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Abstract—In low-dose-rate permanent-seed (LDR-PS)
brachytherapy, it is crucial to predict the movement of internal
targets (planned radioactive seed locations) under the effect
of external forces. Accurate prediction of the target’s location
is critical to precise seed implantation, and inaccurate seed
implantation diminishes the effectiveness of radiotherapy.
Therefore, developing a model to simulate the tissue dynamics
is necessary. However, fully vision-based data-driven models to
predict tissue dynamics are inapplicable to tasks, such as internal
tissue deformation prediction, since these approaches can only
capture geometrical changes detected by cameras. Therefore,
a physics-based model capable of modelling the nonlinear
mechanical properties of soft tissue in real-time is needed to
simulate internal tissue dynamics. All physics-based models have
model-reality mismatches due to unmodeled dynamics, which
should be addressed. In this work, we propose the KF-ADMM
method as a solution to compensate for unmodelled dynamic
terms existing in the alternating direction method of multiplier
(ADMM)-based projective dynamics tissue simulator through
Kalman filtering. The ADMM-based projective dynamics is an
open-loop tissue simulator in which the output (i.e., deformed
tissue) is not compared with real tissue deformations, nor is
the feedback used to update the estimation error. In contrast,
closed-loop tissue simulators utilize feedback to improve the
accuracy of the deformation estimation. Visual data can be
incorporated into the open-loop tissue simulator by integrating
a Kalman filter into the nonlinear tissue deformation simulator.
This method provides accurate predictions of the location of
inner tissue points with an error of around 0.8 mm. Experiments
on a breast tissue phantom are performed to evaluate the efficacy
of the proposed approach. According to the results, the accuracy
of tissue deformation is enhanced by 52% on average, and the
convergence rate is accelerated compared to an open-loop tissue
simulator.

Index Terms—Breast brachytherapy, Kalman filtering, Medical

This research was supported by the Canada Foundation for Innovation
(CFI), the Natural Sciences and Engineering Research Council (NSERC) of
Canada, the Canadian Institutes of Health Research (CIHR), and the Alberta
Jobs, Economy and Innovation Ministry’s Major Initiatives Fund to the Center
for Autonomous Systems in Strengthening Future Communities.

1Mehrnoosh Afshar, Jay Carriere and Mahdi Tavakoli are with the
Department of Electrical and Computer Engineering, University of
Alberta, AB, Canada T6G 1H9. afsharbo@ualberta.ca,
jtcarrie@ualberta.ca,mahdi.tavakoli@ualberta.ca

2Hossein Rouhani is with the Department of Mechanical Engineering, Uni-
versity of Alberta, AB, Canada T6G 1H9. hrouhani@ualberta.ca

3Tyler Meyer and Siraj Husain are with the Division of Radiation
Oncology, Tom Baker Cancer Centre, 331 29th Street NW, Calgary, Al-
berta T2N 4N2. tyler.meyer@albertahealthservices.ca,
siraj.husain@albertahealthservices.ca.

4Ron Sloboda and Nawaid Usmani are with the Department of Oncology,
Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, Canada,
T6G 1Z2. nawaid.usmani@albertahealthservices.ca,
ron.sloboda@albertahealthservices.ca.

robotics, Soft tissue simulator, ADMM-based Projective dynamic

I. INTRODUCTION

THE low-dose-rate permanent-seed (LDR-PS) brachyther-
apy has shown great potential for treating breast cancer

by offering a reduction in treatment time and better cosmetic
outcome compared with other breast cancer treatments [1].
LDR-PS brachytherapy is a cancer treatment that make use
of radioactive seeds which are injected at pre-planned desired
locations inside or around a tumour or seroma (hollowed-out
tumour). The challenge in breast brachytherapy is that breast
tissue deforms easily and excessively during the brachytherapy
procedure. As the US probe is moved over the breast surface
the pressure from the US probe will deform the breast and
change the location of the internal planned seeds location
(targets) during treatment. During breast surgeries, displace-
ments of up to 7 mm are common in the target area [2], [3].
Implanting seeds off-target results in insufficient radio therapy
and the risk of cancer recurrence. In this case, the surgeon must
analyze 2D US images to estimate the target location and then
carryout the insertion. Consequently, precise brachytherapy
seed implantation depends heavily on the clinician’s skill and
is vulnerable to human error. Current brachytherapy proce-
dures would greatly benefit from a solution to track the targets
location intraoperatively. The desired target locations for seeds
may not be recognizablein on US images which usually have
much noise and artifacts and where various targets are difficult
to discern based on image characteristics [4]. Target tracking
for breast brachytherapy can be achieved by using a patient-
specific tissue deformation model.

Current tissue deformation models can be divided into three
categories; 1) fully physics-based models, 2) end-to-end data-
driven models, and 3) hybrid models, combining physics-
based models with real deformation data. In the category of
physics-based tissue simulators, the challenge is to address
the trade-off between accuracy and computation time [5];
for many application in surgical robotics a real-time and
accurate tissue simulator is required. Finite Element Methods
(FEM) are widely used to simulate nonlinear and complicated
mechanical behavior of tissue; however, they are computa-
tionally expensive at the moment to be used for real-time
applications [6]. Numerous studies have applied model order
reduction methods to FEM to enhance their computational
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performance. The reduced order model FEMs are obtained
via a substantial pre-operative calculation [7]. Neural networks
can simulate any nonlinear functions in real-time [8], [9].
Mendizabal et al. in [10] proposed a method to estimate the
deformation of breast tissue under US probe pressure using
a U-net network trained from synthetic FEM simulations. As
the neural network model is trained using FEM simulations,
there may be a mismatch between the real situation and the
model because it does not use real data. The neural network
model is simply a faster version of the physics-based model.
Furthermore, generating synthetic data sets and neural network
training is time-consuming. Many studies simplified accurate
models for a real-time solver in order to meet simulation
speed requirements, however, this simplification decreases the
model accuracy to some extent such as Mass Spring Models
(MSMs) [11]. The proposed modifications to MSM which
tried to simulate nonlinear properties of biological tissue such
as viscoelasticity and incomprehensibility still fail to capture
the true nonlinear force-displacement relationship of biological
tissue [12], [13].

Position-based dynamics (PBD) methods, that are widely
used to simulate object deformation in real-time for computer
graphics applications, has recently been utilized to develop
surgical simulators [14]. In PBD, an object is simulated as a
grid of particles whose positions are derived from rigid body
motion equations under geometric constraints [15]. A study
by Tagliabue et al. [16] used PBD to predict the position
of breast tumors in response to pressures from US scanning.
Because the constraints in PBD are geometric, it does not
reflect the mechanical characteristics of tissue. Therefore, the
reported tumor localization error in [16] is extremely large
for medical applications and it is about 5mm. The authors in
[17] proposed the projective dynamics method that can impose
a wider range of constraints than geometric constraints in the
PBD. In this study, simple strain potential energy functions are
also used as constraints. In [18], a generalization of the pro-
jective dynamics method is presented that permits solving any
nonlinear constraint. In this method, the alternating direction
method of multiplier (ADMM) is used as the optimizer. As
opposed to the usual optimizers, ADMM allows computations
to be parallelized, making it a viable choice for simulations
that occur in real-time. So far, this method has not been
implemented to model complicated mechanical characteristics
such as hyperelasticity and viscoelasticity in soft tissue. In
summary, there is a mismatch between physical-based tissue
simulators and reality resulting from the simplifications made
to keep up with speed requirements. It is critical to address
this mismatch when it comes to surgical applications.

To resolve the problem of simulation-reality mismatch,
researchers have tried to model end-to-end behaviour of tissue
using deep learning models that are trained based on visual
information from deformed tissue as the primary source of
information during operation [19], [20]. The main limitation
of relying only on exterior visual perception is that it cannot
provide information on the internal structure of tissues/organs
[21].

The third category, hybrid simulators, compensate for model
mismatch of physics-based simulators with the aid of real data.

For surgical applications, real-time data from the deformed
tissue captured by visual sensors can provide a good basis
for updating an existing inaccurate physics-based model [21].
Thus, it is beneficial to have a visual perception of the tissue
and to track its deformation in real-time in order to update the
physics-based model accordingly. Liu et al. in [21] developed
a real-time, online registration method that incorporates 3D
visual perception and PBD simulation. As the PBD method
are not capable of predicting tissue deformation, in [21], the
visual data from the tissue surface is integrated with the PBD
simulation to enable accurate prediction of tissue deformation.
However, in [21], the proposed framework has not been tested
for the ability to predict deformations of the internal points
of the tissues. As PBD is developed based on geometric
constraints rather than mechanical properties of the tissue, it
will not be able to simulate the internal deformation of the
tissue accurately.

To the best knowledge of the author, hybrid simulators for
tissue deformation estimation are still in their infancy. While
this type of tissue deformation model is the key to eliminate
the mismatch between the simulator and reality, and also
maintain a real-time framework. Bayesian filtering methods
are a great tool for bridging the gap between simulation and
reality. A Bayesian filter can infer from real observations in a
data-efficient manner and leverage simulation as a source of
prior knowledge. However, implementing Bayesian filtering
methods on deformable tissue is challenging considering the
non-linearity and high-dimensionality of the problem. Cur-
rently, the literature lacks the integration of a Bayesian filter
into physics-based tissue simulator, which is the main goal of
this paper.

A. Objective and Contributions

In this work, the objective is to bridge the gap between
real-time physics-based tissue simulators and reality by inte-
grating a few positional data from the tissue surface into the
physics-based tissue simulator through the context of Bayesian
filtering. ADMM-based PD is chosen as real-time physics-
based model of tissue deformation due to the fact that it solves
nonlinear tissue dynamic equations in an optimization-based
framework which is paralliazable.Kalman filter (KF) is chosen
from the Bayesian filter methods since KF is the optimal
estimator in term of minimum least square error for linear
systems. Considering the optimality of KF for linear systems
and its manageable computational burdens with respect to
other variant of KF, like extend KF (EKF), KF is chosen
as the estimator method. In order to make nonlinear dynam-
ics equations compatible with KF structure, the nonlinearity
occurring in the tissue dynamics equations is transferred to
the input term, resulting in a linear state-space model with a
fixed transition matrix. As a result, the transition matrix does
not need to be recalculated at each step, which significantly
reduces the computation burden of the entire algorithm. The
proposed framework is called KF-ADMM. In summary, the
contributions of this study are as follows:

1) Nonlinear tissue dynamics equations are converted into
a linear state-space model with a fixed transition matrix
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and nonlinear inputs. In this way, the linear KF can be
used which saves a lot of computations.

2) Parallel implementation of ADMM-based PD and matrix
multiplications associated with KF increase the KF-
ADMM speed.

3) This method does not require observation of the entire
deformable tissue, and a few discrete measurements on
the surface are sufficient for increasing accuracy.

4) Integration of the Kalman filter significantly improves
the accuracy of the deformation estimation and the
convergence rate of the open-loop simulator.

5) The presented framework can be extended to a broader
range of surgical applications in which visual perception
of the tissue deformation is available.

The rest of the paper is organized as follows. The biomechan-
ical solver and material model will be presented in Section
II. The state-space model of the biomechanical solver will
be derived and the development of the Kalman filter based
on the derived equations will be elaborated in Section III. In
Section IV, the efficacy of the proposed framework in tissue
deformation prediction will be evaluated experimentally, and
a conclusion in Section V will complete the paper.

II. TISSUE MODELLING

In this section, the ADMM-based projective dynamics
method is explained, and the mechanical material model that
is selected to represent tissue behavior is elaborated.

A. Dynamics of Tissue Deformation

Objects are discretized using elements (triangles in 2D,
tetrahedra in 3D) and lumped masses are integrated into the
node of the elements. The Degree of Freedom (DoF) of the
dynamic system is equal to the number of nodes used to
discretize the tissue domain multiplied by three in the case
of 3D simulation. Based on the work in [18], the position of
these lumped masses (i.e., Dof of the system) can be calculated
by solving the following optimization problem

x = argmin
x

(
1

2∆t2
∥x− x̃∥2M +U(x)

)
(1)

where,
x̃ = x+ v∆t+M−1Fext∆t2 (2)

determines the position of lumped masses in the absence of
internal forces. M is the matrix of lumped masses and Fint
is the external forces acting on each lumped mass. U is
the potential function that determines the internal relations
between nodes. It is selected to be strain energy function,
thus the internal forces are calculated as the gradient of strain
energy function Fint = −∇U(x). In the above, v is the
velocity of each lumped mass. ∆t is the sampling time chosen
to simulate the tissue dynamics and ∥x∥M =

√
xTMx. (1) is a

high-dimensional nonlinear optimization problem and it is not
possible to be solved in a time-efficient manner. To overcome
this issue a solution, which is suggested in [18], is to use the
alternating direction method of multipliers optimizer (ADMM)
which in general is an optimizer for distributed systems.

B. ADMM Optimizer

The basics of ADMM is described in this section. The
ADMM is a method to solve optimization problems having
the form [22]

argmin
x, z

h(x) + g(z)

s.t. Ax+Bz = C
(3)

where h and g are general cost functions subjected to a set of
linear constraints, and A and B are general constant matrices.
The algorithm works by introducing a dual variable u and
iterating the following update rules

xn+1 = argmin
x

(
h(x) +

ρ

2
∥Ax+Bzn −C+ un∥2

)
zn+1 = argmin

z

(
g(z) +

ρ

2
∥Axn+1 +Bz−C+ un∥2

)
un+1 = un + (Axn+1 +Bzn+1 −C)

(4)
Here, n indicates the number of iterations until the ADMM
converges, and ρ is a weighting scalar.

C. ADMM Implementation For Tissue Deformation Calcula-
tion

The strain energy deformation U is a function of the gradi-
ent deformation matrix (explained thoroughly in Section II-D).
A vector composed of the elements of gradient deformation
matrices associated with mesh elements can be introduced into
(1) as a new variable denoted by z. The condition z = Dx
is satisfied at each converged solution of (1). In fact, matrix
D transforms x variables to the gradient deformation matrix
space. Therefore, (1) can be reformulated as

argmin
x,z

(
1

2∆t2 ∥x− x̃∥2M +U(z)
)

s.t. W(Dx− z) = 0
(5)

where W is a weighting matrix. By comparing (1) and (5),
the functions and matrices can be chosen as

h(x) =
1

2∆t2
∥x− x̃∥2M, g(z) = U(z)

A = WD, B = −W, C = 0
(6)

By substituting (6) into (4), the update rules for the tissue
deformation dynamics problem can be obtained as

xn+1 =argmin
x

(
1

2∆t2
∥x− x̃∥2M +

1

2
∥W (Dx− zn + un)∥2

)
=
(
M+∆t2DTWTWD

)−1(
Mx̃+∆t2DTWTW (zn − un)

) (7)

zn+1 = argmin
z

(
U(z) +

1

2
∥W (Dxn+1 − z+ un)∥2

)
(8)

un+1 = un +Dxn+1 − zn+1 (9)

Since matrices in (7) are fixed and can be precalculated, so
the update rule for x variable is computationally fast.

The power of the ADMM optimizer is that (8) can be
solved for each element separately; therefore, the procedure
can be implemented in parallel on GPU or multi-core CPU. For
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each strain energy function associated with each element, the
following optimization problem should be solved separately:

zi,n+1 = argmin
zi

(
Ui (zi) +

1
2 ∥Wi (Dixn+1 − zi + ui,n)∥2

)
ui,n+1 = ui,n +Dixn+1 − zi,n+1

(10)
Here, i refers to the element number, and zi is a vector con-
taining elements of the gradient deformation matrix associated
with element i. After updating variable zi and ui associated
with individual elements separately, the global vector of z and
u are updated and used to update the position vector x using
(7). For more details about the implementation of ADMM, an
interested reader should refer to [18].

D. Material Model

In this section, the Ui(zi) that is used to solve the optimiza-
tion problem in (10) is explained. Several material models exist
to describe the hyperelastic behaviour of tissue including Neo-
Hookean, Ogden, Mooney-Rivlin, and Arruda-Boyce models
[23]. The Neo-Hookean model is the most relevant, and the
most used, model for modelling breast tissue [24]. In this
paper, Neo-Hookean material model is used to model breast
tissue. The strain energy function of a Neo-Hookean material
is given by [25]

Ψ =
µ

2

(
I1 − 3

)
+

κ

2
(J− 1)2 (11)

where I3 = det(C), J = 1
2I3, C = J−2/3C and I1 = tr(C).

C is the right Cauchy–Green deformation tensor, obtained
by C = F⊤F, and F is the deformation gradient matrix.
Material constants are µ = E

2(1+v) , and κ = E
3(1−2v) , in which

E is Young’s modulus and v is Poisson’s ratio. The strain
energy of each element can be calculated using Ui = ΨiVi,
where Vi is the initial volume of the element and Ψi is the
value of the strain energy density function measuring element’s
deformation. Ui is used in (10) to update zi value for each
element.

III. MODEL REGISTRATION VIA THE PROPOSED
KF-ADMM METHOD

First, the derivation of state-space equations of the tissue
simulator is explained, and then the Kalman filter is integrated
into the deformable objects modeling algorithm.

A. State-Space Model

By substituting (2) into (7) and rearranging the terms, (7)
is transformed into a discrete dynamic model with linear
transition matrix and nonlinear input part, as shown below:

xn+1 =
(
M+∆t2DTWTWD

)−1
(2Mxn −Mxn−1+

Fn
ext∆t2 +∆t2DTWTW (zn − un)

)
(12)

The following discrete state-space equation for the system of
equations (12), and (10) by considering the augmented state

vector, Xn+1 =

[
xn+1

xn

]
, can be considered:

Xn =

[
A B
I 0

]
Xn−1 +

[
H (Un)

0

]

Un+1 =

 zn+1

un+1

Fext,n+1

 =

 f (xn+1,un)
un + g (xn+1, zn+1)
Fext,n+1

 (13)

In the above,

A = 2
(
M+∆t2D⊤WTWD

)−1
M

B = −
(
M+∆t2D⊤WTWD

)−1
M

H =
(
M+∆t2DTWTWD

)−1(
−Mxn−1 + Fext,n∆t2 +∆t2DTWTW (zn − un)

)
f (xn+1,un) = argmin

z

(
U(z) + 1

2 ∥W (Dxn+1 − z+ un)∥2
)

g (xn+1, zn+1) = DXn+1 − zn+1

(14)
Due to the fact that the matrix A is built upon matrix D,
which maps the nodes’ coordinates represented in the global
framework into element representation, the matrix contains
information about the mesh structure. The first line of the
equation in (13), which represents the state evolution of the
system, can be expressed in the general form of discrete
dynamic systems with uncertainties as follows:

Xn+1 = SXn + U+wn

yn = CXn + vn

(15)

Here, the first equation presents the state evolution model, and
the second line shows the relationship between sensor mea-
surements and the state variables. The process noise wn and
measurement noise vn are white, zero-mean, and uncorrelated
with known covariance matrices Qn and Rn respectively. In
this work, inaccuracy in the models is modeled as white noise.

B. Kalman Filter Integration

In summary, Kalman Filter (KF) provides a recursive
method for estimating the state of a dynamic system when
the system is noisy by estimating both the state vector and
the error covariance matrix simultaneously at each iteration
step. The KF approach improves the accuracy of state variable
estimation by combining two sources of information, mathe-
matical model and measurements. With this study, the aim is
to estimate the position of internal points (in this case, the
state vector of the system) using an imprecise biomechanical
model. To improve the accuracy of the model, partial measure-
ments of the tissue surface are used to compensate for model
inaccuracies. As a result, the KF is an appropriate solution for
the problem.

KF consists of two stages: prediction and update. KF
provides a recursive method of estimating the state of a
dynamic system in the presence of noise by simultaneously
estimating and updating both the state vector (xn) and the
error covariance matrix (Σn) at time step n.
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A multivariable Gaussian distribution with mean vector and
covariance matrix can be used for representing both the prior
probability distribution (i.e., prediction step) and the posterior
probability distribution (i.e., update step) of state vector. The
prior mean vector and covariance matrix are denoted by µ′

n

and Σ′
n respectively. Similarly, the posterior mean vector and

covariance matrix are denoted by µ̂n and Σ̂n respectively.
At the prediction step, the prior quantities are calculated

using (16) for the discrete system of (15)

µ′
n = Sµ̂n−1 + U

Σ′
n = SΣ̂n−1ST +Qn−1

(16)

In the update step, µ′
n and Σ′

n are updated by incorporating
the new sensor information yn to the estimations obtained in
the prediction step for xn. The final equations for finding µ̂n

and Σ̂n are given in (17)

µ̂n = µ′
n +Kn(yn − ŷn)

Kn = Σ′
nCT (CΣ′

nCT +Rn)
−1

ŷn = Cµ′
k

Σ̂n = Σ′
n −KnCΣ′

n

(17)

where Kn is called the Kalman gain matrix at time step n.
The output of the open-loop tissue simulator algorithm, (the

output of (12)), is the prior estimation of the state vector, µ′
n.

The posterior estimation of the state vector is calculated using
(18)

xn+1 =
(
M+∆t2DTWTWD

)−1
(2Mxn −Mxn−1+

Fext,n∆t2 +∆t2DTWTW (zn − un)
)

+Kn (yn − ŷn)
(18)

In case that Fext is not available and only the displacement
of engaged nodes with actuator, xactuator, are available, (18)
can be re-written as

xn+1 =
(
M+∆t2DTWTWD

)−1(
Mx̃+∆t2DTWTW (zn − un)

)
+Kn (yn − ŷn)

(19)

where,
x̃ = x+ v∆t

x̃i = xactuator,i

(20)

(10), (17), and (18) in case that Fext,n is available or (19)
for situation that xactuator is available, form the new KF-
ADMM method, which is elaborated in algorithm 1. In this
algorithm, for tetrahedral elements, (10) is solved in parallel.
In the second step, the Kalman gain is calculated using (17).
Then, the real positional data of the surface nodes are obtained
from the markers and are transformed into the simulation
coordinate system. In the end, using these data and (18) or
(19), the state vector of the system is calculated.

The block diagram of the proposed KF-ADMM method
is elaborated in Fig. 1. In the open-loop simulator, actuator
displacements act as an input, and at the same time, these
displacements deform tissue in the real experimental setup.
The open-loop simulator output and measured surface points
from the experimental setup are inputs to the Kalman filter,
which refines the mesh node positions according to the posi-

Algorithm 1: The proposed deformation modelling
algorithm

Input: Optical marker data y , Actuator Movements
xactuator or Actuator Forces Fext.

1 while n ≤ N do
2 yn ← Read Marker data
3 for Each Tetrahedral Element do

4
zi,n+1 = argmin

zi

(
Ui (zi) +

1
2 ∥Wi (Dixn+1 − zi + ui,n)∥2

)
ui,n+1 = ui,n +Dixn+1 − zi,n+1 (10)

5 end
6

7 Calculate Kalman Filter Gain

8 Σ′
n = AΣ̂n−1AT +Qn−1

9 Kn = Σ′
nCT (CΣ′

nCT +Rn)
−1

10 Σ̂n =
Σ′

n −KnCΣ′
n (17)

11 Update Sate Vector
12 if Fext,n is available then

13

xn+1 =
(
M+∆t2DTWTWD

)−1
(2Mxn −Mxn−1+

Fext,n∆t2 +∆t2DTWTW (zn − un)
)

+Kn (yn − ŷn) (18)
14 end
15 if xactuator is available then

16

xn+1 =
(
M+∆t2DTWTWD

)−1(
Mx̃+∆t2DTWTW (zn − un)

)
+Kn (yn − ŷn) (19)

17 end
18 end

Output: Position vector of all nodes x.

tional error between the simulation and the real exterior points’
positions. The whole process described in Fig. 1 forms the
proposed KF-ADMM method.

IV. EXPERIMENTAL STUDY AND RESULTS

In this section, the performance of the proposed method
is validated in tissue deformation prediction. The open-loop
tissue simulator [18] and the closed-loop tissue simulator
are compared, and the effect of the size of the marker sets
is discussed. The experimental setup shown in Fig. 2 was
built. An Aurora electromagnetic (EM) tracker with a Planar
20-20 V2 Field Generator (NDI Europe GmbH, Radolfzell,
Germany) was utilized to track the 3D position of a magnetic
sensor which was located inside the tissue phantom as shown
in Fig. 2. A Vicon motion capture system with five cameras
was used to track 4mm optic facial markers. Nexus 2.10
software (Vicon Motion Systems, UK) was used to track the
markers, and data were transmitted to C++ code using UDP
protocol. The proposed method was programmed in C++ using
OpenMP, and it was run on an Intel® Core™ i5 processor with
6 cores. Four linear actuators displaced the tissue boundary
in discrete steps of {5, 10, 15, 20} mm. A tissue phantom
made from plastisol and softener (M-F Manufacturing Co,
Fort Worth, USA) with an equal volume ratio. The module
of elasticity of the phantom that was calculated through
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Actuator 
Displacement 

Open-Loop 
Simulator 

Read Marker Positional Data 
using Nexus Software Cordinate Transformation

Predition and Refinement 
(Kalman Filtering) 

Simulated Surface Points

Fig. 1. Flowchart of the proposed KF-ADMM approach.

OpticTrack 
Facial  
Markers

Aurora EM
 tracker

EM sensor

Actuator

(a) Setup details including EM sensor,
optic markers, phantom and actuators.

Vicon
Camera

(b) The cameras’ configuration.

Fig. 2. Experiment setup. An Aurora electromagnetic (EM) tracker is used
to track the 3D position of targets. Linear actuators push the tissue phantom
made of plastisol. Cameras are used to track facial optic markers mounted on
the surface of the phantom.

compression test is E = 6 Kpa. Fig. 3 shows the breast mesh
model including 2331 tetrahedral elements. The Tetgen library
was used to mesh the CAD model of the barest phantom. Fig.
4 shows the layout of the phantom, the actuators, the target,
and the optical markers for the first set, which includes 19
markers, and the second set, which includes 10 markers.

The location of the internal target point, displaced by
actuators, was measured for various experiments listed in Table
I. The covariance matrices for the model and the measurement
noises were chosen with trial and error. The covariance matrix

Fig. 3. The cut view of the mesh with 2331 tetrahedral elements.

for the process noise is set to the value of 3I because of the
uncertain nature of the model, and the covariance matrix for
the measurement noise is set to the value of 0.01I because the
Vicon motion capture system measures with sub-millimeter
accuracy.

(a) Marker set 1. (b) Marker set 2.

Fig. 4. The layout of breast phantom, actuators, targets, and marker set 1 2.

A. Comparison Between the Proposed KF-ADDM Method
and the Open-Loop Simulator

To study the effect of the KF-integration on convergence
rate, experiments 4, 8, 12, and 16 which have the most
deformations are analyzed. The target error, which is the
square error between the simulation and experiment results in
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the X , Y , and Z directions are plotted against the number of
iterations in Fig. 5. Based on the results in Fig. 5, it is evident
that convergence happens much faster in the proposed KF-
ADMM method. According to Fig. 5, the convergence in the
proposed KF-ADMM method is achieved after 200 iterations,
while the convergence in the open-loop tissue simulator results
occurs after 500 iterations. The open-loop tissue simulator
takes 10.58 s to do 500 iterations for 2331 tetrahedral elements
while the proposed method takes 7.94 s for 200 iterations
for the same number of elements. The computational time
can be further improved by implementing the algorithm on
GPU; currently, it has been implemented on 6 core CPU.
As illustrated in Fig. 5, which represents the target error
along the Y-axis, the proposed KF-ADMM method at its final
iterations provides a smaller targeting error than that target
error provided by an open-loop simulator using ADMM; thus,
the accuracy is improved.

B. Analysis of Effect of Marker Set Size
As feedback for the KF-ADMM method, two sets of mark-

ers were used to investigate the effect of marker numbers on
the accuracy and convergence rate of the KF-ADMM method.
A total of 19 markers are included in the first set, and 10
markers are included in the second one (see Fig. 4). The results
of the KF-ADMM method using the marker set 1 and 2 are
illustrated in Fig. 6. According to Fig. 6, reducing the number
of markers increases the target error, though the proposed KF-
ADMM with fewer markers still increases the convergence
rate and the accuracy compared to ADMM-based open-loop
simulation.

The results of the open-loop ADMM and the KF-ADMM
using two sets of markers are displayed in Fig. 7. Based on the
results represented in Fig. 7, it is found that the KF-ADMM
algorithm reduces the mean target error to 0.8 mm while the
mean target error of the open-loop simulator is 1.7 mm. By
reducing the number of markers, the mean target error of the
KF-ADMM increases to 1.1 mm which is still acceptable. The
small error of the KF-ADMM method might be due to KF’s
assumption that model uncertainty is a zero-mean Gaussian
noise. As such, KF with the conventional structure cannot
compensate for biases.

TABLE I
EXPERIMENTS DESCRIPTION.

Experiments List
Experiment Number Active Actuator Actuator Movement (mm)

1 1 5
2 1 10
3 1 15
4 1 20
5 2 5
6 2 10
7 2 15
8 2 20
9 1 and 2 5

10 1 and 2 10
11 1 and 2 15
12 1 and 2 20
13 3 and 4 5
14 3 and 4 10
15 3 and 4 15
16 3 and 4 20

Fig. 5. Error target with respect to the number of iterations for the proposed
(ADMM KF) and the conventional (ADMM) methods using the first marker
set.

Fig. 6. Error target with respect to the number of iterations for the proposed
(ADMM KF) based on the marker set 1 and 2.

Fig. 7. Comparison between the accuracy of the proposed and the conven-
tional method for 16 experiments.
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V. CONCLUSION AND DISCUSSION

In this paper, a new method called KF-ADMM is introduced
to improve the performance of the open-loop deformable
object simulator (ADMM-based projective dynamics method).
To simulate tissue deformation, the dynamics of soft tissue
were turned into a parallelizable optimization problem. In the
KF-ADMM method, a Kalman filter is incorporated into the
ADMM-based projective dynamics to improve the modeling
accuracy by updating the position of internal nodes based on
the surface node positional measurements. This data is easily
obtained by using optic markers or the Kinect sensor. The
accuracy of the proposed approach was evaluated by carrying
out several experimental studies on a breast tissue phantom.

The intended application of the proposed KF-ADMM
method is in breast brachytherapy; however, the proposed
method can be implemented in any other applications in
which a biomechanical model of the tissue is required. The
advantages of the proposed KF-ADMM over the open-loop
simulator are:

1) The KF-ADMM models the nonlinear mechanical be-
havior (e.g., hyperelasticity), and the experimental re-
sults were in agreement with the model’s prediction.

2) Because the KF-ADMM solution is parallelizable, this
solver is an ideal choice for real-time computer-assisted
surgery applications.

3) The proposed algorithm improved the accuracy of the
deformation prediction by 52% on average. Based on the
obtained results, the improvement is more pronounced
when tissue is extremely deformed.

4) The required iterations to reach convergence are reduced
with the proposed KF-ADMM method. KF calculation
will add extra computations to the algorithm but because
the required number of iterations is reduced significantly
compared to the open-loop tissue simulator, the overall
computation time is reduced while the accuracy is im-
proved.

The effect of unmodeled dynamics terms are considered
as zero-mean Gaussian distribution, which is a limiting as-
sumption considering the nonlinearity of tissue dynamics.
This assumption results in a small mean targeting error of
the KF-ADMM method. To eliminate the remnant error, a
non-Gaussian noise model with non-zero mean can be used
to account for the effect of unmodelled dynamics terms.
Currently, the proposed framework cannot handle markers
failure, as the loss of data can result in accuracy reduction. KF
structure can be improved to allow for measurement dropouts.
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A. Hostettler, and F. Chinesta, “A model order reduction approach to
create patient-specific mechanical models of human liver in compu-
tational medicine applications,” Computer methods and programs in
biomedicine, vol. 170, pp. 95–106, 2019.
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