian design of our system, utilizing either a delta or SCARA
configuration, and completely enveloping the screen they are
intended to manipulate. The existing touchscreen testing robots
are primarily designed for testing screens laid down flat, and so
are generally tall in design, and meant for horizontal mounting.
For the purposes of this work, it was important that the
touchscreen remain vertically mounted and be minimally
obstructed for any manual or emergency operation by a
respiratory therapist. If we were to use a delta type robot,
mounting it on the Servo-U ventilator screen would result in a
large protruding mass, cantilevered on the screen. This would
exert a significant bending load on the mounting system, while
also interfering with manual operation. The Cartesian layout we
chose and developed keeps the robot as close in to the screen
horizontally as possible, minimizing any mounting loads, while
also leaving the screen easily accessible for conventional manual
operation.

The primary contributions of this work consist of a custom
Cartesian robot designed to interact with a touch sensitive display
and a computer vision-based teleoperation method that together
effectively enable the replication of the direct interaction scheme
with a touch screen on a master tablet console. Further
contributions include thorough evaluation of this robotic
system with a series of engineering system tests determining
open-loop repeatability, closed-loop visual servoing accuracy,
and test deployment in an ICU environment. As described in
Section 4, additional actuator modules that enable the interaction
with other physical controls, such as buttons and knobs, have the
potential to broaden the range of replicable control interfaces.

Applications of such systems range from the safe teleoperation of
medical devices in infectious environments to remote
management of industrial assembly lines.

2 MATERIALS AND METHODS

The teleoperated ventilator controller system consists of a custom
robotic patient side device and a touch based master console.
Computer vision tasks that enable the intuitive user interface and
accurate robot control are executed on the master.
Communication between master and patient side is
implemented in a component-based architecture using the
Robot Operating System (ROS), as described by Quigley et al.
(2009).

2.1 Ventilator-Mounted Cartesian Robot
The main component of the robot teleoperation system is the
robot itself. While Cartesian robots are nothing new, those
available on the market are not optimized for the ventilator
touch screen control application. Existing robots are primarily
designed for manufacturing or plotting tasks, both of which are
performed on steady, horizontal surfaces. As ventilator screens
are vertical and liable to be moved in operation, a significantly
different design is necessary. Said design must be suitable to the
unique mounting situation and optimized for weight, cost, and
ease of handling by ICU staff, while still providing suitable
accuracy and precision for ventilator manipulation. We have
successfully designed and built a lightweight Cartesian robot that
attaches to a ventilator screen and enables button pushing
through a mechanized robotic finger.

This design consists of a two-axis gantry and a mechanized
end-effector finger, with the ends of the horizontal (X) axis used
to secure the robot to the desired screen. The vertical (Y) axis
assembly is cantilevered on the X axis and translates along it. A
roller at the bottom of the Y axis engages the screen bezel and
prevents unexpected touch interactions. The two axes are driven
by a pair of 45 Ncm NEMA 17 stepper motors via GT2 timing
belts. The use of timing belts and stepper motors for the axes
allows the robot to translate quickly to the requested positions
and to be easily back-driven by an operator in the case of
emergencies. The total stroke of the X and Y axes is
approximately 400 mm by 280 mm, respectively. The
resolution for both axes is 0.2 mm using a 20 tooth GT2
pulley, 200 steps per revolution of the motor, and no
microstepping. This can be increased, if needed, with
microstepping. The Servo-U ventilator features a 15 TFT LCD
capacitive touchscreen with an aspect ratio of 4:3.

The end-effector finger (Figure 2D) is spring-loaded and
controlled by a compact servo turning an eccentric retaining
cam. As such, to perform a tap the finger follows a sinusoidal
linear motion, with the cam rotating 110° at 0.5°/ms, stopping
after the end-effector tip touches the screen, dwelling for 20 ms,
and returning at the same rate. If commanded to press and hold,
the finger will perform the first half of the motion and maintain
the downwards position until commanded to release, at which
point it will retract.
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An inexpensive wide-angle camera observes the ventilator
screen and Cartesian robot from an adjustable mount attached
to the far side of the X axis. This is used to provide immediate
feedback to the operator and robot control system on the state of
the visual status indicators and notifications displayed on the
screen of the ventilator and the position of the end-effector.

Control for the motors and servo is supplied by an
ATmega328 microcontroller alongside TMC2130 stepper
motor drivers. The local device firmware, written in C++,
takes advantage of the TMC2130 drivers’ current sensing
capability to perform automatic homing without the use of
limit switches and to detect possible collisions with an
operator or foreign objects. The microcontroller is connected
over a serial port (UART-USB) to a Raspberry Pi microcomputer
which provides all the local computing needed in a very light and
compact package. Figures 2A,C show an isometric exploded-
view engineering drawing of the design and the assembled robot
mounted on a Maquet Servo-U ventilator, while Figure 3
illustrates the various communication channels between all
hardware components. The Raspberry Pi is connected to the
aforementioned camera and provides the network connection
needed for the remote controller to drive the robot and monitor
the ventilator screen. The maximum operation distance is
difficult to estimate as a host of confounding variables can
affect the reach of the wireless network, however, in our
testing, we were able to easily connect to a robot some 20 m
within an ICU on the other side of a wall. The video feed of the
teleoperation system presently experiences latency of
approximately 1 s. Parts were bought stock or manufactured

via consumer-grade FFF 3D-printing, minimizing weight, cost,
and complexity.

2.2 Intuitive Robot Control and Visual
Servoing
Operators of the proposed system are medical professionals,
nurses, respiratory therapists, and physicians with little or no
experience with teleoperated robotic systems. Our goal is to make
the system easy to operate with very little training by providing a
remote-control device with a familiar and intuitive user interface
for both setup and operation. We therefore propose a graphical
user interface on the remote controller that replicates—as much
as possible—the appearance of the ventilator’s user interface and
the way users typically interact with it.

To achieve this, the remote controller device features a large
screen on which the live image of the ventilator’s control panel is
displayed. The live image is captured by a camera placed adjacent
to the ventilator inside the ICU. The optimal angle for the live
camera view of the control panel would be provided by a camera
mounted directly in front of the ventilator screen (front-view).
This is not practical, however, because the camera would obscure
manual operation of the device and likely interfere with, or be
obstructed by, robot motion. It is therefore necessary to mount a
camera on the side of the ventilator and use computer vision
methods to create an image that replicates the front-view. For
some ventilators, it may be possible to obtain the front-view
image via an external video output connector, but the side-
mounted camera is still required for visual servoing.

FIGURE 2 | The patient side robotic ventilator controller: (A) exploded view drawing of the robotic system, (B) photo of the robotic system installed on a Maquet
Servo-U ventilator, (C) detailed exploded view drawing of the end effector assembly, (D) close-up photo of the end effector operating a Servo-U ventilator.

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6129644

Vagvolgyi et al. Telerobotic Operation of ICU Ventilators

385

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


For a human user directly operating the ventilator, the brain
manages the coordination of hand motions with respect to the
visual field. Conversely, in a robotic remote control system this
hand-eye coordination is handled by the robot control
algorithm that requires vision feedback to ensure that the
robot moves to the correct location and a calibration of the
spatial relationships between the camera, the robot, and the
ventilator screen.

Our development mainly focused on ventilator models that
are controlled exclusively through a touch screen interface, such
as the Maquet Servo-U, but in the Discussion (Section 4) we

describe how the system can be modified to accommodate other
physical controls, such as buttons and knobs.

2.2.1 Components for Vision Based Processing
In the following, we describe the components of the vision-based
robot control system, all of which, except camera capture, are
executed on the remote controller device. Figure 4 illustrates the
screen registration method that enables the generation of the
front-view, the processing steps performed before displaying a
camera frame on the remote controller’s screen, and the robot
control system’s actions in response to a touch event.

Image capture: The camera is mounted on the robot’s frame
near the upper-left corner of the ventilator screen. Its mounting
bracket holds it at 12 cm distance from the image plane, as shown
in Figures 2A,B. The current prototype hardware uses an 8-
megapixel Raspberry Pi camera module that is configured to
capture color images at 10 frames per second in 1,920 × 1,440
image resolution. The images are compressed in JPEG format by
the ROS image_transport node and sent to the remote controller
over a ROS image topic. This particular image resolution was
chosen because it provides a reasonable trade-off between spatial
fine-detail fidelity, frame-rate, compression time, and bandwidth
required. Image quality and framerate were evaluated by a clinical
respiratory therapist and were found to be adequate. The intrinsic
parameters of the camera were calibrated off-line, which enables
the elimination of radial distortion in the first step of vision
processing.

Visual tracking of robot end-effector: Live camera images are
used by the robot control system to track the robot’s position.
Knowing the location of the robot’s end-effector on video frames
enables robot-to-camera calibration and high accuracy robot
control by visual servoing. The visual tracking algorithm is
designed to localize a single white light emitting diode (LED)
on a dark background and was optimized for real-time
performance on a tablet computer when processing a 2.8
megapixel resolution input video stream acquired from the
camera. While the camera may see parts of the patient room
and other medical equipment in its wide field-of-view, LED
localization is only performed inside the area of the detected
screen of the ventilator, therefore other devices and light sources
cannot directly affect localization performance, although it is
possible that reflections of external lights show up in the region of
interest. The tracking algorithm first performs image
thresholding and connected component analysis to identify
large dark areas on the video frames, then uses template
matching to find LED candidates in these dark regions. We
only search for the LED in dark image regions because the
end-effector, on which the LED is mounted, is a black piece of
plastic. The template is a 2D Gaussian function that matches the
typical size and appearance of the LED on the images. Of the LED
candidates, the one with the highest peak intensity relative to its
surrounding is selected. There are three special cases that are
considered: 1) If the robot is already calibrated to the camera, as
described in the next paragraph, then the system assumes that the
robot-to-camera calibration is reasonable, which can be used to
predict the position of the LED on the image from robot
kinematics, and it only looks for the LED on the image in a

FIGURE 3 | Communication channels between components of the
teleoperated system: the master and patient side devices communicate with
each other using ROS topics and services over WiFi; the patient side
Raspberry Pi is connected to the Arduino that controls the motors, the
end-effector, and the LED using USB; the camera is connected to Raspberry
Pi using the Pi’s camera module port.
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small neighborhood of the predicted position. This results in a
faster and more robust detection. 2) If the two best LED
candidates on the image are in a spatial configuration where
one of the candidates could be interpreted as a reflection of the
LED on the ventilator’s screen, then the algorithm will select the
candidate that is not the reflection, even if that candidate has a
lower peak intensity. 3) If the LED’s position is predicted from
kinematics to lie outside the visible area, then visual tracking is
disabled.

Robot-to-camera calibration: For accurate teleoperation of the
system using the remote live view, the robotmust be calibrated to the
camera, which is done as part of the auto-calibration process of the
system. The calibration method moves the robot’s end-effector to 4
ormore locationswith known joint positions, while the systemuses a
computer visionmethod to track the optical fiducial mounted on the
end-effector in the camera frames. As the Cartesian frame of the
robot is aligned with the ventilator screen, the fiducial will also move
along a plane near and parallel to the screen. During the calibration
process, the system stores the end-effector joint positions with the
corresponding image coordinates and calculates a homography

between the robot and the image coordinates. A homography is
suitable for modeling this transformation because the robot’s XY
joints are prismatic and their scales are linear. The resulting
homography enables the mapping between robot joint positions
and image coordinates of the optical fiducial in the camera image.
The robot calibration does not require operator interaction, takes less
than 30 s to complete, and is valid as long as the relative position of
the camera and the robot is unchanged. The robot calibration
process can be executed remotely without entering the ICU.
Under normal circumstances the calibration needs to be
completed only when the robot is first turned on, after which, so
long as the camera is not disturbed, the robot can continue to use the
same calibration information. Recalibration would only be necessary
if the robot lost power, the camera moved, or the system needs to be
reset for some unforeseen reason. In case of an emergency, the
recalibration process should take a comparable or lesser amount of
time compared to donning the necessary PPE to enter the
ICU room.

Fiducial offset calibration: The location where the LED is
mounted on the end-effector was selected to provide good

FIGURE 4 | Computer vision tasks performed during (A) ventilator screen registration, (B) live teleoperation, (C) touch based robot control logic with and without
visual servoing.
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visibility in any allowed end-effector position. Since its position is
fixed on the end-effector, it moves rigidly with the capacitive
touch device (mechanical finger), but knowing the LED’s position
in image coordinates is not sufficient to determine where the
pointer will touch the screen. In order to be able to calculate that
for any end-effector position, a fiducial offset calibration is
performed offline, before mounting the robot on the
ventilator. Luckily, all input values are coordinates on planes
observed under perspective projection, therefore this calibration
can also be modeled by a homography. The offset calibration is
carried out using a different capacitive touch sensitive display of
the same resolution and dimensions as the Servo-U screen,
further discussed in Section 3. This display—just like the
ventilator screen—has a completely flat glass surface. The
identical setup enables us to use the same offset
transformation calculated with the calibration display on the
ventilator screen. During calibration, we send the robot to
predetermined positions in joint space, while tracking the
optical fiducial, then we command the robot to touch the
screen and record the detected touch coordinates and the
corresponding fiducial image coordinates for each position.
Finally we calculate the calibration: the homography that
describes the transformation between the two sets of
coordinates and can also be applied to convert between other
touch and fiducial coordinates.

Image dewarping to generate front-view image: The placement
of the camera provides an oblique view of the screen that needs to
be dewarped to a rectangular view before displaying it on the
remote-control device’s screen. The dewarping can be modeled as
a perspective transform, which is described by a homography.
The homography is calculated during the auto-calibration
process of the system, by registering the camera image
showing the ventilator screen to reference images of the
ventilator screen. Since the screen of the ventilator is
dynamically changing (it displays plots, numbers, icons, etc.),
the reference images are generated from ventilator screen shots by
manually masking out non-static regions. As shown in
Figure 4A, the screen registration process—that is repeated for
every reference image—is a two pass method that carries out the
following processing steps in each pass: 1) it extracts ORB image
features, as described in Rublee et al. (2011), on both the reference
image and the camera image, 2) calculates the matches between
these feature sets, 3) uses RANSAC, by Fischler and Bolles (1981),
to find the homography that best describes the matches. The steps
of processing are identical in the two passes but the parameters
for the matching algorithm are different so that the first pass
performs a quick coarse alignment, while the second pass
performs fine-tuning on the results. In the case of multiple
reference images, the match with the highest number of inliers
is selected as the best match. The resulting homography is used to
convert image coordinates between warped (camera) and
dewarped (front) views, and to pre-calculate a dewarping look-
up table (LUT) that enables efficient dewarping of every camera
frame before displaying on the remote controller’s screen. While
the position and orientation of the camera are adjustable during
installation, they remain fixed during use, therefore robot control
methodsmay assume that the position of the ventilator’s screen in

camera images remains static during operation. However, if the
camera is moved or reoriented intentionally or unintentionally,
the screen registration needs to be recalculated, which takes a
fraction of a second and can be done with a single button press on
the remote controller.

Visual servoing: The proposed robot control system is
designed for robustness by incorporating visual servoing, as
illustrated in Figure 4C. During operation, the vision system
continuously tracks the position of the end-effector in the live
camera video and measures the difference between the robot’s
tracked position and the expected position calculated from
calibration and robot kinematics. Every time the robot reaches
the goal position after a move command, the system compares the
visually tracked end-effector position to the goal position and
calculates the amount of correction necessary for accurate
positioning. If the error is larger than a given threshold, a
move command is sent to the robot to execute the correction.
The system also integrates the correction in the robot-to-camera
calibration to provide better estimates for subsequent moves.

2.2.2 Vision Based Processes
Live image display: The system continuously captures images
from the camera mounted on the robot, and each image is
processed by a series of image processing and computer vision
methods before getting displayed on the display of the remote
controller, as illustrated in Figure 4B. In the first step (undistort),
the radial distortion of the image is corrected based on camera
calibration parameters that were calculated offline. The resulting
image shows the screen of the ventilator as the camera sees it from
the top left corner of the screen, but without the optical
distortions of the lens (warped image). The warped image is
then dewarped to create a simulated front-view (dewarped image),
which is displayed on the remote controller. In the same time, the
LED on the end-effector is tracked (detect LED) on the warped
image by the system, and the resulting warped LED coordinates
are then converted into dewarped LED coordinates using the
screen registration. Using the parameters of the offline fiducial
offset calibration, the corresponding pointer contact position is
then calculated from the dewarped LED coordinates, and
displayed as an overlay on the dewarped image on the remote
controller’s display.

Touch based robot control: When the operator taps the live
image display on the remote controller, a chain of processing
steps are initiated that, upon completion, results in the robot
moving to the corresponding position on the screen of the
ventilator. A flow chart of the process is shown in Figure 4C.
First, the operator’s tap position on the dewarped image is
converted to dewarped LED (goal) position using the inverse
fiducial offset calibration, from which then the system calculates
thewarped LED goal position using the inverse screen registration.
The robot-camera calibration enables computing the
corresponding robot joint goal positions from the warped LED
goal positions. Next, the system issues a robot move command to
the robot goal position and waits until the move is finished. If
visual servoing is enabled, the system then calculates the LED
position error by comparing the current LED position on the
warped image to the warped LED goal position that enables the
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computation of corrected joint positions using the robot-camera
calibration to which the robot is then moved by issuing another
move command.

2.3 User Interface for Teleoperation
The remote controller of the robotic system is a software designed
to be run on a tablet-style computer equipped with a touch screen.
In our prototype, we use a Dell Inspiron 14 5000 2-in-1 Laptop
that features a 14″ touch screen and a keyboard that can be folded
behind the screen for tablet-style use. The computer
communicates with the robot hardware wirelessly, enabling a
completely untethered operation. During teleoperation, the
software’s graphical user interface (GUI) fills the remote
controller’s screen, as shown in Figure 5C, with the camera’s
live image occupying the entire right side, and Graphical User
Interface (GUI) elements located on the left side. As the aspect
ratio of the prototype tablet’s screen is 16:9 while that of the
camera image is 4:3, when the image is scaled to fill the entire
height of the screen, there is still room left on the side for the GUI
elements without occluding the image. The right side of the user
interface, where the front-view live image of the camera is
displayed, shows the screen of the ventilator. To move the
robotic pointer to a particular position on the ventilator
screen, the operator taps the same location on the live image
of the remote controller’s screen.

In the prototype remote controller software, the user interface
elements on the left side can be divided into two groups: a setup
group and a control group. The setup group includes buttons to
initiate robot-to-camera calibration, register the ventilator’s
screen, and switches to enable/disable dewarping, turn the
LED on/off, enable/disable visual servoing, and turn motors
on/off. The setup group’s GUI elements are primarily used for
debugging and as such, will be moved into a separate
configuration panel or will be hidden from users in the
production version of the device. The control group contains
the buttons that are the most relevant for operators. The most
frequently used button is the Tap button, which sends a
command to the robot to perform a single tap action, as
described in Section 2.1. The Press/Release button has two
states and enables touch-and-hold actions by dividing the
forward and backward motions of the pointer into two
separate commands. This interaction style was chosen for
safety reasons. We separated the motion of the pointer and
the action of the pointer to two separate interactions so that
the operator has a chance to visually confirm the positioning of
the end-effector before committing to a touch action. The control
group also contains the Halt button to cancel the current motion
of the robot and the Home button to move the robot to a side
position where it does not interfere with direct operator access to
the ventilator screen.

FIGURE 5 | Evaluation of the ventilator controller system on a human body phantom in the Johns Hopkins Hospital’s biocontainment unit (BCU). (A) Robot
mounted on the screen of a Maquet Servo-U ventilator, (B) respiratory therapist using the remote controller software on a tablet computer outside the BCU, (C) remote
controller user interface layout, with the setup group of controls indicated in green and the control group in red.
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2.4 Software and Communication
A teleoperated system relies on the communication method
between the master and the patient side device. In a
healthcare setting, the success of the entire concept relies on
the communication channels being safe, reliable and secure. In
the proposed system, the connection also needs to be wireless, as
routing a cable out from within an isolated room may not be
feasible. This wireless connection must not interfere with existing
wireless hospital systems, and since a hospital may want to install
multiple instances of the remote controller in a unit, the
additional wireless links should not interfere with each other
either.

In our design, we chose to use industry standard WiFi (IEEE
802.11g-2003 or IEEE 802.11n-2009) connections with built-in
WPA2 authentication (IEEE 802.11i-2004). Each instance of the
remote controlled system uses its own dedicated WiFi network
with only the master and the patient side device being part of the
network. This communication method is safe, as it is compatible
with hospitals’ own wireless systems, secure and highly reliable. It
is also easy to deploy and WiFi support is already built into most
modern computers. Having the UDP and TCP protocols available
on WiFi networks enabled us to use the Robot Operating System
(ROS) for establishing data connections between the master and
patient side device. The ROS middleware provides a
communication software library and convenient software tools
for robotics and visualization. ROS communication is not secure
in itself but channeling its network traffic through a secure WiFi
network makes our system secure. The communication channels
between the components of the teleoperated system are shown in
Figure 3.

Both the master and the patient side of our system run on the
Linux operating system. The patient side Raspberry Pi runs
Raspbian Buster while the master runs Ubuntu 18.04. Both
systems have ROS Melodic installed. The GUI software on the
master is implemented in C++ using RQT, a Qt based GUI
software library with access to the ROS middleware. The patient
side software is also implemented in C++. Computer vision
methods were implemented using the OpenCV software
library, Bradski (2000).

3 RESULTS

To quantify the effectiveness of the robotic teleoperation system,
four experiments were carried out, intended to measure the open-
loop repeatability, the closed-loop visual servoing accuracy,
relative time needed to operate a ventilator with the system,
and the qualitative user experience of the teleoperation system.
Under ideal circumstances, without restrictions affecting access
to health care facilities, personnel, and equipment, a rigorous
human subject experiment would be done to evaluate the
usability and efficacy of the proposed robotic system.
However, in the middle of the COVID-19 pandemic, we did
not have the opportunity to perform a time consuming rigorous
study using clinical ventilators.

As, due to the COVID-19 pandemic, access to mechanical
ventilators for testing was precious and limited, a “mock

ventilator” was constructed to perform the tests, which did not
necessitate exact replication of a clinical environment. This mock
ventilator consisted of a commercially available point-of-sale
capacitive touch screen monitor, selected to match the Servo-
U screen size and resolution, connected to a laptop computer
running test software written in JavaScript. The software was
programmed to display screen captures from the Servo-U
ventilator, record the location of any touch interactions in
screen pixel coordinates, and emulate three commonly used
features of the Servo-U: changing the oxygen concentration,
activating the oxygen boost maneuver, and changing the
respiratory rate alarm condition.

3.1 Mechanical Repeatability Testing
In order to quantify the open-loop mechanical repeatability of the
robotic system, we performed a positional repeatability test
according to ISO 9283:1998 (1998) (Manipulating industrial
robots—Performance criteria and related test methods). The robot
was commanded to move in sequence to five positions in joint space
distributed across the screen, performing the sequence a total of 50
times. At each position, the robot paused and tapped the screen, with
each touch location on the screen being registered in pixel
coordinates by the test software. Given the measured dimensions
of the screen and its defined resolution (1,024 by 768 pixels), the
pixel width and height were both found to be approximately 0.3 mm,
which enabled the conversion of pixel coordinates to position
coordinates in millimeters.

Figure 6 shows the location data from the 5 groups of 50 taps,
re-centered about their respective barycenter. As can be seen, the
distributions were uniform and practically indistinguishable
across the five locations. The pose repeatability (RP), is
defined by ISO 9283:1998 (1998) as RP � l + 3Sl , for l average
euclidean distance to barycenter, and Sl standard deviation of
euclidean distances to barycenter. For the 250 position
measurements taken from the robotic prototype, RP was
found to be 7.5 mm. While these results are far from high
precision positioning, given that the smallest button on the
Servo-U ventilator needed for setting adjustment is 21 mm by
21 mm, it is appropriate for the task at hand.

The one notable feature of the data was that the spread was
significantly greater in the X (horizontal) direction than the Y
(vertical) direction, ranging ±5 mm in X and only ±1.5 mm in Y.
The reason for this was readily apparent: due to its low-cost and
lightweight construction, the prototype design omitted linear
bearings, with the two axis frames riding directly on the linear
rods with a loose 3D-printed slip-fit cylindrical feature. Due to the
play in this feature and the cantilevered design, the Y axis arm
could swing a small angle, inducing errors. Due to the arm’s
length and the small degree of the swept angle, this issue’s impact
on the Y repeatability was minimal (as it was of order cos(θ) ≈ 1),
but the impact in the X direction was detectable (sin(θ) ≈ θ). This
issue could be resolved in future prototypes with the use of close-
fitting linear bearings.

3.2 Visual Servoing Accuracy Testing
In order to quantify the accuracy of visual servoing, 40
uniformly distributed positions were generated across the
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ventilator screen. In a random sequence, each of these
locations was displayed on the mock ventilator screen by
means of a thin black crosshair on a white background. The
experimenter, using the teleoperation interface, would then
command the robot to move (with visual servoing enabled) to
the center of the cross-hair, using a mouse to ensure precise
selection. Upon arriving at its destination, the robot would be
commanded to tap, with the resulting pixel coordinates being
recorded by the test software of the mock ventilator. This
sequence was repeated 5 times, each time using a different
screenshot taken directly from the Servo-U ventilator for

screen registration. The raw errors for all 40 locations
across the 5 runs are shown in Figure 7.

The X average error and Y average error were found to be
−2.87 and −2.89 mm, respectively, with standard deviations of
5.31 and 2.71 mm. The average Euclidean error was found to be
5.94 mm with a standard deviation of 4.19 mm, where 89.5% of
the data points (179 of 200) are clustered around the barycenter
within 2σ radius, with the remaining points considered outliers.
The analysis of the results suggest that the factors responsible for
the errors for the data points within the cluster are related to
mechanical precision, system calibration, and screen registration

FIGURE 6 | Evaluation of robot open loop repeatability: scatter plot of open-loop recorded taps for five locations distributed across the screen (left), scatter plot of
all tap locations re-centered with respect to each barycenter with 95% confidence covariance ellipses for each location. Notably, the spread of re-centered locations is
approximately the same across all locations, as evidenced by the covariance ellipse overlap, but spread is greater in X than in Y.

FIGURE 7 | Evaluation of robot positioning accuracy: Scatter plot of visual servoing recorded tap location errors for the 40 target locations spanning the screen
across the 5 experimental runs (200 total points). See discussion.
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inaccuracies, while the outliers were produced as a result of failed
vision-based tracking of the optical fiducial.

Notably, the error of visual servoing is not uniform across the
screen. Figure 8 shows the heatmaps of error (a) and the number
of outliers (b) across the 40 uniformly distributed spanning
locations. Error is overall greatest near the corners and the
edges of the screen that are farthest from the view of the left-
side mounted camera. Outliers are clustered near the corners,
which shows that the vision-based tracker often failed to detect
the optical fiducial when the LED was far from the center of the
screen. This failure is particularly apparent in the top left corner,
nearest the camera, which suggests that in that particular
configuration the LED detection algorithm often confused the
LED with another nearby bright spot in the camera’s image. The
larger errors in the other three corners, farther from the camera,
are partially due to the lower spatial fidelity of the image at those
locations, which leads to significantly higher errors when
measured as projections on the image plane.

While an average 5.94 mm of Euclidean positioning error is
significant, it is sufficient for the teleoperation tasks required of
the prototype given the aforementioned 21 mmminimum feature
size. Controls on medical equipment, such as buttons, knobs, and
switches are designed for easy and safe manual operation even
while the operator is wearing two layers of nitrile gloves.
Similarly, touch screen-based ventilators, like the Maquet
Servo-U, also feature large on-screen buttons generously
spaced from each other. During our evaluation the accuracy of
our remote controlled robot prototype proved to be sufficient for
easy and safe teleoperation. Nevertheless, further planned
improvements for the visual servoing system are discussed
later in this text (Section 4).

3.3 Manual Operation vs. Teleoperation
Setting Change Time Comparison
To verify the usability and utility of the device, the prototype
teleoperated Cartesian ventilator robot was mounted on the mock
ventilator. Experimenters were asked to perform three tasks
representative of routine setting changes, manually and via
teleoperation: increasing the oxygen concentration setting by

five percentage points, activating the O2 boost maneuver, and
lowering the respiratory rate alarm condition by three
increments. The experiments were recorded and timed from
the first interaction to the confirmation of the last setting
change. Table 1 shows the results for three such experiments
performed on the mock ventilator, and one experiment
performed on an actual Servo-U.

The data showed that, on average, operators were able to
complete the three tasks in 18 s manually and in 67 s via
teleoperation, using a mock ventilator screen. They were able
to complete the same tasks in 28 s manually vs. 109 s using a
clinical ventilator, a ratio of approximately 3.8 in terms of
additional time needed using the robot. However, the protocol
of manual ventilator operation for infectious patients requires the
healthcare worker to don new PPE before entering the ICU room
and doff it after exiting. Seeing how the proper donning and
doffing of PPE is of essential importance to the safety of personnel
and infection control, it is a process that inherently takes time to
be done correctly. For teleoperated ventilator operation, there are
no PPE requirements since the operator never enters the patient
room. A co-investigator with clinical expertise performed the full
don/doff sequence that would be required and recorded the times
as being 170 s to don and 73 s to doff, not including time to clean
equipment post-doff. Thus, in total, including donning and
doffing, manual operation of the Maquet Servo-U ventilator
for these tasks would have taken 271 s compared to only 109 s
for teleoperation with our prototype Cartesian ventilator robot,
leading to a significant net time savings, in addition to reducing
the amount of PPE consumed and the risk of infection to the

FIGURE 8 | Evaluation of robot positioning accuracy with visual servoing: (A) heat map of Euclidean error (in mm) for visual servoing for each of the 40 locations
spanning the screen, averaged over the five trials, (B) heat map of the number of outliers with respect to Euclidean error for each of the same locations spanning the
screen, summed over the five trials.

TABLE 1 | Experimental data for manual and teleoperation performance of three
routine setting change tasks.

Test equipment Manual
operation time (s)

Teleoperation time (s)

Mock ventilator 20 74
Mock ventilator 18 60
Mock ventilator 15 67
Servo-U ventilator 28 109
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respiratory therapist. Due to limited time and access to hospital
resources during pandemic conditions, we have only a single data
point for donning and doffing times and for teleoperation times
with the clinical ventilator, therefore our results are not yet
conclusive. However, our clinical collaborators confirmed that
these times are representative of typical ventilator operation and
PPE donning and doffing times.

3.4 Qualitative System Evaluation in
Biocontainment Unit
We took the teleoperated ventilator controller system to the Johns
Hopkins Hospital’s Biocontainment Unit (BCU) for qualitative
evaluation in maximally accurate conditions. The tests were
carried out by a clinical respiratory therapist (RT) while the
patient side robotic manipulator was mounted on a Maquet
Servo-U mechanical ventilator, as shown in Figure 5A. The
ventilator was connected to a human body respiratory
phantom to enable the simulation of realistic usage scenarios.
Before evaluation, the camera and robot were calibrated using the
system’s remote controller, after which the RT spent
approximately 2 h using the system for making typical
adjustments on the ventilator from outside of the BCU bay
(Figure 5B). The wireless signal easily penetrated into the
BCU bay resulting in reliable communication between the
remote controller and robot.

During and after the evaluation, the RT provided invaluable
feedback regarding the system. His feedback is summarized by
topic in the following:

Image quality: The quality of the live front-view camera image
was assessed to be adequate to read numerical information and
plots displayed on the ventilator’s screen. The respiratory
therapist found no issues with the frame rate of 10 frames per
second provided on the remote controller’s screen. He suggested
that since the most relevant information on the ventilator’s
display is on the right side, the remote controller would be
able to provide a higher definition view of that information if
the camera was moved from the top left to the top right corner.
He found the current video latency of approximately 1 s
distracting, and recommended that it should be reduced in a
production version of the system.

Robot: The RT emphasized that the robot may not yet be
physically robust enough to be used in a healthcare setting and
would need to be ruggedized. He also asked us to investigate if the
robot being mounted on the ventilator screen can potentially
affect the range of motion of the ventilator’s swiveling display and
whether the robot’s mounting points are compatible with other
ventilator models with different screen thickness.

Graphical user interface (GUI) of the remote controller: The
current prototype remote controller’s graphical user interface
contains buttons and switches that are for debugging purposes,
which the RT suggested should be hidden or moved into a dialog
box. He also mentioned that the current user interface is
inconvenient for right-handed operation and we should add
an option for switching between left and right-handed layouts.
The most significant feedback regarding the GUI we received is
that the location of the Tap button is unintuitive in the current

fixed position and it would be preferred to have it move together
with the robot’s end-effector near the touch point. He suggested
that the Tap button should be merged with the Press/Release
button.

Robot control and visual servoing: According to the RT,
controlling the robot by touch on the remote controller’s
interface is intuitive and visual servoing seemed to make a
positive impact, but due to the video latency of approximately
1 s, visual servoing adds an additional delay that should be
reduced.

On handling multiple systems in a single unit: The patient
identifier should be clearly shown on the remote controller.
Currently, ventilator screens do not show patient identifying
information, but a remote controller unit that can work from
a distance must have the patient ID prominently shown in order
to make sure the right ventilator settings are entered for the
correct patients.

With the help of the RT, as previously mentioned in Section
3.3 we also measured the time required to don and doff personal
protective equipment (PPE) for a healthcare worker to access a
negative-pressure intensive care patient room or a BCU from
outside. As shown in Figure 9, it took 170 s for the RT to don and
73 s to doff the PPE during the one trial we had a chance to
observe. The required PPE included two pairs (two layers) of
nitrile disposable gloves, a respirator device with the attached
mask, and a plastic gown.

4 DISCUSSION

This paper reports the development of a simple, low cost
telerobotic system that allows adjustment of ventilator settings
from outside the ICU. Our experiences with our initial prototype
are very encouraging and provide a basis for further development.
Engineering system tests demonstrated that open-loop position
repeatability was 7.5 mm and that the average positioning error of
the robotic finger under visual servoing control was 5.94 mm.
Successful usability tests in a simulated ICU environment were
also reported. Preliminary evaluation highlighted the system’s
potential to save significant time and PPE for hospitals and
medical staff. In one evaluation where we compared the time
required to make an adjustment on the ventilator using the
proposed teleoperated system to the time required for a
respiratory therapist to don PPE, enter the patient room, make
the change directly on the ventilator, then leave the room and doff
the PPE, we found that the RT managed to make the adjustment
in a significantly shorter time (109 s) using teleoperation than
without (271 s). We also received positive feedback during
qualitative evaluation in a clinical setting. The respiratory
therapist who performed the evaluation emphasized that the
system can be a force-multiplier for respiratory teams by
freeing up valuable resources. This robotic system has the
potential to reduce the infection risk for healthcare workers,
reduce usage of PPE, and reduce the total time required to adjust a
ventilator setting.

One limitation of the current prototype robotic system
hindering clinical usability is the difficulty to adequately clean
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and disinfect the Cartesian robot. A future clinical grade device
will be encased in an acrylic cover to protect recessed features and
components from contamination, thus facilitating easier cleaning
by wiping down the convex outer surface. Disinfection of the
device will follow the CDC’s Environmental Cleaning strategy,
WB4224, which requires disinfecting the device with EPA-
registered hospital disinfectant during regular cleaning cycles,
between patients, and before removing it from the room.

A second limitation of the reported study was the frequent
large position error under visual servoing. 17 of the 200 test
taps had an Euclidean error >10 mm, which would result in a
miss when tapping small features on the ventilator, which have
a minimal size of 21 mm. While any setting changes on the
ventilator require tapping a confirmation button, which
prevents accidental parameter adjustments, this high fail
rate reduced usability and confidence in the prototype
system. There were three contributing factors to the errors
that will be addressed in a future clinical system: 1) The
mechanical play in the system created an unintended swing
of the end-effector, contributing to the error in the X direction.
This error can be easily reduced by using linear bearings. 2)
The visual servoing control did not work robustly due to
missed detections of the optical fiducial on the end-effector,
which was the root cause of outliers in the visual servoing
evaluation results. We found that the detection of a single LED
mounted on the end-effector sometimes proved challenging as
the LED detection method occasionally detected a different
bright spot in the image (e.g., the LED’s reflection on the
screen, a similar sized bright dot shown on the ventilator
screen, or metallic reflection from a robot component),
therefore in the next version of the prototype we will
replace the single LED with a small cluster of LEDs
arranged in a unique pattern that is distinguishable from its
mirror image. With the use of multiple LEDs we aim to achieve
better than 99.5% success rate in unambiguously determining
the end-effector position. While it would be desirable to
achieve 100% detection rate, occasionally missed detections
do not invalidate the system as the operator can always
manually correct for robot positioning inaccuracies before
giving a tap command. 3) Calibration and screen
registration inaccuracies contributed to an error of

approximately 4 mm in the visual servoing experiments.
This error manifested itself as a consistent offset in touch
positions. While this offset alone would not significantly
impact system performance, considering the large size of
buttons on the ventilator screen, we will reduce the
introduced offset by improving the fiducial offset calibration
process and screen registration.

During qualitative evaluation of the system in a BCU, our
clinical collaborators uncovered usability issues in the graphical
user interface of the remote controller software that will be
addressed in the next versions of the system. These
improvements include the relocation of the interaction
buttons, Tap and Press/Release, adding an image zoom
feature, and adding an option to allow switching between
right-handed and left-handed layouts.

Our current system is capable of transmitting the live image of
the ventilator’s screen to the remote controller, however in certain
cases it may be required to transmit audible alerts as well. This
was not a priority in our design because most ICU ventilators are
also connected to the central nurse call and alarm management
system, therefore audible alerts are already relayed to the
healthcare staff outside patient rooms.

A system used in a clinical setting will also need to properly
address patient identification. Currently mechanical
ventilators do not require patient identifying information
during setup and operation because the device is placed
near the patient and it is always entirely unambiguous to
which patient the ventilator is connected. However, in a
remote controlled scenario, particularly in the situation
when there are multiple remote controlled systems used
simultaneously with different patients, a lack of patient ID
could lead to confusion where adjustments are made to the
wrong patients by mistake. We will address this critical issue
by adding a patient identifier to the remote controller’s
graphical user interface and make the entering of patient ID
a mandatory step in the system setup process.

To broaden the pool of ventilators that the robot can
control, we are planning to incorporate a sub-system to
turn an adjustment knob. Both the Hamilton ventilator
series, which represent the second largest install base at
Johns Hopkins Hospital after the Maquet Servo-U, and the

FIGURE 9 | During our qualitative system evaluation in the biocontainment unit of the Johns Hopkins Hospital, it took 170 s for a respiratory therapist to don his
personal protective equipment (1: a pair of disposable nitrile gloves, 2: respirator device, 3: mask, 4: plastic gown, 5: a second pair of disposable nitrile gloves) and 73 s
for doffing.
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GE (General Electric Healthcare Inc., Chicago, IL,
United States) ventilators have an integrated knob. The
system will use a stepper-driven, spring-loaded friction
wheel, which will run along and turn the setting adjustment
knob, while the robotic finger will be used to push the
confirmation button on the touch screen.

Our team of clinicians and engineers came together during an
extraordinarily challenging time, at the beginning of a global
pandemic, to leverage our expertise and experience in assistance
of frontline healthcare workers. Teammembers were geographically
separated as a result of social distancing, whichmade some aspects of
system integration and evaluation particularly difficult. Software
developers never got to see the hardware in person that they
were developing for, and none of the people participating in
implementation were able to be present for the system evaluation
in the Biocontainment Unit. Despite the difficulties, our initial
prototype performed well during evaluation and received mainly
positive feedback from clinical professionals. Our team is committed
to carry on and make the system sufficiently robust for controlled
clinical studies in the near future.
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There is compelling support for widening the role of computed tomography (CT) for
COVID-19 in clinical and research scenarios. Reverse transcription polymerase chain
reaction (RT-PCR) testing, the gold standard for COVID-19 diagnosis, has two potential
weaknesses: the delay in obtaining results and the possibility of RT-PCR test kits running
out when demand spikes or being unavailable altogether. This perspective article
discusses the potential use of CT in conjunction with RT-PCR in hospitals lacking
sufficient access to RT-PCR test kits. The precedent for this approach is discussed
based on the use of CT for COVID-19 diagnosis and screening in the United Kingdom and
China. The hurdles and challenges are presented, which need addressing prior to
realization of the potential roles for CT artificial intelligence (AI). The potential roles
include a more accurate clinical classification, characterization for research roles and
mechanisms, and informing clinical trial response criteria as a surrogate for clinical
outcomes.

Keywords: COVID-19, computed tomography, RT-PCR, artificial intelligence, diagnosis

INTRODUCTION

Computed tomography (CT) is not being used to its full potential toward a better understanding
of COVID-19. The reverse transcription polymerase chain reaction (RT-PCR) test is the current
gold standard for diagnosing COVID-19 through the detection of nucleic acid present in SARS-
CoV-2, the virus that causes COVID-19 (Ai et al., 2020). One of the main disadvantages with
RT-PCR testing is that the results may take several hours to several days to obtain. Another
disadvantage is that RT-PCR test kits are a finite resource. In many instances, test kits have
become temporarily limited in areas experiencing outbreaks as the demand has spiked. Moreover,
in low- and middle-income countries, it has been a struggle to access test kits altogether or in the
quantity needed (Peplow, 2020). Any hospital equipped with a CT scanner could potentially use
CT in conjunction with RT-PCR to address these problems. In specific high-prevalence settings
early in the pandemic, the sensitivity of chest CT for detecting COVID-19 has been reported as
high as 97–98%, compared to 71–85% for early real-time reverse transcriptase polymerase chain
reaction (rRT-PCR) (Ai et al., 2020; Bernheim et al., 2020; Kanne, 2020; Xie et al., 2020). There
has been much debate over the ability to generalize such high performance numbers, which are
highly dependent on background prevalence in the community or screening population, clinical
suspicion, and the performance of specific RT-PCR methodologies, which has improved over the
past year.
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To complement the use of standard chest CT for COVID-19
characterization and to further contribute to the body of
knowledge for combating the pandemic, artificial intelligence
(AI) could be utilized to improve the ability of CT to swiftly
and accurately flag CTs for immediate interpretation,
characterize COVID-19 for clinical research, such as response
to medical countermeasures, and potentially increase patient
safety by optimizing radiation exposure.

THE ROLE OF CT IN THE COVID-19
PANDEMIC
Using CT in Conjunction With RT-PCR for
COVID-19 Diagnosis
To address the aforementioned weaknesses of RT-PCR
(namely, the delay in results and fluctuating availability), CT
could be used in conjunction with RT-PCR in selected target
populations with a high risk for COVID-19, such as at the point
of care (POC) in an outbreak setting. In such a POC setting, CT
could be used to identify possible cases, and RT-PCR would be
used to confirm conclusive diagnosis. CT might solve the
problem of delayed results because CT results with or
without AI models are obtained more quickly compared to
RT-PCR. CT scanners are widely available and offer reliable
daily accessibility. Moreover, CT has been shown to assist
with detecting possible cases of COVID-19, even among
asymptomatic patients, which may be important given the
public health conundrum of presymptomatic and asymptomatic
transmission (Apostolopoulos and Bessiana, 2003; Narin et al.,
2003; Wang and Wong, 2003; Bernheim et al., 2020; Kanne,
2020; Liang, 2020; Xie et al., 2020). Some studies have touted
the sensitivity of chest CT (vs. RT-PCR) for detecting
COVID-19 in super-acute high-prevalence early epidemic
outbreak settings (Ai et al., 2020; Liu et al., 2020). Another
study found that RT-PCR and CT together may miss fewer
patients than CT alone or RT-PCR alone (Inui et al., 2020).

Certain high-risk patients who undergo CT in an outbreak
setting or after a high dose exposure might be identified by CT
and isolated or quarantined while they await RT-PCR results,
thus reducing the risk of transmission (Amalou et al., 2020). CT
scans for other indications, performed in asymptomatic patients,
might also identify and isolate patients prior to risking
transmission to a busy clinic POC setting. This is important
because many people infected with SARS-CoV-2 have mild
symptoms or no symptoms at all. Additionally, peak viral
shedding occurs at or just before the onset of symptoms (Zou
et al., 2020), so it is common for asymptomatic people to
unknowingly transmit the disease and those patients may
have CT opacities (Varble et al., 2021). CT should not replace
RT-PCR for the diagnosis of SARS-CoV-2/COVID-19, so its
use might be tightly linked to RT-PCR availability, and the
risk-to-benefit ratios of the radiation risk vs. the risk to the
population of not diagnosing or isolating a particular patient.
CT might also be proposed as an epidemiology tool to assess
spread or focus on a target population who has exposure history,
such as a cruise ship.

Precedent
There is a precedent for widening the role of chest CT in COVID-
19 evaluation. Although some US and UK guidelines have
recommended against using chest CT for screening
(NHCotPsRo, 2019; Long et al., 2020), other countries have
applied chest CT to specific outbreak settings with a more
widespread, targeted, and strategic use of chest CT. In Chinese
outbreak settings, for example, chest CT of high-risk populations,
alongside of strict public health containment strategies, may have
contributed to successful containment and low mortalities. In the
US and Europe, chest CT has mainly been used to examine
patients later in the disease cycle, such as to screen for
complications or superinfections. In contrast, chest CT was
used frequently along with RT-PCR for acute diagnosis in
“fever clinics” in Hubei Province, China (Liang, 2020). For a
brief and transient period during a high outbreak setting,
COVID-19 diagnoses were made based on positive CT and a
recent high-risk travel or possible exposure, even when the

FIGURE 1 | CT images of the lungs in a subject with COVID-19. (A–C)
Original CT images. (D–F) CT images with AI segmentation of COVID-19 lung
opacities.
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patients’ RT-PCR results were initially negative (NHCotPsRo,
2019). Thus, CT has been aggressively applied alongside of RT-
PCR in an outbreak setting as an epidemiology tool for optimized
contact tracing.

Furthermore, early in the pandemic, the United Kingdom
provided intercollegiate guidelines stating that patients
undergoing elective surgery required chest CT beforehand if
the procedures were high risk or if the patients were expected
to require admission to the intensive therapy unit or high
dependency unit postoperatively (Standards and Clinical Gu,
2020). Additionally, for patients presenting with abdominal
symptoms and undergoing CT evaluation of the abdomen and
pelvis, CT coverage of the chest also was recommended early in
the pandemic (Bullock et al., 2020).

Potential Roles of Artificial Intelligence in
CT Optimization
AI is a promising tool to increase the potential suitability of chest
CT for COVID-19 screening, detection, monitoring, and research
in certain highly constrained settings. AI has already been applied
in many technologies developed in response to the emergence of
COVID-19 (Bullock et al., 2020), including lung and infection
segmentation, COVID-19 quantification, and techniques for
clinical classification, detection, assessment, and monitoring.
Figure 1 shows an example of how AI segmentation models
for COVID-19 can be applied to chest CT.

Currently, a common recommendation among medical and
public health organizations is that CT should not be used for
screening, and it should only be used for COVID-19 in patients
with moderate to severe symptoms of COVID-19, worsening
respiratory status, or indications of cardiopulmonary
complications, and only when RT-PCR is unavailable or RT-
PCR access is highly limited. Despite the high sensitivity of chest
CT for COVID-19 in high-prevalence settings, one reason why
chest CT is not more widely recommended for COVID-19
diagnosis is that the imaging findings are nonspecific,
overlapping with many other diseases such as influenza,
H1N1, SARS, MERS, and pneumonias with underlying causes
other than SARS-CoV-2 (A. C. O. Radiology, 2020; C. F. D. C. A.
Prevention, 2020). One study found that two standardized
grading systems for determining the suspicion level of
COVID-19 pneumonia based on chest CT had good inter-
reader agreement among experienced readers but only
moderate inter-reader agreement among less experienced
readers (Sushentsev et al., 2020). To increase specificity and
reduce the analytical burden on radiologists, AI could be
utilized to learn the unique characteristics of chest CT in
COVID-19 compared to other diseases (Roberts et al., 2021).
This would be especially useful for smaller medical centers that
lack dedicated, experienced radiologists and for out-of-hours
scanning. Standardized AI initial interpretations might also
reduce the subjectivity or interobserver variability of a
subsequent radiologist review.

Lin et al. (2021) investigated differences in CT characteristics,
some of which were determined by AI software, between patients
with COVID-19 pneumonia and influenza virus pneumonia.

Although they identified four CT characteristics with statistical
differences, they concluded it might still be difficult to
differentiate between the two causes of pneumonia in clinical
practice.

In a particularly promising study by Harmon et al. (2020), a
series of deep learning algorithms were used to assist chest CT in
distinguishing between COVID-19 pneumonia and non-
COVID-19 pneumonia. The algorithms were trained in a
cohort of 1,280 patients and tested in an independent set of
1,337 patients. The resulting classification of COVID-19
pneumonia had an accuracy of >90%, sensitivity of 84%, and
specificity of 93%. Among 140 patients with laboratory confirmed
non-COVID-19 pneumonia in the test set, the false positive rate
of the AI-assisted chest CT was 10%.

However, the overall pool of research on AI-assisted chest CT
is at a very early stage, with many limitations, generalizations,
overfit models, and reproduction of similar models. Image-based
AI models abound that lack external validation, clinical metadata
and relevant clinical labs, phase of disease parameters, or
background prevalence data. Two separate reviews on this
research topic have highlighted the shortcomings. One was a
systematic review on machine learning literature related to the
use of CT and CXR imaging for COVID-19 diagnosis and
prognosis (Roberts et al., 2021). It did not find any articles
that satisfied all three key criteria for clinical translation of
research: sufficiently documented and reproducible methods,
methods adhering to best practices for machine learning
model development, and proper external validation. The other
review was on the use of AI with chest CT to diagnose COVID-19
(Ozsahin et al., 2020). It found that the majority of studies on this
topic were not peer-reviewed. Additionally, some studies had
extremely limited data and some used data from different
institutions and scanners, but did not carry out the necessary
preprocessing of the data to increase the consistency across data
from different sources. Furthermore, some studies lacked
sufficient demographic or clinical information for the patients.
The two review articles agree that larger and higher quality
datasets will be of the utmost importance for future studies in
the field. COVID-Net aims to accelerate research in the field by
releasing open-source, open-access deep learning models and
networks created for AI-assisted chest CT for various COVID-19
related tasks (e.g., screening and treatment monitoring) as well as
large, diverse datasets (Wong, 2020). Federated learning
incentivizes and facilitates data sharing by removing certain
privacy barriers, which have variable rules and processes
throughout the world. With federated learning, the deep
learning model weights can be shared without actual data
exchange, without compromising the AI training process
(Yang et al., 2021).

One of the risks associated with CT imaging is radiation
exposure. Regarding patient safety, AI-based estimations of
body region thickness could calculate optimal X-ray exposure
parameters and AI-generalized adversarial networks could
facilitate low-dose imaging. The population risks of more
broadly using chest CT scans for enhanced indications in
COVID-19 remain to be defined or fully justified for specific
settings and remain a concern.
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Looking forward, AI could be used to improve the sensitivity
and efficiency of chest CT for detecting COVID-19 and to
increase the effectiveness of CT as a disease response or a
monitoring tool for both research and clinical practice. AI
could further enhance the ability of CT to provide
quantification of objective biomarkers of response to
experimental treatment programs for specific cohorts of
patients. AI could also help optimize the CT image quality
through the development of automated, high-precision Iso-
centering and scan range determination.

CT AI might provide a standardized measure and surrogate
biomarker metric for lung disease. Speculative uses of CT AI
include the measurement of clinical response to therapeutics like
steroids, monoclonal antibodies, or anti-inflammatory
medications. It is unknown whether CT AI could help identify
chronic lung changes in chronic COVID-19 breathlessness,
variant-specific features, or early detection of at-risk phases of
disease exacerbations (either primary infectious opacities or
immune or inflammatory phase reactions). We have a lot to
learn and CT AI adds a tool to the discovery toolbox.

CONCLUSION

In conclusion, there are compelling reasons to be attracted
toward studying chest CT as a tool for developing a better
understanding of COVID-19. Clinical public health and
research goals for COVID-19 might be enlightened by a
targeted application of chest CT and CT AI to seeking
answers for specific clinical and research questions in specific
outbreak or therapeutic settings. Additional research and data
are required to determine the exact roles of chest CT in early
detection, classification, and triage of resource-limited therapies,
and its potential role as an epidemiology tool in limited targeted
populations. The pandemic has proved to be an “AI-instigator”;
however, AI-assisted CT tools will require more rigorous

academic development, broader clinical metadata, and more
thorough critical review in hopes of more generalized tools
with clinical or research relevance. We can do better. The
times demand it.
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Since the first case of coronavirus disease 2019 (COVID-19) was discovered in December
2019, COVID-19 swiftly spread over the world. By the end of March 2021, more than 136
million patients have been infected. Since the second and third waves of the COVID-19
outbreak are in full swing, investigating effective and timely solutions for patients’ check-
ups and treatment is important. Although the SARS-CoV-2 virus-specific reverse
transcription polymerase chain reaction test is recommended for the diagnosis of
COVID-19, the test results are prone to be false negative in the early course of
COVID-19 infection. To enhance the screening efficiency and accessibility, chest
images captured via X-ray or computed tomography (CT) provide valuable information
when evaluating patients with suspected COVID-19 infection. With advanced artificial
intelligence (AI) techniques, AI-driven models training with lung scans emerge as quick
diagnostic and screening tools for detecting COVID-19 infection in patients. In this article,
we provide a comprehensive review of state-of-the-art AI-empowered methods for
computational examination of COVID-19 patients with lung scans. In this regard, we
searched for papers and preprints on bioRxiv, medRxiv, and arXiv published for the period
from January 1, 2020, to March 31, 2021, using the keywords of COVID, lung scans, and
AI. After the quality screening, 96 studies are included in this review. The reviewed studies
were grouped into three categories based on their target application scenarios: automatic
detection of coronavirus disease, infection segmentation, and severity assessment and
prognosis prediction. The latest AI solutions to process and analyze chest images for
COVID-19 treatment and their advantages and limitations are presented. In addition to
reviewing the rapidly developing techniques, we also summarize publicly accessible lung
scan image sets. The article ends with discussions of the challenges in current research
and potential directions in designing effective computational solutions to fight against the
COVID-19 pandemic in the future.
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1 INTRODUCTION

COVID-19, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was noted to be infectious to
humans in December 2019 in Wuhan, China. Afterward, it
swiftly spread to most countries around the world. People
infected with COVID-19 present with have fever, cough,
difficulty in breathing, and other symptoms, while there are
also asymptomatic infectious patients (Bai et al., 2020).

For COVID-19 diagnosis, on the one hand, the reverse
transcription polymerase chain reaction (RT-PCR) is a specific
and simple qualitative analysis method for the detection of
COVID-19 (Tahamtan and Ardebili, 2020). Despite its high
sensitivity and strong specificity, the RT-PCR test has several
limitations. First, false-negative results for the SARS-CoV-2 test
are very common in clinical diagnosis of COVID-19 due to
various factors, e.g., an insufficient amount of virus in a
sample (Xiao et al., 2020). Second, the RT-PCR test provides a
yes/no answer without any indication of disease progression. On
the other hand, clinical studies have discovered that most
COVID-19 patients, even in the early course of infection or
without showing any clinical symptoms, possess common
features in their lung scans (Hao and Li, 2020; Long et al.,
2020; Salehi et al., 2020; Wong et al., 2020; Zhou et al.,
2020a). These patterns in lung images are believed to be a
complement to the RT-PCR test and thus form an alternative
important diagnostic tool for the detection of COVID-19.
Particularly, among various non-invasive techniques to view
and examine internal tissues and organs in chest, ultrasound
(US) does not depict the differences between COVID-19 and
other viral types of pneumonia well and magnetic resonance
imaging (MRI) suffers from long scan times and high costs.
Consequently, CT scans and chest X-ray (CXR) are the widely
used techniques in lung scans for the clinical diagnosis of
COVID-19 (Vernuccio et al., 2020; Dong et al., 2021).
Currently, chest imaging has been used for preliminary/
emergency screening, monitoring, and follow-up check-ups in
COVID-19 treatment in China and Italy.

AI-empowered computational solutions have been
successfully used in many medical imaging tasks. Particularly
to combat COVID-19, computational imaging technologies
include, but are not limited to, lung and infection region
segmentation, chest image diagnosis, infection severity
assessment, and prognosis estimation. Compared to
physician’s examination, computational solutions are believed
to be more consistent, efficient, and objective. In literature, early
works on chest image examination for COVID-19 patients have
usually adopted the paradigm of supervised learning to build an
image analysis model. These learning algorithms range from
support vector machine (SVM), K-nearest neighbor, random
forest, decision tree to deep learning. Lately, to improve
learning models’ generalization, transfer learning, multi-task
learning, and weakly supervised learning have become popular.

In this article, we review the state-of-the-art AI diagnostic
models particularly designed to examine lung scans for COVID-
19 patients. To this end, we searched for papers and preprints on
bioRxiv, medRxiv, and arXiv published for the period from

January 1, 2020, to March 31, 2021, with keywords of COVID,
lung scans, and AI. After quality inspection, 96 papers were
included in this article, among which most are peer-reviewed and
published in prestigious venues. We also included a small portion
of reprints in this review due to their methodology innovations.
Particularly, this review presents in-depth discussions on
methodologies of region-of-interest (ROI) segmentation and
chest image diagnosis in Segmentation of Region of Interest in
Lung Scans and COVID-19 Detection and Diagnosis, respectively.
Infection severity assessment and prognosis prediction from
COVID-19 lung scans are closely related and thus presented
together in COVID-19 Severity Assessment and Prognosis
Prediction. Since AI solutions are usually data-driven, Public
COVID-19 Chest Scan Image Sets lists primary COVID-19
lung image sets publicly accessible to researchers. Limitations
and future directions on AI-empowered computational solutions
to COVID-19 treatment are summarized at the end of this article.

Several review papers have been published on AI solutions to
combat COVID-19. Pham et al. (2020) and Latif et al. (2020) have
emphasized the importance of artificial intelligence and big data
in responding to the COVID-19 outbreak and preventing the
severe effects of the COVID-19 pandemic, but computational
medical imaging was not their focus. (Dong et al. (2021) and
Roberts et al. (2021) have broadly covered the use of various
medical imaging modalities for COVID-19 treatment and Shi
et al. (2021) overviewed all aspects along the chest imaging
pipeline, from imaging data acquisition to image segmentation
and diagnosis. This article constitutes the latest technical review
(up to March 31, 2021) of AI-based lung scan screening for the
COVID-19 examination. In contrast to previous review papers,
this review particularly focuses on the AI-driven techniques for
COVID-19 chest image analysis. We present an in-depth
discussion on various AI-based methods, from their
motivations to specific machine learning models and
architectures. The specific scope and updated, in-depth review
of technology distinguish this article from previous works.

2 SEGMENTATION OF REGION OF
INTEREST IN LUNG SCANS

The region of interest in lung scans is usually lung fields, lesions,
or infection regions. As a prerequisite procedure, obtaining
accurate segmentation of lung field or other ROIs in chest
images is essential. It helps avoid the interference of non-lung
regions in subsequent analysis (Majeed et al., 2020). This section
provides a comprehensive review of AI-driven solutions for ROI
segmentation for COVID-19 treatment. We will start with
performance metrics for segmentation evaluation. Then,
computational solutions are grouped based on image
modalities (first with CXR, followed by CT). Note that though
many studies have focused on lung segmentation, this article
surveys publications directly related to COVID-19 treatment.

2.1 Performance Metrics
Dice coefficient is the most common metric used to evaluate
segmentation methods. It quantifies the agreement between

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6129142

Deng and Li Chest Image Computing for COVID-19

403

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


ground truth mask and segmentation results. Specifically, Dice
coefficient is defined as follows:

Dice(X,Y) � 2|A∩B|
|A| + |B|, (1)

where A and B are ground truth and segmented regions,
respectively; ∩ denotes the operation to obtain the overlap
regions between A and B; | · | calculates the number of pixels
in an image. In addition to Dice coefficient, accuracy, sensitivity,
and precision can also be used as evaluation criteria (Yan et al.,
2020).

2.2 Methodologies
Among various machine learningmethods for ROI segmentation,
the encoder-decoder architecture such as U-Net (Ronneberger
et al., 2015) is the common backbonemodel. The encoder extracts
numerical representations from a query image and the decoder
generates a segmentation mask in the query image size. To boost
the performance of U-Net shape models, different deep learning
strategies are investigated to address unique challenges that exist
in lung scans of COVID-19 patients. We specify these novel
algorithms and models as follows.

2.2.1 Region-of-Interest Segmentation in Chest X-Ray
Chest X-ray images from COVID-19 patients usually suffer from
various levels of opacification. This opacification masks the lung
fields in CXRs and makes accurate segmentation of lung fields
difficult. To tackle this problem, Selvan et al. (2020) have
proposed a weak supervision method that fuses a U-Net and a
variational autoencoder (VAE) to segment lungs in high-opacity
CXRs. The novelty in their method is the use of VAE for data
imputation. In addition, three data augmentation techniques are
attempted to improve the generalization of the proposed method.

2.2.2 Region-of-Interest Segmentation in Computed
Tomography Scans
In the literature, many studies have proposed improvements for
ROI segmentation in lung CT images. For instance, an attention
mechanism is often deployed for segmentation recently. For
automated segmentation of multiple COVID-19 infection
regions, Chen X. et al. (2020) have applied the soft attention
mechanism to improve the capability of U-Net to detect a variety
of symptoms of the COVID-19. The proposed aggregated
residual transformation facilitates the generation of a robust
and descriptive feature representation, further improving the
segmentation performance. Inf-Net (Fan et al., 2020) is a
semi-supervised segmentation framework based on a randomly
selected propagation strategy. It utilizes implicit reverse attention
and explicit edge attention to enhance abstract representations
and model boundaries of lung infection regions, respectively.
Similar to Inf-Net, COVID-SegNet proposed by Yan et al. (2020)
introduces two attention layers in a novel feature variation (FV)
block for lung infection segmentation. The channel attention
handles confusing boundaries of COVID-19 infection regions,
and the spatial attention in the FV block optimizes feature
extraction in the encoder model.

Alternatively, multi-task learning is used to leverage useful
information in multiple related tasks to boost the performance of
both segmentation and classification (Amyar et al., 2020). In this
study, a common encoder is shared by two decoders and one
classification layer for COVID-19 infection segmentation, lung
image reconstruction, and CT image binary classification
(i.e., COVID-19 and non-COVID-19). Similarly, Wu et al.
(2021) have designed a joint classification and segmentation
framework, which used a decoder to map the combined
features from the classification network and an encoder to the
segmentation results.

In addition to the development of advanced deep learning
models, several studies have tried to improve the segmentation
performance by either synthesizing CT image samples or
massaging image labels. For instance, Liu et al. (2020) have
proposed using GAN to synthesize COVID-19 opacity on
normal CT images. To address data scarcity, Zhou. et al.
(2020) have created a CT scan simulator that expands the data
by fitting variations in the patient’s chest images at different time
points. Meanwhile, they have transformed the 3D model into
three 2D segmentation tasks, thus not only reducing the model
complexity but also improving the segmentation performance.
On the other hand, instead of generating new, “fake” CT images
for training, Laradji et al. (2020) have built an active learning
model for image labeling. The active image labeling and infection
region segmentation are iteratively performed until performance
converges. Wang et al. (2020) have introduced a noise-robust
Dice loss to improve the robustness of the model against noise
labels. In addition, an adaptive self-ensembling framework based
on the teacher-student architecture was incorporated to further
improve noise-label robustness in image segmentation.

3 COVID-19 DETECTION AND DIAGNOSIS

Pneumonia detection from lung images is a key part of an AI-
based diagnostic system for fast and accurate screening of
COVID-19 patients. In this regard, machine learning methods,
especially discriminative convolutional neural networks (CNN),
are deployed for COVID-19 detection (binary classification of
COVID-19 and non-COVID-19) and multi-category diagnosis
(classification of normal, bacterial, COVID-19, and other types of
viral pneumonia).

3.1 Performance Metrics
The widely used measurement metrics for image classification are
accuracy, precision, sensitivity, specificity, and F1 score. The areas
under the ROC curve (AUC) were also reported in some studies.
ROC curve describes the performance of a classification model at
various classification thresholds and AUC measures the area
underneath the obtained ROC curve.

Accuracy � TP + TN

TP + TN + FP + FN
, (2)

Precision � TP

TP + FP
, (3)
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Sensitivity � TP

TP + FN
, (4)

Specificity � TN

TN + FP
, (5)

F1 score � 2TP

2TP + FN + FP
, (6)

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

3.2 Methodologies
The biggest challenge in the problem of COVID-19 detection
from chest images is data scarcity. To address this issue, early

TABLE 1 | Summary of COVID-19 detection from CXR images in the literature (%). If multiple models are used in a study, we report the best-performance model here.

Literature Task Method Acc Sens Spec Pre F1 AUC

Wang et al. (2020a) Multi-class COVID-net 93.3 91.0 - 98.9 - -
Asif et al. (2021) Multi-class InceptionV3 96.0 - - - -
Asnaoui and Chawki (2020) Multi-class InceptionResnetV2 92.18 92.11 96.06 92.38 92.07 -
Rajaraman and Antani (2020) Two classes VGG-16 93.08 97.11 86.49 92.16 94.57 95.65
Moutounet-Cartan (2020) Multi-class VGG-16 84.1 87.7 - - - 97.4
Albahli (2020) Multi-class Resnet 89 - - - - -
Eldeen et al. (2021) Multi-class Alexnet 87.1 - - 91.67 89.53 -
Punn and Agarwal (2021) Multi-class NASNetLarge 95 90 92 95 90 94
Ozcan (2020) Multi-class Resnet50 97.69 97.26 97.90 95.95 96.60 -
Kumar et al. (2020) Two classes DeQueezeNet 94.52 96.15 - 90.48 - -
Goodwin et al. (2020) Two classes Ensemble learning 89.4 80 - 53.3 64.0 -
Chatterjee et al. (2020) Multi-class Ensemble learning 88.9 85.1 - - 86.9 -
Shibly et al. (2020) Two classes Faster R-CNN 97.36 97.65 95.48 99.29 98.46 -
Fakhfakh et al. (2020) Two classes ProgNet 92.4 93.9 - 93.0% 93.4 -
Li et al. (2020) Multi-class DCSL 97.01 97.09 - 97.00 96.98 -
Yamac et al. (2020) Multi-class CSEN 95.9 98.5 95.7 - - -
Al-karawi et al. (2020) Multi-class SVM 94.43 95.00 93.86 - - -
Khuzani et al. (2020) Multi-class CNN 94.05 100 - 96 98 -
Medhi et al. (2020) Two classes CNN 93 - - - - -
Abbas et al. (2021a) Multi-class 4S-DT 97.54 97.88 97.15 - - 99.58
Zhang et al. (2021) Two classes CAAD 72.77 71.7 73.83 - - 83.61
Ahishali et al. (2021) Two classes CSEN 95.66 97.28 95.52 - - -
Zabirul-Islam et al. (2020) Multi-class LSTM 99.4 99.3 99.2 - 98.9 99.9
Narayan Das et al. (2020) Multi-class Xception 97.41 97.09 97.30 - 96.97 -
Khan et al. (2020) Two classes Xception 99.0 - 98.6 98.3 98.5 -
Abbas et al. (2021b) Multi-class VGG19 93.1 100 - - - -
Apostolopoulos and Mpesiana (2020) Multi-class MobileNet V2 96.78 98.66 96.46 - - -
Minaee et al. (2020) Multi-class ResNet - 98.0 90.7 86.9 - 98.9
Afshar et al. (2020) Multi-class CAPS 98.3 80 98.6 - - -
Toǧaҫar et al. (2020) Multi-class Ensemble learning 98.25 99.32 99.37 99.66 - -
Apostolopoulos et al. (2020) Multi-class MobileNet V2 87.66 97.36 99.42 - - -

Acc, accuracy; AUC, area under the ROC curve; F1, F-score; Pre, precision; Sens, sensitivity and Spec, specificity.

TABLE 2 | Summary of COVID-19 detection from lung CT slides in the literature (%). If multiple models are used in a study, we report the best-performance model here.

Literature Task Method Acc Sens Spec Pre F1 AUC

Soares et al. (2020) Two classes xDNN 97.38 95.53 - 99.16 97.31 97.36
Anwar and Zakir (2020) Multi-class EfficientNetB4 89.7 - - - 89.6 89.5
Han et al. (2020) Multi-class AD3D-MIL 94.3 90.5 - 95.9 92.3 98.8
Rahimzadeh et al. (2020) Two classes ResNet50V2 98.49 94.96 98.7 81.26 - -
He et al. (2020a) Multi-class DenseNet3D 87.62 89.07 91.13 85.94 87.48 89.8
Javaheri et al. (2021) Multi-class CovidCTNet 87.5 87.5 93.85 - - 95
Di et al. (2021) Two classes UVHL 89.79 93.27 84.00 90.65 - -
Chao et al. (2021) Two classes Random forest 88.4 84.3 - - - 88.0
He et al. (2020b) Two classes DenseNet-169 86 - - - 85 94
Jin et al. (2020) Multi-class ResNet152 - 90.19 95.76 - - 97.17
Zhang et al. (2020) Multi-class Two-stage model 92.49 94.93 91.13 - - 97.97
Aslan et al. (2021) Multi-class BiLSTM 98.70 - 99.33 98.77 98.76 99.00
Wang et al. (2021b) Two classes Inception 82.5 75.0 86.0 - - -
Song et al. (2021) Two classes DRE-net 86 96 -% 79 87 95

Acc, accuracy; AUC, area under the ROC curve; F1, F-score; Pre, precision; Sens, sensitivity and Spec, specificity.
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works have usually designed diagnostic systems following the
handcraft engineering paradigm. Moreover, solutions based on
transfer learning, ensemble learning, multi-task learning, semi-
supervised learning, and self-supervision have been proposed in
recent publications. For ease of comparison, we summarize the
reviewedmethods for CXRs and CT scans in Table 1 and Table 2,
respectively.

3.2.1 COVID-19 Detection/Diagnosis From Chest
X-Ray
Handcrafted engineering is believed to be effective when prior
knowledge of the problem is known. It is also preferred over deep
learning when a training set is small. To solve the problem of
COVID-19 diagnosis from chest X-ray images, Al-karawi et al.
(2020) have proposed manually extracting image texture
descriptors (LBP, Gabor features, and histograms of oriented
gradient) for downstream SVM classification. Similarly, Khuzani
et al. (2020) have suggested extracting numerical features from
both spatial domain (Texture, GLDM, and GLCM) and frequency
domain (FFT and Wavelet). Instead of SVM, a multi-layer neural
network was designed for triple classification (normal, COVID-
19, and other pneumonia). In the diagnostic pipeline introduced
by Medhi et al. (2020), a CXR image is first converted to the
grayscale version for image thresholding. Then, the obtained
binary images are passed to a shallow net to distinguish
normal images and COVID-19 cases. Chandra et al. (2021)
have proposed extracting 8,196 radiomic texture features from
lung X-ray images and differentiated different pneumonia types
by multi-classifier voting.

Recently, with the increase in the collections of CXR images
from COVID-19 patients, deep learning methods have become a
major technique. Wang L. et al. (2020) have designed a
lightweight diagnostic framework, namely, COVID-Net, for
triple classification (i.e., no infection, non-COVID-19
infection, and COVID-19 viral infection). The tailored deep
net makes heavy use of a residual projection-expansion-
projection-extension (PEPX) design pattern and enhances
representational capacity while maintaining relatively low
computational complexity. Zabirul-Islam et al. (2020) have
introduced an interesting hybrid deep CNN-LSTM network
for COVID-19 detection. In this work, deep features of a CXR
scan are extracted from a tailored CNN and passed to a long
short-term memory (LSTM) unit for final classification. Since
LSTM replaces a fully connected layer in the CNN-LSTM model,
the number of trainable parameters in the model is reduced due
to the parameter sharing property of LSTM.

Among the large volume of literature, transfer learning is one
of the most common strategies in deep learning to combat data
scarcity. It retrains a deep model on large-scale datasets and fine-
tunes it on target COVID-19 image sets (Ahishali et al., 2021;
Apostolopoulos et al., 2020; Apostolopoulos and Mpesiana, 2020;
Asnaoui and Chawki, 2020; Khan et al., 2020; Moutounet-Cartan,
2020; Narayan Das et al., 2020; Ozcan, 2020; Ozturk et al., 2020;
Punn and Agarwal, 2021; Abbas et al., 2021b; Asif et al., 2021;
Eldeen et al., 2021). These models include, but are not limited to,
Inception, ResNet, VGG-16, NASNet, and AlexNet. To further
leverage the discriminative power of different models, ensemble

learning is deployed, where multiple deep nets are used to vote for
the final results. For example, DeQueezeNet, proposed by Kumar
et al. (2020), ensembles DenseNet and SqueezeNet for
classification. Similar models were proposed by Goodwin et al.
(2020); Chatterjee et al. (2020); Shibly et al. (2020); Minaee et al.
(2020); Toǧaҫar et al. (2020) Alternatively, Afshar et al. (2020)
haveintroduced a capsule network-based model for CXR
diagnosis, where transfer learning is exploited to boost the
performance. To “open” the black box in a deep learning-
based model, Brunese et al. (2020) have introduced an
explainable detection system where transferred VGG-16 and
class activation maps (CAM) (Zhou et al., 2016) were
leveraged to detect and localize anomalous areas for COVID-
19 diagnosis. Furthermore, Majeed et al. (2020) have performed a
comparison study on pretrained CNN models and deployed
CAM to visualize the most discriminating regions. Based on
the experimental results, Majeed et al. (2020) have recommended
performing ROI segmentation before diagnostic analysis for
reliable results. The study by Hirano et al. (2020) focused on
the vulnerability of deep nets against universal adversarial
perturbation (UAP) with the application of detecting COVID-
19 cases from chest X-ray images. The experimentation suggests
that deep models are vulnerable to small UAPs and that adversary
training is a necessity.

Since direct transfer across datasets from different domains
may lead to poor performance, researchers have developed
various strategies to mitigate the effects of domain difference
on transfer performance. Li et al. (2020) have proposed a
discriminative cost-sensitive learning (DCSL) model for a
triple-category classification between normal, COVID-19, and
other types of pneumonia. It uses a pre-trained VGG16 as the
backbone net, where the first 13 layers are transferred and the two
top dense layers are refined using an auxiliary conditional center
loss to decrease the intra-class variations in representation
learning. Convolution Support Estimation Network (CSEN)
(Ahishali et al., 2021; Yamac et al., 2020) targets bridging the
gap between model-based methods and deep learning
approaches. It takes the numerical representations from pre-
trained ChXNet as input and innovates a non-iterative
mapping for sparse representation learning. In addition, Zhou
et al. (2021) have considered the problem of COVID-19 CXR
image classification in a semi-supervised domain adaptation
setting and proposed a novel domain adaptation method,
namely, semi-supervised open set domain adversarial network
(SODA). It aligns data distributions in different domains through
domain adversarial training (Ganin et al., 2016). To address
highly imbalanced image sets, Zhang et al. (2021) have
formulated the task of differentiating viral pneumonia in lung
scans into a one-class classification-based anomaly detection
problem and proposed a confidence-aware anomaly detection
model (CAAD). CAAD consists of a shared feature extractor
derived from a pre-trained EfficientNet, an anomaly detection
module, and a confidence prediction module. A sample is
detected as a COVID-19 case if it has a large anomaly score
or a small confidence score.

Another strategy to tackle the data scarcity issue is data
augmentation. For instance, offline augmentation strategies,

Frontiers in Artificial Intelligence | www.frontiersin.org July 2021 | Volume 4 | Article 6129145

Deng and Li Chest Image Computing for COVID-19

406

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


such as adjusting noise, shear, and brightness, are adopted to
solve the data imbalance problem by Ucar and Korkmaz (2020).
To further address the shortage of COVID-19 CXR images,
Albahli (2020) and Waheed et al. (2020) have proposed using
GAN to synthesize CXR images directly. To leverage a large
amount of unlabeled data in COVID-19 CXR detection,
Rajaraman and Antani (2020) have introduced a semi-
supervised model to generate pseudo-annotation for unlabeled
images. Then, recognizing COVID-19 pneumonia opacities is
achieved based on these “newly” labeled samples. Similarly,
Abbas et al. (2021a) have introduced a self-supervision
method to generate pseudo-labels. With abstract
representations generated by the bottleneck layer of an
autoencoder, unlabeled samples are clustered for downstream
training.

3.2.2 Detecting COVID-19 From Lung Computed
Tomography Slides
Transfer learning is still the most common technique among
the diverse methods to detect COVID-19 from lung CT images
(Anwar and Zakir, 2020; He et al., 2020b; Chowhury et al.,
2020; Soares et al., 2020; Wang S. et al., 2021). Particularly,
previous studies (He et al., 2020a; Ardakani et al., 2020) have
built a benchmark to evaluate state-of-the-art 2D and 3D CNN
models (e.g., DenseNet and ResNet) for lung CT slides
classification. It is worth mentioning that in the study of
Wang S. et al. (2021), the model also performed re-
detection on the results of the nucleic acid testing.
According to this study, fine-tuned deep models can detect
false-negative results. In addition, a lightweight 3D network
optimized by neural architecture search was introduced for
comparison in the proposed benchmark. To address the issue
of large domain shift between source data and target data in
transfer learning, He et al. (2020b) have proposed a self-
supervised transfer learning approach called Self-Trans. By
integrating contrastive self-supervision (Chen T. et al., 2020)
in the transfer learning process to adjust the network weights
pre-trained on source data, the bias incurred by source data is
reduced in the target task. Aslan et al. (2021) have introduced a
hybrid pre-trained CNN model and BiLSTM architecture to
form a detection framework to improve the diagnosis
performance.

In addition to transfer learning, diagnostic solutions based on
weak supervision, multi-instance learning, and graphic learning
were proposed in the literature. Rahimzadeh et al. (2020) have
introduced a deep model that combined ResNet and the feature
pyramid network (FPN) for CT image classification. ResNet is
used as the backbone network and FPN generates a feature
hierarchy from the backbone net’s features at different scales.
The obtained feature hierarchy helps detect COVID-19 infection
in different scales. DRE-Net proposed by Song et al. (2021) has a
similar architecture that combines ResNet and FPN to achieve
detail relation extract for image-level prediction. This study also
implements Grad-CAM on ResNet layers for main lesion region
visualization. Javaheri et al. (2021) have introduced a multi-step
pipeline of a deep learning algorithm, namely, CovidCTNet, to
detect COVID-19 from CT images. Using controlled CT slides as

a reference, the dual function of BCDU-Net (Azad et al., 2019) in
terms of anomaly detection and noise cancellation was exploited
to differentiate COVID-19 and community-acquired pneumonia
anomalies. An attention-based deep 3D multiple instance
learning (AD3D-MIL) was proposed for accurate and
interpretable screening of COVID-19 with weak labels (Han
et al., 2020). In the AD3D-MIL model, a bag of raw CT slides
is transformed to multiple deep 3D instances. Then, an attention-
based pool layer is utilized to generate a Bernoulli-distributed bag
label. COVID-19 and community-acquired pneumonia (CAP)
have very similar clinical manifestations and imaging features in
CT images. To differentiate the confusing cases in these two
groups, Di et al. (2021) have designed an uncertainty vertex-
weighted hypergraph learning (UVHL) method to identify
COVID-19 from CAP. In this method, a hypergraph structure
is constructed where each vertex corresponds to a sample and
hyperedges connect neighbor vertices that share common
features. Hypergraph learning is repeated till the hypergraph is
converged.

Alternatively, instead of directly detecting COVID-19 from
CT scans using one deep model, some researchers have proposed
AI-based diagnosis systems that consist of multiple deep models,
each completing one sub-task in sequential order. For example,
Jin et al. (2020) have introduced an AI system that consisted of
five key parts: 1) lung segmentation network, 2) slice diagnosis
network, 3) COVID-infectious slice locating network, 4)
visualization module for interpreting the attentional region of
deep networks, and 5) image phenotype analysis module for
explaining the features of the attentional region. By sequentially
completing the key tasks, the whole system achieves 97.17% AUC
on an internal large CT set. Zhang et al. (2020) have innovated a
two-stage model to distinguish novel coronavirus pneumonia
(NCP) from other types of pneumonia and normal controls in CT
scans. Particularly, a seven-category lung-lesion segmentation
model is deployed for ROI mask and the obtained lung-lesion
map is fed to a deep model for COVID-19 diagnosis. Similarly,
Wang B. et al. (2021) have introduced a diagnosis system
consisting of a segmentation model and a classification model.
The segmentation model detects ROI from lung scans and then
the classification model determines if it is associated with
COVID-19 for each lesion region.

4 COVID-19 SEVERITY ASSESSMENT AND
PROGNOSIS PREDICTION

Though most works on COVID-19 focus on ROI segmentation
and chest image diagnosis, severity assessment and prognosis
prediction are of significance. Severity assessment facilitates
monitoring the COVID-19 infection course. Furthermore, it is
closely related to prognosis outcomes (Fang et al., 2021), and
detection of high-risk patients with early intervention is highly
important to lower the fatality rate of COVID-19. Thus, we
reviewed AI algorithms and models proposed for COVID-19
severity assessment and prognosis prediction in one section. Note
that though it is closely related to severity assessment, prognosis
prediction is a very difficult and challenging task. It requires
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monitoring patients’ outcomes over time, spanning from several
days to several weeks. Given this challenge in data collection, the
research on prognosis prediction relatively lags behind compared
to COVID-19 detection and diagnosis.

4.1 COVID-19 Severity Assessment
4.1.1 Performance Metrics
To evaluate the quality of COVID-19 severity estimation, we used
Spearman’s rank correlation coefficient between the ground truth
and prediction as the evaluation metric. Spearman’s ρ is defined
as follows:

ρ(ytrue, ypred) � cov(rg(ytrue), rg(ypred))
σ(rg(ytrue)) · σ(rg(ypred)), (7)

where ytrue is the ground truth of infected fractions, ypred is the
predicted fractions, cov (·,·) is a sample covariance, σ(·) is a
sample standard deviation, and rg(·) is the rank vector of
the input.

4.1.2 Severity Assessment From Chest X-Ray
To assess the pneumonia severity in a CXR, Signoroni et al.
(2020) have proposed a novel end-to-end scheme deploying
U-Net++ as the backbone net. With the lung segmentation
network (i.e., U-Net++), feature maps that come from
different CNN layers of the encoder are masked with
segmentation results and fed to a global average pooling layer
with a SoftMax activation for final severity score. Cohen et al.
(2020) have proposed a transfer learning-based method for
assessing the severity of COVID-19 infection. With a pre-
trained DenseNet as the backbone architecture, the
convolutional layers transform an input image into a 1,024-
dimensional vector and the dense layers serve as task
prediction layers to detect 18 medical evidences for COVID-19
diagnosis. Finally, a linear regression model is deployed to fuse
the 1024D features and 18 evidences for COVID-19 infection
prediction.

4.1.3 Severity Assessment From Computed
Tomography Images
The severity of COVID-19 can be measured by different
quantities. Goncharov et al. (2020) have proposed using
infected lung percentage as an indicator of COVID-19
severity. In this regard, the study has deployed multi-task
learning to detect COVID-19 samples and estimate the
percentage of infected lung areas simultaneously. Since the
method requires lung segmentation, U-Net is used as the
backbone in the proposed multi-task learning. In the work
proposed by Chao et al. (2021), an integrative analysis pipeline
for accurate image-based outcome prediction was introduced. In
the pipeline, patient metadata, including both imaging and non-
imaging data, is passed to a random forest for outcome
prediction. Besides, to address the challenges of weak
annotation and insufficient data in COVID-19 severity
assessment with CT, Li et al. (2021) have proposed a novel
weak multi-instance learning framework for severity

assessment, where instance-level augmentation was adopted to
boost the performance.

4.2 COVID-19 Prognosis Prediction
Due to the complexity of prognosis estimation, previous studies
usually fused lung ROI segmentation, COVID-19 diagnosis
results, and patient’s metadata for a prognosis outcome. Note
that in contrast to other tasks that follow similar evaluation
protocols, AI-based prognosis prediction models are usually
evaluated by different metrics in the literature. Depending on
the specific setup and context, either classification accuracy or
regression error can be used as model evaluation quantities. Thus,
instead of summarizing the prognosis performancemetrics in one
sub-section independently, we will specify the evaluation
protocols for each reviewed study in the following section.

4.2.1 Prognosis Estimation From Chest X-Ray
To evaluate the COVID-19 course in patients for prognosis
analysis, a deep model that leverages RNN and CNN
architectures to assess the temporal evolution of images was
proposed by Fakhfakh et al. (2020). The multi-temporal
classification of X-ray images, together with clinical and
radiological features, is considered as the foundation of
prognosis and assesses COVID-19 infection evolution in terms
of positive/negative evolution. Since this study formulates the
prognosis prediction as a binary classification problem,
conventional classification metrics, including accuracy,
precision, recall, and F1 score, are reported.

4.2.2 Prognosis Prediction From Computed
Tomography Scans
Prior models of COVID-19 prognosis prediction from lung CT
volume can be roughly categorized into two different scenarios. In
the first scenario, prognosis prediction is formulated as a
classification problem and the output is a classification result
from a predefined outcome set (Meng et al., 2020; Chao et al.,
2021; Shiri et al., 2021). For instance, Meng et al. (2020) have
proposed a 3D DenseNet-similar prognosis model, namely, De-
COVID19-Net, to predict a patient’s death. In this study, CT
images are first segmented using a threshold-based method and
the detected lung regions are fed into De-COVID19-Net. Before
the final classification layer, clinic metadata and the obtained
numerical features in De-COVID-Net are fused for the final
prediction. Similarly, Shiri et al. (2021) have introduced an
XGBoost classifier to predict patient’s survival based on
radiomic features in lung CT scans and clinical data.
Moreover, Chao et al. (2021) have implemented a prognosis
model using a random forest to identify high-risk patients who
need ICU treatment. Following a similar data processing flow
from lung region segmentation, CT scan feature learning,
metadata fusion to classification, a binary classification
outcome in terms of ICU admission prediction is generated.
For prognosis prediction models belonging to the first scenario,
conventional classification evaluation metrics such as AUC and
sensitivity are used.

In the second scenario, prognosis estimation is formulated by
a regression problem (Wang S. et al., 2020; Zhang et al., 2020; Lee
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et al., 2021). Specifically, Zhang et al. (2020) have defined the
prognosis output by the time in days that critical care demands
are needed after hospital admission. In this regard, a light
gradient boosting machine (LightGBM) and Cox proportional-
hazards (CoxPH) regression model are built. The Kaplan–Meier
analysis in model evaluation suggests that incorporating lung
lesions and clinical metadata boosts prognosis prediction
performance. Alternatively, Wang S. et al. (2020) have defined
the prognostic event as the hospital stay time until discharge and
proposed using two deep nets, one for lung region segmentation
and the other for CT feature learning, for a multivariate Cox
proportional hazard regression. In this study, Kaplan–Meier
analysis and log-rank test are used to evaluate the
performance of the proposed prognostic analysis. Under the
same prognosis regression setting in (Wang S. et al., 2020),
Lee et al. (2021) have developed a deep learning convolutional
neural network, namely, Deep-COVID-DeteCT (DCD), for
prognosis estimation based on the entire chest CT volume and
experimentally demonstrates that multiple scans during
hospitalization provide a better prognosis.

5 PUBLIC COVID-19 CHEST SCAN IMAGE
SETS

Machine learning is one of the core techniques in AI-driven
computational solutions. Data are the stepstone to develop any
machine learning-based diagnostic system. This section
includes primary COVID-19 chest image sets that are
publicly accessible to researchers. We will start with CXR
datasets, followed by chest CT image sets. Note that when a
dataset contains both X-ray images and CT scans, it will be
summarized in the CXR section.

5.1 COVID-19 Chest X-Ray Datasets
COVID-19 CXR image data collection (Cohen et al., 2020) is an
open public dataset of chest X-ray images collected from patients
who are positive or suspected of COVID-19 or other types of viral
and bacterial pneumonia (including MERS and SARS). The
collection contains 589 chest X-ray images (542 frontal and 47
lateral views) from 282 people over 26 countries, among which
176 patients are male and 106 are female. Of the frontal views, 408
images are taken with standard frontal PA/AP (posteroanterior/
anteroposterior) position and the other 134 are AP Supine
(anteroposterior laying down). In addition to CXR, the
dataset also provides clinical attributes, including survival, ICU
stay, intubation events, blood tests, and location, and is free from
clinical notes for each image/case.

BIMCV COVID-19 + (Vayá et al., 2020) is a large dat set with
1,380 chest X-ray images and 163 full-resolution CT scans from
1,311 patients in the Valencian Region Medical Image Bank
(BIMCV). All samples are labeled as COVID-19 infection, no
infection, and other infection and stored as 16-bit PNG format
images. Along with chest images, metadata including
radiographic findings, pathologies, polymerase chain reaction,
IGG and IGM diagnostic antibody tests, and radiographic reports
are also provided. In addition, ten images in this dataset are

annotated by a team of eight radiologists from the Hospital
Universitario de San Juan de Alicante to include semantic
segmentation of radiographic findings.

COVID-19 Radiography Database (Chowhury et al., 2020)
consists of 219 COVID-19 positive CXR images, 1,341 normal
images, and 1,345 viral pneumonia images. All images are stored
in grayscale PNG format with a resolution of 1024 by 1024 pixels.

5.2 COVID-19 Computed Tomography Scan
Sets
COVID-CT-dataset (Yang et al., 2020) provides 349 CT scans
with clinical characteristics of COVID-19 from 216 patients and
463 non-COVID-19 CTs. Images in this set are collected from
COVID19-related papers from medRxiv, bioRxiv, NEJM, JAMA,
and Lancet and thus in different sizes. The number of CT scans
that a patient has ranges from 1 to 16, with an average of 1.6 per
patient. The utility of these samples is confirmed by a senior
radiologist who has been diagnosing and treating COVID-19
patients since the outbreak of the COVID-19 pandemic. Meta-
information, including patient ID, patient information, DOI, and
image caption, is available in this dataset.

COVID-CTset (Rahimzadeh et al., 2020) is a large CT images
dataset that collected 15,589 COVID-19 images from 95 patients
and 48,260 normal images from 282 persons from the Negin
Medical Center located at Sari in Iran. The patient’s private
information is removed and each image is stored in 16-bit
grayscale TIFF format with 512*512-pixel resolution.

MosMedData (Morozov et al., 2020) contains 1,100 lung CT
scans from municipal hospitals in Moscow, Russia, between
March 1, 2020, and April 25, 2020. Among the 1,100
images, 42% are of male and 56% of female, with the rest 2%
unknown. The dataset groups samples into five categories
(i.e., zero, mild, moderate, severe, and critical) based on the
severity of lung tissue abnormalities related to COVID-19,
where the sample ratios of the five categories are 22.8, 61.6,
11.3,4.1, and 0.2%, respectively. In addition to severity labels,
a small subset with 50 cases in MosMedData is annotated
with binary ROI masks in the pixel level, which localizes the
ground-class opacifications and regions of consolidations in CT
images.

CC-CCII CT image set (Zhang et al., 2020) consists of a total of
617,775 CT images from 4,154 patients in China to differentiate
between NCP due to SARS-CoV-2 virus infection, common
pneumonia incurred by viral, bacterial, or mycoplasma, and
normal controls. Each image is accompanied by corresponding
metadata (patient ID, scan ID, age, sex, critical illness, liver
function, lung function, and time of progression).
Furthermore, 750 CT slices from 150 COVID-19 patients are
manually annotated at the pixel level and classified into four
classes: background, lung field, ground-glass opacity, and
consolidation.

COVID-19 CT segmentation dataset (Jenssen, 2020) consists
of 100 axial CT images associated with confirmed COVID-19
cases from the Italian Society of Medical and Interventional
Radiology. Each image is segmented by a radiologist using
three labels: ground-glass (mask value �1), consolidation (�2),
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and pleural effusion (�3) and stored in a single NIFTI file with a
size of 512 × 512 × 110.

SARS-CoV-2 CT scan dataset (Soares et al., 2020) contains
1252 CT scans that are positive for SARS-CoV-2 infection and
1,230 images from non-COVID-19 patients from hospitals in Sao
Paulo, Brazil. This dataset is used to develop artificial intelligence
methods to identify if a person is infected by SARS-CoV-2
through the analysis of his/her CT scans.

6 SUMMARY AND DISCUSSIONS ON
FUTURE WORKS

AI and machine learning have been applied in the fight against
the COVID-19 pandemic. In this article, we reviewed the state-of-
the-art solutions to lung scan examination for COVID-19
treatment. Though promising results have been reported,
many challenges still exist that should be discussed and
investigated in the future.

First, when studying these publications, we find it very
challenging to compare their performance. Prior works have
usually evaluated model performance on either their private
dataset or a combination of several public image sets.
Furthermore, the use of different evaluation protocols (e.g.,
binary classification vs. multi-category classification) and various
performance metrics makes the comparison very difficult. We
argue that the lack of benchmark hinders the development of
AI solutions based on state of the art. With more chest images
being available, we expect a comprehensive benchmark for fair
comparison among different solutions in the near future.

Second, AI-based methods, especially deep learning, usually
require a huge amount of training data with quality annotations.
It is always more difficult and expensive to collect medical images
to collect natural image samples. Compared to the model sizes,
which are easily up to millions of training parameters, the sample
size in the current public lung scan image sets is relatively small.
This observation is more noticeable in the literature of prognosis
estimation. Consequently, the generalizability of the state-of-the-
art models on unseen data is in question. In addition, since
current lung scan image sets contain many images from heavily
or critically ill patients, there is a debate on if AI can differentiate
nuances between mild/moderate COVID-19 and other lower
respiratory illnesses in real clinical settings. The data bias in

training data would greatly harm model’s generalizability.
Without tackling these data bias issues, data-driven solutions
are hardly ready for deployment clinically. There are two possible
solutions to address this issue. On the one hand, collecting large
image sets that cover a variety of COVID-19 cases is demanding.
On the other hand, methods based on self-supervision anomaly
detection can help mitigate data bias in data-driven solutions.
Specifically, it is relatively easier to collect a large number of lung
scans from healthy subjects. By studying the normal patterns in
these negative cases, AI-based anomaly detection methods are
expected to detect positive chest images by identifying any
abnormal patterns that do not follow the normal patterns.

Third, in COVID-19 treatment, examination based on data
from one modality is usually not sufficient. For instance, some
COVID-19 patients do not experience fever and cough, while
others have no symptoms in their chest images. To tackle this
problem, omni-modality learning capable of holistically
analyzing patients’ clinical information, for example, blood test
results, age, chest images, and RT-PCR test, is highly desired for
COVID-19 treatment. We have witnessed the trend of including
multi-modality data in prognosis estimation. However, from the
technical aspect, current multi-modality data fusion methods are
too simple. How to effectively combine the lung scans with
patients’ clinical records is still an open question.

Last but not least, despite the promising results reported in
prior arts, the issue of explainability in these AI models is less
addressed. Decision-making in a medical setting can have serious
health consequences; it is often not enough to have a good
decision-making or risk-prediction system in the statistical
sense. Conventional medical diagnosis and prognosis usually
are concluded with evidence. However, such evidence is
usually missed in current AI-based methods. We argue that
this limitation of explainability is another hurdle in deploying
AI technology on lung scans for COVID-19 examination. A
desirable system should not only indicate the existence of
COVID-19 (with yes/no) but also be able to identify what
structures/regions in images are the basis for its decision.
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Applications of Haptic Technology,
Virtual Reality, and Artificial
Intelligence in Medical Training During
the COVID-19 Pandemic
Mohammad Motaharifar 1,2, Alireza Norouzzadeh1, Parisa Abdi3, Arash Iranfar4, Faraz Lotfi 1,
Behzad Moshiri 4,5, Alireza Lashay3, Seyed Farzad Mohammadi3* and Hamid D. Taghirad1*

1Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence, Faculty of Electrical Engineering, K.
N. Toosi University of Technology, Tehran, Iran, 2Department of Electrical Engineering, University of Isfahan, Isfahan, Iran,
3Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran, 4School
of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran, 5Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

This paper examines how haptic technology, virtual reality, and artificial intelligence help to
reduce the physical contact in medical training during the COVID-19 Pandemic. Notably,
any mistake made by the trainees during the education process might lead to undesired
complications for the patient. Therefore, training of the medical skills to the trainees have
always been a challenging issue for the expert surgeons, and this is even more challenging
in pandemics. The current method of surgery training needs the novice surgeons to attend
some courses, watch some procedure, and conduct their initial operations under the direct
supervision of an expert surgeon. Owing to the requirement of physical contact in this
method of medical training, the involved people including the novice and expert surgeons
confront a potential risk of infection to the virus. This survey paper reviews recent
technological breakthroughs along with new areas in which assistive technologies
might provide a viable solution to reduce the physical contact in the medical institutes
during the COVID-19 pandemic and similar crises.

Keywords: COVID-19 pandemic, medical training, haptic, virtual reality, artificial intelligence

1 INTRODUCTION

After the outbreak of COVID-19 virus in Wuhan, China at the end of 2019, this virus and its
mutations has rapidly spread out in the world. In view of the fact that no proven treatment has been
so far introduced for the COVID-19 patients, the prevention policies such as staying home, social
distancing, avoiding physical contact, remote working, and travel restrictions has strongly been
recommended by the governments. As a consequence of this global problem, universities have
initiated policies regarding how to keep up teaching and learning without threatening their faculty
members and students to the virus. Thus, the majority of traditional in-class courses have been
substituted to the online courses. Notwithstanding the fact that the emergency shift of the classes
have reduced the quality of education during the COVID-19 pandemics Hodges et al. (2020), some
investigators have proposed ways for rapid adaption of the university faculty and the students to the
situation and improve the quality of education Zhang et al. (2020).

Nevertheless, the case of remote learning is different in the medical universities as the learning
process in the medical universities is not just rely on the in-class courses. As an illustration, the
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medical training in the traditional way is accomplished by a
medical student through attending some training courses,
watching how the procedure is performed by a trainer,
performing the procedure under supervision of a trainer, and
at the final stage, independently performing the procedure. In
fact, the traditional method of surgery training relies on excessive
presence of students in the hospital environments and the skill
labs to practice the tasks on the real environments such as
physical phantoms, cadavers, and patients and that is why
medical students are called “residents”. Thus, the
aforementioned traditional surgery training methodology
requires a substantial extent of physical contact between
medical students, expert surgeons, nurses, and patients, and as
a result, the risk of infection is high among those people. On the
other hand, the assistive technologies based on virtual reality and
haptic feedback have introduced alternative surgical training
tools to increase the safety and efficiency of the surgical
training procedures. Nowadays, the necessity of reducing the
physical contact in the hospital environments seems to make
another motivation for those assistive technologies. Therefore, it
is beneficial to review those technologies from COVID-19
motivation aspect.

In this paper, the existing assistive technologies for medical
training are reviewed in a COVID-19 situation. While there are
several motivations for those technologies such as increasing the
safety, speed, and efficiency of training, the new motivations
created for those technologies during the COVID-19 pandemic
are the specific focus of this paper. In spite of the existing
literature on COVID-19, our main focus is surgery training
technologies that help to reduce physical contact during this
and other similar pandemics. Notably, a number of those studies
have analyzed systemic and structural challenges applicable to
medical training programs with little emphasis on technological
aspects of the subject Sharma and Bhaskar (2020), Khanna et al.
(2020). On the other hand, the methods of remote diagnostics
and remote treatment have received a great deal of attention after
COVID-19 pandemic and a massive body of literature have
covered those topics Tavakoli et al. (2020), Feizi et al. (2021),
Akbari et al. (2021). In contrast, less studies have given special
attention on remote training and remote skill assessment which is
the subject of this paper. For this reason, this paper addresses
scientific methods, technologies and solutions to reduce the
amount of physical contact in the medical environments that
is due to training reasons.

Relevant literature was chosen from articles published by IEEE,
Frontiers, Elsevier, SAGE, and Wiley with special attention to the
well-known interdisciplinary journals. The search was preformed
using the keywords “remote medical training,” “skill assessment in
surgery,” “virtual and augmented reality for medical training,”
“medical training haptic systems,” and “artificial intelligence and
machine learning for medical training” until June 30, 2021. The
literature was examined to systematically address key novel
concepts in remote training with sufficient attention to the
future direction of the subject. Finally, it is tried to review the
problem in the COVID-19 context in a way that the discussed
materials are distinct from similar literature in a conventional non-
COVID context.

The rest of this paper is organized as follows: The clinical
motivations of the training tools are discussed in Section 2. The
virtual and augmented reality and the related areas of utilization
for medical training are described in Section 3. Section 4 explains
how haptic technology may be used for medical training, while
Section 5 describes some data-based approaches that may be used
for skill assessment. Then, the machine vision and its relevant
methods used for medical training are presented in Section 6.
Finally, concluding remarks are stated in Section 7.

2 THE CLINICAL MOTIVATION

The process of skill development among medical students have
always been a challenging issue for the medical universities, as the
lack of expertise may lead to undesired complications for the
patients Kotsis and Chung (2013). Moreover, owing to the rapid
progress of minimal invasive surgeries during the past decades,
the closed procedures have been becoming a method of choice
over traditional open surgeries. In the minimal invasive surgery,
the instruments enter the body through one or more small
incisions, while this type of surgery is applicable to a variety
of procedures. The foremost advantage of this technique is the
minimal affection to healthy organs, which leads to less pain,
fewer post-operative complications, faster recovery time, and
better long-term results.

However, the closed surgery technique is more challenging
from the surgeon’s point of view since the surgeon does not have a
complete and direct access on the surgical site and the tiny
incisions limit the surgeon’s accessibility. Owing to the limited
access, some degrees of freedom are missing and surgeon’s
manipulation capability is considerably reduced. Furthermore,
there is fulcrum effect at the entry point of the instrument, i.e., the
motion of the tip of the instrument, which is placed inside the
organ, and the external part of the instrument, which is handled
by the surgeon, are reversed. This results in more difficult and
even awkward instrument handling and requires specific and
extensive surgical training of the surgeon. As a result, the minimal
invasive surgeries demands advanced expertise level, the lack of
whichmight cause disastrous complications for the patient. These
conditions are equally important in many medical interventions,
especially in minimally invasive surgeries. Here a number of
specific areas of surgical operation are expressed in order to
address complications that might occur during the training
procedures.

• Eye surgery:

An important category of medical interventions which need a
very high skill level is intraocular eye surgical procedures.
Notably, the human eye is a delicate and highly complex
organ and the required accuracy for the majority of
intraocular surgeries is in the scale of 50–100 microns. The
closed type of surgery is applicable to a number of eye
surgeries such as the Cataract surgery in the anterior segment
as well as the vitro-retinal surgical procedures in the posterior
segment. Notably, some complications such as Posterior Capsule
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Rupture (PCR) for cataract surgery and retina puncture for the
vitro-retinal surgical procedures are among the relatively
frequent complications that might happen, due to the
surgeon’s lack of surgical skills and dexterity. It is shown in a
study on ophthalmic residents that the rate of complications such
as retinal injuries is higher for the residents with less skills Jonas
et al. (2003).

• Laparoscopic Cholecystectomy

Another example is Laparoscopic Cholecystectomy (LC)
which is now the accepted standard procedure across the
world and is one of the most common general and specialist
surgical procedures. However, it can be prone to an important
complication that is bile duct injury (BDI). Although BDI is
uncommon but it is one of the most serious iatrogenic surgical
complications. In extreme BDI cases, a liver resection or even
liver transplantation becomes necessary. BDI is considered as an
expensive medical treatment and its mortality rate is as high as
21% Iwashita et al. (2017).

• Neurosurgery

Neurosurgery is another field that deals with complex cases
and requires high accuracy and ability in the surgeon’s
performance. In a prospective study of 1,108 neurosurgical
cases, 78.5% of errors during neurosurgery were considered
preventable Stone and Bernstein (2007). The most frequent
errors reported were technical in nature. The increased use of
endoscopy in neurosurgery introduces challenges and increases
the potential for errors because of issues such as indirect view,
elaborate surgical tools, and a confined workspace.

• Orthopedic surgery

In the field of orthopedics, knee and shoulder arthroscopic
surgeries are among the most commonly performed procedures
worldwide. There is a steep learning curve associated with
arthroscopic surgery for orthopaedic surgery trainees.
Extensive hands-on training is typically required to develop
surgical competency. The current minimum number of cases
may not be sufficient to develop competency in arthroscopic
surgery. It is estimated that it takes about 170 procedures before a
surgeon develops consultant-level motor skills in knee
arthroscopic surgery Yari et al. (2018). With work-hour
restrictions, patient safety concerns, and fellows often taking
priority over residents in performing cases, it is challenging

for residents to obtain high-level arthroscopic skills by the end
of their residency training.

The above motivation shows the importance of skill
development among the medical students. The standard
process of procedural skill development in medicine and
surgery is shown as a diagram in Figure 1. In the observation
stage, the medical students need to attend a clinical environment
and watch how the procedure is performed by a trainee. Then, the
medical students get involved in the operation as an apprentice,
while the actual procedure is performed by the trainer. Later, the
medical students practice the operation under direct supervision
of the trainer, while the trainer assesses the skill level of the
medical students. The supervised practice and skill assessment
steps are repeated as long as the trainee does not have enough
experience and skill to conduct the procedures without
supervision of the trainer. Finally, after obtaining sufficient
skill level, the trainee is able to independently perform the
operation.

Remarkably, a learning curve is considered for each procedure,
which means that performance tends to improve with experience.
This concept applies for all of the medical procedures and
specialties, but complex procedures, surgery in particular, are
more likely to gradual learning curves, which means that
improvement and expertise is achieved after longer training
time. Some of the important factors in the learning curve are
manual dexterity of the surgeon, the knowledge of surgical
anatomy, structured training and mentoring and the nature of
the procedure. The learning curve is longer for minimally invasive
procedures than that for open surgical procedures. The learning
curve is also influenced by the experience of the supporting
surgical team. Besides, learning curves depend on the
frequency of procedures performed in a specified period.
Many studies suggest that complication rates are inversely
proportional to the volume of surgical workload.

Notably, the above mentioned process of skill development
require a considerable extent of physical contact between the
trainees, the expert surgeons, the nurses, and the patients, while
this shall be reduced in the COVID-19 pandemic. In addition to
the high risk of infection in the medical universities with the
conventional medical training approaches, the majority of the
health-care capacity is focused on fighting the COVID-19 virus
and consequently, the education requirements of medical
universities are failed to be entirely fulfilled. As a result, the
training efficiency of medical universities will be reduced,
provided that they just rely on the conventional training
approaches. This will have possible side-effects on the future
performance of the health-care system mainly due to the

FIGURE 1 | Process of procedural skill development in medical training and surgery.
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insufficient number of recently graduated students with adequate
expertise level.

On the other hand, traditional education takes place in
hospitals and on real patients, which face several problems
during the COVID-19 pandemic: the hospital environment is
contaminated with the virus, hospital staff and physicians are
very busy and tired and have less training capacity, prolonged
hospital stays of patients to train students put them at greater risk
for exposure to the virus, especially if complication occurs by a
resident who does not have gained sufficient skills during the
training procedure. Therefore, training with assistive devices
outside the hospital may play an effective role in this
situations. The highlighted factors can significantly be
improved by assisted learning, especially in minimally invasive
procedures. In more complex surgeries, the complications
becomes more serious, the learning curve will be longer, and
the role of assisted learning becomes more prominent.

To solve the above mentioned problems, assistive training
tools provide a variety of solutions through which the medical
universities are able to continue their education procedures, while
the risks enforced by the COVID-19 outbreak are reduced. In the
following sections, the main assistive training tools including the
haptic systems, virtual reality, machine vision, and data mining
are reviewed and the areas in which those technologies facilitate
the training process during the COVID-19 pandemic are detailed.
The aim of these technologies is to have the training efficiency
higher or at least equal to that of the conventional training
methods without risk of infection of the involved parties to
the virus.

3 VIRTUAL AND AUGMENTED REALITY

Virtual Reality is employed to create an immersive experience for
various applications such as visualization, learning and

education. In virtual reality, a computer generated graphical
presence is visualized using a head mounted display and the
user can interact with 3D objects located in the virtual world. In
addition to VR, the Augmented Reality (AR) is developed to add
3D objects to the real world creating a different experience by
adding digital information to the real objects in the surrounding
environment. Although experiencing the 3D objects in VR scenes
is far from the interaction with real objects, the VR experience is
getting closer to the real world environments by the help of more
realistic computer graphics and full-body haptics suits.

The virtual reality (VR) and augmented reality (AR) are
getting more interest as a training technique in the medical
fields, unlocking significant benefits such as safety,
repeatability and efficiency Desselle et al. (2020). Furthermore,
during the COVID-19 pandemic, remote training and consulting
are considered as vital advantages of VR/AR based training
methods (Singh et al., 2020).

Some advantages of using VR/AR in medical training are
depicted in Figure 2. Safety is the first and the most important
benefit of VR/AR employment in medical education. Complex
medical operations may be performed in a simulated
environment based on VR with complete safety and without
putting the patient’s life into danger. Repeatability is the second
advantage of using VR as any simulation scenario in the field of
medical training can be repeated over and over until the trainee is
completely satisfied. During the COVID-19 pandemic it is vital to
practice social distancing which is delivered by VR/AR
employment in medical education. Medical training and
surgery simulation by computer graphics in VR/AR virtual
environments results in reduced training costs as no material
except than a computer, a VR headset and a haptic device is
required. Since medical training by VR/AR is performed using a
computer, the surgery simulation is always in hand as soon the
computer and VR headset are ready to be used. Therefore, the
efficiency of medical training is increased as no time is required
for either preparation of an operation room or getting a
patient ready.

VR/AR techniques are employed in various applications in
surgical training as it can be seen in Figure 3. The first application
of AR/VR in surgical training is surgical procedure diagnosis and
planning. Using AR/VR, the real surgical operation is simulated
ahead without putting the patient’s life into danger. The AR/VR is
used in surgical education and training which is mentioned as the
second application. Simulation based environments are
developed for training of medical students by virtual human
anatomy 3D models. Another application of AR/VR is robotic
and tele-surgery, by which surgical consulting becomes possible
even from a far distance. The last application of AR/VR in
surgical training is sensor data and image visualization during
the surgical operation which makes the effective usage of patient’s
medical data possible.

It is shown that the learning curve of hip arthroscopy trainees
is significantly improved using a virtual reality simulator (Bartlett
et al., 2020). In this study, a group of twenty five inexperienced
students were chosen to perform seven arthroscopies of a healthy
virtual hip joint weekly. The experimental results indicated that
average total time decreased by nearly 75% while the number of

FIGURE 2 | VR/AR advantages in medical training.
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collisions between arthroscope and soft-tissues decreased almost
by 90%.

VR is also employed in orthopedic surgical training, where 37
residents participated in a study to obtain an understanding of the
LISS1 plating surgical process (Cecil et al., 2018). The developed
virtual surgical environment is equipped with a haptic device to
perform various activities such as assembling LISS plate, placing
the assembled LISS plate correctly inside the patient’s leg, and
attaching the LISS plate to the fractured bone. The test was
divided into pre–test where the students get familiar with the
surgery process and the post–test which is devoted to the actual
evaluation phase. The participants had 1 h to finish both the
pre–and post–tests which resulted in improvement of learning
the LISS plating surgical process.

The applicability and effectiveness of VR based training in
orthopedic education is evaluated in (Lohre et al., 2020), where
nineteen orthopedic surgical residents cooperated in this study. The
surgical residents performed a glenoid exposure module on a VR
based simulator using a haptic device as the input controller. The
result of training of residents using VR simulator has been compared
to the conventional surgery training methods. Considering the
learning time, repeating 3 to 5 VR based surgery experiments by
the residents, resulted in 570% training time reduction. Additionally,
VR based surgical training helped the residents to finish glenoid
exposure significantly faster than the residents trained by
conventional education methods.

Orthognathic surgery is another surgery field considered for
VR based training as it is one of the complex surgical procedures
(Medellin-Castillo et al., 2020). While conventional OSG2

learning techniques are dependent to cadavers or models and
experienced surgeons are trained after several years of
experiments in operating rooms, employment of VR in
surgical training can reduce the learning time and the
education cost at the same time. In this study, three cases are
considered for evaluation of VR in OSG, cephalometry training,

osteotomy training and surgery planning to be precise. The
experimental results indicated that the combination of haptics
and VR is effective in skill improvement of trainees and surgery
time reduction. Furthermore, the surgery errors and mistakes are
reduced by using haptic feedback to recreate the sense of touch as
trainees can detect landmarks more precisely in comparison to
conventional techniques.

In conjunction with VR, the AR technology has also been used in
various medical fields for training such as neurosurgical training (Si
et al., 2019). Anatomical information and other sensory information
can be visualized to the surgeons more properly, and therefore, more
accurate decision can be made during a surgery. Although this study
is only applicable to the simulated environments because of
registration problem, the experiment indicated the effectiveness of
the simulator in skill improvement of surgeons.

While key features of VR/AR have led to improved training
specially in surgical training, there are some limitations that
should be considered (kumar Renganayagalu et al., 2021). The
first limitation of VR simulators is the cost of VR content
production, and therefore, most of simulators are made for
very specific type of simulation in a limited context. The
second limitation is the immaturity of interaction devices for
VR simulations, which has a great affect on the user experience.
Another limitation of VR usage in medical training is the inability
of using VR devices for long period of time as the VR devices are
made for entertainment and not for a long training session.

It can be concluded that in spite of some limitations, VR/AR
based simulators equipped with a haptic device can be used in
medical surgery training in order to achieve skill improvement
and training time reduction. Furthermore, during the isolation
requirements due to COVID-19 pandemic, VR/AR based
techniques can be well employed for medical training.

4 TELEOPERATED HAPTIC SYSTEMS

Haptic systems provide the sense of touch with remote objects
without the need of actual contact. It also provides collaboration
between several operators without the need of any physical

FIGURE 3 | VR/AR applications in surgical training.

1Less invasive stabilization system
2Orthoganthic surgery
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contact. As depicted in Figure 4, based on the number of the
operators, the haptic systems may be classified into single user,
dual-user or multi-user haptic systems. Single user haptic systems
enable a single human operator to interact with a remote or
virtual environment, whereas dual-user or multi-user haptic
systems provide a mechanism for collaboration of two or
multiple human operators. The medical training applications
of those systems is presented here.

4.1 Single User Haptic Systems
Single user haptic systems extend the abilities of human operators
to interact with remote, virtual, and out-of-reach environment. In
the field of surgery training, a number of investigations have
proposed haptic training simulators for training of minimally
invasive surgery (MIS) Basdogan et al. (2004), dental procedures
Wang et al. (2014), sonography Tahmasebi et al. (2008), and
ocular therapies Spera et al. (2020). As shown in Figure 4A, a
typical single-user haptic simulator system consists of a human
operator, a haptic interface, a graphical interface, and a reference
model for the virtual object. Notably both the graphical interface
and the haptic interface utilize the reference model to provide
necessary feedback for the operator. While the graphical interface
provides a visual feedback of the environment, the haptic
interface provides the kinesthetic feedback of the interaction
between the tool and the surgical field. Indeed, the role of
haptic feedback is to recreate the sense of contact with the
virtual environment for the operator. As a result, the
circumstances of actual operation is provided for the medical
students, while the need of physical presence in the clinical
environments is eliminated. Indeed, through haptic
technology, the medical students are able to practice on a
virtual environment without the need of presence at the
clinical environment. Thus, the risk of infection during the
COVID-19 pandemic is effectively reduced.

4.2 Dual User Haptic Systems
The cooperative and joint conduction of an operation either for
the purpose of collaboration or training, as a fundamental clinical

task, cannot be provided by single user haptic systems. In order to
make the cooperation of two surgeons possible, the system should
be upgraded to a dual user haptic system by adding another
haptic console. A dual user haptic system is a more recent
advancement in haptic technology, and it consists of two
haptic consoles, one for the trainer and one for the trainee
Shahbazi et al. (2018a). Remarkably, the traditional
collaboration methods require direct physical contact of the
persons conducting the operation, whereas the haptic-based
collaboration approach eliminates the physical contact of the
collaborators. As a result of removing the need of physical
contact, the involved people are no longer in the risk of the
Corona virus. A commercial dual user haptic system developed
by intuitive Surgical Inc. ® is the da Vinci Si Surgical Systemwhich
supports training and collaboration during minimally invasive
surgery. The da Vinci Si System builds on the existing da Vinci
technology, where it has a number of enabling features such as
leading-edge 3D visualization, advanced motion technology, and
sufficient dexterity and workspace. However, the da Vinci Si does
not provide active supervision and intervention of the trainer on
the trainee’s actions. As an illustration, in the case that the trainee
controls the procedure, the trainer does not have the possibility to
guide the trainee during the procedure.

The issue of supervision and intervention of the trainer during
the operation in dual user haptic systems have been a topic of
active investigation during the past years. A number of studies
have utilized the concept of dominance factor to determine the
task dominance of each operator Nudehi et al. (2005), Khademian
and Hashtrudi-Zaad (2012), Shahbazi et al. (2014b), Motaharifar
et al. (2016). In those approaches, the trainee is given a partial or
full task authority by the trainer based on his/her level of
expertise. Notably, the task authority provided by these
control architectures is supposed to be fixed during the
operation. Thus, changing the authority of the surgeons and
specially blocking the trainee’s commands is not possible in the
middle of the operation. This might lead to undesired operative
complications specially in the case that the trainee makes a
sudden unpredictable mistake.

FIGURE 4 | Single user vs. dual user haptic systems. (A) Single user haptic system. (B) Dual user haptic system.
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Fortunately, a number of investigations have developed
control architectures to address the above shortcoming of the
previously proposed haptic architectures Motaharifar et al.
(2019b), Shahbazi et al. (2014a), Motaharifar and Taghirad
(2020). As a case in point, an S-shaped function is proposed
in Motaharifar et al. (2019b) for the adjustment of the corrective
feedback in order to shape the trainee’s muscle memory. In fact,
the training approach behind the presented architecture is based
on allowing the trainee to freely experience the task and be
corrected as needed. Nevertheless, through the above scheme,
the trainee is just granted the permission to receive the trainer’s
motion profile; that is, the trainee is deprived of any realistic
contribution to the surgical procedure. In contrast, several
investigations have proposed mechanisms for adjusting the
task dominance, through which the trainee is granted partial
or full contribution to the task Shahbazi et al. (2014a),
Motaharifar and Taghirad (2020), Liu et al. (2015), Lu et al.
(2017), Liu et al. (2020). Remarkably, the above approaches
require both the trainer and the trainee to completely perform
the operation on their haptic devices, and the actual task
authority is determined based on the position error between
the trainer and the trainee Shahbazi et al. (2014a), Motaharifar
and Taghirad (2020), Liu et al. (2015), Lu et al. (2017), Liu et al.
(2020). This constitutes an important limitation of the above
architectures, since the trainer is enforced to be involved in every
detail of each operation and even the trivial ones. Notably, the
trainer’s obligation to precisely perform every part of the surgical
procedure has little compatibility with the trainer’s
responsibilities in terms of supervisory assistance and
interference. In fact, by grabbing the idea from the
conventional training programs of the medical universities, the
haptic architecture should be developed in such a manner that the
trainer is able to intervene only in order to prevent a complication
to the patient due to the trainee’s mistake. The issue of trainer’s
supervisory assistance and interference is addressed in
Motaharifar et al. (2019a) by adjusting the task authority
based on the trainer’s hand force Motaharifar et al. (2019a).
That is, the trainer is able to grant the task authority to the trainer
by holding the haptic device loosely or overrule the trainee’s
action by grasping the haptic device tightly. Therefore, the active
supervision and interference of the trainer is possible without the
need of any physical contact between the trainer and the trainee.

Although the above investigations address the essential
theoretical aspects regarding dual user haptic systems, the
commercialization of collaborative haptic system needs more
attention. In the past years, some research groups have
developed pilot setups of dual user haptic system with the
primal clinical evaluation that have the potential of
commercialization. For instance, the ARASH-ASiST system
provides training and collaboration of two surgeons and it is
preliminary designed for Vitreoretinal eye surgical procedures
ARASH-ASiST (2019). It is expected that the commercialization
and widespread utilization of those assistive surgery training tools
is considerably beneficial to the health-care systems in order to
decrease the physical contact during the COVID-19 pandemic,
and to increase the safety and efficiency of training programs
during and after this crisis.

Notwithstanding the fact that teleoperated haptic systems
provide key benefits for remote training during COVID-19
pandemic, they face a number of challenges that inspire
perspectives of future investigations. First, the haptic modality
is not sufficient to recreate the full sense of actual presence at the
surgical room near an expert surgeon. To overcome this challenge
and increase the operators telepresence, the haptic, visual, and
auditory components are augmented to achieve a multi–modal
telepresence and teleaction architecture in Buss et al. (2010). The
choice of control structure and clinical investigation of the above
multi–modal architecture is still an area of active research
Shahbazi et al. (2018b), Caccianiga et al. (2021). On the other
hand, the on-line communication system creates another
challenge for the haptic training systems. Notably, owing to
the high-bandwith requirement for an appropriate on-line
haptic system, the majority of existing haptic architectures in
applications such as collaborative teleopertion, handwriting and
rehabilitation cover off-line communication Babushkin et al.
(2021). However, due to the complexity, uncertainty, and
diversity of the surgical procedures, the online feedback from
the expert surgeon is necessary for a safe and efficient training.
The advent of 5G technology with faster and more robust
communication network may provide enough bandwidth for
an effective real-time remote surgery training.

5 DATA DRIVEN SCORING

A vital element of a training program is how to evaluate the
effectiveness of exercises by introducing a grading system based
on participants’ performance. The conventional qualitative skill
assessment methods require physical contact between the trainer
and the trainee since they are based on direct supervision of the
trainer. On the other hand, the systematic approaches for skill
assessment are based on collecting the required data using
appropriate instruments and analyzing the obtained data,
while they eliminate the requirement of physical contact
between the trainer and the trainee. Thus, reviewing the
systematic data-based methods is of utmost importance, as
they can be utilized to reduce the physical contact during the
COVID-19 Pandemic. In this section, some of the state of the art
methods in surgical skill evaluation are reviewed. Following the
trend of similar research in the context of surgical skill evaluation,
we categorize the reviewed methods by two criteria. The first is
the type of data, and the method uses for grading the participant.
The second criterion is the features extraction techniques that are
used during the evaluation stage.

Generally speaking, two types of data may be available in
Robotic-Assisted surgery; kinematic and video data. Kinematic
data is available when a robot or haptic device is involved. The
most common form of capturing kinematic information is using
IMUs, encoders, force sensors, magnetic field positioning sensors,
etc. The video is generally recorded in all minimally invasive
surgeries using endoscopy procedures.

Kinematic data are more comfortable to analyze because the
dimensionality of kinematic data is lower than video data.
Moreover, Kinematic information is superior to video in
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measuring the actual 3D trajectories, and 3D velocities Zappella
et al. (2013). On the other hand, video data is more convenient to
capture since no additional equipment and sophisticated
sensors are needed to be attached to the surgical tool.
Additionally, video data reflects the contextual semantic
information such as the presence or absence of another
surgical instrument, which can not be derived from the
kinematic data Zappella et al. (2013). To use the video data
effectively, one should overcome some common obstacles like
occlusion and clutter. Using multiple cameras, if possible, can
greatly assist in this procedure Abdelaal et al. (2020). In
conclusion, it can be said that each type of data has its own
merits and limitations, and using kinematic data as well as the
video may result in a richer dataset.

Other than the kinematic and video data, another source of
information is often disregarded in the literature. The expert
surgeon who conducts the training program can evaluate the
trainee’s performance and provide useful feedback regarding his/
her performance. This type of information, which is at another
semantic level compared to the sensory data, is called soft data.
The hard and soft information fusion methods can merge the
expert’s opinion with the kinematic and video data (hard data) to
accomplish a better grading system.

Most surgical skill evaluation methods utilize a feature
extraction technique to classify the participant’s skill level after
acquiring the data, like expert, intermediate, and novice. The
classification problem can be solved by employing some hand-
engineered features or features that are automatically extracted
from the data. Hand-engineered features are interpretable and
easy to obtain. However, hand-engineered features are hard to
define. Specifically, defining a feature that represents the skill level
regardless of the task is not trivial. Therefore, the states of the art
methods are commonly based on automatic feature extraction
techniques. An end-to-end deep neural network is used to unfold
the input data’s spatial and temporal features and classify the
participant in one of the mentioned skill levels in an automated
feature extraction procedure. While, Table 1 summarizes the
topic of different data types and feature extraction techniques, we
are going to cover some of the reviewed methods in the next
sections.

The most convenient hand-engineered features are those
introduced by descriptive statistics Anh et al. (2020). In a skill
rating system proposed by Brown et al. (2016), eight values of
mean, standard deviation, minimum, maximum, range, root-
mean-square (RMS), total sum-of-squares (TSS), and time
integral of force and acceleration signals are calculated.
Together with time features like task completion time, these
values are used as inputs for a random forest classifier to rate
the peg transfer score of 38 different participants. In Javaux et al.
(2018), metrics like mean/maximum velocity and acceleration,
tool path length, depth perception, maximum and integral of
planar/vertical force, and task completion time are considered as
a baseline for skill assessment Lefor et al. (2020). Another
commonly used method in the literature is to use statistical
tests such as Mann-Whitney test Moody et al. (2008),
Kruskal–Wallis test Javaux et al. (2018), Pearson or Spearman
correlation Zendejas et al. (2017), etc. These tests are utilized to
classify the participants directly Moody et al. (2008) or
automatically calculate some of the well-known skill
assessment scores like GOALS and FLS Zendejas et al. (2017).

Since many surgical tasks are periodic by nature, the data
frequency domain analysis proves to be effective Zia et al. (2015).
For periodic functions like knot tying and suturing Zia et al.
(2015) suggests that transforming the data into time series and
performing a Discrete Fourier Transform (DFT) and Discrete
Cosine Transform (DCT) on the data extracts features, will assist
the skill level classification task. The results show that such an
approach outperforms many machine-learning-based methods
like Bag of Words (BoW) and Sequential Motion Texture (SMT).
In another work by the same author, symbolic features, texture
features, and frequency features are employed for the
classification. A Sequential Forward Selection (SFS) algorithm
is then utilized to reduce the number of elements in the feature
vector and remove the irrelevant data Zia et al. (2016). Hojati et al.
(2019) suggests that since Discrete Wavelet Transform (DWT) is
superior to DFT and DCT in a sense that it offers simultaneous
localization in time and frequency domain, DWT is a better
choice for feature extraction in surgical skill assessment tasks.

As it is mentioned before, hand-engineered features are task-
specific. For example, the frequency domain analysis discussed in

TABLE 1 | Summery of different sources of data and different feature extraction techniques.

Data type

Kinematic Video Experts’ opinion

Pros Lower dimensionality Convenient to capture Higher semantic level
Actual 3D trajectories Info. of the surroundings

Cons Needs tools Higher dimensionality Quantitative
No info. of the surrounding Estimated 3D trajectories

Occlusion, Clutter, etc.
Feature extraction technique
Hand-engineered Automatic

Pros Interpretable End to end solution
Easy to calculate Case independent

Cons Hard to define Requires a big dataset
Case dependent Computational cost
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the previous section is only viable when the task is periodic.
Otherwise, the frequency domain features should be
concatenated with other features. Moreover, perceiving the
correct features that reflect participants’ skill levels in different
surgical tasks requires an intensive knowledge of the field. As a
result, developing a method in which the essential features are
identified automatically is advantageous.

With the recent success of Convolutional Neural Networks
(CNN) in classification problems like image classification, action
recognition, and segmentation, it is safe to assume that CNN can
be used in skill assessment problems. However, unlike image
classification, improvement brought by end-to-end deep CNN
remains limited compared to hand-engineered features for action
recognition Wang et al. (2018). Similarly, using conventional
CNN does not contribute too much to the result in surgical skill
evaluation problems. For example, Fawaz et al. (2018) proposed a
CNN-based approach for dry-lab skill evaluation tasks such as
needle passing, suturing, and knot-tying. However, a hand-
engineered-based method with a set of features introduced as
holistic features (SMT, DFT, DCT, and Approximate Entropy
(ApEn)) suggested by Zia and Essa (2018) reaches the same
accuracy as the CNN-based method in the needle passing and
suturing tasks and outperforms the CNN-based method in the
knot-tying task.

Wang et al. (2018) suggests that conventional CNN falls short
compared to traditional hand-crafted feature extraction
techniques because it only considers the appearances (spatial
features) and ignores the data’s temporal dynamics. In Wang and
Fey (2018), a parallel deep learning architecture is proposed to
recognize the surgical training activity and assess trainee
expertise. A Gated recurrent unit (GRU) is used for temporal
feature extraction, and a CNN network is used to extract the
spatial features. The overall accuracy calculated for the needle
passing, suturing, and knot tying tasks is 96% using video data.
The problem of extracting spatiotemporal features is addressed
with 3D ConvNets in Funke et al. (2019). In this method, inflated
convolutional layers are responsible for processing the video
snippets and unfolding the classifier’s input data.

To the best of our knowledge, all of the proposed methods in
the literature have used single classifier techniques in their work.
However, methods like classifier fusion have proved to be useful
in the case of medical-related data. In Kazemian et al. (2005) an
OWA-based fusion technique is used to combine multiple
classifiers and improve the accuracy. For a more advanced
classifier fusion technique, one can refer to the proposed
method in Kazemian et al. (2010) where more advanced
methods such as Dempster’s Rule of Combination (DCR) and
Choquet integral are compared with more basic techniques.
Activity recognition and movement classification is another
efficient way to calculate metrics representing the surgical skill
automatically Khan et al. (2020). Moreover, instrument detection
in a video and drawing centroid based on the orientation and
movement of the instruments can reflect the focus and ability to
plan moves in a surgeon. Utilizing these centroids and calculating
the radius, distance, and relative orientation can aid with the
classification based on skill level Lavanchy et al. (2021).

In conclusion, the general framework illustrated in Figure 5
can summarize the reviewed techniques. The input data, either
kinematic and video, is fed to a feature extraction block. A fusion
block Naeini et al. (2014) can enrich the semantic of the data
using expert surgeon feedback. Finally, a regression technique or
a classifier can be employed to calculate a participant’s score
based on his/her skill level or represent a label following his/her
performance.

6 MACHINE VISION

The introduction of new hardware capable of running deep
learning methods with acceptable performance led artificial
intelligence to play a more significant role in any intelligent
system Han (2017). It is undeniable that there is a huge
potential in employing deep learning methods in a wide range
of various applications Weng et al. (2019), Antoniades et al.
(2016), Lotfi et al. (2018), Lotfi et al. (2020). In particular, utilizing
a camera along with a deep learning algorithm, machines may
precisely identify and classify objects by which either performing
a proper reaction or monitoring a process may be realized
automatically. For instance, considering a person in a coma,
any tiny reaction is crucial to be detected, and since it is not
possible to assign a person for each patient, a camera can solve the
problem satisfactorily. Regarding the COVID-19 pandemic
situation, artificial intelligence may be used to reduce both
physical interactions and the risk of a probable infection
especially when it comes to a medical training process.
Considering eye surgery as an instance, not only should the
novice surgeon closely track how the expert performs but also the
expert should be notified of a probable mistake made by the
novice surgeon during surgery. In this regard, utilizing computer
vision approaches as an interface, the level of close interactions
may be minimized effectively. To clarify, during the training
process, the computer vision algorithmmay act as both the novice
surgeon looking over the expert’s hand and the expert monitoring
and evaluating how the novice performs. This kind of application
in a medical training process may easily extend to other cases. By
this means, the demand for keeping in close contact is met
properly.

Not needing a special preprocessing, deep convolutional
neural networks (CNNs) are commonly used for classifying
images into various distinct categories. For instance, in
medical images, this may include probable lesions Farooq
et al. (2017), Chitra and Seenivasagam (2013). Moreover, they
can detect intended objects in the images which can be adopted
not only to find and localize specific features but also to recognize
them if needed. Since most of the medical training tasks require
on-line and long-term monitoring, by utilizing a camera along
with these powerful approaches, an expert may always keep an
eye on the task assigned to a trainee. Besides, methods based on
CNNs are capable of being implemented on graphics processor
units (GPUs) to process the images with an applicable
performance in terms of both speed and accuracy Chetlur
et al. (2014), Bahrampour et al. (2015). This will reduce the
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probable latency and makes it possible for the trainer to be
notified on time and correct the trainee remotely.

There are numerous researches carried out in the field of
image processing based on CNNs. These methods are mainly
divided into two single-stage and two-stage detectors. The former
is known to be fast while the latter results in higher accuracy. In
Figure 6 the difference between a two-stage and a single-stage
detector is illustrated. Considering single-stage detectors and
starting with the LeCun et al. (1998) as one of the earliest
networks, plenty of different approaches have been presented
in the literature among which single-shot multi-box detector
(SSD) Liu et al. (2016), RetinaNet Lin et al. (2017), and you only
look once (YOLO) Redmon and Farhadi (2018) may be counted
as nominated ones. Some of these approaches have been
proposed with several structures including simpler and more
complex structures to be employed depending on whether the
speed is of high importance or accuracy. Mainly, training and the
test are two phases when utilizing these methods. While it is
crucial to define a proper optimization problem in the first phase,

it is indispensable to implement the trained CNN optimally.
Coming up with various solutions, methods like Krizhevsky et al.
(2012), Simonyan and Zisserman (2015), Szegedy et al. (2015),
and Szegedy et al. (2016) suggest utilizing specific CNNmodels to
obtain better outcomes. On the other hand, to further improve
the accuracy, in two-stage detectors like Girshick et al. (2014), it is
suggested to first determine a region of interest (ROI) then
identify probable objects in the related area. As a
representative, Uijlings et al. (2013), which is known as
selective search, is designed to propose 2k proposal regions,
while a classifier may be employed for the later stage. Dealing
with some challenging problems in these detectors, He et al.
(2015), Girshick (2015), and Ren et al. (2015) are proposed to
enhance the results in terms of both accuracy and speed.

To put all in a nutshell, when dealing with critical situations
such as the current COVID-19 epidemic, it is highly
recommended to employ artificial intelligence techniques in
image processing namely deep CNNs for medical training
tasks. By this means, neither is a close physical interaction

FIGURE 5 | A general framework for surgical skill assessment.

FIGURE 6 | Example of two-stage and single-stage detectors Kathuria (2021). (A) Two-stage detector (RCNN). (B) Single-stage detector (YOLO).
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between the expert and novice necessary, nor the quality of the
training is reduced adversely due to the limitations. In fact, the
computer vision approach acts as an interface making it possible
both to learn from the expert and to evaluate the novice, remotely.

7CONCLUSIONAND FUTUREPROSPECTS

The faculty members and the students of the medical universities
are classified in the high-risk category due to the potential exposure
to coronavirus through direct contact and aerosol-generating
procedures. As a result, many medical schools have suspended
their clinical programs or implemented social distancing in their
laboratory practices. Furthermore, the current fight against the
COVID-19 virus have used nearly all capacity of health-care
systems, and some less urgent and less emergent medical
services including the education issues are limited or even
paused. Therefore, unless some assistive training tools are
utilized to support the educational procedures, the training
efficiency of medical universities will be reduced and it have
future consequences for the world health-care system.

Practicing medical tasks with current lock-down policies can
be solved utilizing state of the art techniques in haptics, virtual
reality, machine vision, and machine learning. Notably,
utilization of the above technologies in medical education has
been researched actively within the past years in order to increase
the safety and efficiency of the surgical training procedures.
Nowadays, another motivation is created for those assistive
technologies owing to the COVID-19 pandemic. In this paper,
the existing assistive technologies for medical training are
reviewed in the COVID-19 context and a summary of them is
presented in Table 2.

It is reviewed that a surgical simulator system including a VR/
AR based graphical interface and a haptic interface is able to
provide the circumstances of actual surgical operation for the
medical students, without the necessity of attending the hospital
environments. Furthermore, through augmenting the system
with another haptic console and having a dual user haptic
system, the opportunity of collaboration with and receiving

guidance cues from an expert surgeon in a systematic manner
is given to the trainees. In contrast to the traditional collaboration
methodologies, the haptic-based collaboration does not require
the physical contact between the involved people and the risk of
infection is reduced. Assessment of the expertise level of the
medical students is another element of each training program.
The necessity of reducing physical contact during the COVID-19
pandemic have also affected the skill assessment methodologies as
the traditional ways of skill assessment are based on direct
observation by a trainer. In contrast, data-based analysis may
be utilized as a systematic approach for skill assessment without
any need of physical contact. In this paper, some of the ongoing
methods in surgical skill evaluation have been reviewed.

Biomedical engineering technology has progressed by leaps
and bounds during the past several decades and advancements in
remote diagnostics and remote treatment have been considered as
a leading edge in this field. For instance, the tele-surgery robotic-
assisted da Vinci system have received a great deal of attention in
the healthcare marketplace with more than 5 million surgeries in
the last 2 decades DaVinci (2021). However, the rate of
advancement in medical training, which usually follows
traditional methods, has been considerably less than the other
aspects of medical field, and modern training technologies have
received fewer attention during the past several decades. While
remote training and remote skill assessment technologies make
relatively lower risk to the patient than remote diagnostics and
remote treatment, the reason behind fewer attention to the
former is the lack of sufficient motivations. It is hoped that
the motivations created for those advanced medical training
methods during the COVID-19 crisis are strong enough to
continuously increase their utilization among the medical
universities. Although wide utilization of those technologies
needs a considerable extent of time, effort, and investment,
immediate and emergent decisions and actions are required to
widely utilize those potential techniques. Notably, all of the
presented approaches and techniques are targeted to be
utilized in the normal situations without any pandemic in
order to provide safer and more efficient medical training.
Therefore, even after the world recovers from this crisis, these

TABLE 2 | The main tools and approaches that help to reduce physical contact in medical training.

Training
tool or
technology

Approach Some investigations

Virtual Reality VR Based surgical training system Bartlett et al. (2020), Cecil et al. (2018), Lohre et al. (2020), Medellin-Castillo et al. (2020)
AR Based surgical training system Si et al. (2019)

Haptic Technology Single haptic simulators Tahmasebi et al. (2008), Wang et al. (2014), Spera et al. (2020)
Dual haptic with fixed authority Nudehi et al. (2005), Khademian and Hashtrudi-Zaad (2012), Shahbazi et al. (2014b), Motaharifar et al. (2016),

Motaharifar et al. (2019b)
Dual haptic with variable authority Shahbazi et al. (2014a), Motaharifar et al. (2019a), Motaharifar and Taghirad (2020), Liu et al. (2020)

Data Driven
Scoring

DDS using hand-engineered features Brown et al. (2016), Javaux et al. (2018), Hojati et al. (2019), Lefor et al. (2020)
DDS using automated feature
extraction

Wang and Fey (2018), Funke et al. (2019), Khan et al. (2020), Lavanchy et al. (2021)

Fusion techniques Naeini et al. (2014), Kazemian et al. (2010)
Machine Vision Single-Stage Detectors Redmon and Farhadi (2018), Liu et al. (2016), Lotfi et al. (2018), Lotfi et al. (2020)

Two-Stage Detectors Girshick (2015), Ren et al. (2015)
Classifiers Simonyan and Zisserman (2015), Szegedy et al. (2016)
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techniques, tools, and approaches deserve more attention,
recognition, investigation, and utilization. There needs to be a
global awareness among the medical universities that haptic
technology and virtual reality integrated with machine
learning and machine vision provides an excellent systematic
medical training apparatus that ensures the requirements of
health-care systems to enhance the safety, efficiency, and
robustness of medical training.
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