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A Gaussian Mixture Framework for
Cooperative Rehabilitation Therapy in Assistive

Impedance-based Tasks
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Abstract—Rehabilitation robots can aid patients to prac-
tice activities of daily living in order to enhance mus-
cle strength and recover motor functions. In this paper,
we focus on robot-assisted rehabilitation for cooperative
therapy tasks that elicit impedance-based behaviors from
the patient. For instance, if the rehabilitation robot is
controlled to behave as a self-closing door and if pulling
this simulated door open is the therapy task the patient
needs to complete, the patient’s hand should display a
minimum required impedance to complete the task. When
a patient is unable to complete the task, determining the
minimum assistance to be provided to the patient by the
rehabilitation robot such that the task can be accomplished
is of interest. In this paper, we compare the impedance
behavior of a therapist in multiple trials of the task with
that of the patient using a Learning from Demonstration
(LfD) technique that utilizes Gaussian mixture models.
First and during the demonstration phase, the therapist
performs the tasks individually so that the robot gains
insight into how a healthy person would perform the task.
Next and during the reproduction phase, the robot will
cooperate with the patient in the therapist’s absence and
provide him/her with adaptive external assistance on a
patient-specific and as-needed basis so that the task can
be completed. To encourage active participation, provision
of assistance to the patient is coupled to the variability
observed in the therapist’s behavior across various trials
of the task. Therefore, the presented framework transfers
the constraints and underlying characteristics of a given
impedance-based task to the rehabilitation robot leading to
cooperative interaction between the robot and the patient
where the robot provides just-enough assistance. Experi-
mental results involving 1D and 2D impedance-based tasks
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show that the proposed framework effectively provides
the patient with assistance as needed during cooperative
therapy.
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I. INTRODUCTION

There has been a rise in the number of disabled people
mainly due to an increase in the aging population [1].
There has also been an increase in the rate of incidence
of stroke, which is one of the main causes of disabilities
worldwide [2]. Stroke patients may lose all or part of
their abilities and are usually not be able to perform
their daily living activities alone. Therapy exercises
are highly recommended for people with disabilities in
order to regain their strengths [3]. However, physical
therapy resources are limited, leading to reductions in
the duration of rehabilitation activities and an increase
in the workload of therapists [4]. robotic Rehabilitation is
one of the promising technologies to provide efficient,
optimal and affordable means of rehabilitation and re-
duce the burden on the healthcare system [5], [6].

In this paper, we are interested in robot-assisted
rehabilitation for cooperative therapy tasks that elicit
an impedance-based behavior from the patient. In this
context, the role of the therapist is to teach the robot how
the task is performed normally (demonstration phase,
also called learning phase). In the next step, the robot
will help reproduce the performance of the task by the
patient through assisting him/her as needed (reproduction
phase). Fig. 1 illustrates the overall idea of presented
method, which has two distinct phases. The following
discussion is framed around a cooperative therapy task
involving opening a self-closing door, but is not limited
to it. Assume the rehabilitation robot is controlled to
behave similar to a self-closing door. During the first
phase (“demonstration phase”), the therapist interacts
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Figure 1: The proposed Learning from Demonstration scheme
in a robotic rehabilitation system: (a) Learning phase: In this
phase, the robot interacts with the therapist and the task
is demonstrated to the robot. The direction of the arrow
demonstrates that the information and specifications of the
task is transferred from therapist to the robot. In the proposed
framework, the robot does not need to learn how the therapist
assists the patient; it is sufficient for it to learn how the therapist
performs the task ideally. (b) Reproduction phase: In this phase,
the robot interacts with the patient. As it is shown, the robot’s
internal controller coefficients are now Kadap. and Badap.

which represents the adaptive control of the robot in this phase.
Also, the direction of the arrow is changed, which demonstrates
the direction of the assistance from the robot to the patient.
In this phase, the robot analyses the behavior of the patient
precisely and compares it with that of the therapist. Therefore,
it is able to estimate the assistance as needed adaptively.

with the robot in order to open the simulated door and
complete the task (Fig. 1 (a)). Based on logged robot-
therapist interaction data, the underlying specifications
and constraints of this impedance-based task are statisti-
cally analyzed and learned using Gaussian mixture mod-
els. During the next step, when the therapist no longer
intervenes (Fig. 1(b)), the system adaptively determines
on a patient-specific basis the minimum assistance that
must be provided for completion of the task by the
patient.

The approach in this paper provides adaptive as-
sistance to a given patient in performance of tasks
based on the performance differential the robotic system
observes between the behavior of the therapist in the
demonstrations phase and that of the patient in the repro-
duction phase in a novel Learning from Demonstration
(LfD) framework [7], [8]. The proposed framework is
very useful in clinical settings where the therapist has
knowledge of the task to be achieved but not the ability
to accordingly reprogram/reconfigure the robot. This is
because the proposed paradigm allows for teaching a
rehabilitation robot the behavior expected from a perfect
user (therapist) in performing the task by physically
demonstrating it rather than explicitly programming the
robot through machine commands.

The paper is structured as follows: In section II,

related research on robotic rehabilitation systems is
surveyed and the main contributions of the proposed
framework are explained. In section III, the dynamic
model of interaction between the robot’s end-effector
and the patient’s arm is introduced. In Section IV, the
proposed learning model for impedance-based tasks,
which spans the 3D space of time, position and force,
is presented. In Section V, the reproduction paradigm
is developed. The proposed strategy is experimentally
tested in Section VI. Finally, Section VII summarizes
the main findings of this paper and lists future work.

II. RELATED WORKS

Research on Assist as Needed (AAN) robot-assisted
therapy is motivated by the fact that passive assistance
does not promote motor recovery as well as adaptive
assistance [9].

Pehlivan et al. [10], [11] suggested using adaptive
control as opposed to impedance control. They used
Gaussian Radial Basis functions (RBF) to model the
ability and effort of the patient. The use of an adaptive
controller is meant to provide the torque needed to com-
plete the trajectory with an increased mechanical com-
pliance and lower feedback gains. Similarly, Wolbrecht
et al. [12] modeled the patient’s muscle abilities and tone
through a Lyapunov-based control framework. Within
the framework and as part of their adaptive controller,
their assistance scheme also implemented a Gaussian
RBF. Furthermore, they proposed a forgetting factor
algorithm to adjust the robot torque input according to
the patient’s performance and to prevent the patient from
letting the robot take control. In the work of Vergaro
et al. [13], a combination of impedance and adaptive
control was implemented. An impedance control scheme
is used to provide an attractive component directed from
the patient’s hand to the target, a viscous component to
dampen high-frequency oscillations of small magnitude,
and a virtual wall to tunnel the shape of the trajectory.
The adaptive controller adjusts the amplitude of the force
field according to the patient’s performance.

In contrast to the work in which the patient is provided
with adaptive assistance, we have administered the as-
sistance using the LfD technique during the cooperative
performance of the task. The benefits of introducing
LfD to robotic rehabilitation therapy can be evaluated
from two different perspectives. First, in rehabilitation
robotics, the required programming of robots can be
cumbersome. The formulation of robot actions for the
activities of daily living (one example of which is door
opening) is demanding because it strongly depends on
the environment, which is unstructured and may change
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significantly from one case to the other (in the self-
closing door opening example, each door comes with
a different spring stiffness). Since daily living activities
can robustly be performed by a normal human being
without any difficulty, the most promising way to alle-
viate the problem mentioned above is to take advantage
of the human experience and skill in performing daily
living activities and to transfer them to the robot via LfD
without the need for re-programming the robot every
time [14].

Another benefit of using LfD in rehabilitation robotics
is in capturing and using the behaviour of the therapist
during variable training for the patient. In [15], it is
shown that providing variability in training enhances
motor function recovery. It is discussed how fixed trajec-
tory training strategies drive the spinal cord into a state
of learned helplessness. In contrast to other statistical
approaches such as RBF, our proposed GMM approach
has the ability to combine probability distribution and
approximate multivariate functions with multiple vari-
ables across different trials of the task [7]. So, it directly
acts as powerful method for serving variable training to
patients. We measure this variability by capturing and
learning from the behavior of a therapist in daily living
activities in an LfD context. Adaptive assistance methods
available in the literature do not feature this strength of
our method either.

III. ROBOT/HUMAN INTERACTION MODEL

In all robotic rehabilitation settings, the robot has
physical interaction with an environment, which can be
the therapist or the patient or both, through its end-
effector. This interaction can be in the form of kinematic
constraints or dynamic contacts between the robot and
the environment. For rehabilitation cooperative tasks,
using traditional position control for the robot cannot
be useful because the environment with which the robot
interacts is a human, which is very hard to model.
Therefore, various dynamic models of robot motion and
physical interaction between the end-effector and the
environment have been proposed in previous studies such
as impedance control techniques [16], [17] as well as
dynamic movement primitives, which is a very popular
framework for encoding movement trajectories [18]. In
[19], a perfect nonlinear dynamic coupling is presented
for modeling the robot behaviour in contact with the
environment. This model supposes that the end-effector
of the robot can be treated equivalently to a single
unit mass moving in space. It also emphasizes that the
mass is driven by a virtual spring-damper system. The
physical interaction between the robot and the therapist

or the patient is modeled by set of virtual spring-damper
couplers connected between the two [20]. Based on
this, we model the interactions that should happen for
a cooperative rehabilitation as shown in Fig. 1. In [21],
a comparison between the above-mentioned model and
other popular dynamic frameworks has been done with
regard to the response to perturbations.

The robot controller ensures that the dynamics of the
robot interacts with the robot’s environment through a
virtual mass-spring-damper system. In other words, the
control law ensures that

fsensor = Λ(är − äh) + Ψ(ȧr − ȧh) + Γ(ar − ah) (1)

in which ah is the position of the human hand (either
the therapist or the patient) that is interacting with the
robot, and ar is the robot position. Also, fsensor is
the environment generalized force applied to the robot,
which can be measured by a force sensor attached to
the robot end-effector. Λ , Ψ and Γ denote the inertia,
damping and stiffness matrices of the desired mass-
spring-damper system, respectively. It is important to
mention that different simplifications have been done to
(1). For instance, in [22], it is assumed that Λ can be
assumed to be zero, where the resultant spring-damper
system is similar to a PD controller. In [23] and [24],
(1) is simplified as follows to describe the robot’s desired
motion during interaction with the environment:

är = Γ(ah − ar)−Ψ.ȧr + fsensor (2)

Here, an interaction between a human and a robot is
assumed as a perfect nonlinear dynamic coupling. Since
the robot end effector in modeled to be equivalent to
a single unit mass moving in the Cartesian space, the
basic characteristics of cooperative rehabilitation tasks
involve not only the path to be followed, but also the
proper force interaction pattern between the two as they
move. Therefore, in the learning phase, the path of the
virtual spring which represents the cooperative behaviour
of the therapist is estimated. It is important to mention
that force and position data and the first and second time
derivatives of position are captured by means of sensors
directly during the learning phase. For calculating the
virtual spring path, we use pre-selected values for the
damping and stiffness matrices. Although there is not
any direct guiding principle for this pre-selection and the
matrices are selected experimentally, by changing them,
we can tune the difficulty of the task.

IV. DEMONSTRATING THE TASK

In the context of human-robot interaction, the goal of
the demonstration phase (also called the learning phase)
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Figure 2: Encoding of the demonstrated behaviour by the
therapist. The experiment portrays a scenario simulating a Door
Opening Task.This figure illustrates the 3D representation of
the trajectory required for successful performance of the task,
which consists of time, force and position data. As it can
be seen, there is variability in the therapist’s behavior across
various trials of the task. For instance, the start and stop points
for the door are consistent across the trials while the trajectory
to get from the start point to the stop point varies.

is to model the human behavior, which is captured during
the demonstration of a task and to determine underlying
specifications and constraints of the interaction. In coop-
erative robotic rehabilitation applications, the therapist
demonstrates the ideal performance of the task to the
robot and lets it analyze the behavior displayed by the
therapist, possibly using statistical approaches such as
what follows.

Using statistical approaches such as Gaussian Mix-
ture Model (GMM) for finding a generalized model
of demonstrated behavior involving motion, force or
impedance has been reported in [25]. A GMM is a proba-
bilistic model obtained as a mixture of a finite number of
Gaussian distributions with unknown parameters, which
is able to model the variability of the human’s actions in
performing the task across various trials. In most cases,
capturing the human’s motion sequences requires using
more than one Gaussian for modeling the task and this is
why GMM has to be used. Compared to simple averag-
ing of the human motion sequences, Gaussian modeling
requires a much smaller number of demonstrated motion
sequences in order to retrieve smooth trajectories that
are useful for provision of assistant by the robot to the
patient.

In this paper, we present a learning model that is
capable of characterizing cooperative impedance-based

rehabilitation tasks such that the position-force profile
of human/robot interaction can be captured. The robot
first learns the impedance-based behaviour [26] of a
healthy human (the therapist) during task performance in
the demonstration phase. Later and in the reproduction
phase, the robot uses the above-obtained ideal trajectory
to obtain the movements the patient should have. The
robot then assists the patient by compensating for the
differences between the patient’s ideal movements (i.e.,
those consistent with the therapist’s behavior) and the
patient’s actual movements.

Throughout this paper we use r,h and t to indicate
robot force interaction variables, human(the therapist or
the patient) position variables and time variables respec-
tively. Also for indicating the robot-side and human-side
and time vectors, we add superscript of r,h and t to
the vector. Formally, the learned trajectory consists of a
p-dimensional robot-side column vector βr ∈ Rp, a q-
dimensional human-side column vector βh ∈ Rq , and a
one-dimensional time variable βt ∈ R1. It is important to
mention that in humanoid robots with multiple degrees
of freedom, it is possible that the motions of two or
more joints results in a smaller number of interaction
forces with the human (asymmetry of joint and Cartesian
spaces). In such robots, the length of human-side vectors
and the robot-side vector can be different. Based on
the sampling rate used in the system for data capture,
each demonstration of the task by the therapist would
generate the dataset β= {βrn, βhn, βtn}

N

n=1. If the thera-
pist performs M demonstrations to teach the robot the
underlying features of the given task, the whole dataset

will be β= {{βrnm, βhnm, βtnm}
N

n=1}
M

m=1
; this set has

Ψ = N.M.(p+ q + 1) members.
A GMM can be rewritten as

fR,H,T (r, h, t) =

K∑
i=1

πiN (r, h, t|µi,Σi) (3)

in which

N (r, h, t | µi,Σi) =

1√
(2π)

p+q+1 |Σi|
e−

1
2 ((β−µi)

T Σi
−1(β−µi)) (4)

As it is mentioned, β is the data of position, force
and time captured by the robot during the learning

phase as β= {{βrnm, βhnm, βtnm}
N

n=1}
M

m=1
. (4) give the

probability density function (pdf) of the multivariate
(p+q+1)-dimensional Gaussian. The parameters of such
a model include the number of mixture components K,
the prior weights πi, the means µi and the covariance
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matrix Σi. The joint pdf extracts the features of the
rehabilitation task based on the following matrices:

µi =

 µri
µhi
µti

 , µri ∈ Rp
µhi ∈ Rq
µti ∈ R1

(5)

Σi =

 Σrri Σrhi Σrti
Σhri Σhhi Σhti
Σtri Σthi Σtti


In other words, the significance of µi and Σi in the
context of the rehabilitation task is to determine the
mean and variance of the interaction force between the
robot end effector and the therapist/patient in different
positions and times of the performance of the task.
Thus, the GMM model is (θ1, θ2, . . . , θk) where θi =
{πi , µi , Σi} are the model parameters to be found
subject to the constraint

K∑
i=1

πi = 1 , ∀i : πi ≥ 0

and collected input/output dataset

β= {{βrnm, βhnm, βtnm}
N

n=1}
M

m=1
. The mixture model

is trained by means of the Expectation-Maximization
(EM) algorithm [27].

For the purpose of reconstructing a general form
for human/robot interaction in the rehabilitation task,
we apply Gaussian Mixture Regression (GMR). GMR
allows to extract a single generalized model made up
from the set of input/output pairs (dataset) that were used
to train the GMM. The generalized model encapsulates
all of the essential features of the dataset and can predict
the outputs using new inputs that are not necessarily in
the dataset.

Note that the concept of GMR with two different input
vectors had been previously presented in [26]. How-
ever, for the first time we will derive the mathematical
formulation for such a regression in this paper. This
will allow us to establish a position-force-time model
to explain the underlying specifications and constraints
of an impedance-based task. We start by considering
a classical result of the multivariate Gaussian density,
which is that when partitioning the joint density into
a conditional one, the conditional density is also mul-
tivariate Gaussian. Theorem 1 calculates the mean and
variance of the resulting conditional density.

Theorem 1: If

 βr

βh

βt

 ∼ Np+q+1 (µ, Σ) , where

µ and Σ are defined as in (5), the Gaussian conditional
density of fR|H,T (r|H = h, T = t) has a mean that is

a linear function of h and t, and also has a constant
variance. Mathematically,

fR|H,T (r|H = h, T = t) ∼ Np+q+1

(
µ̂, Σ̂

)
where µ̂ = Ah+ Bt+ C and Σ̂ = D with A, B, C, D
being constant matrices. This theorem is proved in the
appendix.

While Theorem 1 talks about one Gaussian distribu-
tion, it can be extended to a mixture of several Gaussian
distributions. In fact, for K Gaussians, the GMR is
formulated as

fR|H,T (r|H = h, T = t) =
K∑
i=1

$i.N p+q+1

(
r|h, t, µ̂i, Σ̂i

) (6)

in which $i is the probability that the i-th Gaussian
distribution correspond to the inputs h and t. Mathemat-
ically,

$i = P (i | h, t) =
P(i)P(h, t|i)∑K
j=1 P(j)P(h, t|j)

(7)

which yields

$i =
πiN (h, t | µi,Σi)∑K
j=1 πjN (h, t | µj ,Σj)

(8)

where µi and Σi were defined in (5). So, for a mix-
ture of K components, the conditional expectation and
covariance of the output vector can be approximated by
the multi model distribution with following parameters:
[7]

µ̂ =

K∑
i=1

$i.µ̂i

Σ̂ =

K∑
i=1

$i
2(µ̂2

i + Σ̂i)− (

K∑
i=1

$i.µ̂i)
2

(9)

Fig. 2 depicts the probabilistic encoding of the demon-
stration of a task in the force-position-time reference sys-
tem after applying Gaussian process (GMM and GMR)
to the dataset. Gaussian mean and variance vectors over
the executed repetitions are used for tracing the 3D mesh.
As it can be seen in Fig. 2, the essential features and
constraints of a given task can be extracted from such
a 3D mesh. For instance, observing the variance values
along the trajectory (as shown by the wider and narrower
parts of the mesh) can inform about how differently the
same task was done by a human (e.g., the therapist)
across different trials.

The overall idea of the demonstration phase in the
presented framework is illustrated in Fig. 3. As it is
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Figure 3: Block Diagram in the learning phase. (Top): (2) is
used to determine the therapist’s arm position during each of
trials in the demonstration phase. The data of force sensor and
robot encoder are used. For damping and stiffness matrices,
we use pre-selected values. (Bottom): (9) is used to derive the
GMR. Time data is also used. The result of the demonstration
phase is the GMR parameters and a 3D mesh.

shown in Fig. 3 (top), (2) is used to determine the
therapist’s arm position during each of m trials in the
demonstration phase. n data points captured from both
the force sensor and robot encoders are stored. We use
pre-selected values for damping and stiffness matrices
Γ and Ψ in (2). After calculating the position of the
therapist’s hand in each of the m trials through (2), the
model presented in (9) is used to derive the GMR based

on the data set β= {{βrnm, βhnm, βtnm}
N

n=1}
M

m=1
. As it

can be seen from Fig. 3 (bottom), the data of force sensor
and time is also needed to calculate the GMR. The result
of the demonstration phase as shown in Fig. 3 (bottom)
is the the GMR parameters θi = {πi , µi , Σi} and a
3D mesh such as the one in Fig. 2.

V. REPRODUCTION OF THE TASK

When a patient is unable to complete a task for
which the performance expected from a perfect user was
learned by the robot in the previous section, determining
the assistance to be provided to the patient may be done
from a task reproduction perspective. Reproduction is
based on comparing the performance of a therapist in
demonstration of the task with that of the patient. Based
on this performance differential, the LfD framework
helps to determine the required assistance on a patient-
specific basis for the task to be completed.

Figure 4: Block Diagram in the reproduction phase. (2) is used
to determine the patient’s arm position. Using the 3D mesh
obtained in the demonstration phase, we can compare the force
which was exerted by the therapist during the demonstration
with that of the patient during the reproduction and calculate
the required external assistance force.

To calculate the performance differential, the GMR
in (9) interrogates the previously-demonstrated behavior
of the therapist to provide the expected βr (such as
the force interaction) for the present βh (such as the
position of the arm) and βt (time). In the conventional
LfD framework, where success in performing the task
is the key, exact task reproduction is the focus of the
robotic system. However, in the presented framework,
applying the assistance as needed is of importance to
encourage the participation between the patient and the
robot.

The overall idea of the reproduction phase in the pre-
sented framework is shown in Fig. 4. As it is shown, (2)
is used to determine the patient’s arm position apatient.
Using the 3D mesh obtained in the demonstration phase,
or equivalently using (9), we can compare the force
which was exerted by the therapist during the demon-
stration with that of the patient during the reproduction
(live data of the force sensor) and calculate the required
external assistance force.

In order to calculate the therapeutic assistance to the
patient, we use a PID control law as follows:

fassist(t) = K.e(t) + I.

∫
e(t)dt+D.

de(t)

dt
(10)

where
e(t) = ftherapist − fpatient (11)
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Here, ftherapist is the therapist’s (demonstrated) be-
haviour using the model presented in (9) and fpatient
shows the patient’s (reproduced) behaviour during the
task performance.

The proportional term produces a therapeutic assis-
tance that is proportional to the error between the pa-
tient’s performance and the average demonstrated ther-
apeutic performance. A high proportional gain results in
a large assistance being provided for a given error. The
integral term provides assistance that is proportional to
not only the magnitude of the error but also the dura-
tion of the error. This term accelerates the convergence
of the patient’s performance towards the demonstrated
therapeutic performance and theoretically ensures zero
error at the end of the task. Note that in the presented
control law, the integral term suffers from accumulated
errors, which make this term very large. A well-known
technique known as integral anti-windup can be used
to reset the integral value. The derivative term reacts in
prediction to future errors and is meant to slow down
the rate of change of the assistance provided to the
patient. Note that since the integral term responds to the
errors accumulated from the past, it can lead to so much
therapeutic assistance that causes an overshoot in the
performance of the patient compared to the demonstrated
therapeutic performance.

In the above PID law for provision of therapeutic
assistance to the patient, it is possible to adaptively
change the P, I and D gains such that the patient is
actively engaged in the task, that assistance is provided to
the patient only as needed and when needed, and that the
variability in the therapist’s demonstrated performance of
the task in the learning phase is taken into account. This
can happen if the PID gains are chosen as

K(t) = K0 −K ′(Σ2(t)− |e(t)|)
I(t) = I0 − I ′(Σ2(t)− |e(t)|)
D(t) = D0 −D′(Σ2(t)− |e(t)|)

(12)

where Σ2(t) refers to the variability in the therapist’s
demonstrated performance of the task in the learning
phase, which was calculated via GMR in (9). If the
patient is close to the therapist’s average demonstrated
performance, then e(t) is close to zero and minimum
assistance gains are employed (e.g., K(t) < K0). If the
patient deviates from the above but is still within the
range of the performances demonstrated by the therapist,
then the assistance gains are increased (e.g., K(t) = K0

when the patient is following the extreme performances
demonstrated by the therapist). If the patient deviates
significantly from the performances demonstrated by the

Figure 5: (top) Learning phase for experimental setup using
the HD2 robot and the symmetrical springs that simulate
the behaviour of a healthy person (therapist). In this phase,
the symmetrical springs move the robot’s end effector (door
handle) in the blue arrow’s path and simulate the successful
performance of the door opening task. So, the specifications
and constraints of this performance are transferred to the robot.
(bottom left) In the reproduction phase, we disconnect one
of the springs to simulate a patient with disability. The red
arrow demonstrates the path of the movement without external
assistance coming from the robot. By generating adaptive
assistance by the robot, the non-symmetrical spring (patient) is
can perform the task successfully and move through the blue
arrow’s path. (bottom right) Reproduction phase for patient 2
(corresponding to a different layout of the non-symmetrical
springs).

therapist, the assistance gains are further increased to
bring the patient in line (e.g., K(t) > K0). The above
is a therapy model in which the provision of assistance
is coupled to the variability observed in the therapist’s
behaviour across various trials of the task. This will
lead to encouraging free participation of the patient
as therapeutic intervention (assistance) is more tightly
enforced where there is low variability in the therapist’s
behaviour in different trials of the task.

VI. DISCUSSION AND RESULTS

A. Experimental Setup

The experimental results for showing the effectiveness
of the presented LfD-based cooperative rehabilitation
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Figure 6: The proposed method in the door opening task.
(a) The projection of the demonstrated mesh of therapist’s
behaviour in the force-position coordinates. The data relating to
the mean and the variance of the therapist across various trials
of the task is used for extracting essential features of the task.
(b) The data of the patient’s performance without therapeutic
assistance from the robot. The blue and green lines show a large
deviation when the patient performs the task without receiving
assistance from the robot. (c) By using the previously presented
assistance model, the robot provides external assistance to the
patient so that the task can be done successfully. (d) The black
and red lines show the magnitude of the assistance for both
patients. As it can be seen, the assistance is provided more
strictly when the patient starts to deviate from the range of
performances demonstrated by the therapist while it is minimal
otherwise.

system is provided in this section for both learning and
reproducing phases. Two different sets of experiments
have been conducted for the purpose of evaluating the
performance of the proposed framework.

The apparatus used includes an HD2 Haptic Device
(Quanser Inc., Markham, Ontario, Canada) that provides
6 degrees of freedom (DOF) of position sensing and 6-
DOF force feedback. The device has a parallel mech-
anism that is highly back drivable and has negligible
friction. Since the device uses capstan drives, the per-
ceived endpoint inertia is low while the device has a

rigid structure.
Two different tasks are implemented in this paper to

show that the proposed approach is not limited to 1-
DOF tasks. First, a 1-DOF task simulating door opening
is conducted and next a 2-DOF task simulating cutting
a cake is presented. For the door opening task, the
humans (therapist and patient) were simulated with a
spring array system. However, in the second task, the
authors personally mimicked the roles of the therapist
and the patient. In both tasks, the robot simulates the
impedances one feels when either opening a self-closing
door or cutting a cake; this is an appealing aspect of
the proposed framework because it gives the flexibility
to implement various activities of daily living using the
same robot, in a repeatable manner and cost effectively.

B. Task one: Opening the door
Being a learning from demonstration test, this experi-

ment consists of the two different phases shown in Fig. 1.
In both phases, a 2-DOF spring array is connected to
the HD2 robot end-effector as shown in Fig. 5. This
spring array emulates both a therapist in the learning
phase, and a patient affected by muscle impairment in the
reproduction phase. In the first phase, where a therapist
is to demonstrate the task performance to the robot, the
array’s springs are configured symmetrically around the
line of motion to be taken by the robot end-effector as
the task progresses. In the second phase, where a patient
is to try to move the robot in order to perform the task,
some of the array’s springs are removed such that the
remaining springs are no longer symmetric relative to the
line of motion such that motor deficiency is simulated.
We employ two asymmetric configurations of the springs
in order to model two different patients with different
motor capabilities. The symmetric (i.e., therapist) and
the two asymmetric (i.e., patients) configurations of the
mass-spring array are shown in Fig.5.

For this experiment, we first control the HD2 device
to behave as the self-closing door. For pulling this
simulated door open, the human user’s hand should
display a minimum required impedance. A total of 5
demonstrations are carried out, each lasting around 16
seconds and therefore resulting in around 1600 sam-
ple points (100 Hz is the data logging rate). For the
demonstration, the therapist-emulating, symmetric spring
array is connected to the robot end-effector. To move
towards its equilibrium point, the spring array pulls the
simulated door (robot end-effector), thus opening the
door. A virtual damper is implemented in the robot
controller in order to complement the physical spring
array (which inevitably has some mass) to more closely
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Figure 7: The proposed method in cutting the cake task. This task is performed in two DOFs. Therefore, the left and right
figures represent the z direction (up-down cutting) and the x-y plane (side to side cutting), respectively. (a) The mean and the
variance of the therapist’s behavior across various trials. (b) The blue and green lines show the performance of the two patients
in the absence of therapeutic assistance from robot. This figure shows a large deviation with respect to the therapist’s behavior.
(c) The blue and green lines show the performance of the patients in the presence of the therapeutic assistance from robot using
the previously presented assistance model. This figure shows that the task can be done successfully. (d) The magnitudes of the
external assistance for both patients. Just like the door opening task, the assistance is provided more strictly when the patient
starts to deviate from the range of performances demonstrated by the therapist while it is minimal otherwise.

model the human, which is considered a mass-spring-
damper system. And again, variability is introduced in
the therapist’s demonstrated performance by changing
this virtual damping parameter randomly.

Since the door has a specific impedance, the patient
arm should show a minimum required impedance to
open the door. In Fig. 6(a), the red line represents the
the therapist’s demonstrated performance. In contrast
to this, in Fig. 6(b), the blue and green line show a
large deviation when a patient performs the task without
receiving assistance from the robot. By using the pre-
viously presented assistance model, the robot provides
assistance to the patient in the form of robot-generated
forces so that the task can be done successfully; see
Fig. 6(c). The magnitude of the assistance is also shown
in Fig. 6(d). As it can be seen, more assistance is
provided when the patient starts to deviate from the range
of performances demonstrated by the therapist while it
is minimal otherwise. The experiments show that as a
patient gets tired or the task difficulty increases, more

assistance need to be provided to the patient. 1

C. Task two: Cutting the cake

This experiment also consists of the two different
phases shown in Fig. 1 for demonstration and repro-
duction. The authors simulate the role of the therapist
and the patient by grabbing the robot end-effector in the
demonstration and reproduction phases, respectively. In
the first phase, the person playing the therapist’s role
demonstrates the task performance to the robot, which
consists of lowering the robot end-effector (simulating
the knife) in the z direction to a desired depth followed
by moving it on an arc in the x − y plane (simulating
the cake cutting). In the second phase, the two people
playing the patient’s role begin to move the robot in
order to perform the task but do not exert the required
forces for lowering the knife and/or cutting through the
simulated cake.

1This paper has supplementary downloadable material available at
https://youtu.be/QJkwJd1PAiE showing the experiments in the paper.
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For this experiment, we will have the HD2 device
controlled to demonstrate the resistance one feels when
cutting through a cake in up-down and side-to-side
directions. For doing this task, the human user’s hand
should display a minimum required impedance. A total
of 25 demonstrations are carried out, each lasting around
6 seconds and therefore resulting in around 2500 sample
points (100 Hz is the data logging rate). The results in
Fig. 7(left) correspond to the z direction while those in
Fig. 7(right) correspond to the x− y plane. In Fig. 7(a),
the red line represents the the therapist’s demonstrated
performance. In contrast to this, in Fig. 7(b), the blue and
green line show a large deviation when each of the two
patients perform the task without receiving assistance
from the robot. By using the previously presented assis-
tance model, the robot provides assistance to the patients
in the form of robot-generated forces so that the task can
be done successfully; see Fig. 7(c). The magnitude of
the assistance is also shown in 7(d). As it can be seen,
the assistance is provided more strictly when the patient
starts to deviate from the range of performances demon-
strated by the therapist while it is minimal otherwise.
This shows that the patient is only assisted as needed to
promote free and active participation of the patient.

VII. CONCLUSION

In this paper, a new framework has been proposed
for assist-as-needed rehabilitation therapy in impedance-
based tasks, which involve the coordination of time,
position and force. The main contribution of the work
is to develop a Learning from Demonstration based
technique for the provision of assistance to the patient in
impedance-based tasks. In this technique, first the robot
learns how a healthy person (a therapist) perform the
given task and then adaptively interacts with the patient
to provide just enough assistance so that the patient can
perform the task successfully. The provision of assistance
to the patient is also coupled to the variability observed
in the therapist’s behavior. This is called assist-as-needed
therapy, which is desirable because it encourages active
participation of the patient. The validity of the proposed
approach has been shown using experiments involving 1-
DOF and 2-DOF activities of daily living. In the future,
we will bring the proposed paradigm to a clinical setting
for patient studies.

APPENDIX

Proof of Theorem 1:
In order to calculate mean µ̂ = E (r|H = h, T = t) ,

let us define z = r + Mh+ N t. So,

µ̂ = E (z −Mh−N t |H = h, T = t)

= E (z |H = h, T = t)−M (h |H = h, T = t)−

N (t |H = h, T = t)

= E (z |H = h, T = t)−Mh−N t

In [28], it is proven that joint normal distributions are
independent if they are uncorrelated. Since Z, H and T
are jointly normal, if we make them uncorrelated, they
will be independent. So, we need to findM and N such
that {

cov (Z,H) = 0
cov (Z, T ) = 0

This yields{
cov (R,H) + M.cov (H,H) +N . cov (T,H) = 0
cov (R, T ) + M.cov (H,T ) +N . cov (T, T ) = 0

As it was stated before, the covariance between R and
H (or R and T ) appears in the covariance matrix in (5),
therefore we can write:{

Σrh + M.Σhh +N . Σth = 0
Σrt + M.Σht +N . Σtt = 0

This consists of p+ q + 1 equations and unknowns. So
by solving it, we have

N =
(
Σrt − ΣrhΣhh

−1Σht
) (

ΣthΣhh
−1Σht − Σtt

)−1

M =
(
Σrh − ΣrtΣtt

−1Σth
) (

ΣhtΣtt
−1Σth − Σhh

)−1

Therefore, Z is independent from both H and T . So,

E (z |H = h, T = t) = E (z) = µr + Mµh + Nµt

This yields µ̂ = µr + Mµh + Nµt − Mh − N t .
Therefore:

A = −M

B = −N

C = µr + Mµh + Nµt

For calculating the variance Σ̂ = var(r|H = h , T = t)
, again by defining z and calculatingM and N , we have

Σ̂ = var (z −Mh− N t | H = h , T = t)

= var (Z | H = h , T = t) +

M.var (H | H = h , T = t) .Ḿ+

N .var (T | H = h , T = t) .Ń−

M.cov (Z,H)− cov (Z,H) .Ḿ−

N .cov (Z, T )− cov (Z, T ) .Ń +

M.cov (H,T ) .Ń +N .cov (T,H) .Ḿ
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Previously, we proved that Z is independent from both
H and T , so:

Σ̂ = var (z) +MΣhtŃ + NΣthḾ

or equivalently

Σ̂ = Σrr+MΣhhḾ +NΣttŃ +MΣhtŃ+ NΣthḾ
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