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Abstract—In image-guided surgery, deformation of soft tissues
can cause substantial errors in targeting internal targets, since
deformation can affect the translation of preoperative image-
based surgical plans during surgery. Having a realistic tissue
deformation simulator could enhance the accuracy of internal
targets localization by giving an accurate estimation of the
deformation applied to a preoperative model of the organ. A
key challenge is to address the sim-to-real gap between the
simulator and the actual intraoperative behaviour of the tissue.
The sim-to-real transfer challenge is addressed by formulating
the problem as a probabilistic inference over a low-dimensional
representation of deformed objects. The proposed method utilizes
a generative variational autoencoder structure based on graph
neural networks (GNN-VAE) to generate a probabilistic low-
dimensional representation of the outputs of a physics-based
simulator. To match simulation data to real data, the resultant
low-dimensional distribution (i.e., prior distribution) is updated
iteratively using an Ensemble Smoother with Multiple Data
Assimilation (ES-MDA). The advantages of the proposed method
are 1) it only uses simulation data for training the GNN-VAE,
and no retraining of GNN-VAE is required intraoperatively, 2)
it does not require estimating the mechanical properties of the
tissue it is simulating, and 3) is able to work with any physic-
based simulator. The proposed framework was verified both in
experimental and simulation studies and showed it can reduce
the registration error in tissue deformation.

I. INTRODUCTION

As part of surgical procedures and interventions such as re-
section, ablation, biopsy, and brachytherapy, it is important to
track the intraoperative positions of lesions and other relevant
internal structures. For instance, low-dose-rate, permanent-
seed (LDR-PS) breast brachytherapy (a representative surgery
in this paper) is a form of cancer treatment that involves
the deposition of radioactive seeds into or around tumours or
seromas (hollowed-out tumours). During breast brachytherapy,
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displacements of up to 7 mm are common in the target area
[1], [2]. Off-target implantation of radioactive seeds results
in insufficient radiotherapy and an increased risk of cancer
recurrence. Ultrasound imaging (US) is commonly used to
identify and track lesions and targets during interventional
procedures; however, their accuracy is not sufficient. Usually,
US images have a lot of noise and artifacts and, especially in
the case of breast LDR-PS treatment where various targets are
difficult to discern solely based on image characteristics [3]. It
is challenging to locate preoperatively identified targets quan-
titatively in the intraoperative physical situation because the
organ/breast’s shape changes between preoperative imaging
and intraoperative situations [4], [5]. To improve the fidelity of
breast brachytherapy and to improve target tracking accuracy
during surgery, it is essential to use intraoperatively available
data to accurately deform the preoperative model of the organ
to simulate the deformation during surgery.

Finite Element Methods (FEM) are used for tissue sim-
ulation but complex FEMs are computationally expensive.
Simulation Open Framework Architecture (SOFA) is an open-
source framework that includes FEM models for medical
applications, which reduces computational costs at the expense
of accuracy [6]. Neural networks trained from synthetic FEM
simulations can learn complex FEM behaviour, but there is
a sim-to-real gap [7]. Fine-tuning with real-world data can
improve the model, but requires a large amount of recorded
data and cannot be done online [8], [9]. To resolve the problem
of simulation-reality mismatch, researchers have used deep
learning models to simulate deformable objects using visual
information from deformed tissue during surgery [10]–[12].
However, this method has limitations as it cannot provide
information on the internal structure of tissues/organs, which
is necessary for many surgical procedures [12].

sim-to-real approaches have been used in physics-based
simulators in order to mitigate model mismatches by incor-
porating real-world data. Several methods have been proposed
to address the sim-to-real gap, primarily based on two main
categories: 1) simulation parameter inference using real data
to make simulations realistic [13]–[17], and 2) residual models
that an auxiliary model attempts to rectify the sim-to-real
mismatch [9], [18].

1) Parameter inference: The authors of [15]formulate state
space equations of deformable objects using distribution rep-
resentation, which allows for better incorporation of state
observations in Bayesian parameter estimation. In [16] differ-
entiable point cloud sampling and differentiable simulation are
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used to perform simulation parameter inference. The parameter
inference approaches estimates model parameters offline using
recorded trajectories, which can be computationally challeng-
ing and limited in usefulness for real-time registration in
surgical applications [13]–[17].

2) Residual models: Combining the base model either a
physics-based or off-line learned model with a residual model
is also beneficial to resolve the sim-to-real gap [18]–[21]. For
complex deformable objects, online learning a residual model
which is data-efficient has been a challenge in the literature.
[18] proposed a linear residual model based on local Jacobian
estimation to rectify the out-put error of a GNN when it
is used to predict the state of a cable. In order to make
a jacobian prediction, it requires access to all states of the
system, and the deformation must be small. Because of these
two drawbacks, local Jacobian learning is not applicable to the
entire mesh update in LDR-PS. The author in [22] developed
an online iterative residual framework to update the output
of Position-Based Dynamics (PBD) simulation based on 3D
visual perception. However, in [22], the proposed framework
has not been tested for the ability to predict deformations of the
internal points of the tissues. In [23], the KF-ADMM method
registers the simulation output of a physics-based simulator
with real data taken from the surface of the tissue using a
Kalman filtering framework. In this work instead of learning
an explicit residual model, the effect of unmodeled dynamics
terms is formulated as zero-mean Gaussian distribution and
overcome using a Kalman filtering framework. zero-mean
Gaussian is a restrictive assumption due to the nonlinearity
of tissue dynamics.

A. Objective and Contributions

This paper focuses on addressing the challenge of sim-
to-real transfer of entire deformable objects using an online
residual model. The proposed method refines the prediction
obtained from a physics-based tissue simulator during the
online phase, without requiring pre-collected real-world data
to learn the residual model. Additionally, the method can
compensate for large prediction errors. As a solution to this
challenge, we propose a sim-to-real transfer framework that
utilizes deep learning networks for representing deformed
meshes in a lower-dimensional space, as well as an ensemble
method for assimilation of data in order to bring real-world
partial measurements of the simulator’s output together with
the simulator’s predictions. The current paper contributions are
compared with the various sim-to-real methods in Tabel I.

The proposed sim-to-real framework utilizes a variational
auto-encoder (VAE) with graph-neural networks in the encoder
and decoder parts to learn the probability distributions of low-
dimensional latent variables. In this paper, VAE is preferred
over GAN, since it is able to learn the underlying probability
distribution of the data which is necessary in data assimilation
task and it is more suitable for small datasets. Based on real
measurements taken from the surface of the tissue, this frame-
work uses a data-assimilation method to derive latent-space
variables. The GNN-VAE is trained on a synthetic dataset of
deformed meshes obtained from various FEM simulations. The

proposed method updates the prior distribution of latent vari-
ables iteratively based on the difference between the simulated
mesh and the real tissue’s surface deformations observed by
external trackers during the operation. An ensemble smoother
with multiple data assimilation (ES-MDA) is used to update
the prior distributions, and the decoder is used to reconstruct
the updated deformed mesh after each iteration of ES-MDA.

In summary, the contributions of this study are as follows:

1) Real-time registration of deformed meshes derived from
physics-based tissue simulators (such as FEM) is ac-
complished through deep learning and data assimilation
methods.

2) With the data-assimilation method integrated into latent
space, the entire mesh structure is updated efficiently in
a timely manner.

3) An ensemble smoother with multiple data assimilation
(ES-MDA) is used to implement the data assimilation
and integrate discrete data points from the tissue surface
into simulation results.

4) To enhance the time efficiency of ES-MDA, the standard
ensemble generation and forecast steps are replaced with
the forward step of GNN-VAE networks. This substi-
tution enables faster real-time registration of deformed
meshes obtained from physics-based tissue simulators.

5) The proposed sim-to-real framework does not require
observation of the entire tissue since it only requires
a few discrete measurements on its surface. The latent
space does not require separate encoding of measure-
ments.

The remaining of the paper is organized as follows: In
Section II, our proposed sim-to-real framework and all its
component will be explained comprehensively. In Section III,
the training process of GNN-VAE will be explained and the
accuracy of the method in the simulation will be investigated.
Later, in Section IV, the performance of the method will be
demonstrated experimentally and a conclusion in Section V
will complete the paper.

II. THE PROPOSED SIM-TO-REAL FRAMEWORK

The flowchart of the proposed method is shown in Fig. 1. In
the proposed method, the output of a physics-based deformable
object simulator, which is chosen to be the Finite Element
Method (FEM) in this paper, is the input to the sim-to-real
module. FEM is implemented using the FEBio package, and
it can be replaced with any other tissue simulator. The output
of the sim-to-real module can be used as the input for FEM
at the next time step.

The sim-to-real module can be seen as a Data Assimilation
(DA) module that approximates the true states/parameters of
the physical system by combining real-world observations with
a theoretical model. Ensemble-based methods are among the
most successful and efficient techniques currently available for
DA. To alleviate the burden of high-dimensional calculations
that would be necessary, e.g., when updating a large mesh
model of soft tissue, DA must be performed in a lower-
dimensional space that still encapsulates the principal features



3

TABLE I: Summary of characteristics of sim-to-real methods.

Paper Sim-to-real approach Offline-learning Online-update Linear/Non-Linear Application
[15], [16] Parameter inference ✓ × Non-linear General

Linear update Cabel[18] Residual models ✓ ✓ (Small deformation) (full state observable)
[22] Residual models × ✓ Linear update Tissue Surface
[23] Residual models × ✓ Linear update Entire tissue

Proposed method Residual models ✓ ✓ Non-linear update Entire tissue

of the original mesh. This lower-dimensional space is called
the latent space.

In ensemble-based DA methods, hundreds of realizations
of states/parameters must be generated and fed to the FEM to
estimate the prior distributions of states/parameters at each
time step. Instead of generating hundreds of ensembles to
replicate the probabilistic characteristics of estimation at each
step, we propose the use of variational auto-encoders (VAE).
The use of VAE can significantly reduce the computational
cost of generating ensembles.

In summary, the sim-to-real module consists of two steps. In
the first step, the distributions of the latent variable associated
with the output mesh of FEM simulation are computed using
the GNN-VAE network. The GNN is used to encode the
topology of the mesh as a graph, while the VAE is used
to learn a low-dimensional probabilistic representation of the
graph that captures the variation in the shape of the mesh. Once
the GNN-VAE model is trained, it can be used to generate new
meshes with different topologies from the input mesh. In the
second step, the ES-MDA method incorporates the real-world
measurements of the actual tissue surface deformations at each
time step to update the prior distributions of latent variables
and get the posterior distributions of the latent variables.
Finally, the mean of posterior distribution as the most probable
combination of the latent variable is selected and by feeding
it to the pre-trained decoder part of GNN-VAE, an updated
simulated mesh compatible with real-world measurements is
constructed.

Fig. 1: The flowchart of the proposed sim-to-real framework.

In the next section, Graph-neural network Variational Au-
toencoders (GNN-VAE) are briefly explained and then the
applied DA for sim-to-real using the Ensemble Smoother with
Multiple Data Assimilation (ES-MDA) is explained.

A. Graph-based Variational Auto-Encoders

The VAE structure is described in this section. Next, the
application of Graph Neural Networks is discussed for the

extraction of deformation features from deformed meshes.
Finally, a GNN-VAE network is designed by combining these
two structures.

1) Variational Auto-Encoders: Autoencoders are a class
of unsupervised neural networks that are widely used for
representation learning and dimension reduction. An autoen-
coder consists of two components: an encoder and a decoder.
The encoder aims to extract low-dimensional latent features z
from the high-dimensional input data x, whereas the decoder
aims to recover the predicted input data x̂ from the latent
features while minimizing the reconstruction error. In the VAE
structure, a function Eθ(x) receives a sample from x ∼ p(x)
and generates a distribution of latent-variable z, then a function
Dθ(z) which receives a random argument z ∼ p(z) and
generates a sample from learned distribution x̂ ∼ pθ(x | z).

In the proposed framework, x represents a realization of
the deformed mesh (i.e., the output of FEM simulation as it
is shown in Fig . 1). Training samples, xi, are available from
generated dataset in terms of a patient-specific mesh whose
mechanical parameters vary in a predefined range and un-
dergo various force excitations. Thanks to having a generative
model, it is easy to generate new deformed meshes that are
distinguishable from the initial output of FEM simulations.
After training, by sampling from the multi-variable learned
distribution in the latent space, various meshes can be gen-
erated. This probabilistic distribution is the prior distribution
of the FEM simulation. The objective is to update the prior
distribution of latent variable using a data-assimilation method
based on measurements coming from the real tissue and get
the posterior distribution of latent variable and then sample
the latent variables with the highest possibilities (see Fig. 1).

2) Graph Neural Networks: In the VAE structure, Eθ(x)
and Dθ(z) are neural networks composed of layers compatible
with data structures. While images and time series belong to
Euclidean domains, tetrahedral meshes belong to irregular and
non-Euclidean domains that can be represented with graphs. It
is not possible to directly apply ordinary 2D or 3D convolution
networks to mesh data due to the irregularities in local
structures in meshes (varying vertex degrees, varying sampling
densities, etc.). Graph neural networks are designed to extract
information from graph data structures. An autoencoder based
on spatially variable convolution kernels has been proposed in
[24], where each vertex has its own convolution kernel. Based
on a global kernel weight basis, a vertex-specific kernel is
estimated. As the training process progresses, the global kernel
weight basis, as well as a sampling function for each individual
kernel, is learned. In irregular mesh connections, the spatially-
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varying convolutions layer provides efficient means of captur-
ing the spatially-varying contents. In this paper, the spatially-
varying convolution layer and pooling layer introduced in [24]
are used to build the encoder and decoder of VAE.

a) Fully Convolutional Graph Layer: In a convolutional
layer, the input data is x ∈ RV×d where V is the number of
vertices, and d is the dimension of input data, and produces
output data y ∈ RV×d′

where d′ is the dimension of the output
data. A schematic of the convolution operator is shown in Fig.
2a. The convolution operator for each vertex of a graph can
be calculated using

yi =
∑

xi,j∈N (i)

WT
j xi,j + b. (1)

Due to the uneven distribution of vertices on a mesh, and
the different connectivity between vertices, the same weighting
schemes cannot be applied for each vertex. Each vertex should
be able to determine its convolution weight freely. In [24],
a discrete convolution kernel is defined with weights on a
standard grid which are called Weight Basis as shown in Fig.
2b. The vertices of a local region of the mesh scatter within
the grid. In (2), the weights at real vertices can be sampled
from a Weight Basis via different functions from vertex to
vertex.

Wi,j =

M∑
k=1

αi,j,kBk (2)

(a) Spatially varying
graph convolutions.

(b) Global weight basis
kernel.

Fig. 2: Graph convolution and global weight basis kernel
introduced in [24].

b) Pooling Graph Layer: In an arbitrary graph, the
vertices can be distributed quite unevenly within the kernel
radius, and using max or average pooling does not perform
well. A pooling layer is introduced in [24], which applies
Monte Carlo sampling for feature aggregation as shown in
Fig. 3. In the pooling layer, the stride is 2 is and radius is 1.
The output feature of aggregated input nodes can be calculated
using

yi =
∑

j∈N (i)

ρ′i,jxi,j , ρ′i,j =
|ρi,j |∑Ei

j=1 |ρi,j |
(3)

where ρi,j ∈ R.

Radius =1
Stride =2

Fig. 3: Pooling layer on a graph data with radius=1 and
stride=2.

B. The proposed sim-to-real module: Data-Assimilation with
GNN-VAE

This paper aims to propose an approach for updating the
output mesh of a finite element model (FEM) at each time step,
based solely on data from the object surface, without replacing
FEM with the complicated temporal deep network. While the
Ensemble Kalman Filter (EnKF) is an effective method for
sequential data assimilation of non-linear systems, it requires
learning the temporal dependency using a complex network,
making it unsuitable for our purpose. Unlike EnKF, Ensemble
Smoother (ES) does not assimilate data sequentially in time.
Instead, ES computes a global update by simultaneously as-
similating all data available. However, the accuracy of one-step
ES is limited due to the large step size of ensemble updates.
To address this issue, the authors suggest employing Ensemble
Smoother with Multiple Data Assimilation (ES-MDA) [25],
which uses an iterative approach based on measurements at
the current step to estimate the values of unknown parameters.
ES-MDA involves assimilating the same data multiple times,
with the covariance of measurement errors multiplied by the
number of assimilations, resulting in improved accuracy.

In the proposed method, the unknown parameters are low-
dimensional latent-space variables, and the relationship be-
tween these parameters and the observations is represented
by a forward model, which is the pre-trained decoder network
of GNN-VAEs. The ES-MDA method updates the estimates
of the unknown parameters iteratively using the available
observations and the forward model to refine the estimates
at each step. This can be used to accurately estimate the
values of the latent-space variables that are compatible with
the observations.

This sim-to-real module integrates ES-MDA data assimi-
lation with GNN-VAE. The following is a summary of the
detailed steps of the proposed sim-to-real module:

1) At each time step, the output of FEM simulation is fed
into the sim-to-real module as it is shown in Fig. 1 and
Fig. 4.

2) Initialization step of the sim-to-real module: In tradi-
tional ES-MDA, initial ensembles of parameters must be
defined based on prior data. However, in the proposed
method, prior ensembles are generated by sampling from
a normal distribution in the latent space,
zi ∼ p(z),
where p(z) = E (xi), and E denotes the encoder
network of GNN-VAE. The number of iterations must
then be determined, and the next two steps are repeated
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for that number of iterations.
3) Forecast step of the sim-to-real module: The ensemble

realization i is used as input into the forward model, the
decoder network of trained GNN-VAE, which produces
an output mesh. The surface points from the output mesh
are selected to produce an ensemble of model prediction
yi at each measurement location,
yn
i = D (zni ),

where D denotes the forward model which is the decoder
network of GNN-VAE, i is the realization index and n
is the iteration index. The forecast step is shown in Fig.
4.

4) Update step of the sim-to-real module: Latent-space
realizations are updated at each time step using a single
set of measurement from that time step. To enable
iterative data assimilation based on one measurement,
the measurement vector is disturbed at each iteration
using a noise vector multiplied by an inflated covariance
error matrix. Inflating the measurement error covariance
matrix dampens extreme changes in the model during
early iterations. The difference between the disturbed
measurement vector and ensemble predictions is then
calculated and weighted based on the covariance matri-
ces to maximize the likelihood of ensemble prediction.
The update rule can be expressed mathematically using
the following equation [25]

zn+1
i = zni +Cn

zy

(
Cn

yy + αnCd

)−1(
dobs +

√
αnC

1/2
d ϵni − yn

i

) (4)

where Cd is the user-defined covariance matrix and ϵni
is the observation error at iteration n, which is drawn from
a Gaussian distribution N (0, INd

) which Nd is the number
of observations. αn is a coefficient that, at each iteration
n, inflates the measurement error and its covariance matrix.
Values are selected in a decreasing order; in this way, the
magnitude of the updates for the first iterations, when there
might be a large misfit between predictions and observations,
will be smaller to reduce the magnitude of initial updates; also,
the coefficients αn must satisfy

∑Na

n=1
1
αn

= 1 conditions,
where Na is the total number of iterations.
Cn

zy is the cross-covariance matrix between latent-space
variables and surface point predictions and Cn

yy is the au-
tocovariance matrix of surface point predictions. They are
computed from the ensemble at each iteration n using

Cn
zy =

1

Ne − 1

Ne∑
i=1

(zni − z) (yn
i − y)

T

Cn
yy =

1

Ne − 1

Ne∑
i=1

(yn
i − y) (yn

i − y)
T

(5)

where Ne is the total number of ensemble realizations, z is
the ensemble mean of the latent-space variables and y is the
ensemble mean of the surface point predictions.

All steps are elaborated in Algorithm 1.

Algorithm 1: The proposed sim-to-real algorithm.
Input: Na, Ne , Cd ,α , Pre-trained GNN-VAE, and

Input mesh from FEM: Mt

Output: Updated mesh at time t: M∗
t

1 for time step t do
2 Mt ← Output of FEM simulation at time t.

Calculate the prior distribution at time t:
pt(z)← E(Mt)

3 Sample Ne ensembles from pt(z).
4 while N ≤ Na do
5 Forecast step:
6 yn

i = D (zni )
7 Update step:

8
zn+1
i = zni +Cn

zy

(
Cn

yy + αnCd

)−1(
dobs +

√
αnC

1/2
d ϵni − yn

i

)
9 where covariance can be calculated using 5.

10 end
11 Create the updated mesh:
12 M∗

t = D(mean(z))
13 end

III. SIMULATION RESULTS

The target application of this paper is breast surgeries and
the designed GNN-VAE for the breast mesh x ∈ R4223×3 is
depicted in Fig. 5. As it is shown in Fig. 5, the encoder consists
of 3 convolution layers and 3 pooling layers. Each convolution
layer has stride = 2 and radius =1. The details regarding the
GNN-VAE hyperparameters are discussed in Table II.

TABLE II: Details of the GNN-VAE layers.
Layer Layer output

Convolution (s = 2, r = 1, f = 32) x ∈ R4223×32

Pooling (s = 2, r = 1) x ∈ R811×32

Convolution (s = 2, r = 1, f = 64) x ∈ R811×64

Pooling (s = 2, r = 1) x ∈ R82×64

Convolution (s = 2, r = 1, f = 128) x ∈ R82×128

Pooling (s = 2, r = 1) x ∈ R6×128

Reshape x ∈ R1×768

Encoder

Fully connected (26) x ∈ R1×26

Fully connected (768) x ∈ R1×768

Reshape x ∈ R6×128

Un-Pooling (s = 2, r = 1) x ∈ R82×128

Trans-Convolution (s = 2, r = 1, f = 64) x ∈ R82×64

Un-Pooling (s = 2, r = 1) x ∈ R811×64

Trans-Convolution (s = 2, r = 1, f = 32) x ∈ R811×32

Un-Pooling (s = 2, r = 1) x ∈ R4223×32

Decoder

Trans-Convolution (s = 2, r = 1, f = 3) x ∈ R4223×3

To train the GNN-VAE on simulated data, a dataset consist-
ing of 10,000 deformed meshes obtained from FEM simula-
tions is used. To generate the dataset, the module of elasticity
of tissue is varied in the range of 10-60 Kpa, while the
external force application points and the force magnitudes
are changed randomly. The training set consists of 80%, the
test set contains 10%, and the validation set contains 10% of
samples.

The accuracy of the trained network on the test data is
0.024 cm and on the training data is 0.0205 cm. We selected
ten random meshes from the test dataset as initial meshes in
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Fig. 4: The flowchart of sim-to-real module.

Fig. 5: GNN-based VAE structure.

the sim-to-real framework, as well as ten different random
meshes from the test data set as target meshes associated with
each of these initial meshes to determine the effect of the
number of ensembles, Ne, number of update steps Na, and
measurement covariance matrix Cd on the accuracy of sim-
to-real registrations.

In Fig. 6, Na = 5 is fixed and the effect of Ne and Cd

are investigated. Decreasing Cd from 0.1 to 0.001 decreases
the average MSE error of the ten meshes. Also, it is shown
in Fig. 6 that there is not a substantial difference between
Cd = 0.01 and Cd = 0.001. Furthermore, choosing Ne = 10
results in inferior performance in comparison to Ne = 50 and
Ne = 100, but once again the difference between Ne = 50
and Ne = 100 is not tangible.

In Fig. 7, Cd = 0.001 is fixed and the effect of Ne and
Na are investigated. According to Fig .7, increasing Na does
not affect the final accuracy of the sim-to-real registration.
However, choosing Na to be less than 5 deteriorates the
performance of the framework.

Fig. 8 shows a series of mesh updates between an initial
mesh and a ground truth mesh with Na = 5, Ne = 100, and
Cd = 0.001. As it is shown in Fig. 8, there is an initial error
of 0.73 cm between the initial mesh and the ground truth (GT)
mesh, which decreases to 0.054 cm at the end of sim-to-real
iterations.
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Fig. 6: An investigation of the effect of numeric parameters
Cd, and Ne on sim-to-real framework accuracy.

IV. EXPERIMENTAL STUDY AND RESULTS

In this section, the performance of the proposed sim-to-
real module is validated in tissue deformation prediction.
Experiments on phantom tissue have been conducted in which
markers located on the tissue surface are utilized to track the
tissue surface movements. The experimental setup shown in
Fig. 9 was built. An Aurora electromagnetic (EM) tracker
with a Planar 20-20 V2 Field Generator (NDI Europe GmbH,
Radolfzell, Germany) was utilized to track the 3D position
of a magnetic sensor which was buried inside the tissue
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Fig. 7: An investigation of the effect of numeric parameters
Ne, and Na on sim-to-real framework accuracy.

Ground Truth Mesh

Fig. 8: sim-to-real updates between an initial mesh and a
ground truth mesh.The MSE error is calculated between each
mesh at each step and the GT mesh.

phantom as shown in Fig. 9. An Optic-track motion capture
system with six cameras was used to track 4mm optic facial
markers. The surface of the phantom was marked with 15
optic facial markers. The motion capture system can track
facial markers with sub-millimetre accuracy after calibration.
The force excitation are linear actuators pushing the breast
phantom as shown in Fig. 9.

In the experiment, we will investigate how much the pro-
posed sim-to-real module can update FEM simulation using a
few measurements from the tissue surface and the performance
is compared with another registration method called KF-
ADMM from [23].

FEM with a Neo-Hookean material model with E = 10Kpa
is used for modelling the tissue deformation as it is being
manipulated by linear actuators in Fig. 9. ADMM tissue sim-
ulation method uses the same mechanical parameters as FEM,
i.e., the Neo-Hookean material model with E = 10Kpa in the
ADMM solver. The tissue has been deformed in two scenarios.
In scenario 1, actuator number one pushes the phantom along
the x-axis, and in scenario 2, actuators simultaneously push
the phantom along the x-axis and y-axis.

The absolute error between the EM sensor measurements
and those of the FEM simulation, as well as the revised
predicted trajectory generated by the proposed sim-to-real
method and KF-ADMM method, can be seen in Fig. 10 for
scenario 1 and Fig. 11 for scenario 2. Based on Fig. 10,
the postponed sim-to-real module can reduce prediction error
more than KF-ADMM especially when the deformation is
extreme, the proposed method shows better performance in

OptiTrack 
Cameras

(a) The cameras’ configuration.

Auorora EM 
tracker

Actuators

Sensor

OptiTrack facial 
marker

(b) Setup details including EM sensor, optic
markers, phantom and actuators.

Fig. 9: Experiment setup.

reducing the prediction error. In Fig. 11, the deformations
are along two directions, and tissue deformation is more
extreme than in scenario 1, the proposed method is more
effective at reducing prediction error than KF-ADMM. In the
current set of experiments, sim-to-real module reduced the
FEM prediction error by 72% on average and performed 45%
better than KF-ADMM.
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Fig. 10: Prediction error before and after registration based on
the proposed method and KF-ADMM in scenario 1.
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Fig. 11: Prediction error before and after registration based on
the proposed method and KF-ADMM in scenario 2.

V. CONCLUSION

This article addresses the challenge of registering high-
dimensional tissue deformation models from simulation to
reality. In this study, a novel sim-to-real module was de-
veloped for registering a physics-based tissue simulation’s
output (here FEM was applied) to real measurements of
deformed tissue. The proposed sim-to-real modules include
graph-based variational auto-encoders (GNN-VAE) and an
ensemble smoother with multiple data assimilation (ES-MDA).
To solve the problem of updating a high-dimensional mesh in
real-time for tissue deformation modelling, it integrates the
generative auto-encoder networks for learning simulation-data
distributions and the data-assimilation methods like ES-MDA
for updating the learned distributions with real measurements.
The GNN-VAE is trained on FEM simulation data and does
not require retraining. Sim-to-real reduces the registration error
more efficiently than KF-ADMM in extreme deformations,
according to experiments. The method will be tested for more
complex tissue manipulation tasks in the future.
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