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Generalized Predictive Control of a Surgical Robot
for Beating-heart Surgery Under Delayed and

Slowly-sampled Ultrasound Image Data
Meaghan Bowthorpe and Mahdi Tavakoli

Abstract—Operating on a beating heart would offer many
benefits to patients. The risks associated with heart-lung ma-
chines used in arrested-heart surgery would be eliminated and
the effectiveness of reconstructive procedures could be judged
immediately. However, the heart’s fast beating motions make
operating on a beating heart impossible for the surgeon. With
advances in surgical robotics, we can now envision a robot-
assisted surgical system that first synchronizes the surgical
robot with the beating heart motion and then lets the surgeon
operate through teleoperation on a seemingly motionless point
on the heart. This paper presents such a system that relies on
both motion prediction and predictive control to overcome the
delays introduced in acquiring the beating heart’s position from
ultrasound images. Also, slowly sampled position data originating
from low-frame-rate ultrasound images is treated with cubic
interpolation and extended Kalman filter-based prediction. The
results of a user study involving a task based on mitral valve
annuloplasty are presented to show the proposed method’s
efficacy in terms of synchronizing the surgical robot to the beating
heart motion.

Index Terms—Medical Robots and Systems, Surgical Robotics:
Laparoscopy, Control Architectures and Programming

I. INTRODUCTION

CURRENTLY, performing a surgical procedure on a beat-
ing heart is extremely difficult as the surgeon must man-

ually track the heart’s fast beating motion and simultaneously
perform a surgical procedure. Presently, if the procedure is
performed on the heart’s surface, a mechanical stabilizer can
locally suppress the beating motion. However, not all of the
motion is eliminated [1]. Alternatively, the patient can be
connected to a heart-lung bypass machine and then his/her
heart is stopped. This allows the surgeon to operate on a
stationary heart, but increases the patient’s risk of stroke and
long-term cognitive loss [2], [3]. The ability to operate on
a beating heart would benefit patients as the risks associated
with mechanical stabilization and arrested-heart surgery could
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be greatly reduced and the procedure’s effectiveness could be
judged immediately. This would be possible if a surgical robot
is controlled to move in synchrony with a point of interest
(POI) on the beating heart. Then, this point would appear
stationary with respect to the surgical tool tip. The surgeon’s
motions would then be superimposed on the surgical robot’s
synchronization motions via teleoperation, and the surgeon
could operate on a seemingly stationary heart.

Various configurations of such a system have been pre-
sented. Some use a mechanical stabilizer to reduce the physi-
ological motion and then compensate for the residual motion
[1]. However, the heart is not beating freely and the surgical
procedure can only be performed on the heart’s exterior
surface. Others that allow the heart to beat freely measure the
POI’s motion from an external sensor. These motion sensors
can be divided into three major categories: (a) force sensors,
(b) position sensors such as sonomicrometry crystals, and
(c) image-based sensors, such as cameras, endoscopes, and
ultrasound (US) imaging. In case (a), a desired contact force
is kept between the surgical tool and the POI. In cases (b) and
(c), a desired distance is kept between the surgical tool and
the POI.

Force-based surgical systems (case (a)) are preferable in
scenarios such as ablation [4], [5], [6] or tissue palpation [7],
where constant contact between the surgical instrument and
the POI is required. The disadvantage is that the surgical tool
and the heart tissue must always be in contact, which does not
always occur in an operative setting.

An alternative is to measure the POI’s and surgical tool’s
positions and maintain a desired distance between them. So-
nomicrometry crystals sutured directly to the heart tissue can
measure the POI’s position (case (b)) [8], [9], [10], [11]. As
the crystals are sutured onto the POI, this method is difficult to
implement in the operating theatre, especially for intracardiac
procedures. Also, the data processing cannot be performed in
real-time [11].

Real-time position measurements can be collected from
images (case (c)). High-speed cameras, with frame rates of
955 Hz and 500 Hz, have been proposed for coronary artery
bypass grafts in [12], and [13], respectively. However, cameras
and endoscopes can only visualize the heart’s outer surface and
are not useful for procedures performed inside the heart such
as valve repairs.

US images have been proposed for procedures performed
inside the heart as they can visualize through the opaque blood
pool. US images, however, present certain challenges. First,
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they have a low frame rate, typically in the range of 20 to
60 Hz, compared to the heart motion’s bandwidth. Second,
they have a large image acquisition delay that is compounded
by the subsequent image processing delay. Despite these
added challenges, a motion compensating hand-held tool has
been designed for mitral valve annuloplasty (MVA) under US
guidance [14], [15], [16]. In this paper, we propose a control
system for a motion compensating teleoperated surgical tool
for use in intracardiac or extracardiac procedures performed
under US guidance, which accounts for the master and slave
robot dynamics not present with hand-held surgical tools.

The remainder of this paper is organized as follows. The
challenges to overcome when designing the control system
are discussed in Sec. II. The control algorithm, generalized
predictive control, is discussed in Sec. III and is implemented
in Sec. IV. Finally, a surgical task based on MVA and the
conclusion are presented in Secs. V and VI, respectively.

II. SURGICAL ROBOT CONTROL SYSTEM

As discussed previously, it is too difficult for a surgeon to
operate on a beating heart, but a surgical robotic system can
assist the surgeon by compensating for the POI’s motion. The
key is to control the distance between the surgical robot and
the POI to follow the surgeon’s motion. This work will focus
on image-based sensors, more specifically US images, as we
propose a surgical system design for procedures performed
inside or outside the heart. Because US images were chosen,
the main issues to be addressed by the surgical robot feedback
control system are:

1) Delay in image data acquisition and processing: If left
uncompensated for, this delay may destabilize the surgical
robot control loop, possibly resulting in collisions between
the surgical robot and the POI.

2) Slow sampling of image data: The slowly sampled posi-
tion measurements from the images must first be upsampled
before being used in the surgical robot’s feedback control loop
to ensure a smooth response and to take advantage of the
robot’s faster sampling rate.

US imaging also suffers from artifacts. These include struc-
tures appearing in the wrong location, reverberation, speed
displacement artifacts, and shadowing due to a strong attenu-
ator [17]. This will be addressed in future work.

Previously, we have compensated for the delay within
the feedback loop using a Smith predictor [18]. The Smith
predictor, like many controllers, calculates the surgical robot’s
control signal based on the delayed and estimated current
position errors, the error between the desired and actual robot
position. It does not take any future position errors into account
as the future output (actual position) and input (error between
the robot’s desired and actual position) values are unknown in
most control applications. However, because the POI’s motion
is quasi-periodic, we can predict the POI’s future positions,
and hence know part of the robot’s desired future position. In
addition, with a model of the surgical robot, we can estimate
its reaction to a control signal to estimate future outputs. As
the input to the controller is the error between the desired
position, the summation of the POI’s and the surgeon’s motion,

and the surgical robot’s actual motion and the output is the
surgical robot’s motion, estimates of the future input and
output signals can be calculated, provided the surgeon can
operate with a short delay in the transmission of his/her hand
motions. Although it is more difficult, surgeons are able to
perform a surgical procedure under teleoperation with delays
of up to 300 ms [19]. Generalized predictive control (GPC)
takes advantage of these estimated values and calculates the
optimal control signal over a given horizon into the future.

We have previously presented two configurations of GPC
for motion compensation in [20]. The first controlled the
distance between the surgical tool tip and the POI to follow
the surgeon’s motion and treated the POI’s motion as a
disturbance. The second controlled the surgical tool to follow
the summation of the POI’s and surgeon’s motion. The second
method performed better as the POI’s motion was not treated
as a disturbance. In this paper, the surgical robot is controlled
to follow the summation of the surgeon’s and the POI’s
motion, but the control is performed at 100 Hz under US
guidance with the help of a motion upsampler for smooth robot
motions. Previously, it was performed at 20 Hz using a camera-
based motion tracker [20]. The addition of this upsampler
increases the image processing delay, making this challenge
even harder to overcome. In addition, a user study involving
a task based on MVA is presented to show the benefits of the
motion compensation algorithm when performing a task on a
moving POI.

III. GENERALIZED PREDICTION CONTROL

In GPC, the control signal is calculated by minimizing
the difference between the estimated system output and the
reference signal over a specified horizon while limiting the
control signal [21]. Therefore, a model of the robot is required
to estimate future outputs based on the current and future
control signals.

To design a GPC law, we begin with a controlled auto-
regressive integrated moving average (CARIMA) model to
describe the robot dynamics:

A(z−1)y[kt] = B(z−1)u[(k − 1)t]z−d +
C(z−1)

∆
e[kt] (1)

In the above, z−1 is the backward shift operator, ∆ = 1−z−1,
t is the sampling interval, and k is an integer. The current
system output is y[kt] , the previous sampling interval’s control
signal (input) is u[(k − 1)t], and the current disturbance is
e[kt]. A, B, and C are polynomials of order na, nb, and nc
respectively.

A(z−1) = 1 + a1z
−1 + a2z

−1 + . . .+ ana
z−1 (2a)

B(z−1) = b0 + b1z
−1 + b2z

−1 + . . .+ bnb
z−1 (2b)

C(z−1) = 1 + c1z
−1 + c2z

−1 + . . .+ cncz
−1 (2c)

The goal of GPC is to minimize the difference between the
optimal prediction of the plant’s future output positions given
the current output position, i.e., ŷ[(k + j)t|kt], and the future
desired position values w[(k + j)t] while keeping the change
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in the control signal ∆u[(k+ j−1)t] small. The cost function
is then

J(N1, N2,Nu) =

Nu∑
j=1

λ(j)

[
∆u[(k + j − 1)t]

]2

+

N2∑
j=N1

δ(j)

[
ŷ[(k + j)t|kt]− w[(k + j)t]

]2
(3)

where N1 and N2 are the minimum and maximum costing
horizons, Nu is the control horizon and is equal to N1 −N2,
and δ(j) and λ(j) are weighting factors. To estimate future
values of the output position ŷ[(k + j)t], we start with the
following Diophatine equation:

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (4)

where Ã(z−1) = ∆A(z−1), and Ej(z
−1) and Fj(z

−1) are
polynomials of degree j − 1 and na, respectively. Ej(z−1)
and Fj(z

−1) can be uniquely found given A(z−1). Now
multiplying (1) by ∆Ej(z

−1)zj , considering (4), and the white
noise case where C(z−1) = 1, we obtain

ŷ[(k + j)t] = Fj(z
−1)y[kt] + Ej(z

−1)e[(k + j)t]

+ Ej(z
−1)B(z−1)∆u[(k + j − d− 1)t]

(5)

Assuming the best estimate of future errors e[(k + j)t] is 0,

ŷ[(k + j)t|kt] =

Fj(z
−1)y[kt] +Gj(z

−1)∆u[(k + j − d− 1)t]
(6)

where Gj(z−1) = Ej(z
−1)B(z−1).

Separating the future and past changes in the control signal
∆u, (6) can be rewritten in vector form as:

y = Gu + F(z−1)y[kt] + G′(z−1)∆u[(k− 1)t] = Gu + f (7)

where

y =


ŷ[(k + d+ 1)t|kt]
ŷ[(k + d+ 2)t|kt]

...
ŷ[(k + d+Nu)t|kt]

 (8)

G =


g0 0 . . . 0
g1 g0 . . . 0
...

...
...

...
gNu−1 gNu−2 . . . g0

 (9)

g0, g1, . . . , gNu−1 are the coefficients of Gj ,

u =


∆u[kt]

∆u[(k + 1)t]
...

∆u[(k +Nu − 1)t]

 (10)

G′(z−1) =
(Gd+1(z−1)− g0)z

(Gd+2(z−1)− g0 − g1z
−1)z2

...
(Gd+Nu

(z−1)− g0 − g1z
−1 − . . . gNu−1z

Nu−1)zN


(11)

Fig. 1: The robot-assisted beating-heart surgical system where
the surgical tool tip is controlled to follow the summation
of the surgeon’s and the estimated POI motion, which is
calculated from the POI’s motion in the previous heart beat.

and

F(z−1) =


Fd+1(z−1)
Fd+2(z−1)

...
Fd+Nu

(z−1)

 (12)

The cost function can be rewritten in vector form as

J = (Gu + f− w)T (Gu + f− w) + λuTu (13)

where

w =

 w[(k + 1)t]
...

w[(k +Nu)t]

 (14)

From (13), ∆u[kt] can be calculated as:

∆u[kt] = K(w− f) (15)

where K = (GTG + λI)−1GT , I is an identity matrix with
the same size as G, λ is a weighting factor, and K is the first
row of K. For more details see [22].

IV. SURGICAL ROBOT CONTROL ALGORITHM

The controller is shown in Fig. 1. The reference signal w is
the summation of the surgeon’s and the estimated POI motion
and the output y is the surgical tool’s position. In the figure, the
darker section is the physical system that cannot be changed
and the lighter section is performed by software and can be
changed. To run this controller at 100 Hz, the POI’s motion
is upsampled and predicted the length of the horizon into the
future to overcome the total delay caused by the US image
acquisition, processing, and upsampling.

A. Heart Motion Measurement

The image processing presented in this paper to locate the
POI does not require any markers and is completed within one
sample time at the image acquisition rate of 34 Hz. The image
processing is summarized in Fig. 2.

Initially, a binary threshold is applied to convert the gray-
scale images to black and white. First, the surgical tool is
found as it points to the POI’s location. A Hough transform
finds the longest straight line that forms an angle with the
horizontal within a π

4 radians angular arc – the surgical tool’s
expected location – in the first image. To reduce the processing
time of the remaining images, a region of interest (ROI) is
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Fig. 2: The image processing algorithm. Each image is thresh-
olded to create a black and white image. Hough transforms
locate the tool shaft and heart tissue in the first image. The
ROIs are set and the tool tip and POI locations are found.
Lines are fit to the tool shaft and heart tissue, the edge of the
heart tissue is found, the heart tissue ROI is updated, and the
tool tip and POI locations are found.

(a) (b) (c)

Fig. 3: The processed images showing the surgical tool shaft
and tip (a) and the heart tissue and POI (b) and (c). The light
green lines mark the ROIs, the purple line shows the surgical
tool shaft, the blue dot shows the surgical tool tip in (a) and
(b), the green dot shows the POI in (b), and the pink dot shows
the surgical tool tip and POI in (c).

created surrounding the surgical tool. In the remaining images,
least squares regression by OpenCV’s fitline() identifies the
centre line of the surgical tool’s shaft [23]. To lessen the
computational burden, the ROI is down-sampled and only
every third column and row of the ROI are analysed for
candidate pixels. Fig. 3a shows the result of finding the tool.
The green lines mark the ROI surrounding the tool shaft, the
purple line marks the center line of the tool shaft, and the blue
dot marks the tool tip.

The heart tissue is found in a similar manner. In the first
image, a Hough transform identifies the longest line within
a π

4 radians angular arc perpendicular to the surgical tool
shaft. A second ROI is created surrounding the heart tissue.
In all subsequent images, the heart tissue is identified using
OpenCv’s fitline(). Once again, to reduce the computation
time, the image is down-sampled and only every third column

and row are analysed for candidate pixels. Within every
subsequent image, the candidate pixels on the closest edge
of the heart tissue to the tool are identified and a straight line
is fit through them to locate the edge of the heart tissue. As the
heart tissue moves continually, the heart tissue ROI is updated
with every image. Figs. 3b and 3c show the result of finding
the heart tissue when the surgical tool and the heart tissue are
not and are in contact, respectively. The heart tissue ROI is
marked by the light green lines, the dark green line marks the
edge of the heart tissue, and the red line marks the centre line
of the heart tissue.

The POI’s location is found by extending the line through
the surgical tool shaft and locating the first candidate pixel
beyond the surgical tool’s tip – the heart tissue. However,
a difficulty arises when the surgical tool tip makes contact
with the heart tissue. In this case, it is not possible to identify
the surgical tool’s tip as the surgical tool and the heart tissue
appear as one object. When the surgical tool is touching the
heart tissue, i.e., when the line marking the surgical tool tip
intersects with the line marking the heart tissue, the POI is
identified by the intersection of the line marking the edge of
the heart tissue and the line through the surgical tool shaft.
The POI’s location when the surgical tool and the heart do
not touch is the green dot in Fig. 3b and when they do touch
the POI is the pink dot in Fig. 3c.

B. Heart Motion Upsampling

After the POI’s motion is measured from the US images,
it is upsampled using cubic interpolation, which ensures that
the upsampled trajectory and its first derivative are smooth.
Consider the data points p0 and p1, in between which the
interpolation is to occur. One data point before p0 and one
data point after p1 are required to calculate the slope at p0

and at p1. Consequently, four data points, two of which are in
the future with respect to the interval being interpolated, are
required, which increases the time delay by the length of two
samples at the slow sampling rate.

The following calculates the interpolated data points:

p(n) = h00(n)p0 + h10(n)m0 + h01(n)p1 + h11(n)m1 (16)

where m0 and m1 are the slopes at points p0 and p1,
respectively, and n is the interpolation variable, which is a
vector with a length of one greater than the number of points
to be interpolated and with evenly spaced values ranging from
0 and 1. When n equals 0 and 1, the result is p0 and p1,
respectively. The h coefficients are:

h00(n) = 2n3 − 3n2 + 1

h10(n) = n3 − 2n2 + n

h01(n) = −2n3 + 3n2

h11(n) = n3 − n2

(17)

C. Heart Motion Prediction

Another issue to overcome is the non-negligible delay in
acquiring, processing, and upsampling the POI’s position. To
address this, the POI’s motion is modeled as a Fourier series
and an extended Kalman filter predicts its future motion.
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y(x(t)) = c+

m∑
i=1

ri sin θi(t) (18)

In the above, θi(t) = i
∫ t

0
ω(τ)dτ + φi(t), the state vector is

defined as x(t) = [c(t), ri(t), ω(t), θi(t)]
T , i = 1, . . . ,m, m

is the number of harmonics, and t is the current time. The
coefficients in (18) can vary with time to account for cycle-
to-cycle heart motion variation [16].

The state space model (19) evolves through random walk,
where the offset c, the sine wave coefficients, rl, and the
frequency ω are assumed to remain constant. These values
are then updated by the EKF proportionally to the error
between the predicted and actual measurement, except for the
frequency, ω, which is replaced by the value measured directly
from the past POI motion.

x(t+ ∆t) = L(∆t)x(t) + µ(t)

z(t) = y(x(t)) + υ(t)
(19)

Here, L(∆t) is a [2m+ 2]× [2m+ 2] matrix:

L(∆t) =



Im+1 0
1

∆t 1
0 2∆t 0 1

...
. . .

m∆t 1


(20)

The estimated covariance matrix P(t + ∆t|t)
is a [2m + 2] × [2m + 2] diagonal matrix with
[0.001, 0.1/1, 0.1/2, ..., 0.1/l, 0.1, 0.21×m] along the diagonal,
the process noise covariance matrix Q is a [2m+2]× [2m+2]
diagonal matrix with 0.0001 along the diagonal, and the
observation noise covariance matrix σ2

R is 0.01. The Kalman
gain K and P(t+ ∆t|t) are calculated as:

P(t+ ∆t|t) =L(∆t)P(t|t)L(∆t)T + Q (21a)

S =σ2
R + HP(t+ ∆t|t)HT (21b)

K =P(t+ ∆t|t)HTS−1 (21c)

The state and covariance matrices are updated as follows:

x̂(t+ ∆t|t+ ∆t) =L(∆t)x̂(t|t) (22a)
+ K(z(t+ ∆t)− h(L(∆t)x̂(t|t)))

P(t+ ∆t|t+ ∆t) =(I−KH)P(t+ |∆t|t) (22b)

In the above, H is a [2m+ 2]× [1] matrix:

HT (∆t) =

(
∂h

∂x

)T ∣∣∣∣∣
x̂(t+∆t|t)=Lx̂(t|t)

=



1

sin θ̂1(t+ ∆t|t)
...

sin θ̂m(t+ ∆|t)
0

r̂1(∆t|t) cos θ̂1(t+ ∆t|t)
...

r̂m(∆t|t) cos θ̂m(t+ ∆t|t)



(23)

To predict j future points ahead, the estimated state matrix
x̂ is multiplied by the update matrix L∆(t) a total of j times,
x̂(t+ j∆t|t+ ∆t) = Lj x̂(t+ ∆t|t). The predicted position is
then calculated from the predicted state and (18).

With this upsampled and predicted POI motion, the surgical
robot can be controlled with GPC to follow the surgeon’s
motions and synchronize with the POI’s motions. This will
allow the surgeon to operate on a seeminly stationary heart,
even though it is actually beating. Note, this system is designed
for one-dimensional motion tracking under US guidance. This
is sufficient for procedures such as MVA (described in more
detail in Sec. V-A) or tissue palpation. The mitral valve’s
motion was measured in [14] and was shown be primarily
along a single axis. The system is now tested to determine its
effectivenss for a user operating on a moving POI.

V. EXPERIMENTAL RESULTS

The experimental setup shown in Fig. 4 uses a 6 MHz
4DL14-5/38 linear 4D transducer connected to a SonixTouch
US scanner (SonixTouch from Ultrasonix, Richmond, BC,
Canada) as the image sensor, which has a low frame rate
of 34 Hz. The depth of the images was 4.5 cm. The 2D US
images were collected from the US scanner using a DVI2USB
3.0 frame grabber (Epiphan, Ottawa, ON, Canada). The entire
image acquisition, processing and upsampling delay is 170 ms.
A custom-built mechanical cam (simulated heart), based on the
motion collected from the movement of a point on the side
wall of the heart in a series of clinical US images of a patient’s
beating heart generated the POI motion. The single degree-of-
freedom (DOF) surgical tool (surgical robot) is actuated by a
voice coil motor (NCC20-18-020-1X from H2W Technologies
Inc., Santa Clarita, CA, USA). The surgical tool is described
in more detail in [24]. To verify the results, real-time position
measurements of both the mechanical cam and the robot
were collected from two potentiometers (LP-75FP-5K and LP-
30FP-1K from Midori America Corp., Fullerton, CA, USA).

To implement the GPC system, an electromechanical model
of the surgical robot composed of the voice coil actuator and
the corresponding analog current drive circuitry is identified.
The voice coil actuator was modeled as in [25] where the
relationship between the input current, I , and the position, θ
of the voice coil actuator is

I =

(
1

sL+R

)(
Kt

sJ +B

)(
1

s

)
θ (24)

The inductance L and resistance R of the voice coil are
1.05 mH and 3.5 Ω, respectively, and the back EMF gain Kt

is 6.1 V/m. The parameters J and B were found to be -0.5264
and 16.2547 using least squares identification. Discretized to
100 ms, the robot’s transfer function between the input current
and the output position is given in (25). The weighting factors
λ(j) and δ(j) were set to 0.00003 and 1, respectively. The
delay, d was 2 samples and the control horizon, Nu, was 5
samples.

For each trial, the heartbeat motion has a peak-to-peak
amplitude of 10 mm and a period of 64 bpm (1.07 Hz). Three
error metrics are calculated for each trial: the mean absolute
error (MAE) is

∑
|error|
l , where l is the number of data points
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I =
−6.764× 10−5 − 0.0002029z−1 − 0.0002029z−2 − 6.764× 10−5z−3

1− 0.8457z−1 − 0.8039z−2 + 0.6469z−3
θ (17)
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Fig. 4: The experimental setup.
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Fig. 5: The surgical task based on MVA where the user deploys
a staple.

in the sample, the integral squared error (ISE) is
∑

(error)2

l ,
and the peak tracking error (PTE) is the largest error at a single
point in time. The results are summarized in Table I.

A. Surgical Task

When the mitral valve is not shaped properly, blood may
flow backwards through the heart making each beat less effi-
cient. More than 300,000 people undergo MVA – a reconstruc-
tive procedure to fix the leaky valve – each year worldwide
[26]. The surgical task presented here simulates deploying a
staple to secure an annuloplasty ring onto the mitral valve. If
securing this annuloplasty ring could be performed while the
heart is still beating, the effectiveness of the newly reshaped
valve could be evaluated immediately. This user study was
approved by the University of Alberta’s Research Ethics Office
#Pro00055825.

In this user study, each participant deploys the staple into
moving heart tissue. The participant sets the desired position
of the surgical tool through teleoperation by moving the stylus
of a PHANToM Omni user interface (Geomagic, Cary, NC,
USA). The heart tissue is represented by a piece of soft plastic
visible under US and is mounted on the mechanical cam,
which is the simulated beating heart. The participant views
the scene on the US screen. The participant holds a button in
his or her other hand and presses this button to deploy the
staple. A successfully deployed staple is shown in Fig. 5a.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

S
u

cc
e

ss
 R

a
te

Participant

With

Compensation

Without

Compensation

Fig. 6: The rate of successful staple deployment by participant.
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Fig. 7: The rate of the use of excessive force by participant.

The participants attempt to complete this task with and with-
out motion compensation. For these trials, the heart motion
was divided into two halves - the upper half where the heart
tissue was closest to the surgical tool and the lower half where
it was furthest away – this was where the participant was
told to deploy the staple. This prevented the participant from
simply waiting until the heart came towards the surgical tool
to deploy the staple as this would have made the task too
easy and not representative of real surgical maneuvers. Each
participant was also instructed not to press the tool into the
tissue when deploying the staple.

Each participant’s pre-trial training included successfully
deploying the staple three times with motion compensation.
They then practiced with no compensation until they felt
comfortable with the system. Each participant completed 10
trials; 5 with motion compensation and 5 without. The trials
alternated between the two conditions beginning with motion
compensation. If the surgical tool left an indent in the phantom
tissue when the staple was deployed or if the staple was
deployed in the upper half of the heart beat when the surgical
tool was closest to the hear (see Fig. 5b), the trial was counted
as a failure.

The trials included 10 participants (2 females and 8 males),
who were not surgeons. Without motion compensation, the
staple was successfully deployed in 18% of the trials and
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Fig. 8: The result when motion compensation is provided. In
case (a), the dashed pink line is the user’s motion, the solid
black line is the distance between the surgical tool tip and
the heart tissue, and the red line is the error between these
two. Case (b) shows the motion synchronization. Here, the
surgeon’s motions have been subtracted from the surgical tool
tip’s motion leaving the POI following portion of the surgical
tool tip’s motion – the solid black line. The heart’s motion is
the dotted pink line and the error between the two is the red
line.
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Fig. 9: The result when no motion compensation is provided.
Here the user tries to manually compensate for the heart’s
motion. The surgical tool tip’s motion is the solid black line,
the heart’s motion is the dotted pink line and the error between
the two is the red line.

excessive force was used in 48% of the trials. With motion
compensation, the success rate was 78% and the use of
excessive force was reduced to 10% of the trials. The success
rate of each participant is given in Fig. 6 and the rate of the
use of excessive force is given in Fig. 7.

To compare the success rates, we used a two-tailed t-test and
obtained the probability of the null hypothesis µ1 = µ2 for the
10 trials [27]. The probability of the results assuming the null
hypothesis for the success of the staple deployment and the use
of excess force with and without compensation was 2× 10−5

and 0.002, respectively. Since these figures are less than 0.05,
they indicate that there was a significant difference between
providing and not providing motion compensation with respect
to both the successful deployment of the staple and the use of
excessive force.

Now, as a final metric, let us evaluate the system perfor-
mance by examing the position synchornization errors. We will
take a closer look at the position tracking errors and how much

Motion MAE ISE PTE
Compensation (mm) (mm2) (mm)

Yes 1.27 3.17 7.18
No 3.03 15.59 10.16

TABLE I: A summary of the experimental results

the users were required to move when performing the surgical
task. When motion compensation was provided, it was easier
for the user to move the surgical tool towards the moving
heart tissue. The user’s motions for this case creates the pink
line in Fig. 8a. The user’s motion simply moves the surgical
tool tip towards the heart tissue. The solid black line in this
figure is the resulting distance between the surgical tool tip
and the POI and the solid red line is the error. In Fig. 8b the
surgeon’s motion has been subtracted from the surgical tool
tip’s motion to remove the offset between the surgical tool tip
motion and the POI motion – the solid black line – to show
the motion synchronization. The POI’s motion is the dashed
pink line and the error is the solid red line. The MAE tracking
error when motion compensation is provided is 1.27 mm, the
ISE tracking error is 3.17 mm2, and the absolute value of the
PTE is 7.18 mm.

It is much harder for the user to follow the POI’s motion
when no motion compensation is provided. Fig. 9 shows the
surgeon’s motion – the solid black line and the POI’s motion
– the dashed pink line. It is quite obvious that the errors are
quite large – the solid red line. The MAE tracking error when
motion compensation is not provided is 3.03 mm, the ISE
tracking error is 15.59 mm2, and the absolute value of the
PTE is 10.16 mm. A video showing the results of this user
task is available from the IEEE website.

The average tracking error reported in this work, 1.27 mm,
is similar to those reported in the literature. It is difficult
to make a fair comparison of errors, because many systems
proposed in the literature do not deal with such slow sample
rates and such large time delays. Sub-millimetre errors were
reported when a 500 Hz camera measured the POI’s position
and the time delay was limited to one sample time in [13].
The use of pre-recorded data resulted in average errors as low
as 0.669 mm and PE as large as 4.3 mm in [8]. However,
this method is not viable in real-time. The use of motion
compensation after the heart is stabilized by a mechanical
stabilizer resulted in small errors of 0.4 and 0.8 mm in the x
and y directions and a PTE of 2 mm in the y-direction in [1].
However, this method does not let the heart beat freely. Finally,
an average and PTE of 0.97 mm and 3.26 mm respectively was
reported in [16] where the POI motion was measured from
US images. A similar user task performed with a hand-held
motion compensating surgical tool reported a success rate of
74% when motion compensation was provided and only 32%
when motion compensation was not provided [28].

VI. CONCLUSION

This paper presents an image processing and control system
for US-guided robot-assisted beating heart surgery for proce-
dures such as MVA. As the heart’s position is measured from
US images that are collected at a slow sampling rate, the POI’s
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motion is first upsampled to 100 Hz. To overcome the time
delay caused by US image acquisition and processing as well
as motion upsampling, the POI motion trajectory is predicted
ahead to the current time using an EKF. Generalized predictive
control is used to optimally compensate for the heart’s current
and future beating motion. To show the efficacy of this
system, user trials simulating deploying a staple for MVA
were conducted. The results indicate that the improvement in
the success rate and reduction in use of excessive force when
motion compensation is provided is statistically significant.
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