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Sim-to-Real Surgical Robot Learning and
Autonomous Planning for Internal Tissue Points

Manipulation using Reinforcement Learning
Yafei Ou and Mahdi Tavakoli, Senior Member, IEEE

Abstract—Indirect simultaneous positioning (ISP), where in-
ternal tissue points are placed at desired locations indirectly
through the manipulation of boundary points, is a type of
subtask frequently performed in robotic surgeries. Although
challenging due to complex tissue dynamics, automating the
task can potentially reduce the workload of surgeons. This
paper presents a sim-to-real framework for learning to automate
the task without interacting with a real environment, and for
planning preoperatively to find the grasping points that minimize
local tissue deformation. A control policy is learned using deep
reinforcement learning (DRL) in the FEM-based simulation
environment and transferred to real-world situation. Grasping
points are planned in the simulator by utilizing the trained
policy using Bayesian optimization (BO). Inconsistent simulation
performance is overcome by formulating the problem as a state
augmented Markov decision process (MDP). Experimental results
show that the learned policy places the internal tissue points
accurately, and that the planned grasping points yield small
tissue deformation among the trials. The proposed learning
and planning scheme is able to automate internal tissue point
manipulation in surgeries and has the potential to be generalized
to complex surgical scenarios.

Index Terms—Medical robots and systems, reinforcement
learning, dual arm manipulation, task and motion planning,
surgical automation.

I. INTRODUCTION

DUE to its enhanced accuracy and dexterity, robot-assisted
surgery (RAS) is becoming increasingly popular in sur-

gical practice. While existing robotic surgery systems provide
low-level assistance such as tremor reduction, recent research
has focused on automating common surgical subtasks to
achieve a higher level of autonomy [1], [2], [3]. One of
the most frequently performed subtasks is deformable tissue
manipulation, which may include placing tissue points at
specific locations during needle insertion or retracting the
tissue to reveal the region of interest underneath it. However,
the automation of tissue manipulation presents a much greater
challenge than many other subtasks since it involves a wide
range of complex tissue dynamics that are difficult to model.
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Fig. 1. Experimental setup for internal tissue point manipulation with two
Patient Side Manipulators (PSMs, red) and a stereo camera system (green).

Additionally, soft tissue manipulation in the surgical setting
often demands high accuracy, which makes it more challeng-
ing than manipulating general soft objects.

There are two major areas that contribute to the advance-
ment of automating surgical tissue manipulation: perception
and task automation. Perception for surgical tissue manipula-
tion aims at understanding the surgical situation based on vi-
sion inputs during the surgery, such as an endoscopic camera.
This may include the detection, and tracking of surgical tools,
as well as 3D reconstruction of the deformed tissue [4], [5],
[6]. Task automation, on the other hand, involves automating
the surgical robot to accomplish specific manipulation tasks,
given the knowledge of the surgical situation. While perception
serves as the basis of most task automation and control
algorithms, the focus of this work is on the problem of high-
level task automation.

Existing methods for controlling and automating surgical
tissue manipulation can be classified into model-based and
data-driven approaches. Model-based methods exploit human
knowledge about the physical properties of the tissue to build
an accurate model for predicting and controlling its deforma-
tion. Zhong et al. [7] proposed an autonomous needle insertion
scheme in which a robot manipulates the tissue to align a
point with the target needle-tip position using finite element
modelling (FEM) of the tissue. Similarly, we used model
predictive control (MPC) by establishing an accurate FEM
model for manipulating internal points of a breast tissue [8].
However, accurate tissue model parameters are usually patient
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Fig. 2. Indirect simultaneous positioning for tissue points: (a) problem
definition; (b) FEM-based simulation environment. The controlled points and
the desired positions are colored in black and green respectively, and the
grasping points are marked in purple.

specific and not always available prior to the surgery. Data-
driven approaches, on the other hand, rely on trial and error to
learn to control the tissue. For example, Alambeigi et al. [9]
used an online optimization scheme to learn the deformation
Jacobian during bimanual kidney tissue manipulation.

Deep reinforcement learning (DRL) is a data-driven ap-
proach that has shown promising results in the field of robotic
automation, including the manipulation of general deformable
objects [10]. Shin et al. [11] proposed a model-based rein-
forcement learning approach for surgical tissue manipulation.
However, this approach requires a large number of interactions
with the environment (“explorations”), which is impractical
in real surgical settings. To address this issue, recent works
on autonomous surgery exploit a sim-to-real approach, which
trains a policy in a simulation environment and transfers it
directly to the real world. One option to ensure the learned
policy is generalizable to the real world is to make the sim-
ulation environment as close as possible to reality. However,
this again demands accurate physical model. Another solution
to bridging the “reality gap” is domain randomization [12],
where the simulation environment is randomized to cover a
large range of properties during training, so that the learned
policy works across a domain that includes the real world
environment.

There have been promising results with sim-to-real DRL
in the automation of some surgical tasks, such as cutting
[13] and needle passing [2]. Regarding tissue manipulation, a
simulation environment has been developed based on position-
based dynamics (PBD) in [14], where a policy for grasping
and retracting the tissue to reveal a region of interest is learned
and transferred to a real-world setup. In [15], a real-to-sim
registration approach for simulating deformable tissue based
on PBD was proposed. Although these works demonstrate the
capability of PBD-based soft tissue simulation, it demands
much parameter tuning before achieving realistic and accu-
rate simulation behavior, which limits the use of PBD-based
simulation in some settings that require accurate localization
and control of the tissue points.

In this work, we focus on the indirect simultaneous posi-
tioning (ISP) problem [16] for surgical tissue, where internal
points (controlled points) of the tissue are placed at desired
locations indirectly through the manipulation of boundary
points (grasping points) of the tissue, as described in Fig. 2a.

This subtask exists frequently in surgical scenarios such as
needle insertion [7] and kidney cryoablation [9], where specific
tissue points must be placed at the desired locations through
manipulation. This work presents a novel sim-to-real learning
and planning scheme for automating the ISP problem in
surgery. The main contributions can be summarized as follows:

• We build an FEM-based simulation environment for the
ISP problem in surgery and train a transferable policy in
the simulator using domain randomization.

• Inconsistent simulation behavior caused by the explo-
rations during training is addressed by formulating the
problem as an augmented MDP.

• Grasping points are planned preoperatively through
Bayesian optimization (BO) in the simulation to minimize
tissue deformation using the learned policy.

• A sim-to-real learning and planning scheme for au-
tomating internal tissue points manipulation in surgery
is implemented and validated on a real robotic setup.

The proposed framework is summarized in Fig. 3. To the best
of our knowledge, this is the first time a transferable control
policy for accurate tissue point localization has been learned
directly from simulation and incorporated into simulation-
based preoperative planning.

II. METHODS

A. FEM-Based Dynamic Simulation

Since we are concerned with the accurate positioning of
internal tissue points, high accuracy is essential for achiev-
ing sim-to-real learning. Furthermore, real-time simulation is
important because the learning process involves numerous
interactions with the simulation environment, and slow simu-
lation leads to prolonged training time. Therefore, a trade-off
between accuracy and computational cost must be made.

In general, Mass-spring system (MSS), FEM and PBD
are the three main approaches used for real-time deformable
object simulation. MSS is usually considered inaccurate when
modelling large deformations, thus not suitable for this appli-
cation. PBD-based simulation is fast and stable for simulating
visually plausible object behaviors, but does not guarantee
physical accuracy. Furthermore, the parameters of PBD are
not physically meaningful and require manual adjustment
before achieving a realistic simulation. Although slower than
PBD, FEM-based simulation is typically more accurate, and
the parameters for FEM are related to physical properties,
making it straightforward to apply domain randomization
in the FEM-based simulation (e.g. randomizing the Young’s
modulus). Therefore, we build our simulation environment
on the SOFA simulator [17], an open-source FEM-based soft
object simulation framework.

In FEM-based simulation, the system dynamics is modeled
based on the Newton’s law:

M ẍ(τ) = Fint(τ) + Fext(τ) (1)

M is the mass matrix, x is the degrees of freedom (DOFs)
of the system, and Fint and Fext are the internal and external
forces applied to each DOF. To solve the system numerically,
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Fig. 3. Sim-to-real learning and planning for internal tissue points manipulation. The policy is trained in the simulation environment during the learning
phase, which is utilized to find the optimal grasping points during the planning phase. During the execution, the policy is able to automatically complete
the task. The state is the error between the current position of controlled points and the desired points pt − pdes, and the action is the displacement of the
grasping points ∆q = qt+1 − qt.

the Euler implicit (backward Euler) integration scheme is often
used, approximating the system as

x(τ +∆τ) = x(τ) + ∆τ · v(τ +∆τ)

M(v(τ +∆τ)− v(τ)) = ∆τ · (Fint(τ +∆τ) + Fext(τ))
(2)

where v is the velocity and ∆τ is the integration time step.
We use the iterative conjugate gradient (CG) optimizer to
solve the system iteratively. Unlike static FEM, dynamic FEM
simulation continues to the next time step even if the iterative
solver has not converged after a specified maximum number
of iterations.

In this work, the tissue is modeled by a triangle mesh. To
simulate the behavior of grasping and moving specific points
of the tissue, we directly apply displacement constraints to the
nodes that are considered as being grasped and moved. Spring
forces are applied to the tissue nodes based on the distance
between the target and the current position of each node:

Fa = ks(qt+1 − qt) (3)

where ks is a large stiffness coefficient manually defined, and
qt and qt+1 are the node positions before and after the control
step at time t. Prior work shows that this approach has a
good overall performance compared with two other methods
that use contact detection [18]. Fig. 2b shows the simulation
environment.

B. RL Problem Formulation

A reinforcement learning (RL) problem is usually formu-
lated as a Markov Decision Process (MDP) described by a
tuple (S,A, P,R, γ), where S and A are the state and action
spaces, P : S × A × S → [0, 1] is the state transition
function, R : S × A → R is the reward function, and
γ ∈ [0, 1] is the discount factor. An agent learns to optimize

a policy π : S × A → [0, 1] through the interaction with the
environment to maximize the expected return

π∗ = argmax
π

T∑
t=0

E(st,at)∼ρπ

[
γtr(st,at)

]
(4)

where ρπ(st,at) is the distribution of the trajectory
(s1,a1, . . . , sT ,aT ) produced by the policy π.

In this work, we first formulate the problem as a regular
MDP (S,A, P,R, γ), while we will discuss later that this
simple approach does not yield good results. Although the
actual state space is the position of all the tissue nodes, we
approximate it with the difference between the position of
the controlled points and the desired locations. The actions
are the displacements of each grasping point from the current
location in cartesian coordinates at each action step. The state
and action spaces can be expressed mathematically as follows:

st = pt − pdes ∈ RN ·D

at = ∆q = qt+1 − qt ∈ [−0.2, 0.2]M ·D (5)

where N is the number of the controlled points, M is the
number of grasping points, D is the dimension of the operating
space, pt represents the positions of the controlled points, pdes

represents the desired positions, and ∆q is the displacement of
each grasping point from the current location, with a maximum
of 0.2 mm along each direction. In our case, N = M =
D = 2 since we consider a 2D space manipulation task of
controlling two internal tissue points through the movement of
two grasping points. The reward function is designed to reflect
how close the controlled points are to the desired locations:

r(st,at) = λ

(
1−

√
∥pt − pdes∥
∥p0 − pdes∥

)
(6)

where p0 is the initial position of the controlled points and λ
is a scaling factor.
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C. Soft Actor-Critic

Soft actor-critic (SAC) [19] is an off-policy actor-critic
algorithm that has recently shown promising results in learning
continuous control problems and is known to be robust to
environment changes. As will be discussed in Section II-D,
changing environment is considered in this work, making SAC
suitable for this application. It considers the maximum entropy
reinforcement learning problem, which augments the standard
reinforcement learning objective (4) with an entropy term:

π∗ = argmax
π

T∑
t=0

E(st,at)∼ρπ

[
γtr(st,at) + αH(π(·|st))

]
(7)

where H(π(·|at)) is the entropy of the action distribution
under the state st, and α is temperature parameter determining
the importance of the entropy term. This objective aims to
maximize the expected return and the entropy of the action at
the same time, which can encourage exploration and capturing
multiple near-optimal actions [19].

SAC algorithm exploits an actor-critic policy search scheme,
including a policy πϕ as the actor and a soft Q-function Qθ

as the critic. During learning, Qθ is updated iteratively to
approximate the temporal difference (TD) target:

ŷt = r(st,at) + γEst+1∼p[Vθ(st+1)] (8)

where Vθ(st) = Eat∼π[Qθ(st,at) − α log(π(at|st))] is the
state value function. Hence, Qθ can be updated by minimizing
the loss

JQ(θ) = E(st,at)∼D

[
1

2
(Qθ(st,at)− ŷt)

2

]
(9)

and the policy πϕ can be updated by minimizing the loss

Jπ(ϕ) = Est∼D
[
Eat∼πϕ

[−Qθ(st,at) + α log(π(at|st))]
]

(10)
where D is the experience replay buffer.

D. Learning with Inconsistent FEM Performance

As discussed in Section II-A, the dynamic simulation con-
tinues to the next time step even if the iterative solver has
not converged if the maximum allowed iteration number is
reached. While relatively good simulation performance is guar-
anteed by manually choosing a suitable maximum iteration
number through experiments, it degrades occasionally during
DRL training and induces significant calculation delay in
solving FEM. As a result, the response of controlled points
falls largely behind the movement of the grasping points in
this case. This is related to the two factors discussed in the
following.

First, the agent is encouraged to explore the environment
sufficiently by including randomness when taking actions. Al-
though this is a standard procedure, the repetitive movements
of the grasping points results in large internal force Fint

remaining in the simulated object between each simulation
step that continues to take effect at the next simulation step,
leading to the aforementioned calculation delay.

Second, while an expert policy completes the task by taking
only a few actions, the randomly initialized DRL policy

performs badly and takes a large number of actions during one
single episode. The error of the internal force Fint is likely to
accumulate, especially when large movements of the grasping
points are taken consecutively.

To formally define the problem, the following assumption
is made on the dynamic FEM simulation environment based
on intuition:

Assumption 1: The position of the controlled points pctr is
dependent on the n most recent actions, where n is a variable
no larger than a constant K.

Since the actual value of K is not known, K is considered
to be a hyper-parameter manually chosen in this work. Based
on Assumption 1, we have a time-varying transition function

Pt(st+1|st,at, st−1,at−1, . . . , s0,a0)

= Pt(st+1|st,at,at−1, . . . ,at−n+1)
(11)

Therefore, the state transition depends on not only the current
action but also previous ones when n > 1, violating the
Markov property. We have

Pt(st+1|st,at, st−1,at−1, . . . , s0,a0) = Pt(st+1|st,at)
(12)

which satisfies the Markov property only when n = 1.
In other words, the Markov property is not always satisfied

due to the simulation performance degradation caused by
exploration, making it difficult for the original DRL algorithm
to learn an optimal policy. While increasing the maximum
number of iterations or including viscosity in the tissue model
can potentially solve or mitigate this issue, a significant
amount of time will be spent on solving the FEM simulation,
leading to prolonged training time.

To address the issue, we choose the maximum iteration
number to be as small as possible while ensuring that the
simulation performance is good enough when a hand-crafted
expert policy is manipulating the tissue in the simulation envi-
ronment, where the movement of each grasping point is related
to the direction pointing from the closest controlled point to
its desired location. Furthermore, the following assumption is
made based on the previous discussions.

Assumption 2: A better policy with less randomness results
in faster convergence of the FEM calculation. If the policy
is close to optimal (e.g. an expert policy), the dynamic FEM
calculation converges within one step, i.e. n = 1.

Similar to [20] which formulates an augmented MDP prob-
lem to solve RL problems with observation delay, we can now
construct a new state augmented MDP problem which always
satisfies the Markov property. Let (J ,A, {Tt}, R, γ) be its
state space, action space, transition function, reward function
and discount factor, where

J := S ×AK−1

jt := (st, at−1, at−2, . . . , at−K+1)
(13)

J is the augmented state space. Then the transition function
is

Tt(jt+1|jt,at) = Pt(st+1|st,at,at−1, . . . ,at−K+1) (14)

The transition function Tt is also time-varying, but the Markov
property is satisfied.
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So far, we have modeled the problem as an MDP with
changing a transition function. In [21], the authors propose
modelling the problem of RL with changing transition function
or cost function by an (ϵ, δ)-MDP:

Definition 1: A tuple (S,A, {Pt}, {Rt}, γ) is called an
(ϵ, δ)-MDP with ϵ, δ > 0 if there exists a base MDP such
that the change of the transition {Pt} and cost function {Rt}
are asymptotically bounded by ϵ and δ:

lim sup
t→∞

∥P − Pt∥ ≤ ϵ

lim sup
t→∞

∥R−Rt∥ ≤ δ
(15)

Assumption 3: There exists a base MDP (J ,A, T,R, γ) for
the augmented MDP (J ,A, {Tt}, R, γ), such that

lim sup
t→∞

∥T − Tt∥ ≤ ϵ (16)

with ϵ > 0. Thus, It can be modeled by an (ϵ, δ)-MDP.
According to [21], directly applying standard value iteration

algorithms to an (ϵ, δ)-MDP results in convergence to the
optimal solution of the base MDP. Therefore, if Assumptions 1
to 3 are satisfied, applying the SAC algorithm to the MDP with
state augmentation should also result in learning an optimal
policy by the end. We demonstrate through experiment in the
next section that these assumptions are reasonable and this
training scheme can learn transferable policies efficiently from
imperfect FEM-based simulations.

E. Preoperative Planning of Grasping Points

While the deformation of the tissue is not taken into
account during training in the simulation, large deformation
can cause damage to the soft tissue in real surgical practice and
should be avoided. To minimize the final tissue deformation
after the internal points have been successfully placed at the
desired locations, we further automate the task by finding the
best grasping points based on the learned policy. Consider-
ing the local tissue deformation around the grasping points,
an optimization problem is formulated as minimizing final
displacement of the grasping points relative to their initial
positions:

q∗
0 = argmin

q0∈U
f(q0) = argmin

q0∈U
[qe(q0,p0,pdes, π)− q0]

(17)
where π is the learned policy, q0 and p0 are the initial position
of the grasping points and the controlled points, pdes is the
desired position, and U is a set containing all possible initial
grasping locations. The final position of the grasping points
qe is therefore an implicit function of q0, p0, pdes and π.
Since the evaluation of the objective function can only be
achieved by acting in the simulation environment using the
learned policy, Bayesian optimization (BO), which is known
to be efficient in optimizing black-box objective functions, is
chosen for solving the optimization problem.

The general procedure of preoperative grasping point opti-
mization is summarized in Algorithm 1.

Algorithm 1 Preoperative planning of grasping points
Input: p0, pdes, RL policy π, Gaussian process estimator

(GP), acquisition function a(q0), hyper-parameters n0, N
Output: q∗

0

Register p0, pdes in the simulator
Sample n0 grasping point configurations q1:n0

0

Evaluate f with each q0 using policy π in the simulation
n← n0

while n ≤ N do
Update the posterior distribution of GP
Optimize qn

0 = argmax a(q0)
Evaluate f at qn

0 using the policy π in the simulation
n← n+ 1

end while
Choose q∗

0 to be the the point with the smallest f(q0)
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Fig. 4. Learning curve of the RL agents. The solid lines are the mean values.
The shaded areas represent the standard deviation.

III. EXPERIMENTS AND RESULTS

A. Experiments

1) Training in the Simulation: Our DRL framework is
implemented based on the stable-baselines 3 library [22]. The
DRL agent is trained in the simulation in an episodic manner.
Each episode includes 100 action steps, and the parameters
of the environment are reinitialized at the beginning of each
episode. At each episode, the Young’s modulus of the simu-
lated tissue is randomly sampled from [0.6 MPa, 1.2 MPa],
while the Poisson’s ratio is kept to be 0.49. The stiffness
coefficient ks is 104, and the maximum allowed number of
iterations is 50. The grasping points are uniformly chosen from
two predefined sets of valid grasping points. The controlled
points are randomly selected from the central area of the
tissue, and their corresponding desired locations are generated
randomly around the initial locations of the controlled points
with a distance of 4 mm. A resampling scheme is implemented
to prevent the generated desired points from being too close to
each other. This domain randomization technique ensures that
the trained policy has good generalizability and is transferable
to the real world. A PC with Intel(R) Core(TM) i5-9600K
CPU is used for both the FEM simulation and the RL training
process. GPU and parallelism are not employed in this work.

In this work, the actor and the critic networks are two-layer
multilayer perceptron (MLP) networks with 256 hidden units
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at each layer. Since we assume that the simulation environment
is changing gradually, a small experience replay buffer with
its size being 5000 is used. The replay buffer is filled prior to
the start of training by exploring with a randomly initialized
policy. The agent is trained for 20 thousand steps with a batch
size of 256 and a learning rate of 7e-4 for both the actor and
the critic networks.

K = 5 is selected for state augmentation. Two agents are
trained with and without state augmentation as a comparison.
For each agent, we train three instances with different random
seeds. During training, the policy is evaluated for 5 episodes
every 100 steps and the average return is collected.

2) Planning of the grasping points: In this work, the
implementation of Bayesian optimization is based on the
scikit-optimize library. Matern kernel is used for the Gaussian
process estimator. The expected improvement (EI) is used as
the acquisition function a. n and N are chosen as 5 and
20, respectively. During planning, early termination of the
simulation is triggered when the step reward is greater than
10, indicating that the controlled points are close enough to
the desired locations.

3) Experimental setup: The real experimental setup is
shown in Fig. 1. The four vertices of the tissue are fixed by
clamps. Two Patient Side Manipulators (PSMs) from the da
Vinci Research Kit (dVRK) [23] are used to grasp the tissue
on two sides. During the manipulation, the motions of the end-
effectors (EEs) are controlled in a 2D plane in the Cartesian
space and the orientations are kept constant.

The manipulation object is a highly elastic dental dam (size
10 × 10 cm2) made of latex that simulates a phantom tissue.
According to [24], the Young’s modulus of rubber dams ranges
from 0.6 MPa to 1.2 MPa, making it an appropriate material
for simulating a number of human soft tissue such as chest
skin, colon, and uterus [25]. Two stickers with black dots are
attached to the surface of the dental dam as markers for the
controlled points.

A stereo camera system with Logitech C270 and C525
webcams (Logitech International S.A., Lausanne, Switzer-
land), calibrated using Matlab Stereo Camera Calibrator, is
used to register between the real world and simulation before
the experiments by manually selecting the four vertices of
the phantom tissue and the two controlled points in the
images. Each camera operates at a frame rate of 30 Hz
and has a resolution of 640 x 480. After scene registration,
the position of the controlled points is registered in the
simulation environment for the planning of grasping points.
During the manipulation, the Cartesian positions of the points
are estimated based on the pixel locations from one single
camera. As the cameras are placed perpendicular to the tissue,
this simplification is reasonable and avoids localization errors
caused by 3D reconstruction if both cameras are used. Through
stereo calibration and registration, it can be approximated that
1 px ≈ 0.43 mm based on the actual size of the phantom
tissue. Since the conversion from pixel to millimeter incurs
errors, raw data in the pixel domain is reported in this work.

To evaluate the trained policy and test the proposed pre-
operative planning scheme in the real-world environment, we
randomly choose 5 different configurations of the controlled
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Fig. 5. Local tissue deformation at the grasping points after manipulation.
The round dots represent the final displacement of the grasping points using
randomly selected grasping points, and the triangular dots represent the final
displacement using the planned grasping points.
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Fig. 6. A sequence of snapshots during a successful manipulation. The
controlled points are tracked and colored in red, and the desired locations
are marked as green.

points and desired locations. The change of the controlled
points is made by simply re-attaching the markers on the
phantom tissue. Different desired locations are generated ran-
domly around the initial locations of the controlled points
with a distance of 4 mm for each of the 5 configurations.
For each configuration, the optimal grasping locations are
found and augmented in the image as visual guidance. The
human operator manually grasps the tissue at the planned
grasping points through teleoperation before the autonomous
manipulation starts.

Each configuration is subjected to ten manipulation trials,
of which only one trial uses the optimal grasping locations.
They are randomly chosen in the other 9 trials. During each
trial, the robot manipulates the tissue for 30 steps and the pixel
error at each control step is collected. The displacement of the
grasping point is recorded at the end.

B. Results

Fig. 4 shows the learning curve for the SAC agents with
and without state augmentation. The wall-clock time spent on
each training instance is around 4.1 hours. The agent with
state augmentation is able to reach a high average return
(around 600) quickly after the training starts and ends up
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Fig. 8. (a) Positioning error during a successful manipulation; (b) and (c)
show the movement of the two grasping points in the 2D plane, respectively.
Initial positions are aligned with the origin and marked by “◦”, and the final
positions after manipulation are marked by “+”.

at around 900 after 20,000 steps, whereas the agent without
state augmentation starts at a much lower value in the first
evaluation, and its overall training process is very unstable
and the average return reaches only around 550 at the end.
As a comparison, the hand-crafted policy achieves an average
return of around 820 and a standard deviation of 441 (out of
10 episodes). These results show that the proposed method is
capable of learning a good policy in the FEM-based dynamic
simulation environment without the need of increasing the
iteration number. This potentially saves the time spent on
simulation steps when solving the FEM system since a much
smaller maximum number of iterations can be chosen (50 in
our case), thus reducing the total training time.

Fig. 5 shows the final displacement of the two grasping
points in millimeters at the end of each trial on the real
setup, which represents how large the deformation of the tissue
is after the controlled points are aligned with the desired
locations. The average planning time for the 5 configurations
is 377 seconds. Compared with other random selections,
choosing the grasping points planned by the proposed method
yields a relatively small displacement among the 10 trials.
Although they are not always the smallest among all the
trials, possibly due to the limitation of Bayesian optimization
and the registration discrepancy between the real environment

TABLE I
ANOVA RESULTS OF POSITIONING ERROR WITH REGARD TO GRASPING

POINTS (OPTIMAL/RANDOM) AND CONFIGURATIONS

Source Sum Sq. d.f. Mean Sq. F P-value
Grasping point 0.2592 1 0.25922 0.57 0.4526
Configurations 1.6431 4 0.41077 0.91 0.4666
Error 19.8638 44 0.45145 - -
Total 21.7661 49 - - -

and the simulated one, it is reasonable to conclude that the
planned grasping points are close to the optimal locations and
that planning in the simulation environment leads to results
transferable to the real world.

Fig. 6 shows a sequence of snapshots taken at certain time
steps during a successful manipulation. As shown, the trained
policy is able to place the controlled tissue points at the
desired locations within 30 control steps. Fig. 7 shows the
localization error of the controlled points for each of the 5
different configurations. The trained policy is able to place
the two controlled points at the desired locations with an
error of around 3 pixels (approximately 1.3mm), and less than
4.5 pixels (approximately 2.0mm). Fig. 8 shows the error in
pixels squared against the time steps during one of the trials.
The error converges to a steady state after around 25 control
steps. Furthermore, we show through a two-way analysis of
variance (ANOVA) that there is no significant difference of the
positioning error both between each configuration groups and
between using optimal or random grasping points, as shown
in Table I. This indicates that the learned policy performs
consistently well across different scenarios, even when using
randomly chosen grasping points.

IV. DISCUSSION AND CONCLUSION

In this work, a sim-to-real learning and planning scheme is
introduced for internal tissue point manipulation in surgeries.
We demonstrate that a DRL agent with state augmentation
is able to learn good manipulation policies in an FEM-based
simulator without the need of increasing simulation time, and
that preoperative planning in simulation can be achieved by
utilizing the learned DRL policy. To ensure that the policy
learned in the simulation is transferable to the real world,
the domain randomization technique is utilized. We report
an average training time of 4.1 hours and a planning time
of around 377 seconds on a CPU device. As a comparison,
the average training time is 6.8 hours when the maximum
number of iterations is doubled, in which case the agent using
non-augmented MDP is also able to learn a reasonably good
policy. However, this increases the training time by over 60%,
suggesting that the proposed method can save a significant
amount of training time.

While the experimental setup in this work is simple, the
proposed semi-autonomous learning and planning scheme is
generally applicable to more complex real surgical scenarios
where accurate positioning of tissue points is required, such
as kidney cryoablation and breast brachytherapy, provided that
a simulation environment exists. In addition, the proposed
method is generally applicable to non-homogeneous tissue, as
long as it can be modeled using FEM.
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One limitation of this work is it assumes that the tissue is flat
and only slightly warps during manipulation, while in practice
the tissue surface is often irregular and highly wrapped.
However, this can be addressed by ensuring an accurate 3D
reconstruction of the tissue to build a realistic simulation
environment when applying the proposed method to real surg-
eries. In addition, since in this work the controlled points are
assumed to be always visually detectable for simplicity, which
is usually not the case in real surgeries, our future research
will incorporate the method described in [26] for internal
tissue point localization. Furthermore, it is also possible that
small local deformations at the grasping points may still cause
damage to the tissue due to the application of large forces.
Therefore, further work should be done on finding the optimal
grasping points that minimize the force applied to the tissue.
In our future work, we plan to extend the proposed method
to breast manipulation for placing internal points at desired
locations during breast brachytherapy, where the location of
the internal points can be estimated based on the surface of the
breast. By utilizing the stereo camera, autonomous grasping
without human intervention can be further achieved.

Although the training and planning time are still high con-
sidering the scale of the problem, limiting its practical usage
in real surgeries where the environment is more complicated,
these can be further improved by utilizing GPUs for both
FEM simulation and RL training. In addition, introducing
parallelism by running multiple simulations at the same time
and using parallel training and optimization algorithms can
potentially reduce both the training and the planning time.
Imitation learning techniques, such as pretraining the RL agent
with behavior cloning from expert demonstrations can be
incorporated to further accelerate training.
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