
IEEE/ASME TRANSACTIONS ON MECHATRONICS: PREPRINT VERSION. ACCEPTED NOVEMBER 2021 1

Autonomous Locomotion Trajectory Shaping and
Nonlinear Control for Lower-Limb Exoskeletons

Mojtaba Sharifi, Member, IEEE, Javad K. Mehr, Student Member, IEEE, Vivian K. Mushahwar, Member, IEEE,
Mahdi Tavakoli, Senior Member, IEEE

Abstract—This paper presents a strategy for autonomous lo-
comotion trajectory planning for high-level control of lower-limb
exoskeletons by defining a novel set of adaptive central pattern
generators (ACPGs) to facilitate safe and compliant interaction
with the human. A time-varying bounded-gain adaptive (TBA)
disturbance observer is designed for estimating the human-
robot interaction (HRI) needed for online CPG-based trajectory
shaping and low-level nonlinear trajectory tracking control. The
proposed ACPG dynamics for each exoskeleton joint updates
the motion frequency and amplitude based on the observed
HRI torque, which is also coupled with adjacent joints’ CPGs
to regulate their phase differences in real-time. An integrated
Lyapunov analysis is conducted to ensure the closed-loop system’s
stability and uniformly ultimately boundedness (UUB) of both the
tracking error and the torque estimation error in the controlled
exoskeleton. Experimental studies are performed with an able-
bodied human wearer by applying arbitrary torques on the
exoskeleton’s joints in order to evaluate the proposed autonomous
control strategy in online adjustment and personalization of the
locomotion.

Index Terms—Adaptable central pattern generators (ACPGs),
gait trajectory planning, time-varying bounded-gain adaptive
(TBA) disturbance observer, human-robot interaction (HRI),
autonomous nonlinear control

I. INTRODUCTION

M ILLIONS of people all over the world are currently ex-
periencing neurological impairments, including stroke,

spinal cord injury, multiple sclerosis, and cerebral palsy [1].
Assisting these individuals in daily living activities by robotic
systems (e.g., exoskeletons) will enhance their quality of life,
and facilitate rehabilitation. In comparison with traditional
physical therapies, powered exoskeletons have the ability to
provide frequent, consistent and long-term assistance with
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minimal engagement of a therapist [2]. This leads to a lower
cost and higher efficiency of task execution by accurately
rendering the required assistance level to any subject with spe-
cific neurological conditions. Moreover, precise measurements
of human limb movements can be collected for continuous
monitoring of the user’s condition by deploying embedded
sensors in the exoskeleton’s structure.

Due to the inability of passive orthoses to assist people with
movement disorders to realize an appropriate upright walking,
powered lower-limb exoskeletons (such as Indego [3], ReWalk
[4], and GEMS [5]) have been designed and fabricated as an
alternative solution [6]. Although these developed exoskele-
tons are now deployed in some clinical settings to assist and
rehabilitate people [6], a compliant interaction between the
robot and wearer is an issue that still needs to be resolved
[7]. To address this challenge, industrial exoskeletons such
as Honda SML [8], Samsung Electronics [9], and Keeogo
[10] have benefited from adaptive strategies to shape the
exoskeleton’s walking trajectories based on user-specific gait
patterns. However, these exoskeletons have not utilized any
online estimation of HRI in locomotion planning and they
were designed for assisting/rehabilitating only one single joint
(hip or knee). Control strategies for lower-limb exoskeletons
play the most critical role in providing safe and comfortable
interaction between the wearer and the robot, which are
divided into high-level and low-level categories. The motion
trajectory and sequence of locomotion are planned at the high
level (based on the user’s intention and motor capacity) and
are implemented at the low level using position, force or
impedance controllers. To date, some studies have developed
control schemes in both levels, while others focused only
on the low-level control design by employing pre-specified
reference gait trajectories [11], [12], [13].

Different nonlinear methods were proposed in the literature
for high-level motion planning of robotic systems, including
dynamic movement primitives (DMPs) and central pattern
generators (CPGs). DMPs were defined in [14] as a combina-
tion of several differential equations to mimic the stream of
movements captured from humans and animals. Researchers
employed DMPs for locomotion trajectory generation and
position/torque control of powered lower-limb exoskeletons
[15], [16], [17]. Yuan et al. [15] have recruited a point-attractor
DMP structure for the trajectory shaping of hip and knee
joints, augmented by reinforcement learning (RL) to update
the DMP parameters with the purpose of minimizing the error
between the target and actual trajectories [15]. With a similar
objective, the locally weighted regression (LWR) method was
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suggested in [16] to regulate the weights of basis functions in
the DMP dynamics. Huang et al. [17] developed another DMP
structure by embedding the HRI torque in the point-attractor
DMP dynamics to shape the pilot locomotion trajectory online.

CPGs are defined as connected networks that can produce
coordinated patterns of a rhythmic activity based on non-
oscillatory inputs [18], [19]. This dynamical system, inspired
by salamanders’ rhythmic motions, was suggested for robotic
systems by Ijspeert [20] in 2007. The inherent feature of CPGs
in generating oscillatory movements benefited the high-level
control of exoskeletons in several research studies [21]. Fang
et al. [22] used this mathematical tool to produce the desired
trajectories for the hip and knee joints of a 4-DOF exoskeleton,
where the CPG dynamic parameters were adjusted using a
genetic algorithm (GA) offline. Similar GA-based CPGs were
devised in [23] to generate rhythmic patterns for torque control
of the hip and knee joints in order to have steady-state walking
for a lower-limb exoskeleton. The knee stiffness was regulated
in terms of the normal ground reaction force by exciting two
stiffening CPG units [23]. Another offline trajectory regulation
was defined in [24] using Matsuoka-style CPGs in which the
HRI force was estimated by inverse dynamics analysis, and
two fuzzy-logic regulators identified appropriate exoskeleton’s
impedance (stiffness and damping). Gui et al. [25] utilized
able-bodied motion data to generate pre-specified trajectories
of the knee and hip joints taking advantage of CPGs and
admittance control to facilitate pre-specified flexibility in terms
of the measured electromyography (EMG) signals. A combi-
nation of functional electrical stimulation (FES) and torque
control of a lower-limb exoskeleton was suggested in [26] to
develop a hybrid rehabilitation system for the knee joint. Two
CPGs were used to generate fixed oscillatory knee movements,
which were then fed to the FES feedforward controller and
exoskeleton feedback controller to realize a rhythmic knee
motion [26].

According to differences between users in their functional
capacity and behavior, variations of their intention during the
task in each situation, and effects of environmental factors
(surface slope and condition), the online investigation of
physical human force/torque is highly demanded in realizing
safe and comfortable HRI [27], [28]. Thereby, determining the
interaction force/torque between the human and exoskeleton
is a crucial requirement and, at the same time, a technical
challenge for designing high-level motion planning and low-
level torque control. Estimating HRI torque using EMG signals
acquired from human muscles is an approach commonly
employed for this purpose [11], [25], [29]. Although human
torque can be estimated from EMG signals, the obtained
results suffer from considerable inaccuracy due to calibration,
muscle fatigue, electrode positioning and muscle-skin conduc-
tivity variation [16]. To overcome these issues, force/torque
sensors were utilized as an alternative solution in some re-
search work [30], [26], [31], [32]. Despite the accurate data
of these sensors, their cost and difficulty in embedding them
between the human body and exoskeleton drove researchers
and manufacturers to rely more on estimation methods instead
of direct measurement of the interaction force/torque. Dynamic
modeling of musculoskeletal systems was also utilized to

estimate the passive portion of the interaction torque [17],
[16], [24], [33]; however, its active part is either neglected or
estimated from force/torque measurements. To address these
measurement challenges autonomously, disturbance observers
were developed for online estimation of HRI torque [34],
[35], [36]. Pan et al. [34] designed a nonlinear model-based
observer to compensate for the external torque in their low-
level controller for trajectory tracking. In another study [35], a
nonlinear disturbance observer was investigated to estimate the
human torque, which was used in the proportional–derivative
(PD) torque control law of a knee-joint exoskeleton with
series elastic actuators (SEAs). A similar torque observer was
developed in [36] for the implementation of a sliding-mode
controller (SMC) in the low-level to track the response of an
admittance model.

In the present study, a novel nonlinear autonomous control
strategy is proposed to realize compliant, safe and case-
specific physical human-robot interaction (pHRI) for lower-
limb exoskeletons by integrating ACPGs and a time-varying
bounded-gain adaptive (TBA) disturbance observer. At the
high level of this strategy, new ACPGs are investigated to
shape rhythmic locomotion trajectories in real-time based on
the interaction between the human (wearer) and exoskeleton.
The initial gait trajectory is extracted from typical gait data of
able-bodied individuals and mathematically represented by an
eight-term expansion of the Fourier series. For the first time,
the nonlinear ACPGs’ dynamics is augmented by HRI torque
estimation in order to update the amplitude, frequency, and
phase of walking based on the wearer’s intention (physical
behavior). To this end, a new multi-layer TBA disturbance
observer is formulated to estimate HRI torque to be employed
in (a) the low-level torque controller for motion tracking,
and (b) the high-level CPG-based locomotion planning for
rendering human flexibility. The stability of this autonomous
pHRI system, and the uniform ultimate boundedess (UUB)
of trajectory tracking error and torque estimation error are
guaranteed through a comprehensive Lyapunov analysis. The
main contributions of this strategy over previous ones can be
summarized as:

• The HRI torque is employed in the defined nonlinear
CPG dynamics to generate adaptable reference trajecto-
ries for the gait cycles. Previous CPG-based controllers
[22], [23], [24], [25], [26] for lower-limb exoskeletons
have not taken HRI torque into account in their CPG
structures. This feature of the proposed strategy makes
the exoskeleton significantly compliant with the wearer’s
physical interaction and enhances safety by raising her/his
high-level authority in motion planning.

• The nonlinear multi-layer TBA disturbance observer is
designed to facilitate exoskeletons’ stability regarding the
UUB of both tracking and estimation errors. Previous dis-
turbance observer designs have not taken into account the
stability of the controlled system [34]. Other disturbance
observers [35], [36] have been developed for a single-
joint (knee) exoskeleton with a scalar dynamic model and
fixed adaptation gains that need to be determined through
trial-and-error. In this study, a TBA disturbance observer
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is developed for multi-DOF exoskeletons with a nonlinear
coupled matrix formulation. Moreover, a nonlinear adap-
tation is defined for automated online regulation of the
time-varying bounded gain in the observer’s structure to
facilitate smooth torque estimation. In comparison with
previous observers [35], [36], a first-order dynamics is
also employed in this scheme for intermediate variables of
the combined exoskeleton-human limb system to dimin-
ish undesired noise in these signals and avoid reflecting
it in the torque observation.

The rest of this paper is organized as follows. The nonlinear
dynamic model of the lower limb exoskeleton and the structure
of the ACPGs (high-level control) are presented in Sec. II.
The proposed TBA disturbance observer, the low-level torque
control strategy and the closed-loop system’s stability are
explained in Sec. III. The experimental evaluations of the
developed autonomous control scheme are presented in Sec.
IV and discussed in Sec. V. The concluding remarks are
provided in Sec. VI.

II. EXOSKELETON DYNAMICS AND ADAPTIVE
CPG-BASED ONLINE TRAJECTORY SHAPING

The nonlinear dynamics of a lower-limb exoskeleton shown
in Fig. 1 with n joints together with the human user is given
as

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τmot + τhum (1)

where q is the vector of exoskeleton joints’ position, Mq(q) is
the inertia matrix, Cq(q) is the matrix of Coriolis, centrifugal
and damping terms, Gq(q) is the vector of gravitational
torques, τcon is the exoskeleton’s motor torque, and τhum is
the human torque generated by his/her muscles’ contractions.

Property 1: The inertia matrix Mq is positive definite and
uniformly bounded such that there are a min-bound on the
minimum singular value and a max-bound on the maximum
singular value of this matrix [37]:

0 < M1 ≤ ∥Mq∥ ≤ M2 < ∞ (2)

where M1 and M2 are the uniform bounds, and ∥.∥ is the
induced norm. The matrix Ṁq − 2Cq is skew symmetric, and
the left side of (1) can be linearly parameterized [38], [39] as

Mq(q)ϕ1 + Cq(q)ϕ2 +Gq(q) = Yq(ϕ1, ϕ2, q, q̇)θq (3)

in which Yq is the regressor matrix defined in terms of known
variables including ϕ1 and ϕ2, and θq is the vector of unknown
parameters of the robot dynamics.

For the high-level control of the exoskeleton, a learning-
based locomotion path generation is developed by defining
an ACPG, as illustrated schematically in Fig. 2. To this
end, human physical behavior is taken into account during
the motion and interaction with the exoskeleton. In order to
interpret this behavior, the estimated HRI energy is defined
for each joint i as follows:

Pi(t) =

∫ t

0

τHRIi(t) q̇i(t) dt (4)

Fig. 1. The employed lower-limb exoskeleton (Indego by Parker Hannifin
Corporation), and joint consequences from the stance leg to the swing one
based on pinned (point-feet) model

where q̇i(t) is the velocity of the joint i = 1, ..., n, and τHRIi(t)
is the estimated value of the human torque on this joint of the
exoskeleton after applying a dead-zone function:

τHRIi =


τ̂humi

− τthr pos
for τ̂humi

> τthr pos

0 for τthrneg
≤ τ̂humi

≤ τthr pos

τ̂humi
− τthrneg

for τ̂humi
< τthrneg

(5)
in which τthr pos and τthrneg are the positive and negative
thresholds of this dead-zone for the estimated human torque
τ̂humi

. In other words, if human users apply any torque
larger than these thresholds, they will be able to modify the
locomotion trajectory’s characteristics as explained below.

Suppose that both τHRIi and q̇i in (4) are either positive or
negative. In this case, the operator applies a torque/force in
the same direction as the joint’s motion by injecting energy
into the system (Ṗi(t) > 0) to accelerate this movement.
On the other hand, Ṗi(t) < 0 implies dissipating energy by
opposing torque/force of the human user with respect to the
motion. Accordingly, the proposed ACPG dynamics for the
phase θi(t), frequency ω(t) and amplitude µ(t) of locomotion
trajectories is formulated as a coupled system of nonlinear
oscillators as

θ̇i(t) =ω(t) +

mi∑
j=1

γij(Ṗi − Ṗj)

+

mi∑
j=1

vij sin(θi(t)− θj(t)− ϕij)

ω̈(t) =βω(
βω
4
(Ω +

n∑
k=1

ψkPk − ω(t))− ω̇(t))

µ̈(t) =βµ(
βµ
4
(A+

n∑
k=1

λkPk − µ(t))− µ̇(t))

(6)

in which mi is the number of adjacent joints to the joint
i, and n is the number of all joints. γij , ψk and λk are
constant factors of HRI energy effect on phase, frequency and
amplitude variations of locomotion, respectively. vij , βω and
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βµ are other constant parameters of this dynamics. The desired
trajectory for the joint i of the exoskeleton is defined as

qdi
(t) = µ(t)(ai0 +

Ni∑
l=1

(ail cos(lθi(t)) + bil sin(lθi(t))) (7)

where ail and bil are the coefficients of Fourier series (with
Ni terms) to initially match the desired trajectory of the joint
i to a typical walking trajectory, as demonstrated in Fig. 2.
The amplitude and phase of these oscillatory motions are
updated in real-time by µ(t) and θi(t) obtained from (7). Note
that the generated reference trajectory in (7) is continuous in
time and differentiable, which are beneficial features for the
control scheme presented in the next section. To perceive the
proposed adaptive autonomous trajectory shaping (6) and (7),
the following characteristics can be mentioned.

A coupling between all joints is facilitated, having the
same principal frequency of ω(t) to synchronize generated
locomotion trajectories. The scaling factor of these trajectories
is specified to be the same µ(t), while the initial coefficients
of the Fourier series ail and bil for each joint i are determined
from typical experimental data. This mutual adjustment of
ω(t) and µ(t) for all joints guarantees synchronized multi-
DOF locomotion and provides the appropriate overground
motion of the feet in the Cartesian space.

The HRI energy Pk(t) injected to or dissipated from the
system by the wearer through each joint k of the exoskeleton
can affect the frequency ω(t) and the amplitude coefficient
µ(t) of locomotion trajectory. Based on this feature, human
users can physically demonstrate their compliance or resis-
tance by applying accelerating or decelerating torques with
respect to the implemented gait trajectories of all n joints of
the exoskeleton. This effect can be regulated by ψk and λk as
the authority factors of each joint torque over the generation
of the overall gait pattern.

The other adjustable coupling in the proposed CPG-based
trajectory shaping is the online variation of phase lead/lag
between adjacent joints. The difference between the rate of
exerted energy by the human user on two adjacent joints
(Ṗi− Ṗj) will affect the phase difference between these joints
(i and j). In this regard, the human behavior on accelerat-
ing/decelerating the motion of one joint i with respect to its
adjacent joints is perceived by the HRI energy estimation Pi.
Another harmonic term for connecting ACPGs correspond to
adjacent joints is facilitated by sin(θi(t)− θj(t)− ϕij) based
on the scheme presented in [40]. The coefficients γij and vij
specify the gains of this synchronized phase variation for each
joint.

Regarding the requirement of torque estimation τ̂humi in the
proposed ACPG formulations (4), (5) and (6), a new adaptive
disturbance observer is defined in the next section together
with a nonlinear low-level controller for trajectory tracking.

III. TBA DISTURBANCE-OBSERVER-BASED CONTROL

In this section, an autonomous observer-based strategy is
developed for the low-level controller of the exoskeleton. In
this strategy, the human interaction torque is estimated via a
multi-layer TBA disturbance observer in order to be employed

in the high-level gait generation (4) and (6). At the same time,
this HRI torque estimation is also utilized in the low-level
control law for tracking the generated locomotion trajectory,
as seen in Fig. 2.

A. Controller and Observer Design

For the purpose of controlling motor torque and estimating
HRI torque, the tracking error eq , its dynamics ϵq and the
corresponding auxiliary variable q̇r are defined:

eq(t) = q(t)− qd(t)

ϵq(t) = ėq(t) + κ1eq(t)

q̇r(t) = q̇d(t)− κ1eq(t)

(8)

The proposed nonlinear trajectory tracking control law for the
exoskeleton’s motor torque is formulated as

τmot =Mq(q̈r − κ2ϵq) + Cq q̇r +Gq − τ̂hum (9)

in which κ1 and κ2 are positive constant gains. Substituting
the proposed controller (9) in the user-exoskeleton dynamics
(1) leads to the following closed-loop dynamics:

Mq ϵ̇q = −κ2Mqϵq − Cqϵq − τ̃hum (10)

where τ̃hum = τhum − τ̂hum is the HRI torque estimation
error. Now, the multi-layer TBA disturbance observer is for-
mulated in a couple of steps for estimation of τ̂hum. The final
adaptation law is proposed in (31), and required intermediate
variables, their boundedness and mathematical derivations are
mentioned as follows. Considering a state variable as z1 = ϵq ,
the dynamics (10) can be presented as

ż1 = Ψ(z1, τ̂hum) + χ τhum (11)

in which

Ψ = −κ2z1 +M−1
q Cqz1 −M−1

q τ̂hum , χ =M−1
q (12)

Then, the filtered variables z1f , Ψf and χf are defined, having
ξ > 0, as

ξż1f + z1f = z1 , z1f (0) = 0

ξΨ̇f +Ψf = Ψ , Ψf (0) = 0

ξχ̇f + χf = χ , χf (0) = 0

(13)

Lemma 1: According to the system dynamics (11) and the
filters (13), the manifold [(z1−z1f )/ξ−Ψf−χf τhum] remains
bounded for any finite positive value of ξ and converges to zero
if τhum is constant or ξ −→ 0.

Proof: Considering (13), the filter 1/(ξs + 1) is applied
on (11) as

1

ξs+ 1
[ż1] =

1

ξs+ 1
[Ψ] +

1

ξs+ 1
[χ τhum] (14)

Based on (13) and the swapping lemma [41] for [1/(ξs +
1)][χ τhum], one can rewrite (14) as

z1 − z1f
ξ

= Ψf + χf τhum + v1 (15)

where the residual term v1 is obtained as a filtered version of
τ̇hum:

v1 =
ξ

ξs+ 1
[χ τ̇hum] (16)
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Fig. 2. Autonomous two-level control strategy for lower-limb exoskeletons: Adaptive CPG-based gait trajectory update in high-level and nonlinear torque
control in low-level, employing an adaptive HRI torque observer

As a result, when τhum is constant or ξ = 0, it is concluded
that v1 = 0. Moreover, since χ = M−1

q and due to Property
(2) of the inertia matrix, χ is bounded. Consequently, its
filtered version χf is also bounded, i.e., ||χf || ≤ ρχ = 1/M1.
Regarding the boundedness of the human torque ||τhum|| ≤ ρτ
and its time derivative ||τ̇hum|| ≤ ρτd , v1 is bounded for any
finite value of ξ > 0, i.e., ||v1|| ≤ γ1.

The dyanmics of two new intermediate variables [42] are
defined for the TBA observer design as

Ḟ1 = −cF1 + χT
f χf , F1(0) = 0

Ḟ2 = −cF2 + χT
f

(
z1 − z1f

ξ
−Ψf

)
, F2(0) = 0

(17)

in which c is a positive constant. Two other intermediate
variables are also formulated in terms of F1 and F2 and the
estimated HRI torque τ̂hum as

T1 = F1 τ̂hum − F2

T2 = χT
f χf τ̂hum − χT

f

(
z1 − z1f

ξ
−Ψf

)
(18)

Lemma 2: The defined variables in (18) can be expressed
as

T1 = −F1 τ̃hum + v2

T2 = −χT
f χf τ̃hum − χfv1

(19)

where v1 was defined in (16) and v2 is presented as

v2 =

∫ t

0

e−c(t−r)χT
f (r)[χf (r)(τhum(t)−τhum(r))+v1(r)]dr

(20)
This residual error is bounded as ||v2|| ≤ γ2 = (2ρ2χρτ +
ρχγ1)/c in which ||χf || ≤ ρχ, ||τhum|| ≤ ρτ and ||v1|| ≤ γ1.

Proof: The time integration of (17) results in

F1 =

∫ t

0

e−c(t−r)χT
f (r)χf (r) dr

F2 =

∫ t

0

e−c(t−r)χT
f (r)χf (r)

(
z1 − z1f

ξ
−Ψf

)
(r) dr

(21)

Employing (15) and substituting (21) into (18) leads to Eq.

(19) where the boundedness of v2 is obtained as

∥v2∥ ≤
∫ t

0

e−c(t−r)
∥∥χT

f (r)
∥∥ [∥χf (r)∥ ∥τhum(t)− τhum(r)∥

+ ∥v1(r)∥]dr

≤
∫ t

0

(
2ρ2χρτ + ρχγ1

)
e−c(t−r)dr

≤
2ρ2χρτ + ρχγ1

c
= γ2

(22)

Lemma 3: The matrix χf is persistently exciting (PE) as∫ t

0
χT
f (r)χf (r) dr ≥ ηχI for t > 0 and ηχ > 0, and the matrix

F1 in (17) is positive definite, i.e., λmin(F1) ≥ ηF > 0 for
t > 0.

Proof: Based on the definition of the regressor matrix χ =
M−1

q and Property (2) of the inertia matrix Mq , and due to the
employed low-pass filter (13) with the stable minimum phase
transfer function 1/(ξs+ 1) [43], one can write: ||χf ||min ≥
(1/M2). As a result:∫ t

0

χT
f (r)χf (r) dr ≥

∫ t

0

∥∥χT
f

∥∥
min

I ∥χf∥min I dr

≥
∫ t

0

(
I

M2

)(
I

M2

)
dr =

(
t/M2

2
)
I

(23)

Considering ηχ = t/M2
2, the first proposition in Lemma 3 is

proven. Now, the variable matrix F1 in (21) is analyzed as

F1 ≥
∫ t

0

e−c(t−r)
∥∥χT

f

∥∥
min

I ∥χf∥min I dr

≥
(

I

M2
2

)∫ t

0

e−c(t−r) dr =

(
1− e−ct

cM2
2

)
I

(24)

Having ηF = (1− e−ct)/(cM2
2), the positive definiteness of

F1 with the minimum singular value of ηF is guaranteed.
The nonlinear dynamics of time-varying adaptation gain for

the observer is formulated as

˙Hτ = cHτ − Hτχ
T
f χfHτ (25)

According to the fact that (d/dt)HτH −1
τ = ˙HτH −1

τ +
Hτ (d/dt)H −1

τ = 0 and using (25), (d/dt)H −1
τ =
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−cH −1
τ + χT

f χf and thereby:

Hτ =

[
e−ctH −1

τ (0) +

∫ t

0

e−c(t−r)χT
f (r)χf (r) dr

]−1

=
[
e−ctH −1

τ (0) + F1

]−1

(26)

Regarding (26), the gain matrix Hτ exponentially converges
to F−1

1 , i.e., HτF1 −→ I .
Lemma 4: The adaptation gain matrix Hτ is bounded with

lower and upper bounds.
Proof: To investigate the boundedness of the adaptation

gain Hτ , Eq. (26) is rewritten as

H −1
τ (t) = e−ctH −1

τ (0) + F1(t) (27)

Based on Lemma 3 and positive definiteness of F1(t),

H −1
τ (t) ≥ ηF I (28)

On the other hand, due to the upper boundedness of ||χf || ≤
ρχ, one can conclude from (27) that:

H −1
τ (t) ≤ H −1

τ (0) + ρ2χ

∫ t

0

e−c(t−r)I dr ≤ H −1
0 +

ρ2χ
c
I

(29)
Therefore, the boundedness of time-varying observer gain is
perceived from (28) and (29) as

R1I ≤ Hτ (t) ≤ R2I (30)

in which R1 = 1/(λmin(H
−1
0 ) + ρ2χ/c) and R2 = 1/ηF are

its upper and lower bounds, respectively.
The adaptation (estimation) law for the HRI torque in this

nonlinear TBA observer is defined as

˙̂τhum = −ΓτHτ (T1 + αT2) (31)

where Γτ > 0 and α > 0 are the constant scaling factors.

B. Unified Stability Proof

Theorem: Combining the control law (9) that dictates the
motor torque and the observer estimation of the HRI torque
(31) for the exoskeleton, the convergence of tracking error ϵq
and the torque estimation error τ̃hum to a compact region is
achieved. In other words, the system response is uniformly
ultimately bounded (UUB) in tracking the desired locomotion
trajectory and estimating the bounded HRI torque.

Proof: The following Lyapunov function candidate is
utilized to ensure the stability of controlled exoskeleton:

V (t) =
1

2

(
ϵTq Mqϵq + Γ−1

τ τ̃ThumH −1
τ τ̃hum

)
(32)

and its time derivative is obtained as

V̇ (t) = ϵTq Mq ϵ̇q + Γ−1
τ τ̃ThumH −1

τ (τ̇hum − ˙̂τhum)

+
1

2

(
ϵTq Ṁqϵq + Γ−1

τ τ̃Thum
˙H −1
τ τ̃hum

) (33)

Substituting the closed-loop dynamics (10), the adaptation
gain’s time variation (25) and the observer formulas (19) and

(31) for the HRI torque into (33) results in

V̇ (t) =− κ2 ϵ
T
q Mqϵq − ϵTq τ̃hum +

1

2
ϵTq (Ṁq − 2Cq)ϵq

+ Γ−1
τ τ̃ThumH −1

τ

(
τ̇hum

+ ΓτHτ (−F1 τ̃hum + v2 − αχT
f χf τ̃hum − αχfv1)

)
+

1

2
Γ−1
τ τ̃Thum(−cH −1

τ + χT
f χf )τ̃hum

(34)

Considering Property 1 of the exoskeleton dynamics, and the
lower and upper bounds of matrices and vectors, one can
obtain the following upper bound of V̇ (t):

V̇ (t) ≤− Dϵ ∥ϵq∥2 − Dτ1 ∥τ̃hum∥2

+ ∥ϵq∥ ∥τ̃hum∥+ Dτ2 ∥τ̃hum∥
(35)

in which the gains Di are defined in terms of matrices’ and
vectors’ norms as

Dϵ = κ2 λmin(Mq) = κ2M1

Dτ1 = ηF +
α

M2
2

+
c

Γτ R2
− 1

Γτ M2
1

Dτ2 =
ρτd

Γτ R1
+ γ2 +

αγ1
M2

1

(36)

As a result, the time derivative of the Lyapunov function is
negative definite V̇ (t) < 0 outside of this compact region:

∥ϵq∥ ≤ −B2 +
√

B2
2 + 4B1B3

2B1

∥τ̃hum∥ ≤ −B5 +
√

B2
5 + 4B4B6

2B4

(37)

where B1 = Dϵ, B2 = ∥τ̃hum∥, B3 = Dτ2 ∥τ̃hum∥, B4 =
Dτ1 , B5 = ∥ϵq∥+ Dτ2 and B6 = Dϵ.

According to the above analysis, the positive definite Lya-
punov function declines outside of the bounded region intro-
duced in Eq. (37). Therefore, the convergence to this compact
region is achieved whose dimensions are obtained regarding
the bounded time derivative of the HRI torque (τ̇hum). This
guarantees the UUB of the system response in terms of the
bounded trajectory tracking error ϵq (and consequently eq)
and the bounded HRI torque estimation error τ̃hum in (37).
Thereby, the closed-loop exoskeleton system interacting with
the human user is stable under the assumption of bounded-
varying interaction torque (||τ̇hum|| ≤ ρτd ) employing the
proposed TBA disturbance-observer-based nonlinear strategy
for the low-level control.

IV. EXPERIMENTAL STUDIES

In order to evaluate the performance of the developed
autonomous control scheme and assess its adaptive features
in high and low levels, comprehensive experiments were
conducted on the Indego exoskeleton (Parker Hannifin Cor-
poration) as the testbed. Two able-bodied wearers (33 and
27 years of age) wore the exoskeleton as shown in Fig. 3
and performed the locomotion experiment with a minimum
duration of 100 sec. To implement the proposed controller,
the major computational effort consists of the time integration
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(a) (b)
Fig. 3. Indego lower-limb exoskeleton worn by two able-bodied users
for overground walking: (a) first participant (33 year-old) and (b) second
participant (27 year-old)

of the CPG dynamics (6) and Eqs. (17), (25), (31) in the distur-
bance observer structure, as well as performing the required
calculations to command the control law (9) for each joint
of the exoskeleton. The proposed strategy was implemented
in the real-time MATLAB-Simulink environment running on
a PC (Intel Core i7-8650U CPU @ 1.90GHz and 8.00 GB
RAM) and required communications (between sensors, PC,
and actuators), and the required computations were conducted
with the sampling time of 5 msec. Preliminary tests were first
conducted to identify the passive dynamic parameters of the
combined exoskeleton-human limb system to implement the
proposed torque control law accurately.

The initial hip and knee trajectories were extracted from
motion capture data of typical human locomotion in the
literature [44], [45]. To acquire this experimental data, the
subject walked for at least 20 sec in each trial for a total of
approximately 1 hour and 10 min (with more than 3600 gait
cycles). A marker-based motion capture system was employed
to obtain 2D joint angles and velocities. A Fourier analysis was
conducted on the acquired trajectories to obtain the minimum
adequate number of series and identify the best values of
corresponding coefficients. Eight terms of the Fourier series
(Ni = 8 in (7)) were sufficient to estimate these hip and
knee motions with the sine and cosine functions. Attained
coefficients of the Fourier series for the hip and knee motions
based on this analysis are listed in Table I, which resulted in
estimation of the typical gait [44], [45] with more than 98%
accuracy for each joint.

Parameters and initial values of the proposed ACPG dy-
namics for the hip and knee joints of both legs are listed in
Table II. The initial phase difference of π rad was considered
between the left and right legs’ motions, as is the case for
typical bipedal locomotion. The estimated HRI torques of all
joints, determined based on the TBA observer law (31) and the
defined dead-zone function (5), are shown in Fig. 4(a) for the
first wearer (33 year-old participant). The corresponding HRI

Hip initial motion Knee initial motion

C
oefficients

of
Fourier

series

a0 = 10.13
a1 = 21.80, a2 = −5.07
a3 = −0.49, a4 = −0.52
a5 = 0.20, a6 = −0.07
a7 = −0.09, a8 = −0.09
b1 = −10.77, b2 = −2.21
b3 = 1.86, b4 = 0.41
b5 = 0.20, b6 = −0.06
b7 = −0.05, b8 = −0.05

a0 = 22.44
a1 = −2.93, a2 = −14.32
a3 = 0.05, a4 = −0.38
a5 = 0.36, a6 = 0.20
a7 = −0.01, a8 = 0.03
b1 = −26, 48, b2 = 9.81
b3 = 4.44, b4 = 1.87
b5 = 0.59, b6 = −0.15
b7 = −0.08, b8 = −0.07

TABLE I
COEFFICIENTS OF THE FOURIER SERIES (7) FOR THE HIP AND KNEE

INITIAL MOTIONS BASED ON THE ANALYSIS OF NORMAL GAIT
TRAJECTORIES

Hip and knee CPGs’ parameters

Dynamic parameter
values

γh−h = 0.0075, γh−k = 0.0075,
γk−h = 0.0075, βω = 10π, βµ = 10π,
ψ = 0.0045 λ = 0.006, Ω =

π

2
, A = 1

Initial values θright(0) = 2 rad, θleft(0) = 2 +
π rad, ω(0) = 1.26 rad/s, µ(0) = 1

TABLE II
PARAMETER AND INITIAL VALUES OF THE PROPOSED ACPGS DYNAMICS

(6) FOR THE HIP AND KNEE JOINTS

energy transferred through each joint and obtained by (4) and
the total value of this energy are demonstrated in Fig. 4(b) for
this experiment. As seen, this wearer applied the major torques
over the first four steps (with a maximum magnitude of 7.1
N.m) to personalize the gait motion. According to Figs. 4(a)
and 4(b), he injected most of the HRI energy by the right hip
torque and then the right knee torque to accelerate the motion,
while he applied decelerating torques on the left knee joint to
control the gait. The effect of this interaction on the variation
of the total locomotion frequency ω(t) is depicted in Fig. 4(c).
Rapid online response of the ACPG (6) to these interactions
was achieved during each stride. The steady-state magnitude
of the locomotion frequency in Fig. 4(c) had a 42% increase
with respect to its initial magnitude of 1.17 rad/s and finally
settled on 1.66±0.02 rad/s.

Due to this real-time update of ACPG and the obtained
Fourier coefficients in Table I, the desired locomotion trajec-
tories, generated by (7) for the right knee and hip joints, are
shown in Fig. 5(a) together with the exoskeleton response. The
first human user applied the interaction torques in sequential
steps (Fig. 4(a)) to modify and increase the gait amplitude
(step size) by 15% (Fig. 5(a)) in addition to the walking fre-
quency (Fig. 4(c)), which provided a synchronized variation of
the generated bipedal locomotion cycles. The proposed TBA
disturbance-observer-based torque controller could facilitate
an appropriate convergence of joint positions to the desired
gait trajectories with a small bounded tracking error eq in the
steady-state response (less than 1 degree for each joint), as
presented in Fig. 5(b). This is in accordance with the stability
analysis in Sec. III-B and implies an appropriate estimation of
the HRI torque with a small bounded error τ̃hum, employing
the disturbance observer defined in Sec. III-A.

In order to elaborate more on the autonomous shaping of
locomotion, the reference trajectory and phase variation of the
right hip with respect to the left hip are plotted in Fig. 6 for
the first wearer. The increase of 15% in total gait amplitude



IEEE/ASME TRANSACTIONS ON MECHATRONICS: PREPRINT VERSION. ACCEPTED NOVEMBER 2021 8

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

8

(a)

0 10 20 30 40 50 60 70 80 90 100

-100

0

100

200

300

400

(b)

0 10 20 30 40 50 60 70 80 90 100

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(c)

Fig. 4. Estimated HRI (a) torque and (b) energy for different joints, and (c)
total frequency of the locomotion, obtained from the proposed ACPG in the
presence of HRI for the first wearer

µ(t) and its convergence to a steady-state response, together
with the relative motion adjustments of adjacent joints, are
illustrated in these diagrams. Accordingly, the desired ranges
of motion of the knee and hip joints were amended to 78.7
and 61.2 degrees, respectively, from 68.4 and 53.2 degrees.
As shown in Fig. 6, an average phase lead of 13.0 degrees
in the right hip motion was eventually obtained over the left
hip motion in addition to their initial phase difference of 180
degrees, due to the asymmetric rendering of the interaction
torques (Fig. 4(b)).

For the second wearer (27 year-old participant), the esti-
mation of HRI torques and corresponding HRI energy (4)
transferred through different joints are represented in Figs. 7(a)
and 7(b). This wearer exerted the major torques over the first
six steps (with a maximum magnitude of 3.61 N.m) to adjust
his locomotion pattern. As observed in Figs. 7(a) and 7(b), this
wearer transferred most of the energy through the left hip and
then the right hip to accelerate the gait. The variation of the
locomotion frequency ω(t) in response to this HRI is shown
in Fig. 7(c) with a steady-state variation of 53% compared
to its initial magnitude of 1.17 rad/s. The generated reference
trajectory and phase variation of the right hip with respect to

the left hip is illustrated for the second participant in Fig. 8.

V. DISCUSSION

Due to the adaptiveness of the proposed CPG-based control
strategy, the obtained locomotion trajectories were personal-
ized for the two participants engaged in this study. As seen in
Fig. 4, the first wearer (33 year-old participant) injected 73%
of accelerating energy by the right hip torque and 24% by
the right knee torque. However, the second wearer (27 year-
old participant) modified his gait frequency by transferring
69% and 29% of positive HRI energy via the left hip and
right hip joints, respectively, to accelerate the locomotion, as
demonstrated in Fig. 7. This implies a significant difference
in HRI over hip joints of the lower-limb exoskeleton between
the first and second wearers, in regard to the modification
of the locomotion pattern. In addition to this HRI difference
in various joints, the second wearer came up with a final
locomotion frequency with 11% more increase from its initial
value in comparison with the one achieved by the first wearer.
Furthermore, the second wearer made this gait adjustment in
23 sec (over 6 steps), which was 35% longer than the time
duration of 15 sec spent by the first wearer to modify his
walking pattern (over 4 steps).

An analysis of the relative joint trajectories and phase
variations in Figs. 6 and 8 can provide additional insight
into this personalized gait amendment. The second participant
decided to raise his steady-state gait amplitude µ(t) by 13%
(Fig. 8) which is slightly less than the 15% increment provided
by the first participant (Fig. 6). This difference was due to the
larger height (longer body segments of the lower limbs) of
the first participant and their personal preferences for the step
size in their natural walking. The other significant differences
between two wearers’ performance achieved by employing the
proposed intelligent control strategy were the synchronization
and phase shifts between the hip and knee joints. Figure 8
shows that the second participant made an average phase lag
of 4.8 degrees in the right hip motion relative to the left hip;
however, the first participant made an average phase lead of
13.1 degrees between these joints’ motions (Fig. 8). As a result
of this difference, the distortion of the relative trajectories in
Fig. 6 for the first wearer was more toward the bottom right
as compared to the variation in Fig. 8 for the second wearer,
which was more toward the top left. This is due to rendering
most (73%) of the accelerating interaction torques on the right
hip by the first wearer (Fig. 4(b)) rather than the left hip that
was employed for applying 69% of the accelerating torques
by the second wearer (Fig. 7(b)). This performance implies
adjustable flexibility in locomotion speed and amplitude, and
modification of the synchronization between different joints
using the proposed adaptive CPG-based control strategy for the
lower-limb exoskeleton in response to the estimated interaction
torques.

VI. CONCLUSION

A new autonomous control scheme was developed in this
work to facilitate flexible and personalized locomotion based
on HRI for lower-limb exoskeletons. At the higher level of
this scheme, ACPGs were proposed to update the frequency
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Fig. 5. (a) Desired and actual trajectories, (b) and (c) tracking errors of the knee and hip joints for the right leg in the presence of HRI for the first wearer

Fig. 6. Trajectory and phase variation of the right hip with respect to the
left hip for the first wearer

and amplitude of desired gait trajectories for all exoskeleton
joints. Simultaneously, the ACPGs were responsible for syn-
chronizing adjacent joints’ motions by adjusting their phase
differences. These adaptations were defined based on the
estimation of HRI torque and its corresponding energy.

For the low-level control, a multi-layer TBA disturbance
observer integrated into a nonlinear torque controller was in-
vestigated to estimate and compensate for the HRI interaction
torque and to track the desired locomotion trajectories. In
addition, this torque estimation was also employed in high-
level CPG-based motion planning. The exoskeleton’s closed-
loop stability was ensured via a Lyapunov analysis such
that the UUB of the trajectory tracking error and the torque
estimation error was guaranteed.

The developed autonomous control strategy was evaluated
experimentally using the Indego exoskeleton (Parker Hannifin

Corporation) and having an able-bodied wearer. Smooth and
rapid shaping of the gait trajectories was achieved using the
proposed ACPGs in real-time for various arbitrary interactions
over different joints. Wearers amended the locomotion fre-
quency and amplitude by up to 53% and 15%, respectively,
and modified the phase synchronization between hip motions
by up to 13% due to their individual preferences. Appropriate
tracking performance of the nonlinear torque controller with
a small bounded error (less than 1 degree for each joint) was
obtained due to the precise estimation of the interaction torque
via the proposed TBA disturbance observer.
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