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Abstract—In this paper, a new learning-based time-varying
impedance controller is proposed and tested to facilitate an
autonomous physical human-robot interaction (pHRI). Novel
adaptation laws are formulated for online adjustment of robot
impedance based on human behavior. Two other sets of update
rules are defined for intelligent coping with the robot’s structured
and unstructured uncertainties. These rules ensure stability via
Lyapunov’s theorem and provide uniform ultimate boundedness
(UUB) of the closed-loop system’s response, without a need for
HRI force/torque measurement. Accordingly, the convergence of
response signals, including errors in tracking, online impedance
learning, robot parameter adaptation, and controller gain varia-
tion, is proven to operate in a bounded region (compact set) in the
presence of robot and human uncertainties and bounded distur-
bances. The performance of the developed intelligent impedance-
varying control strategy is investigated through comprehensive
experimental studies in a repetitive following task with a moving
target.

Index Terms—Physical human-robot interaction (pHRI); au-
tonomous impedance variation; nonlinear adaptive control; robot
stability; uniformly ultimately boundedness (UUB).

I. INTRODUCTION

In recent years, the concept of impedance has found an
important role in applications involving physical human-robot
interactions (pHRI), haptics, and biomedical and industrial
robotics. To be effective in such interactions, the robot
should comply with the human forces by displaying particular
impedance (physical behavior) that needs to be regulated
according to the application at hand. Interactive tasks cannot
be conducted well by pure position or force controllers [1].
Consequently, the robot impedance regulation has been the fo-
cus of many research studies over the past three decades in the
fields of robotics and pHRI [2], [3]. Significant research has
been conducted to develop sophisticated control strategies for
implementing constant impedance while taking the dynamic
and kinematic complexities of multi-DOF (degree of freedom)
robots into account. Since the pioneering work on impedance
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and compliance control in the 1980s [4], [5], considerable
contributions have been proposed in this area [6]. For in-
stance, robust impedance control [7], [8], hybrid force/motion
impedance control [9], and adaptive impedance/admittance
control [1], [10] are some classical strategies that have been
investigated extensively.

Although the above studies were conducted considering
impedance/admittance models with constant parameters, re-
cent investigations have focused on time-varying impedance
control and/or online learning of impedance parameters in the
joint or Cartesian space of a robot for different applications
of pHRI. Enhancing the impedance of robotic systems using
these learning and variation strategies has been inspired by
the continuous adjustments to the human physical behavior by
the central nervous system (CNS) [11], [12], [13], [14], [15],
[16]. In this regard, task requirements and human behavior
are crucial to modulating the robot impedance parameters
autonomously in real-time to improve its task execution per-
formance [17], [18], [19], which requires adequate knowledge
about the robot and human modeling.

Systematic time-varying impedance control strategies have
been aimed at modulating the stiffness, damping and inertia
of the robot in order to improve its interaction with the
human/environment while satisfying stability conditions. One
of the primary purposes of impedance regulation in pHRI is
to maintain velocity and/or force within appropriate ranges
[20]. For instance, the precision in performing a pHRI task
is provided by subtle movements at low speeds, which can
be made possible by imposing high impedance levels. On
the other hand, low impedance is required when someone
wants to execute large movements at high velocities [14],
[21], [22], [23], [24], [25]. To facilitate human manipulation
of the robot across these high- and low-velocity scenarios,
velocity-dependent varying-impedance control was adopted in
[26], [27].

In the same way, the admissible range of damping variation
was determined experimentally [21] with the purpose of task
execution accuracy and task completion time improvement.
The HRI force has been also controlled indirectly [28], [20]
by specifying the robot position and adjusting the desired
impedance in compliance with the environment boundaries
and dynamics. In some procedures such as deburring [29],
assembling [30], and surgery [31], it is essential to maintain
certain levels of interaction force. Using classical impedance
controllers, one can adjust the force indirectly by selecting
the robot impedance in accordance with the environmen-
tal structure [28]. On the other hand, dynamic and kine-
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matic uncertainties of the robot and environment can cause
low accuracy in indirect force control. Thereby, force-based
variable impedance controllers were proposed in [20], [30],
[32] for direct HRI force control considering its continuous
differentiability and having sensors for precise force/torque
measurement. However, many robotic systems in industrial
and medical applications are not equipped with force/torque
sensors at all points of their physical interaction [33], [34].
In another work [35], the concept of tele-impedance was
investigated for HRI, in which the desired Cartesian end-
point stiffness of the robot is adjusted in real-time based on
the human arm’s stiffness estimated through analyzing the
electromyography (EMG) signals of eight muscles acting on
the shoulder and elbow joints. A similar impedance-matching
strategy was developed in [16] to regulate the joint stiffness
of a lower-limb exoskeleton based on the processing of the
EMG signals obtained from leg muscles.

Since the variation of impedance parameters may violate
stability conditions, it is vital to strike a balance between
achieving a desirable performance and stability, especially in
applications like medical robotics where human safety is of
paramount importance. Therefore, the desired time-varying
impedance was modified considering an energy tank as the
reservoir of the safe amount of energy that can be utilized
without jeopardizing stability [36], [37]. As a result, a trade-off
between the stability and time-varying impedance was analyt-
ically formulated [36], [37] using the concepts of Lyapunov
stability, energy tanks, and passivity conditions [38]. Other
passivity-based methods [39], [19] were proposed for robots
with flexible joints and/or series elastic actuators (SEAs)
having nonlinear stiffness elements, to modify the dynamic
response of pHRI without considering any tank-energy levels.
Although a direct force measurement is avoided in these
studies [19], [36], [37], [39], the modeling uncertainties of
HRI were not taken into account.

A state-independent stability condition was obtained by
Kronander et al. [40] for changing the stiffness and damping,
which was verified offline before task execution. By satisfying
certain mathematical constraints in [41], the dynamics of the
closed-loop system in the presence of impedance variation
was guaranteed to be exponentially stable, and the resulting
position, velocity, and acceleration of the robot were bounded
in response to interaction forces. In [42], some conditions for
varying the impedance parameters were deduced to ensure
a stable interaction, where the uncertain robot model was
approximated based on a disturbance estimator [43]. While
the aforementioned strategies [36], [37], [41], [42] enhanced
human safety through improved stability conditions, they sug-
gested deviations from the desired time-varying impedance as
a compromise between the robot’s performance and its stabil-
ity. Moreover, they suffered from requiring precise knowledge
of robot dynamics parameters and/or having force measure-
ments.

In addition to the methods mentioned above, various
impedance learning policies have been proposed for different
HRI cases in the past decade [44], [45], [46]. Algorithms of
Learning from Demonstration (LfD) have been suggested as
a mathematical tool to implement a proper robot behavior via

learning based on several initial demonstration steps before the
final imitation stage. This has also been extended to pHRI and
impedance control recently for learning position trajectories
according to the human’s movements in the demonstration
phase, and then for the regulation of robot impedance in
terms of the flexibility around the desired trajectory [47], [48],
[49]. Dynamic Movement Primitives (DMPs) [50], [51] as
a learning tool for autonomous nonlinear dynamical systems
have been utilized to identify the stiffness (or impedance) and
the movement of human limbs from EMG signals obtained
from typical people for designing the robot impedance con-
troller [52], [53], [54]. Optimizing a cost function in terms
of motion variables and interaction forces (in order to explore
the optimum robot impedance considering environment/human
limb models) has also been adopted in [55], and some optimal
controllers have been investigated for the same purpose in [45],
[56], [57], [58]. Although these strategies were successful in
various robot interactions with dynamically uncertain environ-
ments (human limbs), the closed-loop robot stability was not
guaranteed in the presence of impedance variations.

To deal with stability issues, model-based impedance adap-
tation rules have been developed based on the Lyapunov theo-
rem, where the environment (human) behavior was modeled to
be non-passive with unknown parameters. Accordingly, some
learning-based controllers have enhanced the robot stability
in its physical interactions by utilizing appropriate impedance
adaptations [59], [44], [60]. Impedance adjustment in response
to various high- and low-frequency external forces are benefi-
cial aspects of these strategies that provide a compromise with
deviating from the desired trajectory. However, unstructured
uncertainties in the robot and human models have not been
taken into account and precise knowledge about the dynamic
parameters of the robot was assumed.

In the current study, a new impedance-varying control strat-
egy is proposed for autonomous pHRI by which the uniform
ultimate boundedness (UUB) of the closed-loop system’s re-
sponse in tracking the desired task trajectory is guaranteed. To
this end, an adaptation law is defined for appropriate variation
of the robot impedance parameters (stiffness and damping)
and an additional feedforward force, based on the online
estimation of these properties from the human. Furthermore,
two other update rules are defined for the estimation of the
robot dynamic parameters and the adjustment of the robot
controller’s robust gain during the interaction in order to re-
solve and overcome the structured and unstructured modeling
uncertainties of the robot and human, respectively.

By implementing the proposed scheme, with minimal in-
formation about the pHRI model and without the use of force
measurement, a stable and safe interaction is achieved through
the integration of the new adaptation laws. The system’s stabil-
ity and the convergence of tracking error, impedance elements,
and controller’s gain to their appropriate values are proven
using a comprehensive Lyapunov analysis. Accordingly, this
control scheme resolves the following issues of previous
studies: (i) requiring direct HRI force measurement at the point
of interaction [20], [30], [32], (ii) lack of closed-loop stability
analysis while providing impedance-varying-based flexibility
(trajectory deviation) [35] [45], [47], [48], [49], [52], [53],
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[54], [56], [57], [58], and (iii) ignoring modeling uncertainties
of HRI dynamics [19], [36], [37], [39], [41], [42]. The possible
applications of this autonomous impedance-learning strategy
include pHRI tasks for service and medical operations, man-
ufacturing, construction, entertainment and agriculture, where
the safety of human users is a great matter of concern, while
at the same time, human operators have unknown impedance
and force rendering characteristics.

II. ROBOT AND HRI DYNAMIC MODELS

The nonlinear dynamics of a robot manipulator with n joints
interacting with the human (environment) is given as

Mq(q)q̈+Cq(q)q̇+Gq(q)+τfri(q̇)+τunc = τcon+τhum (1)

where q is the n × 1 vector of robot joint position, Mq(q)
is the n × n inertia matrix, Cq(q) is the n × n matrix of
Coriolis and centrifugal terms, Gq(q) is the n × 1 vector of
gravitational torques, τfri is the n × 1 vector of the friction
torques, τunc is the n × 1 vector of unstructured model
uncertainties, unmodeled dynamics or disturbances for pHRI
(the combination of the robot and the human), τcon is the
n×1 control torque, and τhum = JT fhum is the n×1 human
torque, J is the m×n robot Jacobian matrix and fhum is the
m× 1 force applied on the robot end-effector by the human.
The robot dynamics in the Cartesian space is expressed as [61]

Mx(q)ẍ+Cx(q)ẋ+Gx(q)+ffri(q̇)+func = fcon+fhum (2)

in which x is the m× 1 vector of the robot end-effector posi-
tion, Mx = (JM−1q JT )−1 is the m ×m end effector inertia
matrix, Cx = Mx(JM−1q Cq − J̇)J† is the m ×m matrix of
the end effector’s centrifugal and Coriolis terms, Gx = J†

T
Gq

is the vector of gravitational force and ffri = J†
T
τfri the

m × 1 vector of friction force reflected to the end effector,
func = J†

T
τunc is the m×1 vector of the unstructured uncer-

tainties and fcon = J†
T
τcon is the control force transformed to

the Cartesian space and generated by joint-space motor torque
τcon. Note that the generalized inverse of the Jacobian matrix
is defined as J† = M−1q JT [JM−1q JT ]−1.

Property: In both joint and Cartesian spaces (y = q, x),
the robot inertia matrix My is positive definite, the matrix
Ṁy − 2Cy is skew symmetric, and the left side of (1) and (2)
can be linearly parameterized [61], [62], [63] as

My(q)φ1+Cy(q)φ2+Gy(q)+τfri/ffri(q̇) = Yy(φ1, φ2, q, q̇)θy
(3)

in which Yy is the regressor matrix defined in terms of known
variables including φ1 and φ2, and θy is the vector of unknown
parameters of the robot dynamics. As proven and presented in
[44], [60], the following three-term model is considered for
the human-robot interaction force:

fhum(t) = fff (t) +Kh(t)ex(t) +Bh(t)ėx(t) (4)

where fff is the feedforward force of the human, and the
second and third terms are the stiffness-based and damping-
based elements of the human force in physical interactions
when they deviate from the desired robot trajectory. The

Cartesian position and velocity errors are defined as ex(t) =
x(t) − xdes(t) and ėx(t) = ẋ(t) − ẋdes(t) where xdes(t) is
the desired robot trajectory in any pHRI task. Note that the
unstructured uncertainties (modeling mismatch) for both of
the robot and human is denoted by func in Eq. (2), which is
bounded:

|func| ≤ ηx (5)

where |.| gives the element-wise absolute vector. ηx is an
unknown positive vector with elements greater than or equal
to the upper bounds of |func| elements. As these upper bounds
can vary during the operation, ηx needs to be estimated and/or
compensated over time (e.g., by adjusting the robust controller
gains).

As mentioned earlier, one of the main issues of HRI is
adapting the physical behavior of the robot to human inter-
action while tracking the predefined trajectory of a task. This
becomes more challenging when we have uncertainties in HRI
modeling in the absence of force/torque sensors at the point of
interaction, which is the case in different applications such as
industrial robotics, assistive devices, and exoskeletons. This
problem is tackled in this research work by enhancing the
robot autonomy via estimating the human force and learning
the impedance components of the physical human interaction
while preserving the robot’s stability. The performance of
this intelligent control scheme is assessed with respect to
the bounds of human force estimation, impedance adaptation
convergence, and trajectory deviation.

III. ADAPTIVE IMPEDANCE-LEARNING CONTROLLER
DESIGN

The objective of this autonomous control strategy is to
provide a stable pHRI having the combined dynamics (2)
and (4) with modeling uncertainties. For this purpose, the
control force fcon in (2) is designed to achieve bounded
tracking of desired task trajectory while adapting the robot
impedance in real-time based on human behavior without any
force measurement.

A. Integrated Control Laws

The proposed controller is designed as a combination of
three schemes to deal with human impedance, robot dynamics
nonlinearities and pHRI uncertainties:

fcon = fconnon + fconimp + fconsli (6)

in which fconnon stands for the nonlinear terms of the
controller employed to compensate for the nonlinear robot
dynamics:

fconnon = M̂xẍref + Ĉxẋref + Ĝx + f̂fri − σM̂x (7)

where σ is a constant gain, and the accent ˆ implies the
estimated values of matrices and vectors obtained from an
appropriate update rule. The reference velocity ẋref and the
tracking error surface εx are defined in terms of the desired
trajectory xdes(t) and the tracking error ex(t) as

ẋref = ẋdes − ζ(x− xdes) = ẋdes − ζex
εx = ėx + ζex

(8)
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such that εx = ẋ − ẋref and ζ is the constant factor scaling
between position and velocity errors. The control input (7) can
be reformulated regarding the property (3) as

fconnon = Yx(ẍref − σεx, ẋref , q, q̇)θ̂x(t) (9)

The control scheme fconimp is designed to adjust the robot
impedance online in order to compensate for the HRI force
based on the model (4):

fconimp = −f̂ff (t)− K̂h(t)ex − B̂h(t)ėx (10)

where the accentˆ indicates the learned values of feedforward
and feedback terms of the human force determined from
suitable adaptation laws. The last part of the control law (6)
is formulated to overcome unstructured uncertainties and/or
unknown disturbances using a robust sliding-mode control
(SMC) scheme as

fconsli = −η̂x(t) ◦ tanh(εx/β) (11)

where η̂x is the time-varying gain of this robust term updated
with an additional adaptation law. tanh(εx/β) is the element-
wise hyperbolic tangent function of the vector εx/β and ”◦”
denotes the Hadamard (element-wise) product. β adjusts the
slope of this function around εx = 0, where decreasing its
value drives the function steeper in the vicinity of origin (εx =
0) and closer to the discontinuous sign function sgn(εx). There
is a trade-off between increasing β for making less variation
in the control effort during the convergence to the surface of
εx = 0 and reducing this constant to enhance the effectiveness
of this robust term for overcoming uncertainties and achieving
smaller tracking errors.

B. Closed-Loop pHRI Dynamics

The control laws (6)-(11) are substituted in the robot dy-
namics (2) in order to obtain the closed-loop dynamics of the
proposed pHRI system:

Mx(ẍ− ẍref ) + Cx(ẋ− ẋref ) =

− σMxεx + (M̂x −Mx)(ẍref − σεx)

+ (Ĉx − Cx)ẋref + (Ĝx −Gx) + (f̂fri − ffri)
− (f̂ff − fff )− (K̂h −Kh)ex − (B̂h −Bh)ėx

− η̂x ◦ tanh(εx/β) + func

(12)

Due to the definitions in (8) and after some simplifications in
presenting the estimation errors in matrices and vectors, Eq.
(12) is rewritten as

Mxε̇x + Cxεx =

− σMxεx + M̃x(ẍref − σεx) + C̃xẋref + G̃x + f̃fri

− f̃ff − K̃hex − B̃hėx − η̂x ◦ tanh(εx/β) + func
(13)

where the accent ˜ denotes the estimation error. Based on
the robot dynamics property (3), the closed-loop dynamics is
obtained as

Mxε̇x + Cxεx =− σMxεx + Yx(ẍref − σεx, ẋref , q, q̇)θ̃x
−f̃ff − K̃hex − B̃hėx − η̂x ◦ tanh(εx/β) + func.

(14)

C. Adaptation/Learning Laws

In this section, different update rules for estimating the
robot parameters, learning the robot impedance, and updating
its control gains (based on the physical human behavior) in
Section III-A are defined. By implementing these rules in
the control laws (6)-(11), with minimal information about the
pHRI model and without the use of force measurement, a
stable and safe interaction is achieved. This is facilitated by
tracking the desired task trajectory in terms of the UUB of the
closed-loop system’s response. For this purpose, an adaptation
law is defined for appropriate variation of the robot impedance
parameters (stiffness and damping) and an additional feedfor-
ward force based on the online estimation of these properties
from the human. Two other update rules are defined for the
estimation of the robot dynamic parameters and the adjustment
of the robust gain of the robot controller during the interaction.
These rules augment the intelligent controller to resolve and
overcome the structured and unstructured uncertainties of the
robot and human models.

The following adaptation law is firstly presented to update
the estimation of dynamic parameters θ̂x in (9) in terms of the
error dynamics and the regressor matrix:

˙̂
θx(t) = −ΛθY

T
x (ẍref − σεx, ẋref , q, q̇)εx −Ψθ ‖εx‖ θ̂x(t)

(15)
in which Λθ and Ψθ are positive definite matrices as the
adaptation gains, and ‖.‖ denotes the second norm for any
vector in this paper. The second adaptation law is designed to
learn the human impedance parameters and feedforward force
appropriately to adjust them for the robot based on (10) with
a small bounded difference as analyzed in the stability proof
(described in the next section):

˙̂
Kh(t) = ΛKεxe

T
x −ΨK ‖εx‖ K̂h(t)

˙̂
Bh(t) = ΛBεxė

T
x −ΨB ‖εx‖ B̂h(t)

˙̂
fff (t) = Λf εx −Ψf ‖εx‖ f̂ff (t)

(16)

where ΛK , ΛB , Λf , ΨK , ΨB and Ψf are positive definite ma-
trices employed as the learning rates of the pHRI impedance.
The third update rule is proposed for the sliding-mode gain
ηx of the controller’s robust term (11), which was defined to
be the upper bounds of |func| in (5)

˙̂ηx(t) = Λη|εx| −Ψη ‖εx‖ η̂x(t) (17)

in which Λη and Ψη are positive definite matrices as the
update rates. Note that the gains Λi and Ψi in any of the
above adaptation laws (15), (16) and (17) imply a compromise
between tracking convergence and stability/flexibility of the
controlled pHRI. In other words, Λi represents the weight of
trajectory tracking error in comparison with Ψi that corre-
sponds to the authority of robot to have physical flexibility
and its permission to deviate from the desired trajectory to
ensure the stability (investigated in the next section). The
terms include Ψi in the above-mentioned update rules result
in reduction of the adaptive dynamic parameters, impedance
elements and SMC gain, as the norm of error (||εx||) increases,
which relax more the control laws (7), (10) and (11).
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Fig. 1. Schematics of the proposed Lyapunov-based adaptive impedance-learning control strategy

A schematic diagram of this Lyapunov-based impedance-
learning controller is shown in Fig. 1. As described in this
section, the proposed impedance control and adaptation laws in
this learning-based strategy are defined without using any force
measurements. In the next section, we prove that these control
and adaptation laws (7), (10), (11), (15), (16) and (17) achieve
Lyapunov stability of the controlled pHRI by appropriately
handling structured robot uncertainties, estimating unknown
human impedance and overcoming unknown modeling mis-
matches (or disturbances).

IV. LYAPUNOV STABILITY ANALYSIS

The following Lyapunov function is defined in order to an-
alyze the stability of the nonlinear closed-loop robot dynamics
and the uniform ultimate boundedness (UUB) of the system
response:

V (t) =Vp(t) + Vi(t) + Vs(t) + Vu(t)

Vp(t) =
1

2
εTxMxεx

Vi(t) =
1

2
f̃TffΛ−Tf f̃ff

+
1

2
tr(K̃T

h Λ−TK K̃h) +
1

2
tr(B̃Th Λ−TB B̃h)

Vs(t) =
1

2
θ̃Tx Λ−Tθ θ̃x

Vu(t) =
1

2
η̃Tx Λ−Tη η̃x

(18)

in which the superscript ˜ is the estimation/adaptation error
sign (r̃ = r̂ − r for any vector/matrix r), and tr stands for
the trace of matrices. Λ, ΛK , ΛB , Λθ and Λη are positive-
definite constant matrices as the adaptation gains for the robot
impedance and dynamics, and the controller gain employed in
Section III-C. The functions Vp, Vi, Vs and Vu are defined in
terms of position, human impedance estimation, robot param-
eter estimation errors (structured uncertainty) and the robust

gain difference with respect to the bound of unstructured
uncertainties, whose time derivatives are determined as

V̇p(t) = εTxMxε̇x +
1

2
εTx Ṁxεx

V̇i(t) = (
˙̂
fff − ḟff )TΛ−Tf f̃ff

+ tr((
˙̂
KT
h − K̇T

h )Λ−TK K̃h)

+ tr((
˙̂
BTh − ḂTh )Λ−TB B̃h)

V̇s(t) =
˙̂
θTx Λ−Tθ θ̃x

V̇u(t) = ( ˙̂ηTx − η̇Tx )Λ−Tη η̃x

(19)

Substituting Mxε̇x from the closed-loop dynamics (14), the
robot parameter adaptation law (15), the impedance adaptation
rule (16) and the SMC gain update rule (17) into Eq. (19)
yields

V̇p(t) =− σεTxMxεx

− εTx f̃ff − εTx K̃hex − εTx B̃hėx
+ εTx Yxθ̃x−εTx η̂x ◦ tanh(εx/β) + εTx func

− εTxCxεx +
1

2
εTx Ṁxεx

V̇i(t) =εTx f̃ff − ‖εx‖ f̂TffΨT
f Λ−Tf f̃ff − ḟTffΛ−Tf f̃ff

+ tr(exε
T
x K̃h − ‖εx‖ K̂T

h ΨT
KΛ−TK K̃h − K̇T

h Λ−TK K̃h)

+ tr(ėxε
T
x B̃h − ‖εx‖ B̂Th ΨT

BΛ−TB B̃h − ḂTh Λ−TB B̃h)

V̇s(t) =− εTx Yxθ̃x − ‖εx‖ θ̂Tx ΨT
θ Λ−Tθ θ̃x

V̇u(t) =|εx|T η̃x − ‖εx‖ η̂Tx ΨT
η Λ−Tη η̃x − η̇Tx Λ−Tη η̃x

(20)

Lemma. Given a positive constant β, the following inequal-
ity is valid for each element of εx(i) ∈ R [64]:

0 ≤ |εx(i)| − εx(i) tanh(εx(i)/β) ≤ c β (21)

where c = 0.2785.
Due the skew symmetricity of Ṁx − 2Cx as the robot

dynamics property, and based on the above Lemma and the
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fact that tr(AB) = tr(BA) when A and B are m × n and
n×m matrices, one can write:

V̇p(t) ≤− σεTxMxεx

− εTx f̃ff − εTx K̃hex − εTx B̃hėx
+ εTx Yxθ̃x−|εx|T η̂x + [cβ]Tn×1 η̂x + εTx func

V̇i(t) = εTx f̃ff − ‖εx‖ f̂TffΨT
f Λ−Tf f̃ff − ḟTffΛ−Tf f̃ff

+ εTx K̃hex − tr(‖εx‖ K̂T
h ΨT

KΛ−TK K̃h + K̇T
h Λ−TK K̃h)

+ εTx B̃hėx − tr(‖εx‖ B̂Th ΨT
BΛ−TB B̃h + ḂTh Λ−TB B̃h)

V̇s(t) =− εTx Yxθ̃x − ‖εx‖ θ̂Tx ΨT
θ Λ−Tθ θ̃x

V̇u(t) =|εx|T (η̂x − ηx)− ‖εx‖ η̂Tx ΨT
η Λ−Tη η̃x − η̇Tx Λ−Tη η̃x

(22)

in which all elements of the vector [cβ]n×1 equal cβ defined
in (21). Conducting some simplifications and subtracting some
terms in V̇p by others in V̇i, V̇s and V̇u, the time derivative of
the Lyapunov function (18) is obtained as

V̇ (t) ≤− σεTxMxεx + εTx func−|εx|T ηx + [cβ]Tn×1 η̂x

− ‖εx‖ f̂TffΨT
f Λ−Tf f̃ff − ḟTffΛ−Tf f̃ff

− tr(‖εx‖ K̂T
h ΨT

KΛ−TK K̃h + K̇T
h Λ−TK K̃h)

− tr(‖εx‖ B̂Th ΨT
BΛ−TB B̃h + ḂTh Λ−TB B̃h)

− ‖εx‖ θ̂Tx ΨT
θ Λ−Tθ θ̃x

− ‖εx‖ η̂Tx ΨT
η Λ−Tη η̃x − η̇Tx Λ−Tη η̃x

(23)

As seen, the proposed adaptation laws substituted into
V̇ (t) can compensate for the human impedance estimation
errors (K̃h, B̃h and f̃ff ) and overcome the structured and
unstructured uncertainties (θ̃x and func). Taking the inequality
(5) into account and substituting r̂ = r̃ + r for any estimated
vector/matrix r into Eq. (23) result in:

V̇ (t) ≤ −σεTxMxεx+[cβ]Tn×1 η̃x + [cβ]Tn×1 ηx

− ‖εx‖ f̃TffΨT
f Λ−Tf f̃ff − ‖εx‖ fTffΨT

f Λ−Tf f̃ff − ḟTffΛ−Tf f̃ff

− tr(‖εx‖ K̃T
h ΨT

KΛ−TK K̃h + ‖εx‖KT
h ΨT

KΛ−TK K̃h + K̇T
h Λ−TK K̃h)

− tr(‖εx‖ B̃Th ΨT
BΛ−TB B̃h + ‖εx‖BTh ΨT

BΛ−TB B̃h + ḂTh Λ−TB B̃h)

− ‖εx‖ θ̃Tx ΨT
θ Λ−Tθ θ̃x − ‖εx‖ θTx ΨT

θ Λ−Tθ θ̃x

− ‖εx‖ η̃Tx ΨT
η Λ−Tη η̃x − ‖εx‖ ηTx ΨT

η Λ−Tη η̃x − η̇Tx Λ−Tη η̃x
(24)

Based on the positive definiteness of Mx, Λi and Ψi (for i =

f,K,B, θ, η), one can write:

V̇ (t) ≤ −σQM ‖εx‖2︸ ︷︷ ︸
Aε

+ [cβ]Tn×1 ηx︸ ︷︷ ︸
A0

−Qf ‖εx‖
∥∥∥f̃ff∥∥∥2 +Qf1 ‖εx‖

∥∥∥f̃ff∥∥∥+Qf2

∥∥∥f̃ff∥∥∥︸ ︷︷ ︸
Af

−QK ‖εx‖
∥∥∥K̃h

∥∥∥2 +QK1 ‖εx‖
∥∥∥K̃h

∥∥∥+QK2

∥∥∥K̃h

∥∥∥︸ ︷︷ ︸
AK

−QB ‖εx‖
∥∥∥B̃h∥∥∥2 +QB1

‖εx‖
∥∥∥B̃h∥∥∥+QB2

∥∥∥B̃h∥∥∥︸ ︷︷ ︸
AB

−Qθ ‖εx‖
∥∥∥θ̃x∥∥∥2 +Qθ1 ‖εx‖

∥∥∥θ̃x∥∥∥︸ ︷︷ ︸
Aθ

−Qη ‖εx‖ ‖η̃x‖2 +Qη1 ‖εx‖ ‖η̃x‖+Qη2 ‖η̃x‖︸ ︷︷ ︸
Aη

(25)

where the following non-negative norms (Qi) of matrices and
vectors are employed: QM = λmin(Mx), λmin(ΨT

f Λ−Tf ) =

Qf , ||fTffΨT
f Λ−Tf || ≤ Qf1 , ||ḟTffΛ−Tf || ≤ Qf2 , QK =

λmin(ΨT
KΛ−TK ), ||KT

h ΨT
KΛ−TK || ≤ QK1

, ||K̇T
h Λ−TK || ≤

QK2
, QB = λmin(ΨT

BΛ−TB ), ||BTh ΨT
BΛ−TB || ≤ QB1

,
||ḂTh Λ−TB || ≤ QB2

, Qθ = λmin(ΨT
θ Λ−Tθ ), ||θTx ΨT

θ Λ−Tθ || ≤
Qθ1 , Qη = λmin(ΨT

η Λ−Tη ), ||ηTx ΨT
η Λ−Tη || ≤ Qη1 and

||η̇Tx Λ−Tη ||+ cβ ≤ Qη2 . Therefore, the Lyapunov function’s
time derivative is negative definite (V̇ (t) < 0) outside the
following region:

‖εx‖ ≤
−D2 +

√
D2

2 + 4D1D3

2D1
= H1∥∥∥f̃ff∥∥∥ ≤ −D5 +

√
D2

5 + 4D4D6

2D4
= H2∥∥∥K̃h

∥∥∥ ≤ −D8 +
√
D2

8 + 4D7D9

2D7
= H3∥∥∥B̃h∥∥∥ ≤ −D11 +

√
D2

11 + 4D10D12

2D10
= H4∥∥∥θ̃x∥∥∥ ≤ −D14 +

√
D2

14 + 4D13D15

2D13
= H5

‖η̃x‖ ≤
−D17 +

√
D2

17 + 4D16D18

2D16
= H6

(26)

in which D1 = σQM , D2 = Qf ||f̃ff ||2 + QK ||K̃h||2 +
QB ||B̃h||2+Qθ||θ̃x||2+Qη||η̃x||2−Qf1 ||f̃ff ||−QK1

||K̃h||−
QB1
||B̃h|| − Qθ1 ||θ̃x|| − Qη1 ||η̃x||, D3 = A0 + Qf2 ||f̃ff || +

QK2
||K̃h|| + QB2

||B̃h|| + Qη2 ||η̃x||, D4 = Qf ||εx||, D5 =
−Qf1 ||εx||−Qf2 , D6 = Aε+A0+AK+AB+Aθ+Aη , D7 =
QK ||εx||, D8 = −QK1 ||εx|| − QK2 , D9 = Aε + A0 + Af +
AB + Aθ + Aη , D10 = QB ||εx||, D11 = −QB1

||εx|| −QB2
,

D12 = Aε + A0 + Af + AK + Aθ + Aη , D13 = Qθ||εx||,
D14 = −Qθ1 ||εx||, D15 = Aε +A0 +Af +AK +AB +Aη ,
D16 = Qη||εx||, D17 = −Qη1 ||εx|| − Qη2 and D18 =
Aε + A0 + Af + AK + AB + Aθ. According to (26), all
trajectories converge to the compact set
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S =
{(

εx, f̃ff , K̃h, B̃h, θ̃x, η̃x

)
:

‖εx‖ ≤H1 ∧
∥∥∥f̃ff∥∥∥ ≤H2 ∧

∥∥∥K̃h

∥∥∥ ≤H3 ∧∥∥∥B̃h∥∥∥ ≤H4 ∧
∥∥∥θ̃x∥∥∥ ≤H5 ∧ ‖η̃x‖ ≤H6

} (27)

within a finite time T and remain there ∀ t ≥ T .
Based on the provided stability analysis above, the magni-

tude of positive definite Lyapunov function decreases outside
the compact set obtained in Eq. (26) in terms of all variables
defined in (18). Therefore, the convergence to this bounded
region is demonstrated with dimensions related to the actual
human limb’s impedance and its variations (fff , Kh, K̇h, Bh,
Ḃh), robot model uncertainties and unmodeled disturbances
(θx, ηx and η̇x). This ensures that the system response is UUB
for the tracking and estimation errors in (26). As a result,
the closed-loop human-robot interaction using the proposed
adaptive impedance-varying controller is stable under the
assumption of bounded model mismatch or disturbance func in
(5). In addition, the slope factor β of the function tanh(εx/β)
in the robust control law (11) would affect A0 and Qη2 in Aη
defined in (25). Accordingly, the reduction of β would shrink
the size of the final compact zone (26) while increasing β will
result in the smoothness of the control effort. This compromise
on the adjustment of β was introduced in Section III-A.

V. EXPERIMENTAL STUDIES

The proposed adaptive impedance-varying control scheme
is evaluated practically through comprehensive experimental
studies. For this purpose, the Quanser rehabilitation robot
(Quanser Consulting Inc., Markham, Canada) was employed
with two degrees of freedom (DOFs) designed for horizontal
planar motions of the upper limb. The kinematics and dynam-
ics of this robot were previously comprehensively presented
and mathematically parameterized [65], [66] to execute the
control laws and adaptation rules. The QUARC (Quanser Real-
Time Control) environment was utilized as the control software
in these experiments with 1 kHz sampling rate.

A. Resistive Environment-Robot Interaction

The proposed strategy was firstly evaluated via rendering
a resistive force field by a stiff environment designed to
have physical interaction with the robot (instead of human)
and generate a time-varying interaction force in different
directions. Employing this test bed, the controller performance
was analyzed more systematically before involving human
users (described in the next section). As illustrated in Fig. 2, a
set of four springs were attached to the robot’s end-effector and
a moving target (trajectory) was followed using the proposed
strategy. The robot position in the x− y plane and the target
location were demonstrated by the hollow red and solid blue
circles, respectively, on a monitor. The left screen in Fig. 2
shows online variation of the robot’s impedance parameters
determined by the update rule (16).

The gain values in the proposed nonlinear control law
(9) and the update rules (15), (16) and (17) utilized in
this experimental assessment on the Quanser rehabilitation
robot are listed in Table I. These values were determined by

Fig. 2. Robotic set-up for the first experiments on the impedance-varying
control strategy: Quanser rehabilitation robot attached to a spring-based stiff
environment. The right monitor displays robot and desired (target) positions
in the x − y plane and the left monitor depicts the time-varying impedance
components of the robot obtained from the adaptation law (16).

trial-and-error and performing initial experiments to achieve
optimal tracking and flexibility performance of the pHRI
system. Specifically, this gain adjustment led to a fast and
smooth transient response in trajectory tracking and parameter
adaptation as well as an appropriate convergence of the sys-
tem’s steady-state response to a bounded region (compact set)
described in Section IV. The physical flexibility of the robot
was analyzed to display enough deviation from the desired
trajectory based on the human interaction by appropriate
regulation of adaptation gains. For instance, increasing the
update rate Ψi in comparison with Λi (i = K,B, f ) in the
adaptation rules (15), (16), and (17) results in the reduction
of the estimated impedance elements. This would further
relax the control effort (10) by providing more weight to the
flexibility rather than tracking convergence. This compromise
was explained in Section III-C and the flowchart of gain tuning
for the control and adaptation laws is presented in Fig. 3.
Note that the increments mentioned in this flow diagram were
applied gradually and can be selected based on the initial
gain values and the employed robotic system. The parameter
β was chosen to be 0.001 to have a large enough slope for
the function tanh(εx/β) in (11) around εx = 0 with adequate
similarity to sgn(εx) as discussed in Section III-A. However,
the chattering issue in the control effort was avoided during
the convergence of closed-loop response due to the continuity
of tanh function. In this condition and having c = 0.2785 in
(21), the magnitude of cβ = 0.0002785 in (25) is very small
and negligible relative to the size of the final compact set (26).

The Cartesian position of the robot end-effector in the
x − y plane is illustrated in Fig. 4. The robot response
converged to the vicinity of the desired target after adequate
time. This performance can be better seen in Fig. 5, which
depicts the tracking error ex in the x and y directions, which
approached values less than 2 mm after 100 s of the robot
interaction with the environment (1% of 20 cm motion range).
This convergence of the tracking error to a small bounded
region is due to the controller’s design and the adaptation of
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Rules Control
Law (7)

Adapt Laws
(15) & (17)

Adapt Law
(16)

Gains σ = 150,
ζ = 16

Λθ = 42 I ,
Ψθ = 30 I ,
Λη = 2.5 I ,
Ψη = 1.8 I

ΛK = 500 I ,
ΨK = 350 I ,
ΛB = 40 I ,
ΨB = 32 I ,
Λf = 0.5 I ,
Ψf = 0.4 I

I: Identity matrix
TABLE I

EMPLOYED GAIN VALUES IN EXPERIMENTAL IMPLEMENTATION OF THE
PROPOSED CONTROL AND ADAPTATION LAWS

Fig. 3. Flow diagram of gain tuning for the control and adaptation laws (7),
(15)-(17) by performing initial experiments

robot impedance, dynamic parameters and the robust SMC
gain during the interaction task, as proven in Section IV.
The convergence rate can be regulated based on any task
requirements through the simultaneous regulation of control
and adaptation gains.

The autonomous variation of impedance components is
shown in Fig. 6 for the stiffness K̂h, damping B̂h and feedfor-
ward force f̂ff . These values were acquired online from the
update rule (16) and transformed to the Normal-Tangential (N-
T) coordinates relative to the circular motion path. Note that
the normal and tangential axes are perpendicular and parallel
to the concurrent tangent of the target trajectory, respectively.
These results imply that the adaptive impedance parameters
remain bounded relative to the actual human limb impedance
(Kh, Bh and fff ), as analyzed in Section IV. Moreover, this
adaptation (16) was able to estimate the main mechanical prop-
erties of the environment such as its main stiffness elements
and feedfoward forces. Accordingly, the maximum stiffness
element in Fig. 6(a) was approximated as K̂h22 ≈ 65 N/m in
the normal direction, which is perpendicular to the trajectory
and toward the center of 2D space (the rest configuration in

Fig. 4. Cartesian position trajectory of the robot end-effector in x− y plane
relative to the desired moving target trajectory

Fig. 5. Convergence of the tracking error in x and y directions to a bounded
small value (less than 2 mm in each direction)

the springs set). Also, the major feedforward force fff2 was
in the same normal direction as demonstrated in Fig. 6(c),
which was estimated around 6 N due to 0.1 m deflection
of the spring-based setup toward the circular path of motion
in Fig. 4. Therefore, the proposed impedance adaptation (16)
could approximate the environment’s physical characteristics
and adjust the robot impedance accordingly.

For further comparative analysis, a previous impedance-
varying strategy proposed in [44] was implemented with the
same resistive force field (Fig. 2) and circular trajectory. The
same approach was employed to adjust the gains of this
controller as the one introduced at the beginning of this section
and demonstrated in Fig. 3. The system response using the
previous strategy [44] in following the desired trajectory and
interacting with the stiff environment is illustrated in Fig. 7(a)
and the corresponding tracking error is shown in Fig. 7(b).
As seen, a considerable deviation (more than 0.01 m) was
achieved in both the x and y directions toward the origin due
to the force of the springs. This was five times larger than
the steady-state amplitude of the deviation obtained using the
proposed scheme demonstrated in Figs. 4 and 5. This larger
deviation using the previous method [44] is due to the lack
of consideration of robot and environment uncertainties. The
result of impedance variation suggested in [44] for adjust-
ing the robot stiffness components is depicted in Fig. 7(c),
which are transformed to the N-T coordinates. Considering
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(a)

(b)

(c)

Fig. 6. Autonomous variation of impedance parameters: (a) stiffness K̂h, (b)
damping B̂h and (c) feedforward force f̂ff based on the update rule (16),
which are transformed to the Normal-Tangential coordinates

the stationary environment stiffness, this performance implies
the lack of convergence to specific steady-state values that we
achieved (Fig. 6(a)) by employing the proposed impedance-
varying scheme. Overall, significant changes in the impedance
regulation in response to the external force and ignoring
unstructured uncertainties of the system in [44] resulted in
larger deviations from the desired trajectory in comparison
with the performance of the proposed impedance-varying
control strategy.

B. Human-Robot Interaction

In this experiment, a human operator grasped the robot’s
end-effector handle and a moving target (trajectory) was
followed by implementing the proposed autonomous controller
for pHRI. As shown in Fig. 8, the user can observe his/robot
position in the x− y plane with respect to the target location
demonstrated on the right screen. Online variations of the

(a)

(b)

(c)

Fig. 7. Response of a previous impedance-varying method [44]: (a) position
trajectory of the robot in following a circular trajectory in Cartesian coordi-
nates, (b) tracking error (deviation) ex, and (c) variation of the robot stiffness
K̂h transformed to the N-T space
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Fig. 8. Robotic interface for the second experiment on the impedance-
varying control strategy: Quanser rehabilitation robot interacting with a human
operator. The right monitor displays robot and desired (target) positions in
the x − y plane and the left monitor depicts the time-varying impedance
components of the robot determined from the adaptation law (16).

Fig. 9. Human/robot motion in x − y Cartesian coordinates relative to the
desired target trajectory

robot’s impedance parameters are also illustrated by the screen
on the left side of Fig. 8.

The robot-handle/human-hand trajectory in 2D space is
represented in Fig. 9. The bounded convergence of this pHRI
response (x) to the target motion (xdes) was achieved, al-
though the human operator deviates outside and inside of
the desired trajectory due to his interaction behavior. These
deviations were larger at the beginning of the interaction
before thet adequate adaptation of the robot impedance to the
operator’s impedance was achieved. This performance can be
better observed in the time history of the tracking error ex,
which converged to a bounded region, with less than 2.5 mm
amplitude in each of the x and y directions of the Cartesian
coordinates (1.25% of 20 cm motion range), as depicted in
Fig. 10.

This outcome was attained as a result of estimating human
impedance by the adaptation law (16). The online variation
of these impedance components are illustrated in Fig. 11(c).
Similar to the previous set of experiments, levels of appropriate
stiffness and damping elements (K̂h and B̂h) for the robot

Fig. 10. Bounded convergence of the tracking error in x and y coordinates
(with a final bound less than 2.5 mm in each direction)

(a)

(b)

(c)

Fig. 11. Autonomous estimation of desired impedance parameters in physical
human-robot interaction (pHRI): (a) stiffness K̂h, (b) damping B̂h and (c)
feedforward force f̂ff based on the update rule (16)

were found after a short period of interaction with the human,
and the rest of the interaction force was treated as the
feedforward force f̂ff based on the modeling and control of
the interaction force in (4) and (10).

To assess the estimated pHRI force, direct force measure-
ment was obtained in these experiments using an ATI Gamma
F/T sensor (ATI Industrial Automation, Apex, USA) attached



11

Fig. 12. Measured value of the interaction force fhum and its estimation as
the summation of estimated stiffness-based and damping-based and feedfor-
ward forces based on Eq. (4) in x and y directions

to the robot end-effector. This measured force was not em-
ployed in the controller’s structure and it was only obtained for
the evaluation of the proposed impedance adaptation strategy.
The summation of estimated stiffness-based, damping-based
and feedforward forces based on Eq. (4) is shown in Fig.
12 together with the measured value of the interaction force
fhum. The designed adaptation (16) of the impedance elements
resulted in accurate estimation of the actual pHRI force (with
less than 1 N error), even though it was highly time-varying
and dependent on the human arm posture along the motion
trajectory. Since this user applied forces mostly toward the
+x and −y directions (shown in Figs. 11(c) and 12), the robot
showed flexibility and deviated toward the right and bottom
relative to the target trajectory in 2D space (see Fig. 9).

It is worth mentioning that the small error in the human
force estimation and modeling mismatch in the robot dynamics
were considered by func in Eqs. (2) and (5). The proposed
controller was made robust against these uncertainties by the
designed adaptation law (17) for the sliding-mode gain η̂x,
as proven in Section IV. The online variation and the final
value of this gain vector can be observed in Fig. 13. Based
on the stability analysis in Section IV, this robust gain’s
adaptation together with the adaptation for the impedance and
robot parameters as well as the control laws resulted in pHRI
stability and boundedness of tracking and estimation errors.
The oscillations seen in the closed-loop system’s response
were due to the tracking of repetitive trajectories of the motion
and fluctuation of the error around zero, and not because of
the chattering phenomenon. The chattering was avoided by
employing a hyperbolic tangent function instead of the discon-
tinuous sign function in the robust term (11). To investigate
this point further, the control effort fcon generated by the
proposed strategy (6) in this experiment (Fig. 9) is shown
in Fig. 14. As two time periods with high variations were
focused on Fig. 14, no high-frequency chattering occurred for
the command control signals.

To elaborate more on the performance of the proposed
controller, the tracking and adaptation features of this strategy
were evaluated for a triangle trajectory, demonstrated in Fig.
15. The sharp corners of this trajectory and the resulting sud-
den changes in the motion velocity and acceleration affected
the physical interaction between the robot and human. As a

Fig. 13. Online variation of the sliding-mode gain η̂x to make the controlled
HRI robust against human force estimation error and modeling mismatch in
the robot dynamics using (17)

Fig. 14. Control force fcon generated by the proposed strategy (6) for the
HRI shown in Fig. 9

result, the peaks of tracking errors in Fig. 16 occurred at these
moments of the trajectory corners.

Due to these sudden variations of the motion and corre-
sponding errors, the estimation of human feedforward force
experienced sudden jumps, as shown in Fig. 17, compared to
the previous circular motion in Fig. 11(c). Some of these jumps
are highlighted by black circles; however, an appropriate
estimation of the human force with convergence to certain

Fig. 15. Triangular reference trajectory with rounded edges in x−y Cartesian
coordinates and human/robot response motion
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Fig. 16. Convergence of the tracking error with a final bound less than 5 mm
in each of x and y directions

Fig. 17. Estimation of the human feedforward force f̂ff in tracking a
triangular trajectory

levels is seen in a broader view. Moreover, the estimation of
the controller’s robust gain vector η̂x for this triangular motion
is illustrated in Fig. 18. The adjustment of this gain’s compo-
nents according to the update rule (17) also had some sharp
oscillations because of the jumps in the tracking error (Fig. 16)
due to the variation of HRI with a high-curvature trajectory
(Fig. 15). While some peaks occurred in the robust gains at
the beginning of this interaction in following the triangular
trajectory (depicted by black circles in Fig. 18) compared to
the previous case (Fig. 13), the proposed intelligent adaptation
law was able to approximate the required level of these gains
during the first 20 sec of the motion.

Fig. 18. Adjustment of the robust gain η̂x based on (17) in the case of
triangular movement

Note that the magnitudes of Λi and Ψi in any of adaptation
laws (15), (16) and (17) affects the magnitude of the tracking
error (εx) and robot behavior, as discussed in Section III-C
and analyzed in Section IV. For instance, by relaxing Λi and
raising Ψi in these variation rules, the robot becomes more
flexible physically for the human and higher deviation levels
are admitted.

VI. CONCLUDING REMARKS

In this study, a nonlinear impedance-varying control method
was developed for an intelligent pHRI. This autonomous
strategy facilitated a stable collaboration between the robot
and the human considering their modeling uncertainties, and
without employing any measurement of interaction force.
New update rules were defined for the online estimation of
the human impedance components (stiffness and damping
matrices) and human feedforward force. Another adaptation
law was formulated to estimate the robot dynamic parameters.
Moreover, a variation scenario was designed for the SMC gain
to overcome mismatch and disturbances in the pHRI model.

Stability of the robotic system using the proposed controller,
in terms of the UUB of the tracking error and the estimation
errors of human and robot parameters, was proven using a
comprehensive Lyapunov analysis. In this regard, a compro-
mise between tracking convergence and physical flexibility of
the robot was addressed. Deviation from the desired pHRI
task trajectory remained bounded while the human impedance
and robot dynamics parameters and the appropriate controller’s
gain were estimated with bounded errors.

Experimental studies were carried out using the Quanser
robot to evaluate the performance of the proposed autonomous
impedance-varying controller, where a resistive spring-based
environment and a human operator were involved. Suitable fast
adjustment of the robot impedance and the controller’s robust
gain based on the interaction with the human/environment
was achieved to ensure stability while converging to a small
bounded vicinity of the target trajectory (less than 2% of the
motion range). The proposed autonomous impedance adapta-
tion rule was capable of estimating the environment’s stiffness
and feedforward forces. In addition, the obtained online ap-
proximation for the total pHRI interaction force through this
impedance adaptation had high accuracy in comparison with
the measured force.

This control strategy can be utilized in various pHRI
tasks such as autonomous movement therapies, assistive ex-
oskeletons and surgery operations where no force sensors
are augmented to the robot. In future work, more sophisti-
cated (higher- or fractional- order) dynamical systems can be
considered for the human limb interacting with the robot to
model more biomechanical details in various applications. The
proposed impedance learning method can also be extended for
more complex robotic systems such as tele-robotic systems
including two or more robots communicating with each other
and interacting with different human operators and/or environ-
ments.
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