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A Model-Based
Multi-Point Tissue Manipulation for Enhancing Breast Brachytherapy
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Abstract—In surgical operations, tissue manipulation can be
automated to reduce the surgeon’s workload. This work addresses
the application of tissue manipulation in breast brachytherapy, which
involves manipulating an internal target inside the breast. Unassisted
breast brachytherapy causes excessive target movement that reduces
seed implantation accuracy. To address this target movement in breast
brachytherapy, first, the internal target point will be manipulated
accurately and then the brachytherapy needle will be inserted into the
immobilized tissue. In this paper, a model-based tissue manipulation
method is introduced. To simulate nonlinear large tissue deformation
for the first time, a minimum-energy-based deformable tissue solver
is utilized. Based on the theory of positive bases, the optimal number
of actuators is determined to guarantee controllability of the internal
target. A model predictive controller (MPC) is designed to implement
multi-point tissue manipulation. A breast phantom is used to test
the accuracy of the deformation model and the effectiveness of the
proposed control method. The results show that the tissue deformation
simulation error is 1.6 mm and the internal target can be regulated
with negligible steady-state errors using an MPC controller.

Index Terms—Breast brachytherapy, Soft tissue manipulation,
Medical robotics, MPC controller, Tissue mechanical modelling

I. INTRODUCTION

The use of semi-autonomous and robot-assisted surgeries en-
hances the accuracy and reliability of surgical procedures. Suturing,
tissue manipulation, tremor reduction, and force control are among
the low-level robotic operations that can be automated by robots. In
percutaneous treatments, a needle is inserted into soft tissue to obtain
tissue samples for biopsy purposes or to deliver drugs to specific
organs. The low dose rate permanent seed implantation (LDR-PS)
technique is a percutaneous procedure in which radioactive seeds
are implanted in, or around, a cancerous tumor or seroma within the
body. It is essential to have high accuracy regarding seed placement
in order to achieve success with the treatment. A preoperative
dosimetry analysis will determine seed distributions [1]. During
brachytherapy treatments, two major phenomena, needle deflection
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during insertion and target movement, reduce accuracy in needle-tip
placement and, therefore, implantation accuracy [1].
A. Clinical Need

During breast LDR-PS treatment, the target application of this
study, breast tissue deforms easily and excessively. The pressure
applied by the Ultrasound (US) probe, which is used to visualize
the needle tip, deforms the breast as US probe moves over the
breast surface (see Fig. 1). During the course of breast surgery,
the target area may be dislocated up to 7 mm [2], [3]. The risk of
cancer recurrence will increase if seeds are implanted off-target, as
insufficient radiotherapy will be administered. Currently, the success
of precise seed implantation in breast brachytherapy is highly
dependent on the clinician’s skill, since the clinician must track the
3D position of moving targets from 2D US images and manipulate
the breast and needle simultaneously to ensure that seeds are planted
at the desired location determined by the dosimetry analysis [4].

Immobilizing the breast with fixtures similar to those used
during mammograms is one solution to resolve uncontrolled tissue
deformation. However, this may adversely affect needle steering and
cause patients pain. Therefore, uncontrolled tissue deformation must
be addressed to have accurate seed implantation. In the literature,
instead of controlling the tissue deformation, most studies focus
on steering needles toward the targets particularly for prostate
brachytherapy. In prostate brachytherapy, the insertion length is
long enough to provide flexible needle with enough steerability in
order to steer the needle toward the targets [5] and targets are not
moving due to exessive tissue deformation. Breast brachytherapy,
however, does not have a stationary target, nor is the insertion length
sufficient to maneuver the conventional needle. With a 50 mm
insertion length, the maximum needle tip deflection for 18G flexible
needles used in the clinic (with a curvature radius of 650 mm) is less
than 1 mm [6]. Therefore, standard beveled tips are not steerable
enough to reach continuous moving targets in breast brachytherapy.

To overcome the challenges associated with tissue deformation
and limited needle workspace in breast brachytherapy, it is suggested
to control and manipulate tissue deformation. Through tissue
deformation control, the internal target can either be moved toward
the needle path or obstacles that block the needle path can be
removed in place of steering the needle. Tissue manipulation can
be an adjunct solution to the needle steering problem, especially
when the target lays out of the reachable workspace of the beveled
tip needle, which is a significant limitation in the case of breast
brachytherapy. In this work, the focus is only on compressing
the tissue because it is more practical. To the best of the authors’
knowledge, tissue manipulation, particularly for percutaneous
therapies, has not been extensively studied in the literature.

B. Related Studies
This subsection presents a review of deformable object

manipulation studies in surgical applications and deformable object
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Fig. 1: Illustration of target movement in breast brachytherapy; a)
ideal situation for the surgeon, b) and c) shows target deviation as a
result of US pressure and the fact that the previous needle trajectory
would not reach the target.

solvers for surgical applications to illustrate the contributions made
by this work within the literature.

It is proposed to treat prostate cancer using a tissue manipulation
procedure based on MSM models of 2D prostate motion [7].
However, its disadvantage is that the 2D linear model cannot
address tissues’ nonlinear and large deformations. In [8], the
authors model a soft robot using linear FEM and obtain the control
inputs using inverse FEM. A constraint-based inverse linear FEM
simulation is used to steer a flexible needle inside a deformable
tissue in [9]. It compensates for tissue movement by steering the
needle via a robotic arm. The control of active tissue deformation
is not the primary concern of [9]. The authors in [10] used a
suction-based manipulator to manipulate the breast tissue from one
point, reporting that the needle insertion accuracy was increased.
In [11], a force-actuated position controller was implemented to
manipulate breast tissue for biopsy treatment.The required forces
for tissue manipulation were calculated based on real-time medical
images. In both [11] and [10], no biomechanical model for tissue
deformation prediction was used inside the control loop and a
simple PID controller was developed. A visual servoing method
was implemented by online Jacobin estimation to deform a soft
object toward the desired position [12]. It has been attempted in
several studies [13], [14] to learn the Jacobian between deformable
object and robot manipulator from visual data in an online fashion.

While manipulating an interior point, it is impossible to receive
visual feedback from the breast’s internal parts. Accordingly, a
biomechanical model must be incorporated into the structure of a
model-based controller in order to establish a relationship between
the movement of the internal target and the movement of the
control points. This study highlights the lack of integration of a
real-time nonlinear tissue solver into a control procedure for tissue
manipulation (controlling tissue deformation).

Finite Element Methods (FEM) are widely used to simulate
nonlinear and complicated mechanical behavior of tissue; however,
they are computationally expensive at the moment to be used for
real-time applications [15]. Numerous studies have applied model
order reduction methods to FEM to enhance their computational
performance. The reduced order model FEMs are obtained via a
substantial pre-operative calculation [16]. Many studies simplified
accurate models for a real-time solver in order to meet simulation
speed requirements, however, this simplification decreases the model
accuracy to some extent such as Mass Spring Models (MSMs) [17].

Position-based dynamics (PBD) methods has recently been
utilized to develop surgical simulators [18].

A study by Tagliabue et al. [19] used PBD to predict the position

of breast tumors in response to pressures from US scanning.
Because the constraints in PBD are geometric, it does not reflect the
mechanical characteristics of tissue. Therefore, the reported tumor
localization error in [19] is extremely large for medical applications
and it is about 5mm.

In [20], a generalization of the PBD method is presented that
permits solving any nonlinear constraint. In this method, the
alternating direction method of multiplier (ADMM) is used as
the optimizer. As opposed to the usual optimizers, ADMM allows
computations to be parallelized, making it a viable choice for
simulations that occur in real-time.

C. Objective and Contributions

An innovative method is presented in this study to manipulate mul-
tiple points on the surface of tissue (in this case the breast) in order to
steer an internal target to the desired location within the tissue. Before
the needle is inserted, the target will be moved onto the needle path.
As soon as the target has reached the desired location, the actuators
will cease applying force to the tissue and a needle will be inserted
to hit the target. This paper has the following contributing features:

1) Development of a fast tissue-deformation solver to model
nonlinear hyperplastic behavior of the breast tissue. The main
concept of the solver is to minimize the strain energy of tissue
obtained from nonlinear material models. Implementation of
the solver on a multi-core CPU or GPU provides the possibility
of having a real-time solver suitable to be integrated into the
control loop.

2) Showing the necessary and sufficient number of actuators that
can guarantee the controllability of the internal target, where
the internal target can be moved in an arbitrary manner, by
using the theory of positive bases.

3) Defining a manipulability index and applying it to an analysis
of the performance of different actuator configurations.

4) Developing a Model Predictive Controller (MPC) based
upon the online linearization of tissue solver. The linear
approximation is calculated analytically and relates the
displacement of control points on the tissue boundary to the
movement of the internal target.

The rest of the paper is organized as follows. The tissue solver
and material model will be presented in Section II. A linear model
derivation, controllability analysis, and MPC control method
will be elaborated in Section III. In Section IV, the accuracy
of the biomechanical model in deformation prediction and the
performance of the control loop in steering the internal point of the
tissue to the desired positions will be evaluated experimentally, and
a conclusion in Section V will complete the paper.

II. TISSUE MODELLING

In this section, the mathematics of the minimum-energy-based
method will be described, and how we have integrated our selected
material model into the method will be explained.

A. Dynamics of Tissue Deformation

The object is discretized using elements (i.e., triangle for 2D and
tetrahedral for 3D) and lumped masses are integrated on the ele-
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ment’s node. Each lumped mass is a DOF of the system. The dynam-
ics of the system based on Newton’s law in Eulerian coordinate is

Mẍ=Fint+Fext=f(x,t) (1)

Here, M is the matrix of lumped masses and Fint and Fext are the in-
ternal and external forces acting on each DoF, respectively. In the con-
text of continuum mechanics, internal forces are calculated as the gra-
dient of strain energy function Fint=−∇U(x). To solve the dynamic
system in (1), it should be integrated through time. Considering the
unconditional stability of implicit Euler scheme (backward Euler),
it is usually selected to solve the dynamic systems. In this scheme,
a system of implicit unknowns should be solved. The system of dy-
namic equations can be defined using the following set of equations

Mv(t+∆t)=Mv(t)+∆t f(v(t+∆t),x(t+∆t),t)

=Mv(t)+Fext(t)∆t+Fint(t+∆t)∆t,

x(t+∆t)=x(t)+v(t+∆t)∆t
(2)

where v(t) and x(t) are the velocity and displacement vectors of
all DoFs. (2) is a set of high dimensional and highly nonlinear
equations. One solution is to solve the set of equations using iterative
methods such as Newton’s method; however it can be reformulated
to be solved as an optimization problem as suggested in [20]. The
combinations of the set of equations in (2) leads to

1
∆t2 M(x(t+∆t)−x̃(t+∆t))=Fint(t+∆t) (3)

where,
x̃(t+∆t)=x(t)+v(t)∆t+M−1Fext(t)∆t2 (4)

determines the position of lumped masses in the absence of internal
forces. Considering the fact that Fint = −∇U(x), (3) can be
reformulated to an optimization form based on the work in [20]

x(t+∆t)=argmin
x

(
1

2∆t2∥x−x̃(t+∆t)∥2
M+U(x)

)
(5)

where ∥x∥M=
√

xT Mx. Taking the gradient of (5) and equating it to
zero leads to (3), therefore, the solution of (5) at each time step is the
solution of (3). The DoF of dynamic system is equal to the number
of nodes used to discretize the tissue domain multiplied by three in
case of 3D simulation (DoF is denoted by N ); therefore, (5) is still a
high dimension nonlinear optimization problem and it is not possible
to be solved in an efficient time. To overcome this issue a solution,
which is suggested in [20], is to use the alternating direction method
of multipliers optimizer (ADMM) which in general is an optimizer
for distributed systems.

B. ADMM Implementation For Tissue Deformation Dynamics

The strain energy deformation U is a function of gradient
deformation matrix (will be explained thoroughly is Section II-C). A
vector composed of the elements of gradient deformation matrices
associated with mesh elements can be introduced into (5) as a
new variable denoted by z. The relationship of z=Dx is satisfied
between the variable z and x at each converged solution of (5). In
fact, matrix D transforms x variables to the gradient deformation
matrix space. Therefore, (5) can be reformulated as [20]

argmin
x,z

(
1

2∆t2∥x−x̃∥2
M+U(z)

)
s.t. W(Dx−z)=0

(6)

where W is a weighting matrix. By applying ADMM optimizer to
(6), the update rules for the tissue deformation dynamics problem
can be obtained as

xn+1=argmin
x

(
1

2∆t2∥x−x̃∥2
M+

1
2
∥W(Dx−zn+un)∥2

)
=
(
M+∆t2DT WT WD

)−1(Mx̃+∆t2DT WT W(zn−un)
)
(7)

zn+1=argmin
z

(
U(z)+

1
2

∥∥W
(
Dxn+1−z+un)∥∥2

)
(8)

un+1=un+Dxn+1−zn+1 (9)

Matrices in (7) are fixed and can be precalculated, so the update
rule for x variable is fast.

The tissue solver is parallelizable as (8) can be solved for each
element separately; therefore, the procedure can be implemented in
parallel on GPU or multi-core CPU. For each strain energy function
associated with each element, the following optimization problem
should be solved separately.

zn+1
i =argmin

zi

(
Ui(zi)+

1
2

∥∥Wi
(
Dixn+1−zi+un

i
)∥∥2

)
un+1

i =un
i +Dixn+1−zn+1

i

(10)

Here, i refers to the element number, and zi is a vector containing
elements of the gradient deformation matrix associated with element
i. After updating variable zi and ui associated with individual
elements separately, the global vector of z and u are updated and used
to update the position vector x using (7). For more details about the
implementation of ADMM, an interested reader should refer to [20].

In the next section, we will explain how to choose Ui(zi) to solve
the optimization problem in (10).

C. Material Model

The strain energy density function quantifies the stored strain
energy per volume of an element due to deformation. The strain
energy density function, denoted by Ψ, is zero when there is no
element deformation. Green-Saint-Venant strain tensor, E, is a
measure of strain of an element and is given by E= 1

2(C−I), where
I is second-order identity tensor and C is the right Cauchy–Green
deformation tensor, obtained by C=F⊤F, and F is the deformation
gradient matrix, calculated by

F=
∂x
∂X

(11)

where x is the current position of element’s nodes (i.e., deformed
configuration) and X is the position of element’s nodes in the
reference configuration (i.e., undeformed configuration). For
tetrahedral element (i.e., a four node element) F can be obtained
using F=NxNX

−1, where
Nx=

[
x1−x4 x2−x4 x3−x4

]
NX=

[
X1−X4 X2−X4 X3−X4

] (12)

Using tetrahedral elements for 3D problems, F is 3×3 matrix and
using triangle elements for 2D problems in the case of having a
plane strain problem F would be a 2×2 matrix.

In general material models, Ψ is function of E or F; However,
for isotropic materials, Ψ is a function of the invariants of the right
Cauchy–Green deformation tensor

Ψ=Ψ(I1,I2,I3) (13)
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where I1= tr(C),I2=
1
2

[
[tr(C)]2−tr

(
C2

)]
, and I3=det(C).

Several material models exist to describe the hyperelastic
behaviour of tissue including Neo-Hookean, Ogden, Mooney-Rivlin,
Arruda-Boyce [21]. The Neo-Hookean model is the most relevant,
and most used, model for modelling breast tissue [22]. In this paper
Neo-Hookean material model is used for modelling breast tissue.
The strain energy function of a Neo-Hookean material is given by
[23]

Ψ=
µ

2
(
I1−3

)
+

κ

2
(J−1)2 (14)

where J= 1
2I3, C=J−2/3C and I1 = tr(C). Material constants are

µ = E
2(1+v) , and κ = E

3(1−2v) , in which E is Young’s modulus and
v is Poisson’s ratio.

The strain energy of each element can be calculated using
Ui=ΨiVi, where Vi is the initial volume of the element and Ψi is
the value of the strain energy density function measuring element’s
deformation. Ui is used in (10) to update zi value for each element.

III. CONTROL METHOD

With the assumption that tissue deformation happens at low
velocities, the problem can be considered as quasi-static, in which in
each step the internal forces are in equilibrium with external forces.
The set of control points on the tissue surface are denoted by c and
the set of target points inside the tissue are denoted by m.

A. Model Linearization

To calculate a linear relation between the displacement of
control points δxc and target points δxm, the Jacobian, we need
to linearize the model around the current configuration. The quasi
static equation of the system Fint (xn) = Fext is linearized using
a Taylor series as Fint(xn)+

∂Fint
∂x (xn+1−xn)=Fext(xn+1), where

K= ∂Fint
∂x is the tangent stiffness matrix of the system. Having an

applied variation in external forces, the variation in node positions
can be calculated using δx=K−1δFext .

In order to derive Jacobian from a linearized static equation a
modification in force vector representation is necessary,

Fext=Jcλ (15)

where λ is a vector including all nonzero values of external forces
applied to system DoF (i.e., if the number of control points is c, and
λ is a c×1 vector) and Jc is an N×c matrix consisting of zeros and
ones which relates the vector λ to the global external force vector
which is N×1. The relationship between the parameter variations
such as δxm, δxc, and δx is defined as

δxc=Jc
T

δx
δxm=Jm

T
δx (16)

where Jm is a similar matrix to Jc that extracts target point variation
from the vector of all node displacements, δx. The relationship
between δxc and δxm and force vector λ is given by

δxc=Jc
T K−1Jcλ

δxm=Jm
T K−1Jcλ

(17)

By eliminating the force vector from two equations in (17), the final
relationship is

δxm=Jm
T K−1Jc

(
Jc

T K−1Jc
)−1

δxc (18)

Therefore the Jacobian of the system is

Js=Jm
T K−1Jc

(
Jc

T K−1Jc
)−1

. (19)

The tangent stiffness matrix K is computed using the Rayleigh-Ritz
method that states the first derivative of deformation, or strain energy
function, with respect to current node positions gives the nodal
force and second derivative gives the stiffness matrix; therefore,
Ki j =

(
∂2U

∂xj∂xi

)
. The standard method to calculate the global

stiffness matrix of an element grid is to calculate local stiffness
related to each element separately and then integrate the stiffness
of all elements to obtain the global matrix. The local stiffness
matrix associated with individual element follows the relationships
Ke=Ve

(
∂2Ψe

∂xj∂xi

)
. Having the strain energy function using (14) and

gradient deformation matrix F, the element local stiffness matrix
is obtained by computing the matrix of second derivative of strain
energy function with respect to element’s node DoF as follows:

Ke=Ve
(
NeDX

−1⊗I3
)

(
µ

3 J−
2
3 I1−κJ(J−1)

)
Q(n,n)

T(F−T ⊗F−1
)
+

µ

3 J−
2
3 I3⊗I3− 4µ

3 J−
2
3 vec

(
F−T

)
vec(F)T

+
(

2µ

9 J−
2
3 I1−κJ(2J−1)

)
vec

(
F−T

)
vec

(
F−T

)T


(
DX

−T Ne
T ⊗I3

)
(20)

where Ne =


1 0 0
0 1 0
0 0 1
−1 −1 −1

 for tetrahedral elements and

Ne =

 1 0
0 1
−1 −1

 for triangle elements. Q(n,n) is a n2 × n2

matrix that is partitioned by n×n blocks. Each block has the from
Oij=

(
o(i, j)

s,t

)
whose nonzero entry is o(i, j)

j, i =1. The operator ⊗ is
the Kronecker product and vec() operator vectorizes a matrix.

B. Control and Manipulation Analysis

The main aim of this controllability analysis is to define a desired
direction vector on which the internal point will be moved. To
create this direction vector, we must consider that only a positive
combination of all actuator movement vectors is allowed (i.e.,
actuators can only push the breast). Under this assumption, we will
show that the internal target is able to be moved along any arbitrary
directions if and only if the target movement vector lays on the span
of the actuators’ movement vector.

The necessary mathematical definition of positive basis theory
which is required is summarized as follows;

Definition 1: A positive combination of a set of vectors
[a1···ar]∈Rn is a linear combination λ1a1+···+λrar with λi≧0.

Definition 2: A a positive span or convex cone is the
set of all positive combination of a finite set of vectors that
A={a∈Rn :a=λ1a1+···+λrar,λi≥0,i=1,...,r}.

Definition 3: A set of finite vectors [a1···ar] is positively
independent if there is no vector ai in the set such that it can be
written as a positive combination of the others.

Definition 4: If all the vectors in set [a1···ar] are positively
independent, the set is a frame of cone A. All vectors in the vector
set are called the positive basis.

With linearly independent orthogonal bases, the number of
linearly independent bases spanning the space Rn is unique;
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however, with positive basis, the number of positive bases which
can span Rn and be positively independent are not unique.

Theory 1: The minimum number of positive basis that span Rn

is r= n+1 and the maximum number of positive basis that span
Rn is r=2n. The former one is called minimal positive bases and
the later one is called maximal positive bases.

Corollary 1: A positive representation of a vector a∈A is unique
in each frame that spans set A.

If the internal point is moved with a distance d in any arbitrary
direction, set A (the span of positive bases) should be a circle with
radius d as shown in Fig. 2. In a planar movement the dimension
of the vector set is n=2, so to have positive bases which spans the
whole set A based on Theory 1, at least n+1=3 (minimal positive
bases) and at most 2n= 4 (maximal positive bases) actuators are
required. Vectors ei ∈ [1,2,3] or ei ∈ [1,2,···4] (see Fig. 2.) should
be chosen such that they are positively independant to be capable
of spanning set A entirely as shown in Fig. 2.

Based on Corollary 1, if the vectors are chosen such that they
are positively independant, the representation of point p in Fig .2
is unique in both maximal and minimal configurations.

In order to choose between the minimal and maximal frame
configurations, a manipulability index is introduced as

Manipualbility Index =
∥p∥2

∑
n
i=1∥qi∥2

(21)

where ∥.∥2 is euclidean norm of vectors in the global Cartesian
frame (Fig. 2), p is the target displacement vector, and qi are the
displacement vectors of the actuators represented in the global
Cartesian frame.

The amount of tissue deformation is proportional to all of actua-
tors’ displacements. Larger actuator displacement means the tissue is
deformed more. The manipulability index defines the ratio between
target movement and actuators movement (i.e., tissue deformation).
A larger manipulability index means less tissue deformation is
applied to move the target for the same amount of displacement.

In order to obtain a manipulability index for each vector p, based
on (21), each qi needs to be calculated. Due to the definition of
manipulability index, this is a task specific index. To calculate
each actuator movement vector qi, the following inverse kinematic
problem under joint constraints is solved.

argmin
q

∥p−Jsq∥

s.t. qidi
T ≥0

(22)

where Js is the Jacobian matrix for each configuration obtained us-
ing (19), and di is the acting direction of actuators. The above inverse
kinematic problem is calculated for each actuator configurationand
is shown in Fig. 2 with respect to three specific tasks:

1) Task 1: points inside the circle are moved by 5 mm along the
negative direction of the x axis and their movement along the
y axis is relaxed.

2) Task 2: points inside the circle are moved by 5 mm along the
negative direction of the y axis and their movement along the
x axis is relaxed.

3) Task 3: points inside the circle are moved by 5 mm along the
positive direction of the y and the x axes simultaneously.

The task will be achieved through the control objective in
section IV-B. The manipulability index distribution for minimal

(a) Minimal positive bases. (b) Maximal positive bases.

Fig. 2: Positive bases and positive spanned area.

and maximal configuration is depicted in Fig .3. Based on Fig. 3,
maximal configuration with 4 actuators has the larger manipulability
index in the majority of area and it means that this actuator
configuration is able to move the target with less tissue deformation.

C. MPC Controller

In this section, a Model Predictive Control (MPC) scheme is
designed. MPC is selected because of its ability to constrain the mag-
nitude and direction of the control effort, to control MIMO systems
in a standard state-space formulation, and also its ability to eliminate
steady-state error. As explained in Section III-A, the simulated model
of the system is linearized at each step. Using the linearized system,
a multivariable MPC controller is designed to compute the optimal
displacement of boundary points such that actuators only push the
tissue and, in addition, they are not able to retract. The linearized
system can be reformulated into a state-space formulation as follows

xm(k+1)=xm(k)+Js(xm(k),xr(k))u(k)
y(k)=xm(k)

(23)

Here, the system states consist of the position of the target point
xm and u=δxc is the displacement variation of the boundary points,
which are the control inputs. The control input matrix (i.e., the
Jacobian) is a parameter varying matrix that depends on both the
current states of the system and also the position of all other nodes
within the model xr. Vector y is the measurement vector which is
the position of target point xm.

The objective of MPC is to compute a series of discrete optimal
control inputs using the predicted future states of a system in each op-
timization horizon to minimize the cost function and satisfy the con-
straints. The error signal between the defined reference set point and
predictive position of the target from the linear model is obtained as

e(k+h)=yd(k+h)−yp(k+h) (24)

where yp is the predicted target location obtained using (23). The
quadratic constrained optimization problem is
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Fig. 3: Manipulability distribution maps (The black arrows show
the movement direction of internal points at each task).

J =min
1
2

Np

∑
h=0

[
eT Qe +uT Ru

]
s.t.
xm(k+1)=xm(k)+Js(xm(k),xr(k))u(k)
y(k)=xm(k)

uidi
T ≥0

(25)

where ui is the actuator displacement of each actuator, and di is the
acting direction of actuators. Q and R are square weighting matrices.
Np is the prediction horizon. The system’s actuators are constrained
to only move forward based on (25). A block diagram of the MPC
control procedure is shown in Fig. 4.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the accuracy of the minimum-energy-based
method is compared with experimental data. The performance of
the MPC controller is also evaluated through experiments.

Fig. 4: Block diagram of the MPC controller. The outputs are the
inner target point positions, the inputs are the displacements of the
control boundary points, and the system states are the position of
the system’s DoFs at each configuration.

A. Model Validation in Phantom Tissue

To experimentally validate the performance of the proposed
method in tissue deformation prediction, an experimental setup
(Fig. 5) was built. An Aurora electromagnetic (EM) tracker with
a Planar 20-20 V2 Field Generator (NDI Europe GmbH, Radolfzell,
Germany) is utilized to track the 3D position of a magnetic sensor
which was located inside the tissue phantom at five different target
points as shown in Fig. 5. Four linear actuators displaced the tissue
boundary in discrete steps of {5,10,15}mm (i.e. 12 experiments
have been done for each internal point separately). A tissue phantom
made from plastisol and softener (M-F Manufacturing Co, Fort
Worth, USA) with an equal volume ratio. The module of elasticity of
the phantom that is calculated through compression test is E=6kPa.

Five internal targets are considered inside the tissue for the model
verification experiments. The experimental layout of phantom,
actuators, and targets is shown in Fig. 6. The top view of targets
and actuators is displayed in Fig. 6a and Fig. 6b shows a 3D view
of actuators and targets’ arrangements.

The mesh model of the breast in Fig. 6, which is used for
simulation has been built based on the CAD model and the
Tetgen library is used to mesh the CAD model in MATLAB. The
minimum-energy-based method was programmed in C++ using
OpenMP, and it was run on an Intel® Core™ i5 processor with
6 cores. The total computation time for the 800 iterations and
1706 tetrahedral elements is 15 seconds. The speed can further be
improved by implementing the algorithm on a GPU. The location
of the five internal target points, induced by boundary displacement,
were measured and the mean, median and standard deviation of
square error between the simulation and experiment results for
the five target points in X, Y , and Z directions were calculated and
are shown in Fig. 7. For each target, experimental studies for 12
trials were conducted. There are red lines indicating the median
error, blue boxes indicating the 25th and 75th percentile, whiskers
indicating the minimum and maximum error, and an orange circle
indicating the mean error. The maximum target localization error
is on the order of 1.6 mm showing that the minimum-energy-based
method is highly accurate with respect to real tissue deformation.
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Aurora EM Tracker 

Sensor

Actuators

Phantom

Fig. 5: Experiment setup. An Aurora electromagnetic (EM) tracker
is used to track the 3D position of targets. Linear actuators push
the tissue phantom made of plastisol.
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(b) The 3D view.

Fig. 6: The layout of breast phantom, actuators, targets, and tasks.
a) shows the top view of the layout and b) shows the 3D view of
the layout.
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Fig. 7: Localization error for five targets between the experimental
and simulation data.

B. Control Loop Validation

The defined task in Section III-B, are carried out on two different
points, points 1 and 2 shown in Fig. 6. The MPC controller param-
eters are Np=5, Q=3I2×2, and R=2I4×4. The weighting matrices
have been defined experimentally to make sure the convergence
is fast while avoiding any sudden jump in actuator movements.

Fig. 8, Fig. 9 and Fig. 10 show the results for point 1 and Fig.
11, Fig. 12 and Fig. 13 illustrate the results for point 2. In the first
part of the presented figures, the results from open loop scheme is
presented by red curve and the experimental result (closed-loop) is
demonstrated by blue curve. Also, the green line shows the desired
position. In the second part, the actuators movements are shown.
It is noteworthy that retraction of actuators is not allowed in this
method. In Fig. 8 and Fig. 9 only one actuator moves to displace
point 1 based on task one and two, respectively. The closed loop
scheme is able to reach the desired location after 80 s in Fig. 8
while in Fig. 9, the experimental result reaches the desired position
after 60 s. As can be seen in both cases, in the initial steps the
actuator moves the most distance, and as time passes the actuator
displacement reduces. In Fig. 10, two actuators are activated to
move point 1 to the desired location based on task three.

To show that the proposed scheme is effective in every other
points, the same studies are conducted on point 2, where in Fig.
11, Fig. 12, one actuator displaces the phantom along task one and
task two respectively to reach the desired location. For both of these
studies, it takes 80 s for the closed-loop controller to get to desired
position. In Fig. 13, two actuators are used to move the target point
along task three. The results converged after 80 s. As it is shown
in these figures, the MPC structure with state feedback is robust to
slight simulation position error in the open-loop simulations and the
Jacobian calculated based on the minimum-energy-based simulation
results is a good approximation of the relation between boundary
points displacements and internal target displacement.

In Table I, the defined tasks are carried out on points 1, 2, 3, ,4
and 5, and the integral of absolute error (AITE),

ITAE=
∫

t|ε|dt, (26)

is used as a measure of control system performance to do the
comparison between the open-loop and closed-loop performance.
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As can be seen, the error in all the points and tasks is reduced in
the closed-loop scheme.
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Fig. 8: The time response of the target point 1 position and actuators’
movement for task one.
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Fig. 9: The time response of the target point 1 position and actuators’
movement for task two.

V. CONCLUSION

An innovative model-based control method was presented in
this study for implementing multi-point tissue manipulation in order
to position a target in line with the brachytherapy needle in breast
brachytherapy.

To this end, a model predictive controller (MPC) was designed
using an online linear approximation of the biomechanical model of
tissue at each time step, which moves a target point (inside of tissue)
to the desired location. The performance of the proposed method
was demonstrated through experiments on the tissue phantom. Ex-
perimental results demonstrate that MPC successfully converges to
the desired location without a substantial steady-state error and AITE
index of closed-loop is much less that open-loop simulation. The
open-loop simulation has a steady state error in the range of 2 mm.
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Fig. 10: The time response of the target point 1 position and
actuators’ movement for task three.
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Fig. 11: The time response of the target point 2 position and
actuators’ movement for task one.
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Fig. 12: The time response of the target point 2 position and
actuators’ movement for task two.
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TABLE I: AITE index and steady-state error for closed-loop and open-loop results.

Target ID Scenarios Open loop
AITE

Closed loop
AITE

Open loop
steady-state
error (mm)

1
Task 1 403.40 193.23 0.66
Task 2 342.52 117.22 0.36
Task 3 910.17 231.02 0.92

2
Task 1 1172.6 155.61 1.64
Task 2 1046.8 144.67 1.47
Task 3 931.33 260.22 1.35

3
Task 1 1201.12 604.45 2.42
Task 2 752.62 171.21 0.46
Task 3 1319.85 297.01 1.88

4
Task 1 1112.89 285.3 1.37
Task 2 986.23 195.67 1.12
Task 3 1360.5 521.61 1.93

5
Task 1 1036.10 350.21 2.1
Task 2 1205.37 270.9 1.4
Task 3 1112.34 130.71 1.61
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Fig. 13: The time response of the target point 2 position and
actuators’ movement for task three.

To simulate non-linear tissue deformation, the dynamics of soft
tissue were turned into a parallelizable optimization problem, where
the deformed tissue strain energy is considered part of the cost
function required to be optimized. The capability of the solver to
be parallelized, makes it a suitable choice to be used in a real-time
control method. The accuracy of the proposed solver was evaluated
through a comparison in phantom tissue experimental results,
showing the model has an error of 1.6 mm with respect to real-
world tissue. The sufficient number of actuators was found through
a controllability analysis. Based on the theory of positive basis sets,
actuator configurations with three and four actuators guarantee the
controllability of the target in a 2D plane. The configuration with four
actuators, however, imposes less tissue deformation for the same tar-
get movement and hence this configuration was chosen in this work.

Currently, MPC converges under the condition of having a direct
measurement of the internal target. It is possible to track the position
of the internal target through US image frames; however, it is not
a trivial task. For future work, an observer will be designed based
on the biomechanical model and data from the surface point to
calculate the position of the internal target without having a sensor
inside the tissue.
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