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Abstract—In the field of human-robot interaction, surface
electromyography (sEMG) provides a valuable tool for measuring
active muscular effort. While numerous studies have investigated
real-time control of upper extremity exoskeletons based on user
intention and task-specific movements, the prediction of body
joint positions based on EMG features has remained largely
unexplored. In this paper, we address this gap by proposing a
novel approach that leverages Convolutional Neural Networks
and Long-Short-Term Memory (CNN-LSTM) models to gen-
erate exoskeleton joint trajectories. Our methodology involves
collecting data from three channels of EMG and three degrees-
of-freedom (DoF) joint angles and enables us to position control a
pneumatic cable-driven upper-limb exoskeleton, thereby assisting
users in various tasks. Through extensive experimentation, our
intention-based model demonstrates robust performance across
different speeds and is capable of detecting variations in payload
and electrode placement. The empirical results yielded from our
study underscore the efficacy of our approach, particularly in
reducing the EMG levels of the user during different tasks by
providing exoskeleton assistance as needed.

Index Terms—EMG, Human-Robot Interaction, CNN-LSTM,
Soft Exoskeleton, Proportional Myoelectric Control

I. INTRODUCTION

ROBOTIC exoskeletons have recently gained attention for
rehabilitation purposes, assistive robotics, and human

power augmentation. The use of upper-limb exoskeletons in
industrial environments can prevent injuries and occupational
accidents [1]. This improves productivity by providing support
and assistance for repetitive or physically demanding tasks.
In powered upper-limb exoskeletons, more autonomy and
adaptability are needed, especially for physical human-robot
interaction (pHRI) [2].

To ensure effective and compliant HRI, we must generate
motion trajectories that adapt to the smooth and natural
movement patterns of a user [3], [4]. It is challenging to
estimate the user’s intention during each task, especially with
upper-limb exoskeletons. There are multiple strategies for
acquiring HRI information and human intention detection.
When using motion-based methods [5]–[7] with force/torque
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sensors, human effort must be separated from gravity torque,
friction torque, and inertial torque.

On the other hand, EMG provides a good alternative and
can directly measure subtle changes in muscle activity [8].
The advantage of myoelectric control over other methods is
that the onset motion intention can be detected earlier than the
physical motion of the human. Studies on human intention
prediction using EMG signals have mostly concentrated on
classification problems [9] such as gesture identification [10]
and pattern recognition [11]–[13]. Gestures have limitations
accommodating a comprehensive range of motion and do not
encompass all potential movements.

Continuous effort mapping, also referred to as proportional
myoelectric control offers solutions for situations where the
time-varying intentions of the user cannot be adequately
addressed by discrete function approximation [14]. Model-
based approaches utilizing kinematic [15], [16], dynamic
[17], or musculoskeletal [18], [19] models based on human
biomechanics have been proposed to decode EMG signals and
map them to desired control outputs. Due to the irregular and
inhomogeneous shape of the upper extremity, these approaches
are limited by high computational costs, repeated calibrations,
and susceptibility to external disturbances.

Advancements in machine learning (ML) and deep learning
have enabled the extraction of useful features from EMG
signals on a user-specific basis, facilitating the decoding of
complex movements across multiple DOFs. While many stud-
ies use neural networks for myoelectric control, they typically
focus on capturing basic statistical features of EMG signals for
single-joint control. Such networks often struggle to accurately
map inputs for complex multi-DoF exoskeletons. Critically,
they lack the ability to adapt in real-time to a user’s intention,
primarily because they aren’t data-driven and can’t capture
intricate EMG features [20].

Model-free approaches such as convolutional neural net-
works (CNN) are particularly effective in capturing deep
features and correlations among multiple channels of EMG
signals [21]. CNN has demonstrated superior efficiency com-
pared to traditional statistical and spectral feature extraction
methods [22], [23].

Another popular deep learning method is recurrent neural
networks (RNN) which takes the history of the EMG data into
account [24], [25]. In some studies, a combination of CNN
with long short-term memory (LSTM) is used to model the
human-robot interaction [26], [27]. In [28], EMG data was
fed to one-dimensional convolutional layers and then passed
through two bi-directional LSTM layers to learn the kinematic
characteristics of the hand.
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While CNN/LSTM approaches have been explored, many
lack extensive experimental studies on position tracking, espe-
cially considering variations in load and speed. Additionally,
continuous effort mapping using EMG for upper-limb move-
ments remains under-researched.

In this work, we provide assistance by predicting exoskele-
ton joint angles based on the user intention and different fea-
tures such as load, speed, the initial position of the hand, pos-
ture, fatigue, and history of the EMG. We call this ”Intention-
Based Predictive Assistance”, or IBPA. We present a shared
control scheme for real-time decoding of EMG signals and
generating a trajectory that is the best representative for the
upper extremity. Using a parallel CNN-LSTM architecture, we
capture spatial and temporal features of the EMG signals and
pass the predicted position to a PD position controller.

This paper is arranged as follows: Section II introduces
the framework of IBPA, followed by a detailed discussion
of the position controller in Section III. The experimen-
tal methodology, designed to evaluate the effectiveness of
our proposed method, along with the resulting quantitative
analyses and findings, are presented subsequently. We then
address the study’s implications, limitations, and potential
future directions. The article concludes with Section VI.

II. EMG-BASED INTENTION DETECTION

In this section, we explain how we integrate a machine-
learning model to predict the movements of the arm using
EMG signals based on training on user-specific data. First, we
discuss the specifications of the model architecture, and then
we explain the training process.

A. Hybrid regression model

Fig. 1 illustrates the schematic of the parallel CNN-LSTM
architecture. The model takes three channels of EMG signals
and angular position data of each robot joint as inputs. For the
3-DoF system, we have 3 channels for EMG and 3 channels
for angular position. Sequential data is segmented into 60 ms
windows (30 samples per window) and sliding window steps
of 2 ms. As a result, rt = 30 rows represent the sliding window
size and rs = 6 columns represent the channels.

A notable feature of EMG signals is the latency between the
actual movement and the EMG. The EMG activity is observed
before the actual movement occurs [29]. In our application,
the time delay was estimated at 150 ms by averaging over
100 random samples of EMG activity followed by movement
onset. With a 50 ms delay in the serial communication in
the real-time system, we leveraged the 100 ms head-start in
addition to 60 ms sequential data for time-series prediction.
We predict 450 ms into the future to compensate for the delays
associated with the cable friction.

The selection of sequential data for the model is determined
through a trial and error process. Longer sequential data may
result in higher prediction accuracy, but it also introduces
more system delay. This occurs because the model needs to
wait for all sequential data to be available before making
predictions in real-time implementation. To strike a balance

between prediction accuracy and system responsiveness, we
buffer 30 time steps with a 2 ms sampling time for our model.

To capture spatial features and correlations among each
channel, the CNN block is employed. By using 2-D convolu-
tional layers, but 1-D structured kernels, the extracted features
become independent of one another. Hence, the arrangement
of sensor data in the segmented input window does not affect
the final features and counteracts the effect of cross-talk. The
electrode placement matches the most activated biological
joints associated with the exoskeleton.

The CNN block consists of two-convolutional layers with
a kernel size of 1 × 3 followed by max-pooling layers with
a filter size of 1 × 2. Batch normalization and rectified linear
unit (ReLU) activation functions are applied after each convo-
lutional layer to introduce non-linearity to the model. Since the
CNN captures correlations in signal frequency and amplitude
among all inputs, the model is not a simple regression. Instead,
it is very robust to arbitrary new movements that it was not
trained on.

LSTM is a variant of RNNs, renowned for their efficacy in
time series regression tasks due to their ability to propagate
temporal information. By leveraging the gated structure and
cell state in each LSTM node, they effectively counter the
vanishing gradients problem commonly encountered in RNNs.
At any given discrete time instance t, the LSTM block takes
in sensor data, with each LSTM node’s hidden and cell states
determined by their previous outputs at t− 1.

The LSTM layer, composed of 50 nodes, integrates with a
CNN to process the data. Features derived from the CNN are
flattened, merged with the LSTM temporal features, and then
fed into a fully connected layer with 50 neurons, enabling
a holistic integration of CNN and LSTM features in our
proposed architecture.

Model hyperparameters were primarily chosen based on
engineering considerations and hardware constraints. Kernel
sizes in CNN’s shallow layers targeted specific signal features,
while deeper layers sought broader ones. Although parameters
like LSTM hidden units were chosen for simplicity, speed, and
accuracy, other settings, such as optimization methods, were
informed by existing literature [30].

B. Model Training and Performance Evaluation

The model was trained on the dataset obtained from the
experiments in subsection IV-B where the protocols for data
gathering are explained. The model was trained for each user
separately based on the dataset that was individually collected.
After the model is fully trained, angular position and EMG
signals are received and passed through the trained model for
real-time inference.

Prior to training the model, we perform preprocessing on
the EMG dataset to eliminate any noise, artifacts, or bias. We
utilized a 2nd-order Butterworth low-pass filter with an 8 Hz
cutoff frequency and then normalized the data using the Z-
score method.

The target for the regression model is a 1 × 3 matrix, with
columns representing the angular position of each robot joint.
With the goal of predicting 450 ms into the future, the output
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Fig. 1: The schematic of intention-based model control of the upper-limb exoskeleton including the high-level control using hybrid CNN-LSTM and low-level
control using Proportional-Derivative (PD) while gravity compensated. During real-time operation, EMG and angular position data are input to the parallel
architecture. The predicted angular position is then used to calculate the gravity compensation torque which is used as a feedforward to the position controller.
Assistance is provided with pneumatic actuation.

of the training data is shifted by 225 samples. The model was
trained for approximately 3 hours on a GPU. The learning
rate is set to 5e-5, and the model uses the Adams optimizer
and a batch size of 25. Learning stops after 51 epochs (ϵ <
0.001). The regression loss is measured using mean squared
error (MSE). The CNN, LSTM, and cascaded CNN-LSTM
were also tested individually and the hybrid model outperforms
both of them with 91.2% accuracy.

The model is trained using approximately 1 million time se-
ries data points with a 0.002 seconds sampling time, including
non-identical movements. The size of the dataset is chosen to
include a comprehensive range of human arm movements and
incorporate various directions and velocities, thereby ensuring
a robust representation of possible motion dynamics. The
hyperparameters of the model, such as the number of hidden
layers, the optimizer, the learning rate, the parameters related
to sequential data, and the number of time steps, are chosen
empirically. The system is tested with various future prediction
time steps, and 0.45 seconds is determined to be the best
response for real-time application.

III. ASSISTIVE ROBOT CONTROL

The objective is to generate a human-like reference path in
the configuration space of the human arm and the exoskeleton,
specifically focusing on the coordination between the elbow
and shoulder. This is achieved by transferring the 7-DoF
human joint boundaries into the configuration space of the
exoskeleton and the check whether the predicted trajectory fits
into the biological joint limits and otherwise using the clipping
method (shown in the safety check block in Fig. 1) to ensure
the path stays within the specified range.

A. Gravity Compensation

Powering the actuators sufficiently to counteract the joint
torque created by the weight of the robot’s links is important

because when passively collecting the data from the exoskele-
ton, we discovered that the load of the robot’s links and joints
on the muscle is affecting the EMG data. Therefore, in order to
have unbiased data that isolates EMG from the exoskeleton’s
load, we implement an AI-modified version of a closed-form
gravity compensation model. This means we use a neural
network model to capture the difference between the actual
dynamics and the nominal model of the robot.

In the presence of gravity and accounting for the dynamics
of the human-robot interaction, the equations of motion of
the robotic exoskeleton are presented (1) where Mr ∈ IRN×N

represents the robot’s joint inertia matrix, Cr ∈ IRN×N denotes
the Centrifugal and Coriolis term, and Gr ∈ IRN×N is the
gravitational term:

Mr(q)q̈ +Cr(q, q̇) +Gr(q) = τ r − JT fint − τ load (1)

The external force and torque in (1) consists of the actuator
torque τr ∈ IRN exerted on the exoskeleton’s joints, the
interaction force fint between the human upper limb and
exoskeleton in the Cartesian space, and the torque generated
by external load τload ∈ IRN. J is the Jacobian matrix from
the end-effector to the joint, and N is the number of DoFs.

Considering there are no inertial and human interactions in
the system, the only term left in the equation of motion in
a general N-DoF robotic system would be the gravity term.
However, due to parameter uncertainty for the closed-form
gravity compensation model, there is an error on all joint
torques during experiments. To estimate this error, we train
a neural network model to predict the torque τdist needed for
the exoskeleton to stay in a certain position. The model is also
able to predict the error associated with viscous friction.

By leveraging data acquired from angular encoders, which
links to the actuation torque leading to a given configuration,
we were able to determine the variation between the data-
driven torque and its nominal counterpart τNom. Through
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offline training, this error was then aligned with the angular
position data, ensuring that for each robotic configuration, the
system recognized both the nominal value and the error as
identified by our trained model.

Later during inference and data collection, we use the
predicted τdist with respect to a set of given joint angles qi to
estimate the amount of τGC needed for gravity compensation.

τGCi = τNomi + τdist (2)

B. Trajectory Tracking

A trajectory-tracking controller is designed to follow the
predicted position that already overcomes the challenges as-
sociated with the pneumatic cable-driven system, including
inherent delays, internal friction, and cable elasticity. As
shown in Fig. 1, the Proportional-Derivative (PD) control
scheme was implemented to follow the predicted joint angles.

In order to provide assistance as needed, the predicted
trajectory is followed while compensating for the external load
and supporting the exoskeleton’s weight. The control law in
(3) is designed to follow the predicted trajectory that already
takes into account the external load and human effort.

τri = KP (qdi − qi)−KD q̇i + τGCi (3)

The controller employs a PD control scheme with a pro-
portional gain KP and a derivative gain KD to follow the
desired joint angle qdi at every time step. Meanwhile, joint
level feedforward gravity compensation τGCi is utilized to
further enhance the control performance by taking advantage
of the known system kinematics.

IV. MATERIALS AND EXPERIMENTS

In this section, a 3-DoF soft robotic exoskeleton is used for
proof of concept and to evaluate the performance of the user
intention-based assistive exoskeleton control approach.

A. Hardware implementation

The hybrid regression network for position prediction and
the neural network for gravity compensation is implemented
using Python (Python Software Foundation, USA). The neural
network predictions are sent to an Arduino Mega 2560. Angu-
lar position and EMG signals are captured by the Arduino I/O
ports with 50 and 2 kHz respectively. The controller generates
assistive gains in real-time with a 500 Hz sampling rate.

The acquired data is transferred to Python via the Pyserial
library at a 115200 baud rate, ensuring a communication delay
below 10 ms. Multi-threading in Python ensures synchronized
data handling, preprocessing, and model predictions. Specif-
ically, the encoder data is down-sampled to align with EMG
data. The main thread processes data within a 15 ms window,
employing a buffer mechanism to continually update the CNN-
LSTM input.

The exoskeleton’s joints are powered by fluidic muscles
DMSP-20-RM-CM (Festo Corp,Esslingen, Germany. To reg-
ulate the pressure of these pneumatic soft actuators, electro-
pneumatic transducers EP211-X120-10V (Omega Engineering

Inc., USA) are utilized. Quadrature optical encoders (HEDM-
5500 B12, Broadcom Inc., US) are attached to the shoulder
and elbow joints for measuring the exoskeleton’s position.
Three SX230-1000 surface EMG sensors (Biometrics Ltd.,
United Kingdom) are positioned along the medial deltoid,
anterior deltoid, and biceps brachii muscles. The sensors are
embedded with a built-in 460 Hz low-pass filter.

B. Experimental protocol

Experiments were conducted on one female and one male
participant who met specific inclusion criteria, including a lack
of musculoskeletal injury or motor-control impairment. The
participants were 25 and 22 years of age, 165 cm and 183 in
height, and weighed 58 and 91 kg, with an arm length of 55.2
cm and 65.3 cm. The participants provided explicit written
informed consent prior to their participation in the study.

Before starting the experiments, the participants’ arms were
prepared using an alcohol swab to remove surface oils and
other contaminants. Subsequently, three EMG electrodes were
placed on the medial deltoid, anterior deltoid, and biceps
brachii. This muscle combination was chosen based on the
highest RMS EMG activation for single joint movements such
as lateral raise, frontal raise, and bicep curl in exoskeleton
movements [31], [32]. Upon wearing the exoskeleton, EMG
and angular position data were collected for two minutes
during its static calibration. Throughout the experiment, the
exoskeleton consistently remained gravity-compensated using
a feedforward loop.

The experiments were structured in two phases: the training
phase and the evaluation phase. The former aimed to gather
data to train the system on the participants’ data and tailor the
IBPA to them. The training phase, spanning 7 days for each
participant, required them to consistently wear the exoskeleton
while being seated. Each day comprised multiple sessions with
hourly breaks, wherein the participants executed various tasks.

Data collected during training included three channels of
EMG and three channels of angular encoders to measure
joint positions. Experimental tasks were created using training
landmarks shown in Fig. 2. First, a pair of start and end
positions were randomly chosen, and the participant was
instructed to reach the destination starting from the initial
position. Variations in initial position, destination, load, speed,
electrode placement, and pause/rest time are termed movement
features. Each unique combination produced a specific move-
ment, referred to as a training task.

In the training phase, only the start and end positions
were monitored and the transition (variations in the upper
body’s angular positions and position of the end effector
during movement from the initial point to the destination)
was not recorded. In other words, the participant followed an
arbitrary desired trajectory that they deemed most convenient.
The emphasis was on capturing the user’s natural kinematic
patterns.

Variations in speed were categorized as slow or fast and
were only distinguishable by observation. Upon concluding the
training phase, the average speeds of these movements were
computed by evaluating the distance traveled relative to the
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Fig. 2: Landmarks for both experimental phases are shown. Three reference
trajectories were defined for the evaluation phase (in bold colors) with
specified landmarks for the participants to follow. The dashed and dashed-
dotted lines represent the mean trajectories traveled by the first and second
participants respectively. Participants followed the reference trajectories with
an average root mean square error (RMSE) indicated on the far right table.

time taken for task completion. Participants tried to maintain
consistent speeds across tasks (vslow = 0.05m/s, std = 0.01
and vfast = 0.2m/s, std = 0.02). Furthermore, movements
were executed both with and without an added 500 g weight
across different days, taking into account potential variations
in EMG electrode placements (displacement < 10mm).

The training tasks were designed to activate targeted mus-
cles with different transitions. In total, roughly 600 different
tasks were executed, considering all possible variations. Al-
though most of the tasks were completed either with or without
a load, during some of the tasks, at a random landmark, the
participants were unexpectedly given a load and instructed
to place it at a predetermined destination. The participants
repeated each at least twice. The collected data for each
participant was used to personalize the IBPA further detailed
in section II.

The evaluation phase, spanning six days within a week,
aimed to assess the capability of the deep learning model in fa-
cilitating user-initiated movements and providing exoskeleton-
based support. Contrary to the training phase, participants
encountered three randomly presented conditions: Unassisted
(absence of exoskeleton), assisted with exoskeleton gravity
compensation (GC), and assisted with IBPA. The same tasks
were repeated for all three conditions wherein users had to
follow three predefined reference trajectories shown in Fig. 2.

The collected data for the evaluation phase included EMG
readings from the same muscles, angular positions, control
inputs, and predicted trajectories. Data collection for each
trajectory occurred in a single uninterrupted session. It in-
cluded combined testing tasks that were randomly presented to
the participants. The tested tasks encompassed varying speeds
(0.18 m/s, 0.1 m/s, 0.07 m/s), loads (0.5 Kg, 1 Kg, 1.5 Kg),
postures (seated and standing), landmarks, pause/rest time, and
electrode placements (displacement < 10mm).

During the evaluation phase, the reference trajectories for
the end effector (center of the palm) in Cartesian space along
with error boundaries (|eb| < 15mm) were shown on a
monitor with real-time forward kinematics plots as feedback
for the user to maintain their position and speed during
movements.

While the tested tasks share some features with the training
tasks, we ensured that they also include differences. For
instance, the postural difference is not considered during
training, or heavier loads are tested during evaluation. To
ensure repeatability and the integrity of the experiments, each
unique test task was created and repeated five times over the
course of three days. Pause, rest, and hold on the landmarks
were determined randomly.

V. RESULTS

Experimental results were segmented according to local
minimums in joint positions. For each segmented cycle, the
root mean square (RMS) value of the EMG, joint angle, and
exoskeleton torque were calculated. Recognizing the impor-
tance of capturing the variability in performance within indi-
viduals, we aggregated the data, averaging the five repetitions
of tasks across both male and female participants.

The task was deemed unsuccessful if error bounds around
the reference trajectories were exceeded. Successful comple-
tion necessitated hitting all landmarks. Across 162 tasks and
810 trials per participant, we observed a 99.9% completion
rate.

The statistical significance for the percentage change across
exoskeleton conditions was determined using Mixed Model
ANOVA with SPSS Statistics 21.0 (IBM, Amonk, NY, USA).
Initially, the Shapiro–Wilk test assessed the data’s normality,
followed by Levene’s test to check for homogeneous variances.
All the other descriptive information can be found in an
appendix on GitHub 1.

The mean and standard deviation of velocities for trajec-
tories 1 to 3 were calculated using the summation of the
point-to-point Euclidean distance traveled by the participants
divided by the duration of task (v1 = 0.181m/s, σ = 0.013,
v2 = 0.099m/s, σ = 0.006, v3 = 0.069m/s, σ = 0.005).

A. Assistive torque comparison

In the context of evaluating the exoskeleton support, we
assessed the total torque, which was computed as the summa-
tion of joint-specific torques. The hypothesis posits that the
exoskeleton actuation torque should be higher for the IBPA
method, indicating a greater contribution from the exoskeleton
to moving the biological joint.

Our statistical model was structured to only compare the
two conditions – IBPA and Gravity Compensated (GC) – given
that the No Exo condition inherently lacks associated torque
values. The model’s fixed effects encompassed the torque
responses under the two conditions, with the computed F-
statistic for the conditions being F = 153.976 (p < 0.05).

As shown in Fig. 3, there was a significant increase in torque
exertion in most tested tasks for the IBPA compared with GC.

1https://github.com/tbs-ualberta/RAL-EMG-Based-Intention-Detection.git

https://github.com/tbs-ualberta/RAL-EMG-Based-Intention-Detection.git
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Fig. 3: The sum of all joint torques, calculated as the root mean square, was averaged across all repetitions, tasks, and participants for each condition:
IBPA-assisted (purple) and GC-assisted (blue). The total torque increase using the proposed IBPA method relative to GC condition is on average 26.2% higher
and a significant increase can be seen in almost all variations of tasks. The variations in muscle-specific EMG reduction across all conditions, speed, and load
are illustrated through different shades. The average of all tasks is shown on the far right sidebar. The table on the right represents the mean and std across
540 repeated tasks. * represents statistical difference (p < 0.05).

It was evident that the Gravity Compensated (GC) condition
recorded a significant torque value of 61.33 psi (SE = 8.12,
t = 7.55, p = 0.001). In juxtaposition, the IBPA condition
revealed a markedly higher torque of 76.58 psi (SE = 8.14,
t = 9.4, p = 0.001).

In a joint-specific analysis, the average assistive torque
for shoulder abduction is zero (psi) for the third trajectory,
reflecting minimal mid-deltoid activation. For the GC method,
torque is distributed as 20%, 40%, and 40% among shoulder
abduction, shoulder flexion, and bicep respectively; while for
IBPA, the distribution is 22%, 41%, and 35%. Notably, the
IBPA predicts a 9% increase in elbow assistance, a 30% rise in
actuation across all trajectories for ShFE, and a 47% increment
for the initial two trajectories for ShAA.

Delving into the random effects of our model, neither tra-
jectory (Wald−Z = 0.978, p = 0.328), speed (Wald−Z =
0.932, p = 0.351), nor weight (Wald−Z = 0.942, p = 0.346)
displayed a significant influence on the total torque, suggesting
that the variations in these parameters did not substantially
modulate the torque values under the studied conditions.

B. EMG comparison

An additional component of the experiments involves com-
paring the IBPA method with a no-exoskeleton condition. The
performance of the model was examined by variations in speed
and load, with comparisons made by measuring EMG during
the experiments. EMG levels provide a measure of human
effort, and the hypothesis is that they should be lower when
using the assistive exoskeleton.

Fig. 4 shows the accumulation of EMG reductions in all
muscles across all variations and trajectories between the
proposed method and two other conditions.

Statistical analysis shows distinct patterns among the three
conditions. The No Exo condition yielded a significant in-
crease in EMG activity (SE = 0.11, t = 12.98, p < 0.05),

suggesting a substantial muscular effort in the absence of
exoskeleton support. In contrast, the IBPA condition demon-
strated a significant reduction in EMG values (SE = 0.13, t =
6.63, p < 0.05), affirming our first hypothesis of attenuated
muscular effort when using our proposed method. However,
the GC condition did not show a substantial difference from
the No Exo condition (SE = 0.13, t = 12.66, p < 0.05),

In transitioning from the GC method to IBPA, average
reductions were observed in EMG levels across the three
movements: 44.3% for the elbow, 49.8% for ShFE, and 46.9%
for ShAA. When comparing the proposed IBPA method with
the no exoskeleton condition over three trajectories, there were
average reductions of 53.8% for the elbow, 49.6% for ShFE,
and 45.1% for ShAA.

Delving deeper into the random effects, we found that while
the trajectory and speed did not significantly influence the
EMG values, the weight did have a notable impact. Based
on the estimates from the covariance parameters, trajectory
and speed exhibited no significant effects. Conversely, weight
emerged as a significant factor (WaldZ = 0.783,p = 0.001)

VI. DISCUSSION

With IBPA, user-led control of the upper-limb exoskeleton
could be achieved across different testing tasks using wearable
EMG and joint angle sensors. An exoskeleton managed by the
IBPA consistently reduced user effort and EMG readings com-
pared to conditions without assistance during three different
conditions (see Figures 3 and 4).

The results show that the proposed system can effectively
interpret user intentions and provide assistance accordingly.
Taking into account movement speed and payload, the pro-
posed approach predicts 450 ms ahead of the user’s intended
position by leveraging the natural latency in EMG activity.
IBPA allows the exoskeleton’s actuation to synergize seam-
lessly with human muscle contractions, providing a synergistic
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Fig. 4: The reduction in EMG was assessed across all repetitions within each condition, spanning all variations in tasks. The data are indicated for three
conditions: assisted by IBPA (in purple), assisted by GC (in blue), and in the absence of the exoskeleton (in black). The results of muscle-specific EMG
reduction across all conditions and variations in speed and load are presented in various shades. The table on the right represents the mean and std across
540 repeated tasks. * represents statistical difference (p < 0.05)

motion for the biological limb and the exoskeleton. In spite of
the complex hysteretic response and nonlinearity arising from
the interaction between the cable and the pulley, this approach
results in smooth movements.

As shown in Fig. 3, the cumulative joint torque generated by
the exoskeleton is generally higher with the IBPA condition.
Within each condition, the human and exoskeleton should
generate more or less the same amount of joint torque. In the
presence of assistance provided by the IBPA method, the user
generates lower biological torque. With the implementation of
IBPA, the user and exoskeleton consistently reach a state of
load sharing. With this cooperation, arm motion is generated
more efficiently, reducing both EMG signals and biological
torque.

The level of assistive torque for each joint depends on the
path and the activated joint(s) within each task. This results
in variations in transitions for each trajectory or load. Since
the user was putting less effort into their bicep, the elbow
experienced the least torque increase in the first trajectory.
On the other hand, the opposite can be seen for the second
trajectory. With the third trajectory, there is the lowest increase
in assistance level by torque, which can be explained by the
fact that only two joints are activated.

Using both angular position and EMG signals as input
prevents the robot from being biased solely based on EMG
activity and sets a ground truth. This is because EMG activity
could be similar in different types of situations. For example,
while going up or going down, the robot learns to distinguish
direction. Since the experiments were performed on different
dates, the model was robust to electrode placements and
muscle activity profiles that randomly changed every day.

Higher EMG levels can be seen for heavier weights in
almost all joints unless the user decides to transfer the weight-
lifting effort to other joints. However, no specific trend was
observed by increasing the velocity of the arm movement
since the inference is fast enough for the model to predict
the position within a shorter time frame.

As a result of the proposed assistance, moving at high
velocity requires the same effort as moving at low velocity. A
faster throughput of manual tasks will not make a user more
tired if the total volume of jobs (trials) remains unchanged. In
addition, the insignificant difference in EMG levels between
the no exoskeleton condition and the GC demonstrates that
the gravity compensation method worked.

Fatigue-induced variations in EMG signals could potentially
impact the performance of the model. Despite these chal-
lenges, our research demonstrated the model’s robustness in
accommodating such variations. From our experimental find-
ings, the model effectively detects long-term EMG variations
including muscle fatigue, and appears to benefit from our
approach, which mitigates user fatigue in extended exoskeleton
use compared with no exoskeleton conditions. Enhancing the
LSTM network with more hidden states captures prolonged
temporal shifts, and future research will delve deeper into
fatigue effects. Additionally, to ensure voluntary control of the
exoskeleton torque, the user could indicate the desired support
ratio as a trade-off between comfort and assistance.

In the experiments, the system was trained on two modes
of speed and tested on three modes, demonstrating its ability
to detect speed. Furthermore, the model was trained with a
500 g load and tested with 0.5 kg, 1 kg, and 1.5 kg. Aside
from hardware limitation (maximum actuation: 120 psi with
maximum torque of 40 N), lower performance was recorded
with loads heavier than 3 kg. The main reason for this is
insufficient data. This could be addressed by collecting more
data that incorporates variations with heavier loads. Advanced
techniques encompass the integration of attention mechanisms
or domain adaptation for enhanced generalization.

Based on the experimental results, it was seen that EMG
activity of each individual can be decoded and shared control
can be achieved with high accuracy for both participants.
However, the model has to be trained for each user separately.
In other words, the model’s performance may not be optimized
when utilized by an individual other than the one whose
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electromyographic profiles were trained on. This is attributed
to the distinct EMG thresholds and muscle characteristics
inherent to each individual. In the future, methodologies such
as transfer learning and domain adaptation will be leveraged
to efficiently personalize the model to new EMG thresholds
using less data.

Our model’s architecture can be designed for modularity,
enabling the inclusion of additional EMG channels or more
degrees of freedom. While this offers scalability, it also ne-
cessitates corresponding enhancements in the training dataset
and potentially requires optimized computational solutions.
We plan to investigate this scalability in subsequent studies,
ensuring model robustness with expanded input dimensions.

Future research will also delve deeper into hyperparameter
exploration, ablation studies, and model performance in terms
of EMG activity and torque enhancement. While this paper
didn’t focus on exhaustive machine learning evaluation, we
compared three architectures.

VII. CONCLUSION

Research presented here demonstrated the development of
an Intention-Based Predictive Assistance (IBPA) to prevent
worker injury while using upper-limb exoskeletons in shared
control tasks. The study, which encompassed the utilization
of a deep learning model for high-level control and a PD
controller with gravity compensation for low-level control,
demonstrated promising results in the prediction of user in-
tention and assistance of load-bearing tasks in a variety of
situations. The study confirmed the two hypotheses in the
experiments. First, significant EMG reductions were obtained
across different speed modes and payloads when the proposed
exoskeleton assistance method was used. Second, an increase
in the exoskeleton torque within all tasks was achieved. Results
showed the proposed method’s ability to dynamically adapt
to the mechanical and biological demands of each task over
unseen tasks as required in real-world industrial environments.
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