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Adaptive Quasi-static Modelling of Needle
Deflection During Steering in Soft Tissue
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Abstract— In this paper we present a model for needle deflec-
tion estimation in soft tissue. The needle is modelled as a vibrating
compliant cantilever beam that experiences forces applied by the
tissue as it is inserted. Each of the assumed vibration modes
are associated with a weighting coefficient whose magnitude is
calculated using the minimum potential energy method. The
model only requires as input the tissue stiffness and needle-
tissue cutting force. Contributions of this paper include the
estimation of needle-tissue contact forces as a function of the
tissue displacement along the needle shaft, while allowing for
multiple bends of the needle. The model is combined with partial
ultrasound image feedback in order to adaptively calculate the
needle-tissue cutting force as the needle is inserted. The image
feedback is obtained by an ultrasound probe that follows the
needle tip and stops at an appropriate position to avoid further
tissue displacement. Images obtained during early stages of the
insertion are used to predict the deflection of the needle further
along the insertion process. Experimental results in biological
and phantom tissue show an average error in predicting needle
deflection of 0.36 mm.
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1. MOTIVATION

Needle insertion is an essential component of several clin-
ical interventions such as biopsies, radio frequency ablation,
neurosurgery, drug delivery, and brachytherapy cancer treat-
ment. Accurate guidance of the needle tip towards a clinical
target is a decisive factor in the success of these procedures.
Inaccurate needle placement may limit the effectiveness of the
treatment or lead to undesirable side effects. Controlling the
trajectory of flexible needles within soft tissue is challenging
because, in practice, intrinsic needle-tissue interaction causes
the needle to bend, which in turn deforms body tissues and tar-
gets [1]. Bevelled-tip needles are often used for percutaneous
insertions as the needle tip can easily cut and penetrate a soft
tissue. As the bevel cuts the tissue, an imbalance of forces is
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generated at the needle tip leading the needle to deflect from
a straight path [2].

Solutions to mitigate needle targeting errors are often sought
in physically modelling the needle-tissue interaction in order
to estimate the needle deflection and carry out the necessary
corrective actions. The simplest model that captures needle
deflection during insertion is the nonholonomic model [3].
The needle tip is assumed to follow a circular path whose
curvature and direction of deflection can be controlled by
rotating the needle base around the needle shaft [4]. The
tissue is considered to be stiff relative to the needle as the
model cannot account for tissue deformation. In practice, this
assumption does not hold as tissue deformation does occur due
to needle deflection [5]. In fact, needle deflection and tissue
deformation are coupled effects that influence each other [6].

To account for tissue deformation, mechanics-based models
have been extensively used to model needle insertion into soft
tissue [7], [8], [9]. In these methods, different assumptions are
made to model the resulting needle-tissue contact force profiles
such as that of distributed loads along the needle shaft [10], or
forces being proportional to tissue deformation [1], [11]. More
complex models of tissue deformation have been developed
using finite element methods [12], [13] that can account for
the effects of needle rotation.

Typically, physical models require as input several hard-to-
characterize properties of the needle-tissue interaction. This
input information is difficult to obtain and not always available
from in-vivo procedures. In addition, most models can only
account for a fixed set of inputs that cannot be updated during
the insertion procedure. Although model parameter identifica-
tion is unavoidable when employing physical models, limiting
the number of parameters to those that can be identified during
the procedure could facilitate the implementation of the model
in clinical practice.

Besides using needle-tissue modelling for estimating needle
deflection, medical imaging techniques such as ultrasound
are commonly used to directly monitor the needle and target
position during insertion [14], [15]. Biomechanical models of
needle in tissue and image-based needle tracking techniques
turn out to be complementary. Accurate measurements of nee-
dle position can be fed into physical models to continuously
update model parameters [16], [17], [18]. For instance, in
[19] ultrasound images of the needle tip are used to calculate
the actual curvature followed by the needle tip and update a
needle steering controller. In [20] deflection models and image
feedback are integrated to guide the needle towards a moving
target. Tracking the needle tip in ultrasound images during
insertion requires the probe to move in synchrony with the
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needle [4], [21]. Probe motion during the clinical procedure
can result in unwanted deformation of the surrounding tissue
which may result in anatomic variations of the pre-operatively
planned needle target location [22]. Thus, limiting the motion
of the ultrasound probe is desirable to avoid discrepancies
between pre-and intra-operative locations of clinical targets.

The motivation of this paper is to propose a model for needle
deflection estimation with a limited number of parameters. The
needle is modelled as a vibrating compliant cantilever beam
that undergoes forces applied by the tissue as it is inserted.
Each of the assumed vibration modes is associated with a
weighting coefficient whose magnitude is calculated as a func-
tion of the model parameters. The model only requires as input
the tissue stiffness and the tissue cutting force. Contributions
of this paper include: (1) a novel tissue model that estimates
tissue deformation and the resulting needle-tissue contact
forces along the shaft while allowing for multiple bends of
the needle; (2) a closed form approach for estimating needle
deflection that makes the model computationally efficient; and
(3) a method to update needle-tissue cutting force on the fly
from partial ultrasound image feedback, where the ultrasound
probe follows the needle tip and stops at an appropriate
position to minimize tissue deformation.

The rest of the paper is organized as follows. In the next
section we introduce the needle-tissue model and a variational
method used to solve it, and describe how image feedback can
be used to update the model parameters. Section 3 presents
the needle insertion setup used for validating the proposed
method. Validation of the proposed method in biological ex-
vivo and phantom tissues reported in Section 4 shows an
average maximum error in predicting needle deflection of 1.2
mm with an mean error of 0.36 mm.

2. NEEDLE-TISSUE INTERACTION MODEL

Regardless of how the needle interacts with the tissue, the
needle can be modelled as a cantilever beam that experiences
forces applied by the tissue. The deflection of a beam can be
approximated as the sum of n admissible deflection functions
representing the first n modes of vibration, each of which
is multiplied by an unknown weighting coefficient [7]. The
deflection functions are trial beam shape functions that must
satisfy the boundary conditions of a cantilever beam and be
differentiable at least up to the highest order of the partial
differential equations of the beam. The deflection v(d,z) of
beam can be defined as

v(d,z) =
n

∑
i=0

qi(z)gi(d) (1)

where qi(z) gives the displacement of the beam at each point z
along its shaft and gi(d) is a weighting coefficient for each of
the vibration modes with d being the current insertion depth.
The eigenfunctions qi(z) for a cantilever beam of length L
normalized in such a way that the maximum displacement
(deflection) is equal to unity, is given by [23]

qi(z) =
1
κi

[
sin(βi

z
L
)− sinh(βi

z
L
)− γi

{
cos(βi

z
L
)− cosh(βi

z
L
)
}]

(2)
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Fig. 1. Needle insertion in soft tissue. As the needle cuts a path in the tissue,
a force Fc is applied to the needle tip causing the needle to bend. F and P are
the transverse and longitudinal components of Fc, respectively, that depend
on the needle bevel angle β . Tissue compression resulting the needle bending
is assumed to be the difference between the current shape of the needle v(z)
and the path cut by the needle tip vt(z).

where the constants γi and κi are computed as

γi =
sinβi + sinhβi

cosβi + coshβi

κi = sinβi− sinhβi− γi(cosβi− coshβi).

(3)

The values of the constants βi for a cantilever beam (clamped-
free) are β1 = 1.857, β2 = 4.695, β3 = 7.855, β4 = 10.996,
and βi ' π(i−1/2) for i > 4 [23]. At this stage the assumed
displacement functions are entirely parametrized. In the fol-
lowing, we shall see that the weighting coefficients gi(d) can
be calculated as a function of the needle-tissue interaction
forces such that the system reaches equilibrium.

2.1 Needle-Tissue Equilibrium

To find the needle deflection given in (1), we need to
calculate the weighting coefficients gi(d) that satisfy the
equilibrium of the coupled needle-tissue system. To this end,
we will use a variational method known as the Rayleigh-Ritz
method in which equilibrium of the system is established using
the principle of minimum potential energy. This approach has
been previously used to estimate needle deflection in [9], [20].
An important difference of our model compared to [9], [20]
is a new tissue model that allows for an unlimited number
of needle rotations while accounting for tissue deformation.
Another contribution of this work is closed-form model param-
eter estimation from partial ultrasound image observation. We
propose an approach to reduce the model to a simple system
of linear equations that make it computationally efficient.

The coefficients gi(d) are those that minimize the system
potential Π(d) defined by

Π(d) =U(d)+V (d) (4)
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where U(d) is the total stored energy in the system and V (d)
is the work done by conservative forces. Let us now derive
the expressions for the potential energy and the work for the
needle-tissue system.

Consider a needle of length L being inserted into a tissue as
shown in Fig. 1(a). As the needle tip cuts through the tissue,
a reaction force Fc, known as the cutting force, is applied at
the needle tip perpendicular to the bevel angle and causes
the needle to bend. This force can be decomposed into a
longitudinal and a transverse components (see the needle tip
in Fig. 1(a)). We will neglect the effects of the longitudinal
component of Fc as it mostly induces axial compression of the
needle. For small deflections, the transverse force F is given
by F = Fc cos(β ), where β is the needle bevel angle. As the
needle bends, the work due to F is computed as

V (d) =−Fv(d,L). (5)

which will contribute to Π(d) in (4). As a result of the needle
deflection, the bending strain energy stored in the needle is

Ub(d) =
1
2

ˆ L

0
EI
(

∂ 2v(d,z)
∂ z2

)2

dz, (6)

where E and I are the needle Young’s modulus of elasticity
and its second moment of inertia, respectively.

In some needle insertion procedures, such as in prostate
brachytherapy, a guiding template is used to minimize the
needle deflection outside the tissue and to help guide the
needle towards a target location. We model the template as
a rigid spring of stiffness Kp >> 0 with no thickness, that
is connected to the needle shaft at a distance of zt from the
needle’s base with zt = L− d− ct , where ct is the distance
from the template to the tissue surface (see Fig. 1(a)). The
potential energy stored in the template is

Up(d) =
1
2

Kpv(d,zt)
2. (7)

If the template is not used, Kp must be set to zero.
As the needle bends, it deforms the surrounding tissue

which in turn applies forces to the needle. Assuming small
local magnitude and deformation velocity of the tissue, it is
reasonable to assume that the tissue is a purely elastic medium.
Thus, the force applied to the needle at a certain point along
the shaft becomes proportional to the tissue displacement at
that point. If we call vt(z) the initial position of the undeformed
tissue, the tissue reaction force is K(v(d,z)− vt(z)) (see Fig.
1(a)), where K is the stiffness of the tissue. Now, modelling
the tissue is simply a matter of defining vt(z).

The assumption here is that tissue displacement is equal
to the difference between the current position of the needle
shaft and the previous path that was cut by the needle tip.
An example is shown in Fig. 1(b). The needle is first inserted
to a depth of d1 and then advanced by τ to reach a depth
of d2. The deflection of the needle tip when it was inserted
to d1 was v(d1,L) and the current deflection of the shaft at
the position the tip was at d1 is v(d2,L− τ). For a generic
point along the shaft, one defines the equilibrium position of
the tissue as vt(z) = v(d− τ,L). Therefore, the energy due to

tissue compression is given by

Ut(d) =
1
2

K
ˆ L

L−d
[v(d,z)− v(d− τ,L)]2dz. (8)

Notice that as the new proposed tissue model essentially
compares the current needle shape with the path cut by
the needle tip, it allows for an unlimited number of needle
rotations. Now that we have defined all the energies and the
work in the system, we can calculate the eigenvalues gi(d)
using the minimum potential energy principle. According to
the Rayleigh-Ritz method [24], the coefficients gi(d) must give
δΠi = 0 for any values of δgi where δ denotes an infinitesimal
difference. Thus, minimizing the system potential with respect
to the unknown gi(d) is equivalent to setting the variation in
the potential with respect to the coefficients equal to zero.
Therefore, one can state:

δΠi(d) =
∂

∂gi(d)
(Ub +Up +Ut +V )∂gi(d) = 0. (9)

Inserting the equations of the energies (6)-(8), and of the work
(5) in (9) to solve for gi(d) yields:

∂

∂gi(d)

EI
2

ˆ L

0

[
∂ 2

∂ z2

n

∑
i=1

qi(z)gi(d)

]2

dz

+
K
2

ˆ L

L−d

[
n

∑
i=1

qi(z)gi(d)−
n

∑
i=1

qi(L)gi(d− τ)

]2

dz

+
Kp

2

[
n

∑
i=1

qi(zt)gi(d)

]2

−F
n

∑
i=1

qi(L)gi(d)

= 0. (10)

Taking the partial derivative with respect to gi(d), and knowing
that qi(L) = 1, results in

EI
ˆ L

0

(
n

∑
i=1

q̈i(z)gi(d)

)
q̈i(z)dz+Kp

(
n

∑
i=1

qi(zt)gi(d)

)
qi(zt)

+K
ˆ L

L−d

(
n

∑
i=1

qi(z)gi(d)

)
qi(z)dz (11)

−K
ˆ L

L−d

(
n

∑
i=1

gi(d− τ)

)
qi(z)dz = F,

where the double dot denotes the second derivative with
respect to z. Expanding the summations allows to write the
first three terms only as functions of z. For instance, the first
term can be rewritten as:

EI
(

g1(d)
ˆ L

0
q̈1(z)q̈i(z)dz+g2(d)

ˆ L

0
q̈2(z)q̈i(z)dz

· · ·+gn(d)
ˆ L

0
q̈n(z)q̈i(z)dz

)
. (12)

Thus, by creating four new variables that we define as
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Ψ ji =

ˆ L

0
q̈i(z)q̈ j(z)dz, Ω ji =

ˆ L

L−d
qi(z)q j(z)dz,

Γ ji = qi(zt)q j(zt), φ ji =

ˆ L

L−d
g j(d− τ)qi(z)dz,

(13)

(11) can be rearranged as follows

n

∑
j=1

[g j(d)(EIΨ ji +KΩ ji +KpΓ ji)−Kφ ji] = F, (14)

with Ψ ji, Ω ji, and Γ ji being only functions of z and therefore
can be solved easily. Special attention must be given to the
last integral in (11) as it has a delay term τ . Thus, φ ji in (13)
is also a function of g(d). In the following, we will convert
φ ji into a convolution form in order to eliminate the delay.

2.2 Model Simplification

In the last integral of (13) that defines φ ji, the weighing
coefficient gi is delayed from d by τ = L− z. To eliminate the
delay, it is convenient to take the integral of a delayed function
over its delay term. Using a simple change of variable, i.e.,
z = L− τ , results in

φ ji =

ˆ d

0
g j(d− τ)qi(τ)dτ (15)

where, according to (2), qi(τ) is computed as

qi(τ) =
1
κi

[sin(λiτ +βi)− sinh(λiτ +βi)+

− γi(cos(λiτ +βi)− cosh(λiτ +βi))] ,
(16)

with λi = βi/L. Close scrutiny of (15) indicates that we
have transformed the delayed function φ ji into a convolution
integral. Applying the Laplace transform to φ ji over d yields

L {φ ji(d)}= Φ ji(s) = G j(s)Qi(s), (17)

where Qi(s) = L {qi(τ)} with qi(τ) given in (16). Hence,
expanding the previous equation gives

Φ ji(s) =
G j(s)

κ j

[
s(sinβi)+λi cosβi

s2 +λ 2
i

− λi coshβi + ssinhβi

s2−λ 2
i

−γi

(
s(cosβi)−λi sinβi

s2 +λ 2
i

− s(coshβi)+λi sinhβi

s2−λ 2
i

)]
. (18)

Applying the inverse Laplace transform on both sides of the
previous equation results in:

(φ
′′′′
ji −λ

4
i φ ji)κ j = κig

′′′
j (d)+aig

′′
j(d)+big j(d), (19)

where the prime denotes the derivative with respect to d. The
constants ai, and bi are

ai =λi[cosβi− coshβi + γi(sinβi + sinhβi)]

bi =λ
3
i [cosβi− coshβi− γi(sinβi− sinhβi)].

(20)

As we can note, the delay term has vanished and φ ji can be
shown to satisfy (19).

Now, in order to find the weighting coefficients gi(d), one
writes n equations (14), one for each of the assumed vibration
modes. The weighting coefficients are simply found by solving
the system of n linear equations given in (21). Notice that
Ψi j = Ψ ji, Ωi j = Ω ji, Γi j = Γ ji, and φi j = φ ji.


g1(d)
g2(d)

...
gn(d)




EIΨ11 +KΩ11 +KpΓ11 EIΨ12 +KΩ12 +KpΓ12 . . . EIΨ1n +KΩ1n +KpΓ1n
EIΨ12 +KΩ12 +KpΓ12 EIΨ22 +KΩ22 +KpΓ22 EIΨ2n +KΩ2n +KpΓ21

...
. . .

...
EIΨ1n +KΩ1n +KpΓ1n EIΨ2n +KΩ2n +KpΓ2n . . . EIΨnn +KΩnn +KpΓnn

−K


φ11 φ12 . . . φ1n
φ12 φ22 φ2n

...
. . .

...
φ1n φ2n . . . φnn

= F

(21)

2.3 Model Parametrization Using Image Feedback

The proposed model requires as input the force at the needle
tip and the tissue stiffness. This parameters are not always
available to in operating room conditions. However, in an in
vivo procedure, tissue Young’s modulus can be estimated using
an ultrasound-based Acoustic Radiation Force Impulse (ARFI)
imaging technique that relates the shear wave propagation
speed of the ultrasound probe to the mechanical properties of
the tissue (see [19]). Then, the tissue stiffness can be derived
from the measured Young’s modulus. Measuring the needle-
tissue cutting force is a much more challenging task. Here,
we propose a closed-form approach to estimate the cutting
force using only partial image feedback of the needle during
insertion. This is another contribution if this paper and has

many practical uses.

Let us assume that the deflection of the needle tip can be
acquired from image feedback and is called v0. Thus, from (1)
we can write:

v(L,d) = g1(d)+g2(d)+ . . .gn(d) = v0. (22)

Now, let us add this equation to the system of n equations
given in (21) such that we get a system of n+1 independent
expressions with only n unknown parameters. Therefore, one
can solve for the tip force using the extended system of
equations when image feedback is available. The description
of how the needle deflection is measured in ultrasound images
can be found in [14]. Note that position feedback of the needle
could be obtained from another imaging or sensing modality.
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Fig. 2. 2 DOF needle insertion robot. A motor provides the linear motion
to insert the needle into the phantom tissue. A second motor attached to the
needle rotates it around its shaft. The axial force (along Z) at the needle base
is measured by a force sensor. Images of the needle inside tissue are recorded
by a camera in the (Y,Z) plane by an ultrasound probe in the (X ,Y ) plane.
The ultrasound probe is mounted on a second linear stage (not visible) that is
controlled such that the ultrasound imaging plane always contains the needle
tip.

3. EXPERIMENTAL SETUP

Fig. 2 shows the two-degrees-of-freedom robotic system
used for conducting needle insertion experiments in soft tissue.
A 6-DOF force/torque sensor (JR3, Inc. Woodland, USA) is
connected to the needle base and measures the axial insertion
force (the other 5-DOF of force/torque sensing are not used).
A RE-25 Maxon motor can rotate the needle around its shaft.
The assembly can translate thanks to a linear stage actuated by
a RE-40 Maxon motor through a belt and pulley mechanism.

Validation of the proposed method in this paper is performed
using camera and ultrasound images to measure the needle
deflection in semitransparent and biological phantoms respec-
tively. A camera records at 30 Hz images of the needle inside
a semitransparent tissue from the side of the tissue container
(in the (Y,Z) plane defined in the upper left corner of Fig. 2).
The needle is steered such that its deflection plane is parallel
to the camera imaging plane. The images are processed to
output the needle shape in the form of a polynomial, from
which the position of the needle tip is calculated given the
needle insertion depth. The image processing algorithm used
to measure the needle deflection in camera images can be
found in [10].

For validation of the model in biological tissue, a 4DL14-
5/38 Linear 4D ultrasound transducer connected to a Sonix-
Touch ultrasound machine (Ultrasonix, Richmond, Canada) is
placed above the tissue to acquire 2D images of the needle
in the (X ,Y ) plane shown in Fig. 2. The ultrasound probe
is connected to a second motorized linear stage so that the
position of the probe can be independently controlled (not
visible in Fig. 2). The horizontal position of the probe is
recorded by a linear potentiometer (Midori Precisions, Tokyo,
Japan) and it is controlled such that the imaging plane always
contains the needle tip. We use the method proposed in [14] to
measure the needle deflection in ultrasound images. The needle
appears as a bright spot along with extraneous background
objects. To remove the majority of these objects we first define
a region of interest (ROI) that limits the search for the needle

TABLE I
FIXED MODEL PARAMETERS.

Biological Plastisol Needle Wire
Tissue Tissue

K [kNm−2] 59.8 302.2 E [GPa] 200 75
F5mm/s [N] 1.15 0.62 I [m410−13] 77.5 1.96
F30mm/s [N] 1.20 0.71 L [mm] 200 180

to a small section of the image. The ROI consists of a square
with a width of 5 times the needle radius. In frame f , the
ROI is centred around the position of the needle found in
frame f − 1. Therefore, as the needle moves transversely in
successive ultrasound images, the ROI moves accordingly such
that the needle will always be located in the ROI. The Matlab
function imadjust applies an intensity transformation to the
image to improve the visibility of bright points. Next, we use
an intensity threshold to obtain a set of candidate pixels for the
needle within the axial image. Finally, a Kalman filter is used
to predict where the needle should be within the ROI given the
needle’s historical trajectory. When image feedback is used in
the model for on-line identification of model parameters, the
obtained needle tip deflection is inserted in (22).

Two different needles are used in our experiments. Needle
1 is a 200 mm long standard 18-gauge brachytherapy needle
(Eckert & Ziegler Inc., Oxford, USA) which has a Young’s
modulus of 200 GPa, a moment of inertia of 7.75×10−14 m4,
and a tip bevel angle of 20 degrees. Needle 2 is a 180 mm
Nitinol wire (Kellogg’s Research Labs, Plymouth, USA) which
is inserted into a 5 mm long tip of needle 1 and fixed in place
with adhesive. The wire’s Young’s modulus of elasticity is 75
GPa and its second moment of inertia is 1.96 ×10−13 m4. The
grid template is assumed to have a stiffness of Kp = 109 N/m.

Needle insertion experiments are performed in two differ-
ent soft tissue samples with distinct mechanical properties.
Tissue 1 is prepared by embedding a piece of beef tenderloin
in an industrial gelatin preparation derived from acid-cured
tissue (gel strength 300 from Sigma-Aldrich Corporation, Saint
Louis, USA). Tissue 1 presents several layers of fat and some
muscles, making it highly non-homogeneous. The gelatin is
meant to create a flat surface to ensure good acoustic contact
between the ultrasound probe and the biological tissue. The
needle is only inserted in the latter and never goes through the
gelatin.

Tissue 2 is prepared with plastisol gel (M-F Manufacturing
Co., Fort Worth, USA). We use this plastisol tissue to test
the proposed method in an environment with high friction
coefficient. The needle-tissue viscous friction coefficient in
Tissue 2 is four times higher than in Tissue 1. The amount of
added plastic softener in the mixture determines the stiffness
of the tissue sample. We use a concentration ratio of 80% of
liquid plastic and 20% of softener.

The only tissue parameters required in the deflection model
are the tissue stiffness and the force applied at the needle tip.
Similarly to [9], we estimate the force applied at the needle tip
during insertion (i.e., Fc and F) by measuring the axial force
at the base of a shortened needle when it slices through a
thin tissue sample. As the needle tip penetrates the tissue, the
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Fig. 3. Model predicted shape of the wire as it is inserted in plastisol. The
plot shows the influence of the guiding template on the deflection when the
wire is rotated at 80 mm. Each line corresponds to the needle shape at a given
insertion depth d (deflection of a needle shaft point versus its distance from
the base). In the second plot, the dot indicates the position of the template
along the shaft.

measured axial insertion force corresponds to the transverse
component P of the cutting force Fc plus the frictional force
generated along the shaft (see the zoomed needle tip in Fig. 1).
Inertial effects are neglected due to the low constant insertion
velocity. The insertion is carried on until the needle tip exits
the tissue. Therefore the force applied at the tip becomes zero
and the measured force P corresponds to friction only. Thus,
the axial component P of the cutting force Fc can be isolated
by subtracting the measured friction from the total force.
The transverse load F is then calculated as F = P tan(β )−1

where β = 20◦ is the tip bevel angle. Four different trials are
performed for each tissue at 5 and 30 mm/s insertion velocity.
The average measured values are summarized in Table I.

Finally, we performed relaxation tests to find the tissue
stiffness K. The needle in the insertion setup is replaced with
a flat indenter with a diameter of 3 mm. Then, the robot
is controlled to apply a position step input to the indenter.
The insertion robot moves the indenter to a fixed position and
the indenter’s displacement as well as the reaction force are
recorded. The experiments are performed with a velocity of
10 mm/sec to indentation depths of 5, 8, and 10 mm. The
average identified tissue stiffness is reported in Table I.

4. EXPERIMENTAL RESULTS

We will conduct experiments in two different scenarios. In
the first scenario, the measured tissue stiffness and the cutting
force are fed into the model to predict the needle tip deflection.
No image feedback is used. In the second scenario, measured
needle tip deflection in ultrasound images is used to update the
needle-tissue cutting force as the needle is inserted. In both
cases, the needle is initially inserted by 5 mm and then further
inserted to a depth of 140 mm in the tissue.

The model predicted results in Fig. 3 show the influence
of the guiding template on the needle shape as it is inserted
and rotated at 80 mm in plastisol. The model can capture the
effects of the template by minimizing the deflection of the
needle outside the tissue.

TABLE II
AVERAGE MAXIMUM AND AVERAGE MEAN ERROR IN PREDICTING NEEDLE

TIP DEFLECTION. UNITS ARE IN MILLIMETRES.

Rotation Maximum Standard Mean Standard
Tissue depth error deviation error Deviation

1 (5 mm/s) - 0.992 0.094 0.242 0.053
1 (30 mm/s) - 1.185 0.224 0.293 0.045
1 (5 mm/s) 40 1.905 0.667 0.452 0.207
1 (5 mm/s) 80 1.053 0.307 0.203 0.065
1 (5 mm/s) 40&80 1.497 0.149 0.382 0.180
2 (5 mm/s) - 0.839 0.329 0.332 0.167
2 (5 mm/s-wire) - 1.130 0.197 0.654 0.147

Average over 35 samples 1.228 0.365

The model predicted and the measured tip deflection of the
needle and wire during insertion in plastisol are shown in
Fig. 4(a). Insertions are performed at a constant velocity of
5 mm/s without axial rotation. Insertions involving the wire
are performed using the guiding template. The error observed
across 10 insertions remains below 2 mm. Results in biological
tissue are shown in Fig. 4(b). The brachytherapy needle is
inserted at two different velocities of 5 mm/s and 30 mm/s.
The average maximum error in predicting needle tip deflection
is 1.18 mm.

Experimental results involving axial rotation of the needle at
an insertion depth of either 40 mm or 80 mm, as well as double
rotation at 40 and 80 mm are shown in Fig. 5. In the model,
upon rotation of the needle at a depth dr, we progressively
reverse the direction of the tip force: The tip force gradually
decreases from F at dr to reach −F at dr +5 mm. From this
point F is kept constant until another rotation takes place.
Since the needle shaft is pushed to stay close to the path cut
by the needle tip, the model can simulate multiple rotations
of the needle.

The average maximum error and average mean error in
predicting needle tip deflection for each of the above described
scenarios are summarized in Table. II. Overall, the average
maximum error and the mean over 35 trials are 1.22 and
0.36 mm, respectively. This is a reasonable accuracy given
the diameter of the needle and the measurement noise in
present in ultrasound images. Although the model shows good
performance in biological tissue, the mean error observed in
high friction plastisol is twice as high. This was expected
because the model neglects the effects of friction, which is
highly dependent on insertion velocity.

The estimated tip force using this method is shown in Fig.
6(a) as a function of the insertion depth. In the biological
tissue, the average of the estimated cutting force is 1.25
±0.245 N which covers the measured value in the experiments
described in Section 3 of 1.15 N. For the plastisol tissue, the
estimated force is 0.72 ± 0.352 N and the measured force is
0.62 N.

As discussed in Section 1, it is suitable to limit the motion
of the ultrasound probe in order to avoid tissue deformation.
Hence, let us consider a case where the ultrasound probe fol-
lows the needle tip up to certain depth and then stops. Once the
probe stops, we calculate the average of the estimate cutting
force over the 5 mm of insertion that precede the stopping
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Fig. 5. Experimental results in biological tissue with axial needle rotation.
In the upper plot the needle is rotated by 180◦ at a depth of either 40 or 80
mm. Double rotation at 40 and 80 mm is shown in the middle plot. For all
the cases, the insertion velocity is 5 mm/s.

position. Using the averaged cutting force, we predict future
deflections of the needle further along the insertion process.
This is very useful in practical conditions as it allows to limit
the motion of the ultrasound probe and minimize further tissue
displacement. Fig. 6(b) shows the average maximum and mean
error in predicting the deflection for 10 insertions in biological
tissue (without needle rotation) as a function of the maximum
depth of the ultrasound probe (stopping position). After 20
mm the model is able to correctly estimate the cutting force

as the maximum average error remains below 2 mm, and is
reduced to less than 1 mm when the probe stops at or after
55 mm.

5. CONCLUSION

In this paper, we propose a method to estimate needle
deflection based on the first four assumed vibration modes
of a compliant cantilever beam. The needle is modelled as
a vibrating structure that experiences forces applied by the
tissue. Each vibration mode is associated with a weighting
coefficient. Contributions of this paper include a tissue model
that compares the actual needle shape with the path cut
by the needle tip in order to calculate the contact force
profile along the needle shaft. The model allows for multiple
rotations of the needle during insertion. Experimental results
in inhomogeneous biological tissue and plastisol showed an
average maximum error in predicting needle tip deflection of
1.22 mm ±0.28 mm over 35 trials, and an average error of
0.36 mm. According to [19] this observed error remains in
the range of the smallest tumour that can be detected by US
images (2 mm).

With a limited number of model parameters, the proposed
model shows a relatively good accuracy. For instance, the well-
known nonholonomic [3] model reports an error between the
model prediction and measurements of 1.3 mm. In [20] the
tip error was 0.8 and 0.4 mm for a kinematics-based and for a
mechanics-based model, respectively and in [9], the error is no
better than 0.6 mm. It should be noted that these models make
use of model fitting in order to find the model parameters. In
our approach, they are independently measured.

The model only requires as input the tissue stiffness and
the force applied at the needle tip. When these parameters can
be obtained using tissue characterization, the model can be
used for both off line and on line path planning. Ultrasound
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error in predicting needle tip deflection as a function of the depth where the
ultrasound probe stops (for biological tissue only) is plotted.

image feedback can also be used to update the tissue cutting
force in real time. The ultrasound probe follows the needle
tip up to a certain depth and stops. The estimated tip force
is then used to predict future deflection of the needle with
an average maximum error of less than 1 mm as long as the
probe stops at a depth of 55 mm or higher. This is particularly
useful in practical conditions, as model parameters are difficult
to obtain for needles inserted in tissue in-vivo. Furthermore,
the method limits the motion of the ultrasound probe to avoid
complications of tissue deformation.

Thanks to the current processing time of 0.6 milliseconds,
the proposed method can be used in future work to implement
a real-time needle steering algorithm.
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