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Abstract

A bilateral teleoperation system comprises a human operator, a teleoperator, and

an environment. The teleoperator consists of a master robot, a slave robot, their

controllers, and a communication channel between the master and the slave. Since

the exact models of the teleoperator’s terminations, namely the human operator and

the environment, are typically unknown and/or time-varying, passivity or absolute

stability of the two-port network teleoperator is considered in order to ensure the

stability of the coupled teleoperation system. This stability analysis conventionally

relies on two important assumptions: (a) all teleoperation system components op-

erate in continuous-time, and (b) the teleoperator’s terminations are passive. This

dissertation studies the stability implications of violation of either assumption.

The stability of a bilateral teleoperation system may be jeopardized by controller

discretization due to energy-distilling effects of a zero-order-hold. In this disserta-

tion, a tool is developed to analyze the passivity of the sampled-data teleoperator. In

the passivity framework, the teleoperation system is guaranteed to be passive and,

therefore, stable for any passive and otherwise arbitrary terminations. Sufficient con-

ditions for teleoperator passivity are derived for when position error based controllers

are implemented in discrete-time and the rest of the system is in continuous-time.

This new analysis is necessary because discretization does not necessarily preserve

the passivity of a system. The proposed criterion for sampled-data teleoperator pas-



sivity imposes lower bounds on the teleoperator’s robots dampings, an upper bound

on the sampling time, and bounds on the control gains. The proposed criterion is

verified through simulations and experiments. This constitutes Chapter 3 of this

dissertation.

Teleoperator passivity is sufficient for the stability of the coupled teleoperation

system including the terminations. A less conservative approach to guaranteeing the

coupled system’s stability is teleoperator’s absolute stability. In the absolute stabil-

ity framework, the teleoperation system is guaranteed to be stable for any passive

and otherwise arbitrary terminations. This dissertation proposes a novel approach

to analyzing the absolute stability of a sampled-data bilateral teleoperation system

consisting of discrete-time controllers and continuous-time master, slave, operator,

and environment. The proposed stability criterion permits scaling and delay in the

master and the slave positions and forces. The absolute stability conditions impose

bounds on the gains of the discrete-time controller, the damping terms of the mas-

ter and the slave, and the sampling time. The resulting absolute stability condition

has been verified via experiments with two Phantom Omni robots. This comprises

Chapter 4 of this dissertation.

A design-related application of the above results is in proper selection of various

control parameters and the sampling rate for stable teleoperation under discrete-

time control. To explore the trade-off between the control gains and the sampling

time, it is studied how large sampling times, which necessitate low control gains

for maintaining stability, can lead to unacceptable teleoperation transparency and

human task performance in a teleoperated switching task. This shows that the effect

of sampling time must be taken into account because neglecting it undermines both

the stability and transparency of teleoperation.

In the passivity and absolute stability analyses for investigating the coupled sta-



bility of a teleoperation system, the exact models for the teleoperator’s terminations

(the human operator and the environment) are not available. To make the stability

analysis independent of the termination models, it is typically assumed that they are

passive but otherwise arbitrary. However, the assumption of passivity of the termi-

nations is less than accurate and may be violated in practice. Using Mobius transfor-

mations, in this dissertation we develop a new stability analysis tool for investigating

the stability of a two-port network when coupled to an input strictly-passive, an

output strictly-passive, an input non-passive, or a disc-like non-passive termination.

While this new stability criterion is applicable to any two-port network, we apply it

to bilateral teleoperation systems with position-error-based and direct-force-reflection

controllers. Simulations and experiments are reported for a pair of Phantom haptic

robots. This problem is presented in Chapter 5 of this dissertation.

Finally, Chapter 6 has concluding remarks and outlines possible future directions

for this research. Specifically, it is suggested that in continuation of this research,

other controllers are checked for sampled-data stability in bilateral teleoperation sys-

tems, non-passivity and strict-passivity of both of the terminations are considered

in the absolute stability analysis, the previous analyses are extended to multi-lateral

teleoperation systems and finally, the integral quadratic constraints formulation is

used to analyze the teleoperation system stability.
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Chapter 1

Introduction

A teleoperation system consists of a human operator interacting with a master robot

and remotely controlling a slave robot to perform a task in a remote environment

[1, 2, 3, 4]. A teleoperation system is useful for performing tasks when the task envi-

ronment is hazardous, has a large distance from the operator, is confined, and/or has

a considerably different scale compared to the human hands natural range of motion.

In a unilateral teleoperation system, the master’s motion command is transmitted to

the slave so that the slave mimics the motions of the master. In a bilateral teleop-

eration system, there is also force feedback from the environment to the operator.

Ideally, bilateral teleoperation is transparent in the sense that the human operator

feels the same as he/she would feel when operating directly on the environment. This

is a significant advantage over unilateral teleoperation where the human operator is

provided only with visual feedback from the remote environment.

1.1 Organization of the thesis

Briefly, this dissertation mainly focuses on investigating the consequences of two

practical imperfections in the context of bilateral teleoperation control theory: (1)

The impact of sampled-data control on the stability of bilateral teleoperation systems,

1



and (2) the impact of non-passivity of the operator or the environment on the stability

of bilateral teleoperation systems. In the following, a brief summary of each chapter

of the dissertation is given and conceptual connections between the chapters are

described.

Chapter 2 presents the required background information that is used throughout

the future chapters. A brief history of teleoperation systems is first given, followed by

a short description about the current applications of bilateral teleoperation systems.

Next, several widely-used control architectures for teleoperation systems are reviewed.

For these control architectures, the stability of the teleoperation system is addressed

next. The last two sections of this chapter discuss the preliminaries for studying the

impacts of controller discretization and termination non-passive/strictly-passivity on

teleoperation system stability in the rest of the thesis.

Chapters 3 tackles the passivity analysis problem in a sampled-data teleoperation

system. It gives a criterion for passivity of the teleoperator when the controllers are

modeled by discrete-time systems while the rest of the system is in continuous-time.

In fact, in this analysis, the environment, the human operator, the master, and the

slave are modeled in continuous-time and the teleoperation controllers are modeled

in discrete-time. The proposed passivity criterion is verified through simulations and

experiments involving a pair of Phantom Premium robots.

Chapter 4 proposes a criterion for absolute stability of a sampled-data operator.

Absolute stability of the teleoperator guarantees the stability of the overall teleoper-

ation system without requiring the teleoperator to be passive. In other words, in the

absolute stability framework, the teleoperator can be non-passive while the coupled

teleoperation system is stable. As a result, the proposed absolute stability criterion

is less conservative than its passivity counterpart and, therefore, provides more flexi-

bility in the controller design stage. Again, the proposed criterion has been tested on

an experimental setup that consists of a pair of Phantom Premium robots.

In Chapter 5, by giving simple practical examples, it is argued that the common

2



assumption that the human operator in a teleoperation system is passive may be

violated. Conversely, the assumption of passivity may be too relaxed for a strictly-

passive environment. In Chapter 5, the well-known Llewellyn’s absolute stability

criterion has been extended to cases where the teleoperator is terminated to systems

that are either non-passive or strictly-passive. Once again, experimental verification

is performed on a pair of Phantom Premium robots.

Finally, Chapter 6 discusses the concluding remarks. Also, in this chapter, sug-

gestions for continuation of this research are proposed. These suggestions include

applying the sampled-data approach to different control architectures, including non-

passivity and/or strict-passivity of both of the terminations of the two-port network in

absolute stability analysis, applying the analysis of non-passivity and strict-passivity

of termination to multi-port network and last but not least using integral quadratic

constraints in unifying the analysis formulation.

1.2 Publications

A short version of Chapter 3 has been published in the IEEE Transactions on Haptics

[5] while parts of this chapter have been presented in the 2011 IEEE World Haptics

conference, Istanbul, Turkey [6]. A paper based on the results of Chapter 4 has been

published in the Control Engineering Practice - a Journal of IFAC [7]. A shorter

version of the work in Chapter 4 has been presented in the 2010 IEEE Conference

on Decision and Control, Atlanta, Georgia, USA [8]. In the process of performing

the experiments in Chapter 4, there was a need to develop a MATLAB toolbox to

interface the Phantom Omni robots in Simulink. The development of this toolbox

was presented in the 2011 Canadian Congress on Applied Mechanics, Vancouver, BC,

Canada. From Chapter 5, the non-passive termination results have been presented

in the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,

Vilamoura, Portugal [9]. Also, from Chapter 5, the strictly-passive termination results

3



will be presented in the 2013 IEEE World Haptics Conference in Daejeon, Korea,

2013 [10]. A long version of Chapter 5 has been submitted to the IEEE Transactions

on Control Systems Technology [11]. Lastly, in a collaborative project, additional

experiments demonstrating the human arms non-passivity will be presented in another

paper in the 2013 IEEE World Haptics Conference in Daejeon, Korea [12].

1.3 Contributions of the thesis

In Chapter 3, the main contribution is a teleoperator passivity analysis that accounts

for the exact models of discretization components in a sampled-data teleoperation

system. Converting the time-domain passivity definition to frequency domain and

manipulating the condition result in a closed-form criterion for sampled-data teleop-

erator passivity. This condition imposes lower bounds on the teleoperator’s robots

dampings, an upper bound on the sampling time, and bounds on the control gains.

As such, it is a useful tool in designing stabilizing discrete-time controllers for tele-

operation systems.

In Chapter 4, the main contribution is a teleoperator absolute stability analysis

that accounts for the exact models of discretization components in a sampled-data

teleoperation system. In a similar manner as the passivity analysis, but with dif-

ferent mathematical tools, the absolute stability of the teleoperation system is ana-

lyzed considering the exact models of the discrete-time controllers combined with the

continuous-time models for the terminations and the robots. Expectedly, the result-

ing absolute stability condition is less conservative than the passivity counterpart in

Chapter 3. This is also a useful tool in designing stabilizing discrete-time controllers

for teleoperation systems with the difference that it can result in better teleoperation

transparency compared to the passivity criterion.

The novel contribution of Chapter 5 is to extend the traditional absolute stability

analysis of a bilateral teleoperator to cases where the human operator or the envi-

4



ronment is non-passive or strictly-passive. The non-passivity in the termination of a

teleoperator can potentially destabilize the teleoperation system, if it is not accounted

for. Conversely, strict passivity of a termination gives more flexibility in the control

design and should be utilized. The proposed stability criterion helps to realize this

flexibility and obtain more transparent teleoperation controllers.

5



Chapter 2

Background

In this chapter, the background related to bilateral teleoperation systems is presented.

We begin by a brief historical overview of teleoperation systems in Section 2.1. In

Section 2.2, some contemporary applications of teleoperation systems are discussed

followed by an overview of common controller architectures for bilateral teleoperation

systems in Section 2.3. Then, passivity and absolute stability of bilateral teleoperation

systems are discussed in Section 2.4. Finally, a brief introduction is given to the main

two topics of this thesis. These two topics are (a) analysis of the effect of sampled-

data control on the stability of a teleoperation system (Section 2.5), and (b) analysis

of the effect of non-passivity and strict-passivity of a teleoperator terminations on the

stability of the teleoperation system (Section 2.6).

2.1 A historical review of teleoperation systems

The first teleoperation system was developed by Raymond C. Goertz in 1945 in order

to handle hazardous materials remotely [13]. Emergence of electrical servomechanism

helped Goertz to develop a telerobotic system that was accompanied by a closed-

circuit TV. Teleoperation research was fueled by the space exploration activities in

1960’s and 1970’s. Landing on the surface of the moon in 1966 motivated the need for
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research on teleoperation systems that suffer from time delay in the communication

channel between the master and the slave robots. Ever since, the need to design

teleoperation systems in such a way that they are capable of handling potentially

time-varying delays in their communication channels has been felt by the research

community. In 1967, as a partial solution to this problem, Ferrell and Sheridan

proposed supervisory control where the human operator submits high-level commands

and the slave is given autonomy to locally accomplish these high-level commands [14].

Predictive display was proposed by Bejczy and Kim in 1990 to deal with time delay in

teleoperation systems, whereby the human operator sees the slave-sides response in a

predictive manner [15]. Since 1990’s, the Internet has been used as a communication

channel and new challenge such as time-varying delays and packet loss have been

considered [16].

In 1980’s and 1990’s, the control systems theory began to influence the theoretical

and controller design aspects of teleoperation systems [17]. This led to the appli-

cation of teleoperation systems to offshore operations such as pipeline monitoring,

well-head completion, and similar oil-and-gas industrial applications [18]. It was in

1982 that the first bilateral teleoperation system was implemented in a joint project

between the Central Research Laboratory and the Oak Ridge National Laboratory

in the United States. Parallel to the development of modern computers, application

of teleoperation systems was extended to new areas including undersea manipulation

[1]. Relatively recent advances in teleoperation systems have led to the development

of reliable teleoperation systems for robotically-assisted surgical procedures [19]. In a

breakthrough in the history of teleoperation systems, in 2001, a robotically-assisted

minimally invasive surgery was performed in which a surgeon in New York, U.S., re-

motely removed gallbladder of a patient in Strasbourg, France, using a ZEUS surgical

robot [20, 21].

7



2.2 Contemporary applications of teleoperation sys-

tems

As a result of widespread availability of the Internet as a communication channel,

teleoperation systems are used in many of today’s applications. A summary of selected

recent applications of teleoperation systems is given in the following.

Teleoperation systems are widely used in space teleoperation [22, 23, 24, 25, 26, 27,

28, 29]. In a major project in 1993, the first computer-controlled space telerobot was

launched by the German Aerospace Center (DLR) [30, 31] for the NASA Space Shuttle

[32, 33]. Another major development in space teleoperation involved the Space Station

Freedom in the Japanese Experimental Module [34]. Perhaps the most challenging

aspect of space teleoperation is the substantial time-delays in the communication

channel, which are typically around seven seconds round-trip [35].

In another application of teleoperation systems, undersea manipulators have been

controlled with telerobots since 1973 [36, 37, 38, 39]. For instance, construction ma-

chines were controlled remotely with a “scaled” teleoperator [40]. Some applications

require mounting a teleoperator on a remotely-operated vehicle.

Another application of teleoperation systems is in robot-assisted surgery and tele-

surgery [41, 42, 43]. Perhaps the most well-reputed robotically-assisted surgery system

is the da Vinci Surgical System (Intuitive Surgical Inc., Sunnyvale, CA) [44, 45], which

is equipped with laparoscopic tools in the slave side while the surgeon interacts with a

user console. The minimally-invasive surgery procedures being performed using this

teleoperation system include surgeries for prostate cancer [46], hysterectomy [47],

and mitral valve repair [48, 49]. In another example of robotically-assisted surgery

systems, in the neuroArm project, an MR-compatible teleoperated robot is developed

for image-guided neurosurgery in the presence of magnetic fields of up to 3.0 tesla

[50].

There are many other applications for bilateral teleoperation systems. These in-
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clude handling hazardous material [51, 52], mobile robotics [53, 54, 55, 56, 57, 58, 59,

60], flying robots [61, 62, 63], and tele-rehabilitation [64, 65].

2.3 Controllers for bilateral teleoperation systems

2.3.1 Controller architectures

A bilateral teleoperation system may use different control architectures. A position-

error-based (PEB) control architecture involves transmitting the position of each

robot to the opposite robot of the teleoperation system. As such, the PEB architec-

ture does not require force measurement. Conversely, a direct force reflecting (DFR)

control architecture requires the contact force of the slave/environment to be mea-

sured and transmitted to the human operator. Combining the two aforementioned

architectures, in a 4-channel (4-CH) architecture, both positions and forces of the

master and the slave are transmitted to the other end of the teleoperation system

[66, 67].

2.3.2 Control design objectives

The controllers of a teleoperation system are designed to achieve two objectives.

First, the closed-loop system should have stability, which is defined as the bound-

edness of the signals in the system. Second, the teleoperation system should be

transparent meaning that the positions/forces of the master and the slave should

be similar. Equivalently, transparency ensures that the human operator receives an

undistorted perception of the environment properties, e.g., impedance. There is a

tradeoff between transparency and stability of a teleoperation system [66, 68, 69] –

the best transparency is achieved by the least-conservative stabilizing controller [70].

Teleoperation passivity may be studied in the context of passivity as explained next.
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2.4 Teleoperation stability vs. passivity

2.4.1 Stability

To analyze the closed-loop stability of a teleoperation system using conventional sta-

bility analysis approaches, the operator and the environment models must be known.

While this assumption will significantly simplify the stability analysis, it cannot be

made in practice because the dynamic parameters of the human operator change in

response to the specific requirements of the task at hand, and the dynamic param-

eters of the environment are also usually uncertain, time-varying and/or nonlinear.

To tackle the stability analysis of a teleoperation system without known models for

the environment and the operator, two approaches have been proposed: Teleoper-

ator passivity and teleoperator absolute stability. In the following, we discuss this

beginning with modeling a teleoperator as a two-port network.

2.4.2 Two-port network modelling

Both the passivity and the absolute stability approaches break down a teleoperation

system to three main blocks as shown in Fig. 2.1: A human operator (one-port

network) and an environment (one-port network) interacting with a teleoperator (two-

port network). The teleoperator comprises the communication channel, the master,

the slave and the local controllers. The teleoperator passivity concerns the energy

dissipation of the teleoperator and makes sure that the teleoperator is not generating

energy. If so, the concatenation of a passive teleoperator and passive environment

and operator terminations will be passive, i.e., the overall teleoperation system will

be passive. On the other hand, the absolute stability is concerned with the stability

of the overall teleoperation system for any passive but otherwise arbitrary operator

and environment. Absolute stability of a two-port network has been shown to be

equivalent to the passivity of the input impedance at a port of the two-port network

when the other port is connected to a passive termination (Fig. 2.2). In turn, passivity
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of a one-port network has been shown to be equivalent to positive-realness of its

impedance. Positive realness of a system is defined as follows.

Positive Realness Definition: A single-input/single-output system with transfer

function Z(s) is positive real if and only if [71]

1. Z(s) has no pole in the right half plane.

2. Any poles of Z(s) on the imaginary axis are simple with real and positive

residues.

3. Re{Z(jω)} ≥ 0 for all ω > 0.
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Figure 2.2: Connecting a passive one-port network to any port of an absolutely stable
two-port network results in the passivity of the remaining one-port network

2.4.3 Two-port network passivity

Ensuring passivity of the two-port network teleoperator along with the assumed pas-

sivity of its two terminations will guarantee the passivity of the resulting interconnec-

tion and thus the closed-loop stability of the teleoperation system [72]. The human
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operator impedance has been argued to be passive in relaxed arm tasks [73]. Passivity

of the two-port teleoperator can be investigated via the scattering framework or Rais-

beck’s criterion [71, 74]. For a two-port network expressed in terms of its immitance

matrix P, the Raisbeck’s conditions is presented in the following.

Raisbeck’s passivity criterion: A two-port network with immitance matrix P is

passive if and only if

1. Pij’s have no pole in the right half plane.

2. Pure imaginary poles of Pij’s are simple and have positive residue. Also, the

residues Pij satisfy P11P22 − P12P21 ≥ 0 with P21 = P ∗12.

3. For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0

4R11R22 − (R12 +R21)
2 − (Im{P12} − Im{P21})2 ≥ 0 (2.1)

where Rij = RePij.

2.4.4 Two-port network absolute stability

To investigate the stability of a teleoperation system, a less conservative condition

compared to teleoperator passivity is the teleoperator absolute stability. For a two-

port network expressed in terms of its immitance matrix P, the Llewellyn’s conditions

give the criterion for absolute stability of the network [71, 8].

Llewellyn’s absolute stability criterion: A two-port network with immitance matrix

P is absolutely stable if and only if

1. P11 and P11 have no pole in the right half plane.

2. Pure imaginary poles of P11 and P22 are simple and have positive residue.
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3. For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0

2R11R22 − Re{P12P21} − |P12P21| ≥ 0 (2.2)

2.5 Effect of sampled-data control on teleopera-

tors absolute stability and passivity

A teleoperation system controller is typically implemented via discrete-time compo-

nents while the rest of the teleoperation system (the human operator, the environ-

ment, and the robots) operates in the continuous-time. Most stability analyses for

teleoperation systems assume that the system is entirely in the continuous-time. In

order to analyze the stability of the system using conventional methods, i.e., pas-

sivity and absolute stability, disregard the discrete-time nature of the components.

For instance, modeling the system entirely in continuous-time neglects the energy

leaks caused by the Zero Order Hold (ZOH) [75, 76]. Thus, the passivity or absolute

stability of the teleoperation system is not guaranteed. The ZOH also accounts for

half-sample delay (not to be confused with the communication channel delay) and

has energy-instilling effects [77, 78, 75]. We provide an intuitive explanation for this

energy leak using the example below.

Consider haptic teleoperation on a finite-impedance, passive physical object where

the slave-environment interaction forces are measured by a force sensor, sampled and

fed back to the user by a discrete-time controller (Fig. 2.3). As the slave robot

penetrates the environment, the sampled slave/environment contact forces will be

less than the real contact forces during each sampling intervals, resulting in the forces

reflected to the user to be too low. By contrast, as the slave robot moves out of
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the environment, the reflected forces will be too high compared to reality. Thus, the

users legitimate expectation that a passive environment would not generate energy

is violated. Indeed, as the user utilizes the teleoperation system to probe the passive

environment by pushing and letting go of the user interface, the energy-instilling

sampled-data controller presents the environment to the user as one emitting energy

and causing vibrations - an effect never observed when touching the same environment

directly by hand.

In our work, to fully account for the continuous-time and the discrete-time nature

of various signals in the analysis of passivity and absolute stability of a teleoperator,

a sampled-data analysis is applied (Chapter 3 and Chapter 4).

fe
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Figure 2.3: The operator is indenting a soft object remotely and receives force feed-
back

2.6 Effect of termination non-passivity and strict-

passivity on stability of teleoperation systems

In both the passivity and the absolute stability analyses of a two-port network tele-

operator, the assumption is that the terminations for both ports of the two-port

network are passive. Interconnecting a non-passive termination to a passive two-port

may cause instability even if the other port of the two-port network is terminated
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to a passive one-port network. There are several practical examples when the ter-

mination of a teleoperation system becomes non-passive. For instance, consider a

bilateral teleoperation system in which the two-port network teleoperator is designed

to stay passive. Suppose that the system input/output are force/velocity, and hence

the mathematical notion of passivity corresponds to the system’s physical energy.

Suppose that the environment of the slave robot is also passive. In this system, the

source of energy must be the human operator; otherwise, the system never moves.

This means the human operator is not always passive as it is assumed widely in the

literature.

Conversely, a teleoperators termination can be overly passive in some applications.

When the environment involves no source of energy or external forces, the environ-

ment is a strictly-passive one-port network. Considering th excess of passivity of the

termination allows us to have some shortage of passivity in the teleoperator while the

coupled system is stable. This notion resembles the excess of passivity and shortage

of passivity of feedback interconnected systems [79]. When systems G1 and G2 are

connected in a negative feedback look, having both of the systems passive ensures

stability of the coupled system. If G1 has a certain level of excess of passivity, G2

can have a shortage of passivity lower than or equal to the excess of passivity of

G1 without jeopardizing the stability of the coupled system. The importance of this

analysis is that it allows the designer to use the extra passivity of one of the termi-

nations to change the controller gains of the two-port network teleoperator to values

outside the absolute stability range and yet the coupled system is guaranteed to be

stable. This can be leveraged to improve the teleoperation system transparency. The

notions of “how much passive?” or “how much non-passive?” about terminations

can be leveraged to develop a powerful tool for stability analysis of two-port network

systems (Chapter 5).
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Chapter 3

Passivity Analysis of Sampled-data

Bilateral Teleoperation Systems 1

3.1 Introduction

Due to the unknown, time-varying and sometimes nonlinear dynamics of the envi-

ronment and/or the operator, it is easier to analyze the passivity of the teleoperator

in lieu of the stability of the closed-loop teleoperation system (Fig. 2.1). Indeed,

the interconnection of a passive teleoperator and passive environment and operator

terminations will be passive and consequently the overall teleoperation system will

be passive [80].

For a bilateral teleoperation system in continuous-time, the teleoperator is mod-

elled as a two-port network and its passivity condition is related to the scattering

matrix of the two-port network [81]. Alternatively, the passivity of the teleoperator

can be analyzed by Raisbeck’s condition (see Section 2.4.3) [71, 74].

The passivity of a teleoperation system is not guaranteed if the continuous-time

controllers are substituted with their discrete-time counterparts because of energy

1This chapter has been published in the IEEE Transactions on Haptics [5] while parts of this
chapter have been presented in the 2011 IEEE World Haptics conference, Istanbul, Turkey [6].
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Figure 3.1: The passivity of the teleoperation system is guaranteed when a two-port
network teleoperator is passive and is connected to two passive one-port network
terminations.

leaks caused by the Zero Order Hold (ZOH) [76] (See Section 2.5).

Similar to bilateral teleoperation, in a force-reflective virtual reality simulation

system the operator feels virtual contact forces while applying position commands

through the haptic user interface. Colgate and Schenkel have found a passivity con-

dition for such a system considering the discrete-time components of the system

[82]. The passivity condition for the discrete simulation of a virtual wall K + sB

is found to be b > KT/2 + B, where b is the haptic interface damping and T is

the sampling time. The stability of the virtual wall system has also been investi-

gated using the Routh-Hurwitz method [83]; the condition for the stability of the

same system is b > KT/2 − B, which is clearly less conservative than the passivity

condition. Previous research has also considered the impact of other non-idealities

such as quantization and friction on the stability of the virtual wall system [84, 85].

As discussed above, energy leaks caused by discretization have been investigated for

haptic interaction with a virtual wall. The analysis of this chapter considers the hap-

tic interaction with a physical environment via a computer-controlled teleoperation

system. The resulting passivity condition can be used in control design to achieve

maximum transparency and enable the human to stably teleoperate in the presence

of discretization components.

In some approaches, the whole teleoperation system is converted to the discrete-

time domain [76, 86] or the continuous-time domain [87], which simplifies the stability
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analysis for known models of the environment and the operator. Also, Hannaford et

al. proposed a passivity observer / passivity controller for monitoring and controlling

the energy in the communication channel of a discrete-time teleoperation system [88].

In addition, Stramigioli et al. proposed a geometric method to investigate the problem

of having both continuous-time and discrete-time signals in a single system where the

teleoperation system is represented by a continuous-time port-Hamiltonian system

[89, 78].

In this chapter, the passivity analysis starts with considering the dynamics of the

master and the slave controllers as well as the dynamics of the master and the slave

robots. The analyses presented in this chapter will lead to a passivity condition for

a sampled-data teleoperation with position-error-based controller architecture and

delay-free communication channel. The condition will impose bounds on the system

parameters such as the sampling time, the controller gains and the robots damping

terms. It is important to determine the lower bound on the damping term of the

robots as most of the newly designed haptic devices intentionally have low damping

terms to deliver touch sensitivity and fidelity to the operator. The upper bounds on

the controller gains give a useful guideline for control design. For a stable teleoper-

ation, system the transparency of the system is degraded if the controller gains are

small in the stable region. Thus, this chapter gives the conditions that can be used as

design guidelines for achieving high transparency and passive teleoperation systems.

The rest of this chapter is organized as follows. First, the prerequisite lemmas

and their proofs are given in Section 3.2. The sampled-data teleoperation system is

modeled in Section 3.3. This model is used in Section 3.4 to find a condition for

the passivity of the teleoperator system. The derived passivity condition has been

tested via computer simulations in Section 3.5, which allows the flexibility to change

the damping terms of the robots (they are fixed in the experiments). Then, the

experimental results using two Phantom Omni robots are reported in Section 3.6,

and concluding remarks are given in Section 3.7.
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3.2 Lemmas

This section includes the proofs of the lemmas that are used in Section 3.4.

Lemma 3.1. For any arbitrary function V (jω) and C̄(ω)

∫ ∞
−∞

C̄(ω)
∞∑

n=−∞

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.1)

The integral (3.1) does not change if C̄(ω) is replaced with its real part Re{C̄(ω)}.

Proof. The integral limits are broken to two parts. Also, The integration and the

summation in (3.1) are interchangeable. Then, (3.1) can be written as two summa-

tions

∞∑
n=−∞

∫ −nωs/2

−∞
C̄(ω)

V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω

+
∞∑

n=−∞

∫ ∞
−nωs/2

C̄(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.2)

In the first summation of (3.2), the variable ω can be changed by defining ω1 =

−ω − nωs and (3.2) is equal to

∞∑
n=−∞

∫ ∞
−nωs/2

C̄(−ω1)
V (−jω1)

−jω1

[
V (−jω1 − jnωs)
−jω1 − jnωs

]c
dω1

+
∞∑

n=−∞

∫ ∞
−nωs/2

C̄(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.3)

Knowing that V (jω) is Fourier transform of a real signal implies that V c(jω) =

V (−jω). As a result, the two terms in (3.3) can be merged to

∞∑
n=−∞

∫ ∞
−nωs/2

[
C̄(−ω) + C̄(ω)

] V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.4)
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Because of having C̄(−ω) = C̄c(ω), (3.4) can be rearranged as

∞∑
n=−∞

∫ ∞
−nωs/2

2Re{C̄(ω)}V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.5)

The integral is symmetric around ω = −nωs

2
and (3.5) can be rewritten as

∞∑
n=−∞

∫ ∞
−∞

Re{C̄(ω)}V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω (3.6)

Now, (3.6) is equal to (3.1) and this fact completes the proof.

Lemma 3.2. For any arbitrary function V (jω) and positive definite C̄+(ω)

∫ ∞
−∞

C̄+(ω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω > 0 (3.7)

Proof. Let us define ζ as

ζ(ω) =
[
C̄+(ω)

]1/2 V (jω)

jω
(3.8)

The left hand side of (3.7) can be written as

∫ ∞
−∞

∞∑
n=−∞

ζ(ω + nω)ζ(ω)cdω

=

∫ ∞
−∞

z(t)
∞∑

n=−∞

z(t)e−jnωstdt

= T

∫ ∞
−∞

z2(t)
1

T

∞∑
n=−∞

e−jnωstdt

= T

∫ ∞
−∞

z2(t)
∞∑

n=−∞

δ(t− kT )dt

= T
∞∑

n=−∞

z2(t− kT )dt (3.9)

The last equation in (3.9) will be positive all the time that proves the claim.
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Lemma 3.3. For V (jω) as in (3.45) and any arbitrary negative definite C̄−(ω) we

have

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω >

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
V (jω)V c(jω)dω (3.10)

Proof. The summation and the integration are interchangeable in the left hand side

of (3.10)

∞∑
n=−∞

∫ ∞
−∞

C̄−(ω)
V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω (3.11)

The summation in (3.11) can be split to three parts

∫ ∞
−∞

C̄−(ω)
V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω +

∞∑
n=1

∫ ∞
−∞

C̄−(ω)
V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω

+
∞∑
n=1

∫ ∞
−∞

C̄−(ω)
V (jω − jnω)

jω − jnω

[
V (jω)

jω

]c
dω (3.12)

The variable change of ω1 = ω − nωs in the summation (3.12) results in

∫ ∞
−∞

C̄−(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω +

∞∑
n=1

∫ ∞
−∞

C̄−(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω

+
∞∑
n=1

∫ ∞
−∞

C̄−(ω1)
V (jω1)

jω1

[
V (jω1 + jnωs)

jω1 + jnωs

]c
dω1 (3.13)

In (3.11), the argument of C̄− did not alter because the integration covers all fre-

quencies. The last two summations in (3.11) can be merged.

∫ ∞
−∞

C̄−(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω +

∞∑
n=1

∫ ∞
−∞

C̄−(ω)V1(ω)dω (3.14)
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where

V1(ω) =
V (jω + jnωs)

jω

[
V (jω)

jω + jnωs

]c
+

V (jω)

jω + jnω

[
V (jω + jnωs)

jω

]c
(3.15)

Similar to Lemma 3.4, it can be shown that for any arbitrary complex numbers X

and Y , XY c + XcY < XXc + Y Y c. Considering that the function C̄− is negative

definite, (3.14) will be greater than

∫ ∞
−∞

C̄−(ω)
V (jω + jnωs)

jω + jnωs

[
V (jω)

jω

]c
dω +

∞∑
n=1

∫ ∞
−∞

C̄−(ω)V2(ω)dω (3.16)

where

V2(ω) =
V (jω + jnω)

jω

[
V (jω + jnωs)

jω

]c
+

V (jω)

jω + jnω

[
V (jω)

jω + jnωs

]c
(3.17)

Inequality (3.16) is simplified to

∫ ∞
−∞

C̄−(ω)

∣∣∣∣V (jω)

jω

∣∣∣∣2 dω +
∞∑
n=1

∫ ∞
−∞

C̄−(ω)

{∣∣∣∣V (jω + jnωs)

jω

∣∣∣∣2 +

∣∣∣∣ V (jω)

jω + jnωs

∣∣∣∣2
}
dω

(3.18)

=

∫ ∞
−∞

C̄−(ω)

{∣∣∣∣V (jω)

jω

∣∣∣∣2 +
∞∑
n=1

V3(ω)

}
dω (3.19)

where

V3(ω)

∣∣∣∣ V (jω)

jω − jnωs

∣∣∣∣2 +

∣∣∣∣ V (jω)

jω + jnωs

∣∣∣∣2 (3.20)

Integral (3.19) is equal to

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

∣∣∣∣ V (jω)

jω + jnωs

∣∣∣∣2 dω (3.21)
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∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
V (jω)V c(jω)dω (3.22)

The last equation in (3.16) is the right side of (3.10).

Lemma 3.4. For any arbitrary complex numbers of X and Y ,

−XY c −XcY ≤ XXc + Y Y c (3.23)

where superscript c stands for complex conjugate.

Proof. The complex numbers X and Y have real and imaginary parts:

X = Xr + jXi, Y = Yr + jYi (3.24)

Inequality (3.23) holds if and only if

X2
r +X2

i + Y 2
r + Y 2

i + 2XrYr + 2XiYi ≥ 0 (3.25)

Inequality (3.25) can be rearranged as

(Xr + Yr)
2 + (Xi + Yi)

2 ≥ 0 (3.26)

Inequality (3.26) holds all the time and also the steps are necessary and sufficient in

the proof and this fact completes the proof.

Lemma 3.5. The passivity condition (3.61) gives the sufficient condition of the pas-

sivity of the system to be (3.62).

Proof. Based on (3.59) and (3.61), the sufficient condition for the passivity is
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∫ ∞
−∞

[
bm + (np

2 + np)C̄
−(ω)

∞∑
n=−∞

1

(ω + nωs)2

]
× Vm(jω)V c

m(jω)dω+

∫ ∞
−∞

[
bs + (1 + np)C̄

−(ω)
∞∑

n=−∞

1

(ω + nωs)2

]
× Vs(jω)V c

s (jω)dω > 0 (3.27)

On the other hand,

∞∑
n=−∞

1

(ω + nωs)2
=
T 2

2

1

1− cosωT
(3.28)

Substituting (3.28) into (3.27), the conditions that guarantee the teleoperator passiv-

ity will be

bm + (np
2 + np)C̄

−(ω)
T 2

2

1

1− cosωT
> 0

bs + (1 + np)C̄
−(ω)

T 2

2

1

1− cosωT
> 0 (3.29)

Or

bm > (np
2 + np)Re{C̄(ω)}T

2

2

1

1− cosωT

bs > (1 + np)Re{C̄(ω)}T
2

2

1

1− cosωT
(3.30)

Substituting (3.49) into (3.30) gives the passivity condition to be

bm >
T

2

np
2 + np

1− cosωT
Re
{

(1− e−jωT )C(ejωT )
}

bs >
T

2

1 + np
1− cosωT

Re
{

(1− e−jωT )C(ejωT )
}

(3.31)

Finally, conditions (3.31) can be expressed as (3.62)
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3.3 Teleoperation system modelling

The block diagrams of a position-error-based sampled-data teleoperation is shown

in Fig. 3.2. The master and the slave robots are modelled as 1-DOF, linear time

invariant systems

fh − fm = mmẍm + bmẋm

fe − fs = msẍs + bsẋs (3.32)

where fh and fe are the operator and the environment forces, respectively. The

subscripts m and s indicate the master and the slave robots, respectively. In (3.32),

fi’s are the controller output forces and xi’s are the robots positions. Also, m and b

denote the mass and the damping of each robot after linearization. It is also assumed

that the robots do not include link or joint flexibility. As depicted in Fig. 3.2,

the positions of the master and slave robots are discretized using sampler blocks.

The superscript ∗ denotes sampled signals. The sampled signals are converted back

to the continuous-time domain using zero-order-hold blocks. The environment and

the operator are modelled as impedances Ze(s) and Zh(s), which are assumed to be

passive but otherwise arbitrary. In Fig. 3.2, f̃h is the exogenous input force from the

operator’s hand and f̃e is the exogenous input force from the environment.

The environment and the operator models of Fig. 3.2 can be converted to the

Laplace domain as

F̃h(s)− Fh(s) = Zh(s)sXm(s)

F̃e(s)− Fe(s) = Ze(s)sXs(s) (3.33)
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Figure 3.2: The block diagrams of a teleoperation system, which includes discretized
controller models.

The robots’ dynamics (3.32) can be rewritten in the Laplace domain as

sXm(s) =
1

mms+ bm
(−Fm(s) + Fh(s))

sXs(s) =
1

mss+ bs
(−Fs(s) + Fe(s)) (3.34)

The output of the sampler is a sampled signal and can be mathematically represented

as a Dirac comb weighted by the sampled signal [90]

x∗(t) =
∞∑
k=0

x(kT )δ(t− kT ) (3.35)

The mathematical representation of the sampled signal (3.35) in the Laplace domain

is

X∗(s) = L{x∗(t)} =
∞∑
k=0

x(kT )e−skT (3.36)
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The z-domain equivalent of (3.36) is

X(z) = Z{x∗(t)} = X∗(s)|s=1/T ln z (3.37)

The ZOH block transfer function relating its discrete-time input to its continuous-time

output is [91]

Fm(s) =
1− e−sT

sT
F ∗m(s)

Fs(s) =
1− e−sT

sT
F ∗s (s) (3.38)

The PEB controller blocks in Fig. 3.2 subtract the position signals and apply forces

based on the master/slave position difference. Note that it is assumed that there is no

delay in the communication channel between the master and the slave. The position

error in the slave robot is

e = xm − xs (3.39)

Based on the error, the discrete-time controllers of the master and the slave sides

implement the following control laws

F ∗m(s) = Cm(z)|z=esT [X∗s (s)−X∗m(s)]

F ∗s (s) = Cs(z)|z=esT [X∗m(s)−X∗s (s)] (3.40)

3.4 Passivity condition for the sampled-data tele-

operator

The teleoperator passivity condition in the time domain is based on the dissipated

energy in the equivalent two-port network of the teleoperator, which can be measured

by the input-output energy integral at the two network ports (Fig. 3.1). For the two-
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port network at the initial rest, the passivity condition is

∫ t

0

fm(τ)ẋm(τ)dτ +

∫ t

0

fs(τ)ẋs(τ)dτ ≥ 0 (3.41)

The system is passive if and only if, for all time t > 0, (3.41) holds. Condition (3.41)

will be satisfied if

∫ t

0

fm(τ)ẋm(τ)dτ +

∫ t

0

fs(τ)ẋs(τ)dτ ≥ 1

2
mmẋ

2
m +

1

2
msẋ

2
s (3.42)

Clearly, (3.42) is sufficient but not necessary for (3.41). The dynamic of the master

robot in (3.32) implies that

fh − fm = mm
dẋm
dt

+ bmẋm (3.43)

Finding fh from (3.43) and substituting in (3.42), along with similar simplifications

for the slave robots simplifies (3.42) to

∫ t

0

fm(τ)ẋm(τ)dτ +

∫ t

0

fs(τ)ẋs(τ)dτ +

∫ t

0

bmẋ
2
m(τ)dτ +

∫ t

0

bsẋ
2
s(τ)dτ > 0 (3.44)

Generalization of the Parseval theorem [92] can be used to take (3.44) to the frequency

domain as

∫ ∞
−∞

Fm(jω)V c
m(jω)dω +

∫ ∞
−∞

Fs(jω)V c
s (jω)dω+∫ ∞

−∞
bmVm(jω)V c

m(jω)dω +

∫ ∞
−∞

bsVs(jω)V c
s (jω)dω > 0 (3.45)

where Vi and Fi (for i = m, s) are the Fourier transform of ẋi and fi, respectively and

the superscript c denotes the complex conjugate operator.
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Using (3.38) and (3.40), the control signals for the master and the slave are

Fm(jω) =
1− e−jωT

jωT
Cm(ejωT )X∗m(jω)− 1− e−jωT

jωT
Cm(ejωT )X∗s (jω)

Fs(jω) =
1− e−jωT

jωT
Cs(e

jωT )X∗m(jω)− 1− e−jωT

jωT
Cs(e

jωT )X∗s (jω) (3.46)

Position signals in (3.46) can be found from (3.36)

X∗m(jω) =
1

T

∞∑
n=−∞

Vm(jω + jnωs)

jω + jnωs

X∗s (jω) =
1

T

∞∑
n=−∞

Vs(jω + jnωs)

jω + jnωs
(3.47)

where ωs = 2π/T . Substituting (3.46) and (3.47), the first two terms of (3.45) become

∫ ∞
−∞

C̄m(ω)
∞∑

n=−∞

Vm(jω + jnωs)− Vs(jω + jnωs)

jω + jnωs
×
[
Vm(jω)

jω

]c
dω

+

∫ ∞
−∞

C̄s(ω)
∞∑

n=−∞

Vs(jω + jnωs)− Vm(jω + jnωs)

jω + jnωs
×
[
Vs(jω)

jω

]c
dω (3.48)

where

C̄m(jω) = −1− e−jωT

T
Cm(ejωT )

C̄s(jω) = −1− e−jωT

T
Cs(e

jωT ) (3.49)

To further simplify (3.48), the master and the slave controllers are selected to be

equal to each other

Cm(jω) = Cs(jω) = C(jω) (3.50)

In a special case in this section the assumption of (3.50) will be changed to cover a

more general case where the controllers are proportional to each other with the same

scaling factor as the position scaling.
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For simplicity of notation let us define C̄(jω) = C̄m(jω). The first two integral

terms in (3.48) can be rewritten as

∫ ∞
−∞

C̄(jω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω (3.51)

where V (jω) is defined as

V (jω) = Vm(jω)− Vs(jω) (3.52)

Using Lemma 3.1 (see Section 3.2 for proof), C̄(jω) can be replaced by its real value

∫ ∞
−∞

Re{C̄(ω)}
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω (3.53)

Now, (3.53) can be split to two parts based on the sign of the real part of the transfer

function C̄

∫ ∞
−∞

C̄+(jω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω

+

∫ ∞
−∞

C̄−(jω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω (3.54)

The positive and negative parts of the real part of the controller are defined as

C̄+(jω) =

 Re{C̄(jω)} , if Re{C̄(jω)} > 0

0 , otherwise
(3.55)

C̄−(jω) =

 Re{C̄(jω)} , if Re{C̄(jω)} < 0

0 , otherwise
(3.56)

Lemma 3.2 in Section 3.2 shows that the first integral in (3.54) is positive at all

time.
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Using (3.48) and (3.54) the sufficient condition for the passivity becomes

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

V (jω + jnω)

jω + jnω

[
V (jω)

jω

]c
dω+∫ ∞

−∞
bmVm(jω)V c

m(jω)dω +

∫ ∞
−∞

bsVs(jω)V c
s (jω)dω > 0 (3.57)

Using Lemma 3.3 (see Section 3.2 for proof), the first integral in (3.57) is greater

than

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
V (jω)V c(jω)dω (3.58)

Thus, for passivity of the teleoperator it is sufficient to have

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
V (jω)V c(jω)dω+∫ ∞

−∞
bmVm(jω)V c

m(jω)dω +

∫ ∞
−∞

bsVs(jω)V c
s (jω)dω > 0 (3.59)

The definition of V (jω) can be substituted from (3.52) in (3.59). The first integral

in (3.59) becomes

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vm(jω)V c

m(jω)dω

+

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vs(jω)V c

s (jω)dω

−
∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
× {Vm(jω)V c

s (jω) + V c
m(jω)Vs(jω)} dω (3.60)

Applying Lemma 3.4 (from Section 3.2) to the last integral in (3.60), it can be
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said that (3.60) is less than

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vm(jω)V c

m(jω)dω+

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vs(jω)V c

s (jω)dω

+

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
× {Vm(jω)V c

m(jω) + V c
s (jω)Vs(jω)} dω (3.61)

Lemma 3.5 in Section 3.2 proves that (3.61) and the last two integrals of (3.59)

give the sufficient condition for passivity of the teleoperator to be

bm >
T

1− cosωT
Re
{

(1− e−jωT )Cm(ejωT )
}

bs >
T

1− cosωT
Re
{

(1− e−jωT )Cs(e
jωT )

} (3.62)

For verification, the Raisbeck’s criterion for passivity of a continuous-time PEB-

controller teleoperator was determined. The Raisbeck’s criterion is given in Section

2.4.3. In the following it will be shown that for a continuous-time teleoperation

system, the above Raisbeck’s condition will be always satisfied which is consistent

with the passivity condition (3.62) when the sampling time T is substituted by zero.

The hybrid matrix of a continuous-time teleoperation system with PEB controllers is

[93]

HPEB =

Zm(s) + Cm
Zs(s)

Zs(s)+Cs(s)
Cm(s)

Zs(s)+Cs(s)

− Cs(s)
Zs(s)+Cs(s)

1
Zs(s)+Cs(s)

 (3.63)

To test (2.1), one may replace the continuous-time controllers of (3.63) by Cm(s) =

Cs(s) = K + Bs, and the master and slave impedances of (3.63) by Zm(s) =

Zs(s) = ms, and the Raisbeck’s conditions (2.1) become m2ω4B/[B2ω2+(mω2−K)2],

Bω2/[B2ω2 + (mω2 − K)2] and zero, respectively. Thus, all three conditions (2.1)

are satisfied, which means that the two-port network teleoperator for a continuous-

time, PEB-controlled system is passive. Despite the continuous-time counterpart,
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for a sampled-data teleoperation system increasing the controller gain may incur

non-passivity, which emphasizes importance of modeling the discretization effect in

passivity analysis of the teleoperation system. Special case I: Unequal controllers

The assumption on the master and the slave controllers to be equal (3.50) can be

changed to
Cm(jω)

np
= Cs(jω) = C(jω) (3.64)

where np is the position scaling factor. It should be noted that setting the controllers

the same proportion as the position signals is practically justifiable. For instance,

in micro-surgery, the slave’s micro-surgical tools undergo fine motions and need a

high-gain controller compared to the master’s handle whose range of motion spans

the human hand’s workspace (i.e., Cm < Cs and xm > xs). In the unequal controller

case, the position error (3.39) becomes

e = npxm − xs (3.65)

The analysis is repeated for the cases where the value of np is non-unity and the

controllers have the relationship of (3.64). The derivation for non-unity scaling is

given Lemma 1 in the following. The passivity condition in the unequal controller

case becomes

bm >
T

2

np + 1

1− cosωT
Re
{

(1− e−jωT )Cm(ejωT )
}

bs >
T

2

np + 1

1− cosωT
Re
{

(1− e−jωT )Cs(e
jωT )

} (3.66)

Remark 1. This lemma includes derivations of the passivity condition for the case

where the position error of (3.39) is replaced by the scaled version of (3.65), and the

master and the slave controllers of (3.50) is replaced by (3.64). To keep the derivation

concise, only the steps that are different have been presented in the following steps.
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Using the definition of error (3.65), (3.40) becomes

F ∗m(s) = Cm(z)|z=esT [X∗s (s)− npX∗m(s)]

F ∗s (s) = Cs(z)|z=esT [npX
∗
m(s)−X∗s (s)] (3.67)

And, (3.46) becomes

Fm(jω) = np
1− e−jωT

jωT
Cm(ejωT )X∗m(jω)− 1− e−jωT

jωT
Cm(ejωT )X∗s (jω)

Fs(jω) = np
1− e−jωT

jωT
Cs(e

jωT )X∗m(jω)− 1− e−jωT

jωT
Cs(e

jωT )X∗s (jω) (3.68)

Also, (3.48) becomes

∫ ∞
−∞

C̄m(ω)
∞∑

n=−∞

npVm(jω + jnωs)− Vs(jω + jnωs)

jω + jnωs
×
[
Vm(jω)

jω

]c
dω

+

∫ ∞
−∞

C̄s(ω)
∞∑

n=−∞

Vs(jω + jnωs)− npVm(jω + jnωs)

jω + jnωs
×
[
Vs(jω)

jω

]c
dω (3.69)

The definition of C̄ changes to C̄(jω) = C̄m(jω)/np and V (jω) in (3.52) is re-

defined as V (jω) = npVm(jω) − Vs(jω). Also, (3.60) and (3.61) should be changed

to

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
n2
pVm(jω)V c

m(jω)dω

+

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vs(jω)V c

s (jω)dω

−np
∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
× {Vm(jω)V c

s (jω) + V c
m(jω)Vs(jω)} dω (3.70)
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and,

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
n2
pVm(jω)V c

m(jω)dω+

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
Vs(jω)V c

s (jω)dω

+ np

∫ ∞
−∞

C̄−(ω)
∞∑

n=−∞

1

(ω + nωs)2
× {Vm(jω)V c

m(jω) + V c
s (jω)Vs(jω)} dω (3.71)

The final passivity condition (3.62) becomes

bm >
T

2

np + 1

1− cosωT
Re
{

(1− e−jωT )Cm(ejωT )
}

bs >
T

2

np + 1

1− cosωT
Re
{

(1− e−jωT )Cs(e
jωT )

} (3.72)

Special case II: PD controller

The passivity condition (3.62) is valid for all controllers. If the controller’s struc-

ture is known, the condition can be further simplified. For instance, for a PD con-

troller K + Bs, which can be discretized using bilinear transformation method as

Cs(z) = Cm(z) = K +B
z − 1

Tz
(3.73)

the passivity condition (3.62) is simplified to

b > KT − 2B cosωT (3.74)

Condition (3.74) is dependent on the frequency ω. The term cosωT can vary between

-1 and 1. Thus, a sufficient condition for teleoperator passivity over all frequencies

will be

b > KT + 2B (3.75)

which has to hold for both the master and the slave robots.
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Condition (3.75) implies that increasing the sampling time and controller gains

drive the system closer to non-passivity. The master or slave robot damping term b is

a physical characteristic of the robot and cannot be easily changed whereas the other

parameters in (3.75) can be appropriately set in the control design process.

In addition to the passivity of the teleoperator, it is desirable to have high teleop-

eration transparency. Condition (3.75) can be used to achieve as high transparency

as possible while maintaining passivity.

In fact, in a continuous-time teleoperation system, it can be proved that increasing

the controller gains moves the system closer to more transparent teleoperation. High

controller gains lead the hybrid matrix of the PEB teleoperation system in continuous-

time (3.63) to approach the ideal transparent hybrid matrix as follows

Hideal =

 0 1

−1 0

 (3.76)

Comparison of (3.63) and (3.76) leads to the fact that for the stable teleoperation

system, increasing the gains of Cm and Cs increases teleoperation transparency, al-

though fully transparent teleoperation cannot be achieved using the PEB controller

because of the first element of (3.63) which is always greater than zero. It is shown

that to the full transparency of the teleoperation system can be achieved with either

force-position controller [94] or three-channel architecture [95]. .

3.5 Simulation study

The teleoperation system of Fig. 3.2 has been simulated in MATLAB/Simulink and

the passivity condition (3.75) has been tested for a teleoperator comprising a pair of 1-

DOF robots modelled by mass-damping terms. These mass and damping parameters

match those of Phantom Premium 1.5A robots used in the experiments, the details

of which will be described in Section 3.6. The simulation allows for variation of
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parameters that cannot be altered in experiments such as the robot damping term b.

To determine the passivity of the teleoperator, a passivity observer, which cal-

culates the dissipated energy, has been incorporated into the simulations. The dis-

sipated energy is represented by the input-output energy integral in (3.41). For a

passive teleoperator, the energy integral is non-negative at all times.

For selected model parameters, first the passivity borderline is theoretically deter-

mined via condition (3.75) and shown in Fig. 3.3 by red lines. Next, the simulation

is repeated for various model parameters changed over a grid in the parameter space.

The system is simulated for a chosen passive model (a first-order positive-real trans-

fer function) for the human operator and the environment. Changing the model of

the human operator and the environment – zero impedance, infinite impedance, or

other positive-real transfer functions yields similar simulation results. In each point of

the grid of parameters values, the energy integral is monitored to detect non-passive

teleoperator cases; if the energy integral becomes negative at any time, it signals a

non-passive teleoperator. The dark pixels in Fig. 3.3 indicate where in the parameter

space the energy integral becomes negative (i.e., the teleoperator is non-passive). As

it can be seen, the regions indicated by the passivity condition (3.75) closely match

the simulation results. There is a gap between the filled area and the red line, which

corresponds to cases where condition (3.75) is conservative for detecting the teleop-

erator non-passivity. The conservatism of condition (3.75) was predictable due to the

fact that it was found as a sufficient condition for passivity.

Fig. 3.4 shows an example of the observer output for a teleoperation system

simulation, in which the controller gain has switched from K = 160 to K = 250 at

t = 50sec, making the system non-passive. Before the change, the passivity observer

output stayed non-negative. As shown in Fig. 3.4, while the observer detected non-

passivity of the system at t = 109sec (when the passivity observer output crossed zero),

the teleoperation system became non-passive soon after the gain change happened at

t = 50sec. In fact, the passivity observer can only determine if the system is non-
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and b = 0.01822, (b) in b − T plane for K = 1, m = 0.015 and B = 0, and (c) in
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Figure 3.4: Passivity observer output in simulations for a teleoperator with a changing
controller gain. The controller gain changes from K = 160 to K = 250 at t = 50sec

and makes the teleoperator non-passive. The other system parameters are T = 5ms,
b = 1 and B = 0.

passive if the index becomes negative. In case the energy integral remains positive,

the passivity observer is not able to produce any conclusion about whether the system

is passive or non-passive. On the other hand, the passivity condition (3.75) determines

the passivity of the system analytically and more accurately.

3.6 Experimental results

3.6.1 Teleoperation system setup

To verify the passivity condition (3.75) experimentally, the stability condition has

been tested for a teleoperation system consisting of a pair of Phantom Premiums 1.5A

robots (Sensable Technologies/Geomagic, Wilmington, MA) with JR3 force sensors

(JR3, Inc., Woodland, CA) at their end-effectors. We consider the robots to work in

the joint space – angular position and torque are the output and input of each joint of

each robot. Out of the three actuated joints of each robot, the first one is used in the

experiment while the second and the third joints, which form a parallel mechanism,
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are locked using high gain controllers.

3.6.2 Choice of terminations: Free-motion/free-motion (FF)

vs. free-motion/clamped (FC)

The experiments have set up to include two extreme cases of zero and infinitely-stiff

impedances corresponding to free-motion and a clamped coupling for each termina-

tion. This results in four combinations for the two terminations.

• Case 1: Both master and slave in free motion (FF)

• Case 2: Master in free motion and slave clamped (FC)

• Case 3: Master clamped and slave in free motion (FC)

• Case 4: Both master and slave clamped (CC)

Since our teleoperation system including its controllers is symmetric with respect to

the master and the slave, Cases 2 and 3 are similar experiments (FC). In contrast

to Cases 1 to 3 for the termination choices where at least one of the robots is able

to move and potentially show the instability of the teleoperation system, Case 4

does not serve our experiment objectives. Having clamped robots allows for non-zero

forces, but does not allow for the investigation of stability in our position-error-based

teleoperation system. Thus, Case 4 has been excluded from our experiments. Case 4

(CC) can be important as one of the extreme cases for termination choices especially in

control architectures with force sensor feedback (e.g., the 4-channel method) where the

destabilizing effect of non-collocated sensing and link/joint flexibility are important.

Fig. 3.5 shows the experimental setup for the FC termination arrangement, and the

FF arrangement (not shown) is similar except that it involves no clamping of either

robot.

It should be noted that the experimental protocol described above has the advan-

tage that it is independent of any human operator’s intervention (as master’s cou-
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Figure 3.5: Experimental setup for the case where the master arm (left) is in free
motion and the slave arm (right) is clamped (FC).

pling), rendering the experiments highly reproducible. Similarly, it does not depend

on any particular physical environment (as slave’s coupling).

Within each of the two cases for the terminations (FF or FC), different experiments

have been run for different values of the sampling time. Within each experiment (i.e.,

at a given sampling time), the controller gain has been altered in different tests.

Within each test (i.e., at a given sampling time and a given controller gain), different

trials have been conducted for different values of the initial condition.

3.6.3 Choice of initial conditions

In the experiments, when the master and/or the slave are in free motion, we provide

them with initial conditions such that the teleoperation system is excited; otherwise,

there will be no motion. The initial condition specifies the position difference between

the master and the slave at the onset of a trial (within a test within an experiment)

– the slave is placed at the origin of its coordinate system while the master has an

initial angular position. Since a passive system should remain stable regardless of

its initial condition, when investigating the passivity of the teleoperator, the initial

condition has been changed over a series of trials in a large span only limited by
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the physical constraints of the experimental setup. Instability in one trial is enough

to indicate that the teleoperation system with the chosen parameters is potentially

unstable. If none of the trials makes the teleoperation system unstable, the system is

identified as passive at this particular test (with controller gain K) and experiment

(with sampling time T ).

3.6.4 Determination of passivity/non-passivity borderline

In both FF and FC cases, either the velocity or the contact force is zero in both

the master and the slave sides. This makes the passivity definition according to the

integral of power at the two ports, namely (3.41), impossible to check because the

power at each port is always zero. Instead, to determine the non-passivity of the

teleoperation system, its instability has been monitored as characterized by growing

oscillations. It should be noted that the reverse conclusion is not valid; there are

systems that are stable without being passive.

The procedure for experimentally determining the passivity/non-passivity border-

line is as follows. A given sampling time T specifies a vertical line in the K−T plane

for different values of the controller gain K. The intersection of this vertical line with

the theoretical passivity borderline determines the value of the controller gain below

(above) which the teleoperator is expected – from a purely theoretical perspective –

to be passive (non-passive). The objective of each experiment is to find the smallest

and the largest controller gains that make the teleoperator non-passive and passive,

respectively, at a given sampling time. Such an experiment is then repeated at differ-

ent sampling times (vertical line locations). To find the smallest controller gain that

makes the teleoperator non-passive, the controller gain is first set to the value given

by the theoretical passivity borderline at that sampling time. Next, we perform a

trial for a small initial condition, the results of which can be one of the following two

possibilities.

• (A) If the teleoperation system is stable, the trial is repeated with a larger
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initial condition. The increase in the initial condition is continued until either

the system becomes unstable (reverting to Case B below) or the entire range

of initial conditions has been tested. If no instability was observed across the

trials, the data point corresponding to this test is marked as being passive in

the K − T plane. Then, the controller gain is increased slightly (by steps of

less than 1% of the maximum gain) and the same test is repeated for this new

gain, possibly adding one more passive data point to the K − T plane. The

increase in the controller gain is continued until the system becomes unstable,

which corresponds to a non-passive teleoperation system.

• (B) If the teleoperation system is unstable, the data point corresponding to

this test is marked as being non-passive in the K − T plane. Then, following

a procedure in the opposite direction, the controller gain is decreased slightly

(by steps of less than 1% of the maximum gain) until the system becomes

stable. Again, if no instability was observed across several trials, the data point

corresponding to this test is marked as being passive in the K − T plane.

The result of the above procedure is an accurate experimentally-obtained passivity

borderline in the K − T plane.

3.6.5 Results

The experimental borderlines found for FF and FC experiments are shown in Fig.

3.6 and 3.7, respectively. Thus, in Fig. 3.6, the teleoperator is coupled to two

zero-impedance terminations. Also, in Fig. 3.7, the teleoperator is coupled to a zero-

impedance termination and another infinite-impedance termination. The theoretical

regions of passivity and (potential) non-passivity obtained from condition (3.75) are

shown as separated by the theoretical borderline (blue line). Also, the result of each

experiment is indicated either as a star (stable) or a circle (unstable) in these figures.

For a given sampling time, many more tests were conducted but not shown in Fig. 3.6
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Figure 3.6: Free-motion/free-motion (FF) experiment data points and theoretical
passivity borderline. Stars represent stable, and circles represent unstable systems.

and 3.7; only those data points corresponding to the previously-discussed “smallest

and the largest controller gains” were shown.

As seen in Fig. 3.6, in the FF case, the theoretical teleoperator passivity/non-

passivity borderline closely matches the experimentally-obtained borderline. The

close match between the theoretical borderline (3.75) for the passivity of the teleop-

erator and the experimental borderline for the stability of the teleoperation system

in the FF case (Fig. 3.6) demonstrates that the aforementioned theoretical condition

is not overly conservative in the context of stability analysis. Also, this theoretical

condition corresponds to a worst-case scenario in terms of termination choices the sta-

bility region for the teleoperation system in the FC case (Fig. 3.7) is bigger than that

predicted by the passivity region for the teleoperator in the FF case (Fig. 3.6). From

Fig. 3.7, in the FC case, it is seen that the theoretical teleoperator passivity/non-

passivity borderline is more conservative than the experimentally-obtained borderline

in the sense that, in the K−T plane, certain theoretically non-passive points are found
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Figure 3.7: Free-motion/clamped (FC) experiment data points and theoretical pas-
sivity borderline. Stars represent stable, and circles represent unstable systems.

to be practically passive. Both of the above were expected for the reasons explained

below. Recall that we defined a teleoperation system to consist of a teleoperator cou-

pled to two terminations (a human operator and a remote environment). In the FF

case, the teleoperation system and the teleoperator are the same and, therefore, the

non-passivity of the teleoperation system (as assessed by the procedure outlined in

Section 3.6.4) is tantamount to the (potential) non-passivity of the teleoperator (as

assessed by condition (3.75)). However, in the FC case, the experimental procedure to

determine passivity/non-passivity in Section 3.6.4 concerns that of the teleoperation

system, which is now different from the teleoperator alone due to the presence of one

infinitely-stiff termination for the teleoperator. In other words, while the choice of

terminations cannot affect the passivity or nonpassivity of the teleoperator, it affects

the stability of the overall teleoperation system, which is what is evaluated through

the steps in Section 3.6.4. Thus, the theoretical passive region (3.75) for the teleop-

erator was expected to be different from the experimental non-passive region for the
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Table 3.1: Mean-square-error of master-slave position tracking relative to the master
position mean-square (percent).

T (ms) K = 0.4 K = 1.0 K = 2.0 K = 2.4

7 10.2580 9.9864 3.0355 3.3159
15 13.2608 5.8948 Unstable Unstable

teleoperation system with the gap between these two regions being affected by the

passive behaviors of the terminations. The extreme FF and FC cases for termina-

tions in Fig. 3.5 correspond to two of the possible extreme passivity/non-passivity

borderlines.

3.6.6 Transparency comparison

From the passivity borderlines in Fig. 3.6 and Fig. 3.7, it can be concluded that the

upper bound on the controller gain becomes smaller as the sampling time increases.

For any given sampling time, one may choose the controller gain to be low enough to

avoid instability of the teleoperation system. However, lowering the controller gain

comes at a cost to transparency of the teleoperation system; to limit the transparency

degradation, we need to use the largest stabilizing controller gain. Table 3.1 demon-

strates this fact using free-motion experiments in which the controller gain K and the

sampling time T are altered and master-slave position tracking error is measured: in

most cases increasing K in the stable region of the K−T plane results in smaller per-

cent mean-square-error (MSE) in position tracking relative to the mean-square-error

of master position. This is why knowing the passivity borderline is important.

3.7 Conclusions

In this chapter, a passivity condition has been found for a delay-free bilateral tele-

operation system in which the position error based controllers are implemented in
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discrete-time. To find this condition, the models of the zero-order-hold and the sam-

pler are incorporated in an appropriate frequency-domain analysis. The condition

imposes a lower bound on the robot damping, an upper bound on the sampling time,

and bounds on the controller gains. For the special case of PD control, the bounds on

the proportional and derivative controller gains have been found to be upper bounds.

Thus, the passivity condition provides the designer with guidelines about how much

the controller gain can be increased with no risk of instability. Supporting simula-

tions and experiments demonstrating the validity of the passivity condition have been

reported.
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Chapter 4

Absolute Stability Analysis of

Sampled-Data Scaled Bilateral

Teleoperation Systems 1

4.1 Introduction

4.1.1 Teleoperation stability analysis

To analyze the closed-loop stability of a teleoperation system, one can assume that the

operator and the environment models are known, e.g. in [76]. While this assumption

will simplify the stability analysis, it cannot be made in practice because the dynamic

parameters of the human operator change in response to the specific requirements of

the task at hand [96], and the dynamic parameters of the environment are uncertain,

time-varying and nonlinear.

Modeling the teleoperation system as a two-port network (teleoperator comprising

the master, the controller and communication channel, and the slave) coupled to two

1This chapter has been published in the Control Engineering Practice - a Journal of IFAC [7].
Parts of this chapter have also been presented in the 2010 IEEE Conference on Decision and Control,
Atlanta, Georgia, USA [8] and in the 2011 Canadian Congress on Applied Mechanics, Vancouver,
BC, Canada.
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one-port networks (environment and operator) paved the way for ensuring closed-loop

stability via teleoperator passivity, i.e., ensuring that the two-port network teleoper-

ator is passive, which physically means the teleoperator is not generating any energy

[97, 98] (see Section 2.4.3).

Absolute stability analysis relaxes the passivity assumption on the teleoperator

meaning that it allows the teleoperator to be non-passive as long as the closed-loop

stability of the teleoperation system is preserved. Similar to passivity, the absolute

stability approach assumes that the environment and the operator are passive but

otherwise arbitrary. The absolute stability of a continuous-time two-port network can

be assessed using Llewellyn’s criterion [99, 100, 101] (see Section 2.4.4). Recent studies

have introduced geometric approaches inspired by criteria for unconditional stability

of microwave systems to study the absolute stability of teleoperation systems [102].

The proposed method by Haddadi and Hashtrudi-zaad allows the environment and

the operator to be non-passive with bounded impedance while the overall continuous-

time teleoperation system is still stable.

As mentioned in Section 2.4.2, absolute stability breaks down the teleoperation

system to three main blocks: A human operator (one-port network), an environment

(one-port network), and a teleoperator (two-port network). The absolute stability of

a two-port network is also equivalent to the passivity of the one-port network resulting

from connecting the other port of the two-port network to a passive termination [102]

(see Fig. 2.2). The challenge that is fully addressed in this chapter is how to ensure

stability of the overall teleoperation system when the only information about the

terminations (i.e., the human operator and the environment) is their passivity.

The assumption of passivity of the one-port network terminations can be expressed

by their positive realness for linear systems (see Section 2.4.2). Positive realness of a

transfer function corresponds to having its Nyquist diagram entirely in the right half

of the complex plane. The assumption of termination passivity has been integrated

into the stability analysis using the mapping of the positive real region to a unit
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disc in the Nyquist plane by finding the proper linear fractional transformation. A

simpler case of such mapping has been first introduced by Colgate and Schenkel [82]

for a one-port system (i.e. the virtual wall) and in this chapter has been extended

to two-port network by solving the combined dynamics of both the master and the

slave robots in a teleoperation system.

The effect of position and/or force scaling on the stability and passivity of a tele-

operation system is a nontrivial problem. The conventional two-port network passiv-

ity analysis cannot be directly used in a scaled teleoperation system with arbitrary

position and force scaling factors for the following reason. The two-port network

representing the teleoperator is passive if the work done by the operator and the en-

vironment on it is non-negative at all times and for all inputs and initial conditions:

∫ t

0

fh(τ)ẋm(τ)dτ +

∫ t

0

fe(τ)ẋs(τ)dτ > 0 (4.1)

where f and ẋ stand for force and velocity and subscript h, m, e and s correspond

to hand, master, environment and slave, respectively. The above energy balance

equation has relied on defining the power at the input and output ports as the multi-

plication of a velocity and a force. If xm and xs are scaled with respect to each other,

then it is obvious that fh and fe need to be at the inverse scale to make the input and

the output powers comparable in the conventional passivity definition of (4.1) (see

[103, 104]). In other words, the conventional passivity definition (4.1) cannot hold if

both velocity and force at one termination of a teleoperation are at a smaller scale

than those at the other termination which is against the transparency requirement

[105]. On the other hand, it will be elaborated that the proposed absolute stability

approach is able to tackle the stability of a scaled teleoperation system with the same

ease as when there is no power scaling.
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4.1.2 Sampled-data teleoperation

A major challenge in stability analysis of teleoperation systems that is addressed in

this chapter is the effect of controller discretization. The discretization of a stabilizing

continuous-time controller does not necessarily preserve the stability (see Section 2.5

for detailed discussion) [77, 75]. In fact, the stability of the closed-loop system will be

degraded due to the energy-instilling behaviour of the Zero Order Hold (ZOH) [77].

Past research dealing with the effect of discretization has either modified the tele-

operation controllers to ensure the sampled-data system stability, or have analyzed

the stability of the sampled-data system with discretized counterparts of the original

continuous-time controllers [106]. In one of the first researches toward the controller

design for a sampled-data teleoperation system, six low-pass filters were added to the

control structure to stabilize the overall teleoperation system, which resulted in its

sluggish performance [75]. It was shown that for step-invariant discretization of the

sampled-data teleoperation system, there exists an upper bound on the sampling time

to keep the system stable. As for stability analysis of the sampled-data teleoperation

system, the research is focused either on the absolute stability of the discrete-time

communication channel [86] or the stability of the overall teleoperation system for

known models of the environment [70].

4.1.3 Sampled-data teleoperation stability analysis

Knowing the bounds on the parameters of the teleoperator model and the controller

for ensuring absolute stability provides guidelines for designing controllers with high

gains as needed for transparent teleoperation – it will be shown in this chapter that

increasing the control gains beyond a limit jeopardizes stability. In addition, cer-

tain applications such as texture recognition require high-frequency force feedback,

increasing the demand for transparency over high frequencies and shrinking the sta-

bility margin. In the controller design for such a system, knowing the boundaries

between the stable and unstable regions will be very useful. Another reason to know
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the bounds on the system parameters is that, as it will be shown later, there is a

trade-off between the sampling time and the maximum environment stiffness for sta-

ble teleoperation. When the slave robot is in hard contact (i.e., the environment

stiffness is very large), the system requires very small sampling times, which exceeds

the physical constraints of the discrete-time control hardware. Knowing the minimum

sampling time helps to determine the maximum environment stiffness for which the

teleoperator will be absolutely stable. Lastly, the absolute stability condition becomes

particularly important with robots that, for performance reasons, have been designed

to have low dampings (e.g., by minimizing friction). As shown in this chapter, the

stability condition puts a lower bound on the robot damping. Therefore, with a fixed

robot damping, the controller is designed according to the absolute stability condition

to ensure that the teleoperation system remains absolutely stable.

In this chapter, a new absolute stability condition is developed for a sampled-data

teleoperator without assuming any model for the operator or the environment as long

as they are passive. The effect of the zero order hold is considered in the absolute

stability analysis of the system. The absolute stability permits the teleoperator to

be passive or nonpassive, resulting in a less conservative condition compared to the

teleoperator passivity condition, thus allowing for higher teleoperation transparency

and inclusion of arbitrary position and force scaling factors between the master and

the slave. Unlike most of absolute stability methods in the literature, this new analysis

considers continuous-time robots working with discrete-time controllers with arbitrary

scaling factors for position and force. The condition can be used as a guideline for

designing stabilizing and high-transparency controllers for sampled-data teleoperation

systems.

This chapter is organized as follows. A sampled-data bilateral teleoperation sys-

tem is modeled in Section 4.2. This model is later used in Section 4.3 to derive a

condition for absolute stability of the sampled-data teleoperator. A few special cases

are considered in Section 4.4 to result in more practical conditions. Then, the ex-
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perimental results on a pair of Phantom Omni robots are presented in Section 4.5

followed by the experimental results on a three-way slide switch in Section 4.6. Lastly,

concluding remarks are given in Section 4.7.

4.2 Modelling of sampled-data teleoperation sys-

tems

To study absolute stability, the dynamic models of the master robot and the slave

robot are required. The modelling of the sampled-data bilateral teleoperation given

in (3.32)-(3.39) are valid for absolute stability analysis of the bilateral teleoperation

system.

The control architecture in modelling of Fig. 3.2 assumes that the teleoperation

system uses a position-error-based (PEB) controller. A PEB controller is chosen

because, with a direct force reflection (DFR) controller, even the continuous-time

teleoperation system will not be absolutely stable (Appendix A). As depicted in Fig.

3.2, the PEB controllers work based on the position error between the master and the

slave. As also mentioned in (3.40), the outputs of the master and slave controllers

F ∗m and F ∗s will be sampled-data signals

F ∗m(s) = Cm(z)[X∗s (s)− npX∗m(s)]

F ∗s (s) = Cs(z)[npX
∗
m(s)−X∗s (s)] (4.2)

where np is the scaling factor between the master and the slave positions. Similar

to the unity-scale teleoperation [8], as the controller drives the position error e =

xs − npxm to zero, the master and slave positions will have the following ratio

xs
xm

= np (4.3)
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Here, the ∗ superscript requires us to use the infinite impulse-train definition (3.35)

of the sampler in the derivations that follow.

In order to be able to derive the closed-loop transfer function, from Fig. 3.2, the

continuous-time transfer functions from fm to xm and from fs to xs can be found as

Xm

Fm
=

1

s
.

1
mms+bm

1 + Zh

mms+bm

=
1

s
.

1

mms+ bm + Zh
(4.4)

Xs

Fs
=

1

s
.

1
mss+bs

1 + Ze

mss+bs

=
1

s
.

1

mss+ bs + Ze
(4.5)

Note that the only knowledge about the transfer functions of the human operator Zh

and the environment Ze is that they are passive. When the above continuous transfer

functions are combined with the models of the two zero-order-holds in (3.38), the

transfer functions from f ∗m to xm and from f ∗s to xs can be found as

Gm(s) = Xm(s)
F ∗
m

=
1

mms+ bm + Zh(s)
.
1− e−sT

sT
.
1

s

Gs(s) = Xs(s)
F ∗
s

=
1

mss+ bs + Ze(s)
.
1− e−sT

sT
.
1

s
(4.6)

By substituting these into the model of the sampler (3.35), the overall system equa-

tions (4.2) become

F ∗m(s) = Cm(esT )[−npG∗m(s)F ∗m(s) +G∗s(s)F
∗
s (s)]

F ∗s (s) = Cs(e
sT )[−G∗s(s)F ∗m(s) + npG

∗
m(s)F ∗s (s)]

(4.7)
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where G∗m(s) and G∗s(s) are the following discrete-time transfer functions:

G∗m(s) =
1

T

∑
k

Gm(s+ jkωT )

G∗s(s) =
1

T

∑
k

Gs(s+ jkωT ) (4.8)

And ωT = 2π/T is the sampling frequency.

4.3 Absolute stability of sampled-data teleopera-

tion

In section 4.2, the sampled-data teleoperation system was modelled and resulted in

closed-loop equations (4.7). Our main theorem for testing absolute stability of the

sampled-data teleoperation system will be given after the following definition and

lemma.

Definition 4.1. A teleoperator is called absolutely (or unconditionally) stable when

coupling it to any passive but otherwise arbitrary environment and operator termina-

tions results in a stable teleoperation system 2.

Remark 2. If a teleoperator is not absolutely stable, the teleoperation system is called

potentially unstable. Note that a potentially unstable teleoperator does not necessarily

amount to an unstable teleoperation system.

Lemma 4.1. The closed-loop characteristic equation of the sampled-data teleoperation

system in Fig. 3.2 is

1 + npCm(esT )G∗m(s) + Cs(e
sT )G∗s(s) = 0 (4.9)

2Stability of the teleoperation system is defined as BIBO stability of the system when the system
input is the exogenous human operator force f̃h and the system output is the slave position xm.
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Proof. It is easy to see that the transfer function from F̃h to Xm is

Xm(s)

F̃h(s)
=

(1 + Cs(e
sT )G∗s(s))Hm(s)

1 + npCm(esT )G∗m(s) + Cs(esT )G∗s(s)
(4.10)

where

Hm(s) =
1

Zm(s) + Zh(s)
.
1

s
(4.11)

and the master robot impedance is defined by Zm = mss+ bm. It can be shown that

(4.9) is the also denominator of all transfer functions from inputs F̃h or F̃e to any

other output.

The open-loop system equations (4.7) can be written as

1 + npCmG
∗
m −CmG∗s

−npCsG∗m 1 + CsG
∗
s

 F ∗m

F ∗s

 =

 0

0


The determinant of the above matrix gives the characteristic equation of the system

to be (4.9).

Theorem 4.1. The sampled-data teleoperator resulting from using the discrete-time

control laws (4.2) with the continuous-time system (3.32) as in Fig. 3.2 will be abso-

lutely stable if

||MmNm +MsNs||∞ < 1 (4.12)

where Mm, Ms, Nm and Ns are linear fractional transformations defined as

Nm{s, Cm(esT )} =
npbsCm(esT )r(s)

2bmbs + npbsCm(esT )r(s) + bmCs(esT )r(s)

Ns{s, Cs(esT )} =
bmCs(e

sT )r(s)

2bmbs + npbsCm(esT )r(s) + bmCs(esT )r(s)

(4.13)
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Mm{s,G∗m} = −1 +
2bm
r(s)

G∗m(s)

Ms{s,G∗s} = −1 +
2bs
r(s)

G∗s(s) (4.14)

and

r(jω) =
T

2

e−jωT − 1

1− cosωT
(4.15)

Proof. For the sampled-data teleoperator’s absolute stability, it is necessary and suf-

ficient that the closed-loop characteristic equation (4.9) of the teleoperation system

has all of its roots in the left half of the complex plane. The definition of absolute

stability of a teleoperator assumes that the environment and the operator are passive

and, therefore, their impedances are positive real functions. This is what the proof

starts with.

In the Nyquist plane, Zh and Ze cover the entire right half plane due to their

positive realness. Therefore, given that the master and slave robots have positive

mass and damping, it is concluded that

1/(mms+ bm + Zh(s)) ∈ D{ 1

2bm
,

1

bm
} .= Dm

1/(mss+ bs + Ze(s)) ∈ D{ 1

2bs
,

1

bs
} .= Ds (4.16)

where D{x1, x2} is a disk in the Nyquist plane with the center point of (x1, 0) and

the diameter of x2. The mappings in (4.16) are frequency-independent. Now, (4.16)

can be replaced in (4.6) to ultimately determine the regions of G∗m and G∗s in (4.8).

Because Dm and Ds are frequency-independent, they can be moved out of the sum-
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mations in (4.8). The regions of G∗m and G∗s are, therefore, found as

G∗m ∈ r(jω)Dm

G∗s ∈ r(jω)Ds (4.17)

where r(jω) is the frequency-dependent part in the summation (4.8) and can be

calculated as

r(jω) =
1

T

+∞∑
k=−∞

1− e−(jω+jkωT )T

(jω + jkωT )2
(4.18)

Then, (4.18) will yield (4.15).

Consequently, the regions covered by G∗m and G∗s consist of a frequency-dependent

part r(jω) as in (4.15) and a frequency-independent part as in (4.16) that is shifted

and scaled in the Nyquist plane. The areas in (4.17) can be mapped to the stable

unit disc centered at the origin via the following transformations:

− 1 +
2bm
r(jω)

G∗m ∈ D{0, 2}

−1 +
2bs
r(jω)

G∗s ∈ D{0, 2} (4.19)

Based on (4.19), the linear fractional transformations (LFT) defined by Mm and Ms

in (4.14) map the regions of G∗m and G∗s in (4.17) to two unit discs.

Now, transformations Nm and Ns can be found such that the transformed charac-

teristic equation

1 +MmNm +MsNs = 0 (4.20)

has the same roots as the original characteristic equation (4.9). To this end, replacing
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Mm and Ms from (4.14) into (4.20) leads us to the condition

1 +
−r(s) + 2bmG

∗
m

r(s)
Nm{s, Cm(esT )}+

−r(s) + 2bsG
∗
s

r(s)
Ns{s, Cs(esT )}

= κ(1 + npCmG
∗
m + CsG

∗
s) (4.21)

Note that (4.21) should be valid for any G∗m and G∗s and the coefficient κ should be

independent of G∗m and G∗s. By solving (4.21), the transformations Nm and Ns can

be found as in (4.13). Finally, the small gain theorem provides a sufficient condition

for the stability of the characteristic equation (4.20) as given by (4.12) [107].

It is to note that the although (4.20) and (4.9) have similar form, they have very

different interpretation and applying the small gain theorem on (4.9) gives an involve

condition particularly due to the fact that the assumption on positive realness of the

terminations will not be used and the it has the unknown models of the environment

and the operator are still in the condition.

In Theorem 4.1, transformations Mm and Ms are unit discs in the Nyquist plane.

Condition (4.12) is the general condition that the controllers Cm and Cs should meet

to ensure that the sampled-data teleoperator is absolutely stable.

To achieve condition (4.12), a sufficient condition is

||MmNm||∞ + ||MsNs||∞ < 1. (4.22)

Since Mm and Ms are unit discs in the Nyquist plane, this sufficient condition for

absolute stability reduces to

||Nm||∞ + ||Ns||∞ < 1 (4.23)

By substituting the definitions of Nm and Ns from (4.13) in the above, the sufficient
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condition for teleoperator absolute stability becomes

|npbsCm(ejωT )r(jω)|+ |bmCs(ejωT )r(jω)|
|2bmbs + bsnpCm(ejωT )r(jω) + bmCs(ejωT )r(jω)|

< 1 (4.24)

where r(jω) is defined in (4.15). Note that (4.24) gives an absolute stability condi-

tion that is not tied to any particular controller as long as the teleoperation system

complies with PEB control architecture. For known models of the master and the

slave robots, any given discrete-time controller can be tested using condition (4.24)

to investigate the absolute stability of the sampled-data teleoperator. Also, note that

although absolute stability is less conservative than passivity, some new conserva-

tiveness have been introduced by finding the stability condition using the small gain

theorem.

Next, the communication channel is assumed to have constant delays in transmit-

ting the signals and the absolute stability condition for such case has been derived

as follows. The delay for the master side and the slave side are assumed to be inde-

pendent and potentially different. Without loss of generality it is assumed that the

position scaling is unity np = 1. Furthermore, it is assumed that the delays in the

communication channel are integer multiple of the sampling time of the controllers.

Theorem 4.2. For a position-error-based sample-data teleoperation system with the

continuous-time open-loop dynamics (3.32), if there is a delay T1 in communication

path from the master to the slave and a delay T2 in the opposite direction, the absolute

stability condition is

|D + bsCmr|+ |D + bmCsr|+ |D|
|2bmbsCmCs + bsC2

mCsr + bmC2
sCmr +D|

< 1 (4.25)

where

D =
r2(1− e−(T1+T2)s)

2
(4.26)

Proof. Substituting the controller laws for the master and the slave into the open-loop
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dynamics provides the following closed-loop dynamics for the time-delay sampled-data

teleoperation system:

F ∗m(s) = Cm(esT )[−G∗m(s)F ∗m(s) + e−sT2G∗s(s)F
∗
s (s)]

F ∗s (s) = Cs(e
sT )[−e−sT1G∗s(s)F ∗m(s) + npG

∗
m(s)F ∗s (s)]

(4.27)

Compared to (4.7) The two new terms e−sT1 and e−sT2 are due to the time delay in

the communication channel. In the rest of the proof, the arguments (s) and (esT ) of

the transfer functions are omitted. Regrouping the controller outputs, the closed-loop

equations can be written as 1 + CmG
∗
m −e−sT2CmG∗s

−e−sT1CsG∗m 1 + CsG
∗
s

 F ∗m

F ∗s

 =

 0

0

 (4.28)

Similar to the delay-free derivation in (4.16) to (4.20), the absolute stability condition

becomes

||MmNm +MsNs +MmMsNd||∞ < 1 (4.29)

where

Nm =
r2(1− e−(T1+T2)s) + 2C2

mCsrbs
4bmbsCmCs + 2bsrC2

mCs + 2bmrC2
sCm + r2[1− e−(T1+T2)s]

(4.30)

Ns =
r2(1− e−(T1+T2)s) + 2C2

sCmrbm
4bmbsCmCs + 2bsrC2

mCs + 2bmrC2
sCm + r2[1− e−(T1+T2)s]

(4.31)

Nd =
r2(1− e−(T1+T2)s)

4bmbsCmCs + 2bsrC2
mCs + 2bmrC2

sCm + r2[1− e−(T1+T2)s]
(4.32)

Also, Mm and Ms in (4.29) are the same unit discs defined in (4.14). Thus, a sufficient
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condition for absolute stability is

||Nm||∞ + ||Ns||∞ + ||Nd||∞ < 1 (4.33)

Substituting the definitions of Nm, Ns and Nd from (4.30)-(4.32) in (4.33), the abso-

lute stability condition, which is the delayed counterpart of (4.24), becomes what is

shown in (4.25).

4.4 Special cases

Although condition (4.24) covers all controllers used in the PEB architecture of (4.2),

verifying it can be difficult in the general case for arbitrarily controllers. In this sec-

tion, certain assumptions on the controllers are shown to help to reduce the absolute

stability condition (4.24) to useful bounds on the control parameters that make it

easier to design stabilizing, high-performance controllers.

4.4.1 Proportionally selected controllers

Condition (4.24) includes both the master and the slave controllers, which can be

arbitrarily selected. In practical design, an option is to select the controllers to be

proportional to each other:

Cs(z) = ncCm(z) (4.34)

where nc is an arbitrary positive constant. There is no restriction on the controllers

Cs(z) and Cm(z).

Substituting (4.34) into (4.24) results in the following absolute stability condition:

|npbsCm(ejωT )r(jω)|+ |ncbmCm(ejωT )r(jω)|
|2bmbs + bsnpCm(ejωT )r(jω) + ncbmCm(ejωT )r(jω)|

< 1 (4.35)
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Replacing the complex term Cm(ejωT )r(jω) by p+ jq in (4.35) gives

npbs
√
p2 + q2 + ncbm

√
p2 + q2√

(2bmbs + npbsp+ ncbmp)2 + (npbsq + ncbmq)2
< 1 (4.36)

which can be further manipulated to conclude the following absolute stability condi-

tion:
bmbs

npbs + ncbm
> −Re{Cm(ejωT )r(jω)} (4.37)

It should be noted that in (4.37) the ratio of the master and the slave controllers

nc is not necessarily related to the position scaling np. This means that (4.37) covers

the most general case while certain applications may require specific relationships

between the two.

For the sake of simplicity in the following discussion, let us assume that nc = np =

1. With this assumption, the absolute stability condition (4.37) becomes

bmbs
bm + bs

> −Re{Cm(ejωT )r(jω)} (4.38)

Let us compare the absolute stability condition (4.38) against the passivity condition

for a similar sampled-data teleoperator (i.e., when there is no position or controller

scaling). As shown in [6], the sampled-data teleoperator passivity conditions are bm >

−2p and bs > −2p to be satisfied simultaneously. When the robot dampings are equal

(bm = bs), the absolute stability condition (4.38) reduces to bm = bs > −2p, which

is the same as the passivity condition. However, when the dampings are not equal

(bm 6= bs), the absolute stability condition (4.38) allows the dampings to vary as long

as they satisfy 1/bm + 1/bs < −1/p whereas the passivity conditions require each of

1/bm and 1/bs to be less than−1/(2p). In other words, the absolute stability condition

is less conservative than the passivity condition under similar circumstances. For

instance, as shown in Fig. 4.1, where the slave robot damping violates the passivity

condition bs > −2p, the absolute stability condition (4.38) will be satisfied if the
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master robot has a high enough damping.

0 c 2c 3c 4c 5c
0

c

2c

3c

4c

5c

b
m

b s

Figure 4.1: Absolute stability and passivity regions in the plane of the master robot
damping bm versus the slave robot damping bs. Blue shows the absolute stability
region and hatched corresponds to the passivity region and c is the right hand side
of (4.37).

In another analysis on the absolute stability condition (4.37), consider a mi-

cro/macro teleoperation scenario where the slave robot is substantially heavier/larger

than the master robot, e.g., the remote manipulation of an excavator robot by a

lighter/smaller haptic device. The slave damping is much higher than the master

damping (bs � bm), and (4.37) can be approximated as bm/np > −p. First, this new

condition only puts a lower bound on the master damping as the slave damping is

already large enough. Second, the condition will be relieved further if np = xs/xm

is large, which is indeed the case in the tele-excavation application. Conversely, in

macro/micro teleoperation, the slave robot has significantly smaller scale and weight

than the master robot, implying that the passivity condition lower bounds the damp-

ing of the slave robot.
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While the above were two illustrative examples, in general the absolute stability

condition found in this chapter presents improvements over the passivity condition.

First, as described above through an illustrative example, the condition (4.37) al-

lows the master and slave dampings to vary in a more flexible and less conservative

manner. Second, the absolute stability condition (4.37) allows to include arbitrary

position scaling np (and controller scaling nc) in the system that meet the practical

requirements of the task at hand at no cost.

4.4.2 PD controllers

The absolute stability condition (4.37) is valid for all controllers in the position error

based structure of (4.2). For a known controller structure, this condition can be

further simplified. In the following, a continuous-time PD controller Cm(s) = K+Bs

is discretized using the bilinear transformation method to Cm(z) = K +B(z− 1)/Tz

[90]. Substituting the PD controller in (4.37) yields the following absolute stability

condition:
bmbs

npbs + ncbm
>
KT

2
−B cosωT (4.39)

Condition (4.39) depends on the frequency ω. Since cosωT varies between -1 and

1, a sufficient condition for absolute stability of the teleoperator over all frequencies

will be
bmbs

npbs + ncbm
>
KT

2
+B (4.40)

The absolute stability condition (4.40) indicates that the higher the sampling time

and the controller gains, the closer the system is to potential instability. In a practical

teleoperation system, the robot dampings bm and bs are physical characteristics of the

robots and are typically fixed. The controller scaling nc, which in PEB control also

reflects the force scaling, and the position scaling np and are determined by the

physical requirements of the teleoperation system and the task at hand. Typically,

the sampling time T is lower bounded as a result of the limited A/D conversion,
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D/A conversion, and computation speeds of the control hardware. Therefore, the

parameters in (4.40) that can most easily be set are the PD controller gains.

On the other hand, as mentioned in Section 4.1, besides stability the teleoperation

control design has to strive for transparency. Higher transparency can be achieved

by increasing the controller gains, as shown in the following Remark.

Remark 3. In a continuous-time PEB teleoperation system, increasing the controller

gains will result in a higher teleoperation transparency. Indeed, if the continuous-time

counterpart of Fig. 3.2 is modelled in the hybrid matrix form,

 Fm(s)

−Vs(s)

 = H(s)

Vm(s)

Fs(s)

 (4.41)

the hybrid matrix H(s) is

H(s) =

Zm + Cm
Zs

Zs+Cs

Cm

Zs+Cs

− Cs

Zs+Cs

1
Zs+Cs

 (4.42)

where Zm(s) = mms + bm and Zs(s) = mss + bs. For perfect master/slave position

and force matching, the transparent hybrid matrix must be

Hideal =

 0 1

−1 0

 (4.43)

Comparison of (4.42) and (4.43) leads to the fact that increasing the controller gains

of Cm and Cs increases teleoperation transparency.

By analogy, in a sampled-data teleoperation system, higher gains will deliver higher

transparency. On the other hand, the absolute stability condition (4.40) imposes

upper bounds on the controller gains, indicating a tradeoff between transparency and

absolute stability. In the next section, these boundaries are tested via experiments

designed to get the highest transparency while remaining stable.
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4.4.3 Impact of time delay

The absolute stability condition (4.25) for delayed teleoperation systems has been

verified for a given teleoperation system. A nominal teleoperation system has been

defined to have the system parameters K = 1000, B = 0, T = 1ms and bm = bs =

b = 1. A stability index has been defined as the left hand side of (4.25) minus one,

which should be negative to ensure the absolute stability of the delayed-teleoperation

system. The resulting stability index has been plotted against changes in the system

parameters, e.g., the controller gain and the time delay. The results have been shown

in Fig. 4.2 and 4.3.
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Figure 4.2: Stability index vs. the controller gain when the delays T1 = T2 = 0. As
long as the controller gain K satisfies (4.37), which is K < 1000, the stability index
remains negative (i.e., the teleoperation system remains absolutely stable).

As depicted in Fig. 4.2, by changing the controller gain in the absence of time

delay, the absolute stability of the system is affected. A gain of K = 1000 is the border

line for stability; lower gains make the stability index negative and the teleoperation

system absolutely stable. Fig. 4.3 shows that the delay can cause the stability index

to become positive and consequently the teleoperation system not absolutely stable

(i.e., potentially unstable). Furthermore, from Fig. 4.3 it is concluded that the
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Figure 4.3: Stability index vs. time delay when the controller gain K = 800. As long
as the delays satisfy (4.25), the stability index remains negative (i.e., the teleoperation
system remains absolutely stable).

absolute stability condition is violated for any non-zero delay.

4.5 Experiments on a scaled dual Phantom Omni

To verify the absolute stability condition, an experiment has been set up with two

identical Phantom Omni robots from Sensable Technologies, Inc., which are 6-DOF

haptic devices with 3 actuated and 3 free-running joints. Out of the three actuated

joints of the robot, the first joint that rotates about the vertical is used in the ex-

periment while the second and the third joints that form a parallel mechanism are

in locked motion using high-gain controllers. As shown in Fig. 4.4, the operator

interacts with the master robot while the slave robot is physically connected via a

nonlinear spring to a stiff wall. For simplicity of the picture, in lieu of the physical

wall and environment, symbols of the wall and the environment are displayed in Fig.

4.4.

The Phantom Omni robots are connected in daisy chain on a FireWire port and

communicate with the same computer. The robots are interfaced with MATLAB
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Figure 4.4: Experimental setup – The master arm is controlled by the human operator
and the slave arm interacts with its environment.

Simulink R©(from Mathworks, Natick, MA, USA) via a pair of QuARC R©blocks (from

Quanser Inc. Markham, ON, Canada). To have accurate sampling times, the simula-

tion runs in the discrete-time and the sampling time of the Simulink is set to the value

given for each experiment. The controller(4.2)has been implemented noting that all

of the systems and operations of (4.2) are in discrete-time.

To be able to verify our absolute stability condition, the mass m and damping b

of the robots had to be found through grey-box system identification in a separate

experiment. The Omni robots were found to have small but non-negligible joint

friction. The viscous friction term was lumped in the damping term and the Coulomb

friction term was identified and feed-forward compensated in the controller. The

values of the mass (inertia, as it corresponds to rotational motion) and the total

damping were found to be m = 1.503×10−2±1.7×10−4Kg.m2 and b = 4.624×10−2±

1.1× 10−3Kg.m2/s. Also, in a separate experiment, the static model of the nonlinear

spring acting as the slave environment was found. The experiment confirmed that

the spring was a passive system due to non-negative dissipated energy.

Two series of experiment were conducted to verify the validity and accuracy of

the theoretical absolute stability condition (4.40) for different scaling and controller
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ratio values. In the first set, it is assumed that the position scaling and the controller

ratio are nc = np = 1, while in the second set np = nc = 3. The absolute stability

regions are shown in Fig. 4.5 and Fig. 4.6 with the above scaling factors. In each

experiment, the controller gains, the sampling time, and the scaling factors are set

to constant values and the master is manipulated by the human operator while the

slave robot is interacting with the environment. Based on the given set of parameters

and condition (4.40), a particular experiment will be expected from theory to lie in

one of the absolute stability or potential instability regions in Fig. 4.5 and Fig. 4.6.

In practice, as the operator derives the teleoperator, if the master and slave positions

become unbounded or indefinitely oscillating, the teleoperation system judged to be

unstable – such unstable experiments are marked by circles in Fig. 4.5 and Fig. 4.6.

On the other hand, if the positions remain bounded, the teleoperation system is

judged to be stable – such stable experiments are marked by stars in Fig. 4.5 and

Fig. 4.6. It is expected that all of the experimentally-obtained circles must lie in

the theoretically-arrived potential instability region. However, the stars may lie in

either the absolute stability region or the potential instability region because it is

possible to have a potentially unstable teleoperator that, when coupled to certain

human operator and environment couplings, results in a stable teleoperation system.

It was theoretically argued in Remark 3 higher control gains result in a higher

transparency of the teleoperation system. In a scaled teleoperation system, trans-

parency requires the ratio of the positions to be np as described in (4.3) and, in

the context of position error based control, the ratio of the forces to be nc as in

(4.34). Using the sampled-data teleoperation system, various controller gains were

experimentally tested with the results shown in Fig. 4.7. For the fixed sampling time

T=4 ms and the scaling factors nc = np = 3, and B = 0, the controller gain K

changed from 0.5 to 4.5. In each experiment, the operator moved the master while

the slave was in free space. For simplicity of comparison of the position signals in the

plots, the slave position has been scaled down by np. The mean square value of the
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Figure 4.5: The theoretical absolute stability region in K − T plane versus experi-
mental data points obtained from a sampled-data teleoperator with nc = np = 1.

position tracking error has been computed as a measure of the transparency of the

teleoperation system. Provided that the sampling time T and the control gain K are

in the absolute stability region of Fig. 4.6, increasing the controller gain decreases

the mean square error, confirming that higher controller gains result in higher trans-

parency. In Fig. 4.7-f, it is seen that the pair of (T , K) happens to be outside of the

absolutely stable region of Fig. 4.6 and, consequently, having a higher controller gain

did not result in higher transparency; instead the system became unstable. Thus,

while absolute stability puts an upper bound on the control gains, obtaining good

transparency will impose lower bounds on them. These emphasize the importance of

the tradeoff between the stability and transparency of a teleoperation system.

In the experimental results of Fig. 4.8, examples of stable and unstable systems

have been demonstrated when the sampling time increased from 2 ms to 6 ms. In this

experiment, the scaling factors were nc = np = 3 and the controller gain was K = 4.

While the slave robot is in free space, the operator initially moved the master robot

and then released it. As shown in Fig. 4.8, the positions of the master and the slave

converge for T = 2 ms, which satisfies (4.37), while they oscillate indefinitely after

the operator releases the master for T = 6 ms, which violates (4.37).
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Figure 4.6: The theoretical absolute stability region in K − T plane versus experi-
mental data points obtained from a sampled-data teleoperator with nc = np = 3.

4.6 Case study: effect of sampling time on sys-

tem absolute stability and task performance

in teleoperated flipping of a switch

To demonstrate the coupling between the absolute stability bound in (4.37) and

the performance of a task carried out through a sampled-data teleoperation system,

a task is considered in which a three-way slide switch is flipped by the operator.

Trying to accomplish this task with a sampling time of 17 ms for the discrete-time

teleoperation controller, experimental trials showed that the controller gains needed

to be higher than the maximum value allowed by the stability bound in (4.37), which

is not allowed. By reducing the sampling time, it is possible to increase the stability

margin (i.e., the maximum admissible controller gain obtained from (4.37) and make

it possible for the operator to perform the task successfully. In the following, the

details of the task process and the effect of the sampling time on the system absolute

stability and the operator task performance will be elaborated.

Fig. 4.9 shows a three-way slide switch. The objective of the task is to flip the

72



0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

Time (sec.)
(a)

Po
si

tio
n 

si
gn

al
s

 

 
Slave
Master

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

Time (sec.)
(b)

Po
si

tio
n 

si
gn

al
s

 

 
Slave
Master

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

Time (sec.)
(c)

Po
si

tio
n 

si
gn

al
s

 

 
Slave
Master

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

Time (sec.)
(d)

Po
si

tio
n 

si
gn

al
s

 

 
Slave
Master

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

Time (sec.)
(e)

Po
si

tio
n 

si
gn

al
s

 

 

0 2 4 6 8 10
−0.04

−0.02

0

0.02

0.04

0.06

Time (sec.)
(f)

Po
si

tio
n 

si
gn

al
s

 

 
Slave
Master

Figure 4.7: The positions of the master and the slave when the operator moved the
master and the slave was in free space. The proportional controller gain was K = 0.5,
K = 1.5, K = 2.5, K = 3, K = 3.5 and K = 4.5 for parts (a) to (f), respectively. The
means of absolute value of the tracking errors are 2.20×10−3, 1.59×10−4, 2.86×10−5,
2.43× 10−5, 1.22× 10−5 and 2.59× 10−4 rad, respectively.
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1 2 3 

Figure 4.9: A three-way slide switch where the objective of the task is to flip it from
state 1 to state 2 but not to state 3.

switch using the teleoperation system from state 1 to state 2 but not to state 3.

For the operator to perform the task successfully, the teleoperation controller should

ensure that the master/slave position tracking error is less than the position difference

between states 2 and 3 of the switch. Such a small position error can only be reached

when the teleoperation controller gains are selected sufficiently large (in general, large

gains correspond to high teleoperation transparency). Increasing the controller gain,

however, jeopardizes the system stability as the sampling time-dependent bound given

in (4.37) indicates. However, by decreasing the sampling time one can always increase

the stability margin of the system such that the admissible control gains are large

enough to ensure satisfactory task performance. Otherwise, for a given sampling time,

it may or may not be possible to achieve the required transparency while maintaining

stability.

To demonstrate the above, a set of experiments is conducted on a teleoperation

74



Switch

Slave Master

Operator

Figure 4.10: The experimental setup for flipping the three-way slide switch.

system consisting of two Phantom Premium haptic devices (Sensable Technologies,

Inc., Wilmington, MA, USA) for flipping the three-way slide switch 4.10. Initially,

the sampling time is set to 17 ms. It is observed that a proportional gain of 3 (for the

master and the slave controllers) stabilizes the system but the user cannot successfully

teleoperate the switch, failing to flip the switch from state 1 to state 2 without going

to state 3. This phenomenon is caused by the relatively low control gain for the

slave robot, which results in the accumulation of control actions (forces) until the

position error builds up to a large enough threshold at which the slave control action

can overcome the switch stiction. Increasing the controller gain from 3 to 5 for the

same sampling time makes the teleoperation system unstable; it will be shown that

a controller gain of 5 is large enough to ensure good transparency and satisfactory

performance of the task, if the sampling time can be lowered. Thus, the only way to

achieve the desired transparency is to decrease the sampling time as shown in Fig.

4.11.

The vertical axis in Fig. 4.11 shows the controller gain, which has a direct relation-

ship to teleoperation transparency and operator task performance. The horizontal

axis is the sampling time of the discrete-time controller. A transparency boundary

exists in the form of a nearly horizontal line in this plane, above which the controller
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Figure 4.11: Transparency and absolute stability of the switching task. Point A
corresponds to an absolutely stable but non-transparent teleoperation system, Point
B corresponds to an unstable teleoperation system in which the controller gain meets
the transparency requirement, Point C corresponds a teleoperation system with the
largest sampling time satisfying both transparency and absolute stability conditions,
and Point D corresponds to an absolutely stable and transparent teleoperation system

gains are high enough to ensure that the operator can correctly flip the switch. The

absolute stability boundary of (4.37) is also shown as a curved line below which the

controller gain is low enough to ensure the absolute stability. The dashed vertical

line indicates a fixed sampling time, typically upper bounded by hardware limita-

tions in the experimental setup. For our system with the sampling time of 17 ms,

the vertical line is at a location where there is no overlap between the transparent

and the absolutely stable segments of the dashed vertical line. Consequently, with

the given sampling time, there is no choice for the controller gain to be stable and

concurrently satisfy the transparency requirement. As the vertical line for the sam-

pling time moves to the left, it reaches a point (at about 14.5 ms) where stability and

transparency are simultaneously met, corresponding to the maximum allowed sam-

pling time and the minimum allowed gain for the controller (point C in Fig. 4.11). As

the vertical line moves further to the left, there is a segment of the line that sits below

the absolute stability borderline and above the transparency borderline. By moving
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to smaller sampling times, this segment of the vertical line expands, allowing us to

achieve higher transparencies (by going to higher control gains without jeopardizing

the stability). The above example illustrates that increasing the transparency while

preserving the stability will be made possible by a reduction in the sampling time.

4.7 Conclusions and future work

In this chapter, a condition for absolute stability of a position error based, sampled-

data, scaled teleoperation system has been found using the small gain theorem. The

proposed analysis takes into account the exact models of the discretization compo-

nents such as the zero-order-hold and the sampler. Instead of requiring the passivity

of the teleoperator (i.e., the teleoperation system excluding the operator and the en-

vironment), absolute stability is merely concerned with the closed-loop stability of

the teleoperation system having assumed the passivity of the environment and the

human operator, and is less conservative than passivity. Unlike passivity, the abso-

lute stability of a teleoperator allows the teleoperator to be non-passive and involve

arbitrary scaling of position and/or force.

The derived absolute stability condition has been simplified for certain controller

structures, arriving at bounds on the controller parameters, the sampling time, the

master and the slave robot dampings, and the position and force scaling factors. The

conditions have been verified in a set of experiments using a dual Phantom Omni

teleoperation system. For future work, the condition will be extended to sampled-

data scaled teleoperation systems that use the 4-channel control architectures, and

when there is time delay in the communication channel between the master and the

slave.
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Chapter 5

Stability of Teleoperation Systems

under Non-passive and

Strictly-passive Operator and

Environment 1

5.1 Introduction

Stability analysis of a bilateral teleoperation system is challenging due to two typically

unknown elements in its two ends: the human operator and the environment [69, 108,

109]. For analysis of stability, a teleoperation system is typically modeled as a two-

port network teleoperator connected to the two one-port network terminations as

shown in Fig. 5.1-a, where the teleoperator comprises the master, the slave, their

controllers, and the communication channel and the terminations are the human

operator and the environment (see Section 2.4.2). By definition, absolute stability

1This chapter has been submitted to the IEEE Transactions on Control Systems Technology
[11]. Parts of this chapter have been presented in the 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, Portugal [9]. Also parts of this chapter will be presented
in two papers in the 2013 IEEE World Haptics Conference in Daejeon, Korea, 2013 [10, 12].
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of a two-port network will guarantee the stability of the coupled system resulting

from connecting the two-port network to two passive but otherwise arbitrary one-port

network terminations. Equivalently, two-port network absolute stability requires that

the driving-point impedance seen at one of the ports is passive when the other port

is terminated to a passive one-port network (Fig. 5.1-b) [71]. Therefore, the notion

of absolute stability has been applied to the stability analysis of coupled two-port

networks with limited information about the terminations.
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Figure 5.1: (a) A two-port network connected to two one-port network terminations,
and (b) the driving-point impedance at port 1, Za1 = V1/I1, when port 2 is terminated
to a passive impedance z2.

5.1.1 Llewellyn’s absolute stability criterion

For stability analysis of a bilateral teleoperation system, sometimes the passivity

of the teleoperator is investigated [97, 110, 2, 98], which is sufficient for its abso-

lute stability [71] (see Section 2.4.3). The teleoperator’s absolute stability is a less

conservative condition compared to its passivity (see Section 2.4.4). Due to stability-

transparency trade-offs in a bilateral teleoperation system, minimizing conservatism

in stability analysis is important [66, 111, 112].

A well-known absolute stability criterion for two-port networks was proposed by

Llewellyn [113] and applied to bilateral teleoperators [114, 115, 116]. Llewellyn’s
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absolute stability criterion gives closed-form conditions involving the immittance

(impedance, admittance, hybrid, and transmission [117]) parameters of a two-port

network for it to be absolutely stable [71, 118].

5.1.2 Assumption on termination passivity

Llewellyn’s absolute stability criterion requires both of the terminations of the two-

port network to be passive. Passivity of a linear time-invariant (LTI) system is equiv-

alent to the positive-realness of its input-output relationship in the frequency domain

(transfer function or impedance in the context of this thesis) [119]. Equivalently, a

passive LTI system has an impedance with its Nyquist diagram entirely in the right

half of the complex plane (RHP).

Expecting the passivity of both of the terminations of a teleoperation system can

be unrealistic and overly restrictive in some applications (see Section 2.6). A two-port

network’s termination may simply be non-passive. On the other hand, a termination

can be strictly-passive. Later in the chapter, we will discuss specific examples of

such terminations for bilateral teleoperation systems. In this chapter, a powerful

tool is developed for stability analysis of a two-port network coupled to a passive

termination and a non-passive or strictly-passive termination with certain constraints

on the termination’s impedance.

Interestingly, to have a stable coupled system, it suffices if, after terminating the

two-port network to a one-port network that is not necessarily passive, the driving-

point impedance seen at the remaining (i.e., open) port is passive. This is because

connecting a passive termination at the currently open port of this two-port network

will inevitably result in a passive and thus stable system even though the opposite

port might have been connected to a non-passive termination. As we will see later,

this can be explained by the concepts of excess of passivity (EOP) and shortage of

passivity (SOP) for feedback-interconnected systems. Briefly, when two systems are

connected in a negative feedback loop, the stability of the interconnected system is
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guaranteed if both systems are passive. If one of the system has EOP, the other

system may have SOP without risking the instability of the interconnected system

[79].

5.1.3 Leveraging termination knowledge in stability analysis

Utilizing knowledge about a termination in the analysis of stability of a coupled two-

port network has been increasingly investigated by researchers. For instance, knowing

a lower or upper bound on the impedance of a termination helps to model the termi-

nation as an arbitrary impedance coupled to a series or shunt impedance, respectively

[115, 120]. In another work, notion of bounded impedance absolute stability (BIAS)

is applied to a teleoperation system in the scattering domain and the resulted stability

conditions are expressed as bounds on the reflection coefficients [121]. The teleoper-

ation system can be modeled in the integral quadratic constraints (IQC) formulation

to reestablish stability conditions with known bounds on the termination [122]. Also,

recent work shows that conventional absolute stability criteria can be extended to

strictly-passive [9] and non-passive terminations [10].

5.1.4 Examples of non-passive and strictly-passive termina-

tions

For a human operator, non-passivity may occur in many cases. On the other hand, a

typical environment may be strictly-passive in many applications. Examples of these

are given below.

Let us consider an example of a non-passive termination in a master-slave teleop-

eration system. When the master is manipulated by a human operator, the operator

is typically assumed to be passive. This assumption is valid for tasks that involve a

relaxed arm such as sensing (or relaxed grasp) tasks [73, 12]. However, the human op-

erator is non-passive in many other practical cases including in posture-maintenance
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(i.e., rigid grasp) tasks [12] or trajectory following tasks [10]. This is intuitively un-

derstood by considering a teleoperator that has been designed to be passive. The

interconnection of this passive teleoperator and a passive environment will be pas-

sive [107]. Therefore, the only source of net energy in the system can be the human

operator. If the human operator is also passive, no active motion can exist in the

system. Thus, the human operator must be generating energy, e.g., when following a

trajectory. Another example of a non-passive termination in a teleoperation system

is a non-passive environment. This happens when external forces enable the envi-

ronment to do work on the teleoperator. For example, a beating heart in a surgical

teleoperation system is an environment that emits energy. In another example, let us

consider a teleoperation system with a strictly-passive termination. A mass-spring-

damper system is output strictly-passive with excess of passivity equal to the system

damping. In general, in the presence of viscous friction (i.e., damping) an otherwise

passive environment becomes strictly-passive.

5.1.5 Methodology

In this chapter, a stability analysis tool is developed to investigate the stability of a

two-port network coupled to a passive termination and either (a) a strictly-passive

termination or (b) a non-passive termination. Llewellyn’s absolute stability crite-

rion is derived as a special case of the proposed stability criterion. While a passive

impedance has a Nyquist diagram in the RHP, the Nyquist diagram of a strictly-

passive impedance is placed only in a subset of the RHP. Conversely, the Nyquist

diagram of a non-passive impedance trespasses the jω-axis and into the left half of

the complex plane (LHP).

Input strictly-passive (ISP) and output strictly-passive (OSP) systems have Nyquist

diagrams inside a right-shifted RHP and a disc to the right of and tangent to the ori-

gin, respectively [123, 124]. The borderlines of these regions are expressed by lines

or circles in the complex plane. Similar to ISP and OSP systems, their non-passive
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counterparts are defined as input non-passive (INP) and output non-passive (ONP)

systems with Nyquist diagrams inside a left-shifted RHP and a disc to the left of and

tangent to the origin, respectively. Since the notion of ONP does not correspond to

useful physical systems, a more useful alternative is defined as a disc-like non-passive

(DNP) system whose Nyquist diagram is placed inside a disc centered at the origin.

The stability criterion proposed in this chapter applies to a two-port network con-

nected to a passive termination and to another termination that is ISP, OSP, INP or

DNP.

5.1.6 Advantages of the proposed stability criterion

Taking into account the SOP of a non-passive termination as proposed in this chapter

will allow to predict the potential instability of a coupled two-port network where the

conventional absolute stability conditions fails to do so. Also, the proposed stability

criterion will help ensure the stability of a coupled two-port network terminated to

a non-passive termination by choosing the controllers gains in a more stringent fash-

ion compared to the conventional absolute stability condition. On the other hand,

taking into account the EOP of a strictly-passive termination as proposed in this

chapter will enable us to reduce conservatism in controller design and potentially

enhance teleoperation performance compared to when the conventional absolute sta-

bility condition is used. In fact, strict-passivity of the terminations allows having a

non-passive teleoperator while preserving coupled stability, which can help to improve

performance.

5.1.7 Organization of the chapter

The chapter is organized as follows. First, mathematical background and definitions

are presented in Section 5.2. In Section 5.3, Mobius transformations of regions in

the complex plane are applied to find stability condition when a termination is ISP,

OSP, INP, or DNP. While the results of Section 5.3 are applicable to any two-port
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network, an important application of the new conditions is in bilateral teleoperation

systems discussed in Section 5.4. A simulation study for a teleoperation system is

presented in Section 5.5. In Section 5.6, the experimental results are presented for a

teleoperation system. Finally, concluding remarks and future work are presented in

Section 5.7.

5.2 Mathematical preliminaries

This section includes definitions and prerequisite theories that are used in the subse-

quent sections. Notions of passivity, absolute stability, positive realness, and strict-

passivity are defined below. In the thesis, all the units are in SI unless specified

otherwise.

Notation:

• A, a and A(s) denote a matrix, a scalar and a variable in Laplace domain,

respectively. Complex conjugate of a is denoted by ā.

• A circle in the complex plane is expressed as C(r, c), where r ∈ R is the radius

and c ∈ C is the centre of the circle. The area inside this circle is denoted by

the disc D(r, c).

Assumptions:

• The dynamics of the master and slave robots are LTI and known 2.

• The dynamics of the environment are LTI but not necessarily known. The

human arm dynamics can be approximated with an LTI model [12].

• The communication link between the master and the slave has negligible time-

delay.

2Feedback linearization (inverse dynamics) approach is used to make an internal loop which
results in an LTI and decoupled approximation of the nonlinear and coupled dynamics the robot
[125, 126].
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5.2.1 Definitions of passivity and absolute stability

Definition 5.1. [123, 79] A system with input u(.) and output y(.) where u(t), y(t) ∈

Rm is passive if there is a constant β such that

∫ t

0

yT (τ)u(τ)dτ ≥ −β (5.1)

for all functions u(.) and all t ≥ 0. The constant β is the energy stored in the system

at time t = 0.

Definition 5.2. [123, 127] A system with input u(.) and output y(.) where u(t), y(t) ∈

Rm is ISP if there are constants β and δ > 0 such that

∫ t

0

yT (τ)u(τ)dτ ≥ −β + δ

∫ t

0

uT (τ)u(τ)dτ (5.2)

for all functions u(.) and all t ≥ 0. The value δ is the EOP for the ISP system.

Definition 5.3. [123] A system with input u(.) and output y(.) where u(t), y(t) ∈ Rm

is OSP if there are constants β and ε > 0 such that

∫ t

0

yT (τ)u(τ)dτ ≥ −β + ε

∫ t

0

yT (τ)y(τ)dτ (5.3)

for all functions u(.) and all t ≥ 0. The value ε is the EOP for the OSP system.

Definition 5.4. A system at initial rest with input u(.) and output y(.) where u(t), y(t) ∈

Rm is INP if there is constant η > 0 such that

∫ t

0

yT (τ)u(τ)dτ ≥ −η
∫ t

0

uT (τ)u(τ)dτ (5.4)

for all functions u(.) and all t ≥ 0. The value η is the SOP for the INP system.

Definition 5.5. A system at initial rest with input u(.) and output y(.) where u(t), y(t) ∈
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Rm is ONP if there is constant υ > 0 such that

∫ t

0

yT (τ)u(τ)dτ ≥ −υ
∫ t

0

yT (τ)y(τ)dτ (5.5)

for all functions u(.) and all t ≥ 0. The value υ is the SOP for the ONP system.

Instead of ONP systems in Definition 5.5, we define a more useful class correspond-

ing to DNP systems as below.

Definition 5.6. An LTI system G(s) is DNP with SOP of ρ if |G(jω)| ≤ 1/2ρ.

Definition 5.7. [128] A p×p proper rational transfer function matrix G(s) is positive

real if

• all poles of all elements of G(s) meet Re{s} ≤ 0,

• any pure imaginary pole jω of any element of G(s) is a simple pole and the

residue matrix lims→∞(s− jω)G(s) is positive semidefinite Hermitian.

• for all real ω for which jω is not a pole of any element of G(s), the matrix

G(jω) +GT (−jω) is positive semidefinite.

5.2.2 Lemmas of passivity and absolute stability

For a scalar rational transfer function, the last part of Definition 5.7 reduces to

ReG(jω) ≥ 0. The following lemma establishes the connection between passivity of a

transfer function and the region covered by its Nyquist diagram in the complex plane.

Lemma 5.1. [123, 129] Consider an LTI rational transfer function G(s). Assume

that all poles of G(s) have negative real parts. The system is passive if and only if

ReG(jω) ≥ 0 for all frequencies ω (Fig. 5.2-a).

Similarly, Lemmas 5.2-5.3 below make the connection between EOP of ISP and

OSP systems to the corresponding Nyquist diagram regions in the complex plane.
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ONP system with SOP of υ, (f) a DNP system with SOP of ρ.

Lemma 5.2. [123] Consider an LTI rational transfer function G(s). Assume that

all poles of G(s) have negative real parts. The system is ISP with EOP of δ if and

only if ReG(jω) ≥ δ for all frequencies ω (Fig. 5.2-b).

Lemma 5.3. [123] Consider an LTI rational transfer function G(s). Assume that

all poles of G(s) have negative real parts. The system is OSP with EOP of ε if and

only if the Nyquist diagram of G(jω) is contained in the disc D(1/(2ε), 1/(2ε)) for all

frequencies ω (Fig. 5.2-c), i.e., ReG(jω) ≥ ε|G(jω)|2.

Dual to the EOP of an ISP system (Lemma 5.2), we can relate the SOP of an INP

system to its Nyquist diagram region. For example, if G(s) is an INP system with

SOP of η, then ReG(jω) ≥ −η (Fig. 5.2-d).

Passivity has been vastly used in the teleoperation literature to ensure stability.
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The connection between passivity and absolute stability is made via the following

lemma.

Lemma 5.4. A two-port network is absolutely stable if and only if for any passive

but otherwise arbitrary termination of a port, the driving-point impedance at the other

port is passive.

Lemma 5.5. In the complex plane of z, a line and a circle are expressed by the

following unified formulation:

Azz̄ + B̄z +Bz̄ + C = 0 (5.6)

where A,B and C are scalar complex numbers, i.e., A,B,C ∈ C. If A = 0, (5.6)

reduces to the equation of a line. If A 6= 0, (5.6) expresses the following circle [130]:

C(
√
|B|2 − AC
|A|

,−B/A) (5.7)

5.3 Stability of two-port network with non-passive

or strictly-passive terminations

Mappings of the regions in the impedance plane are introduced in Section 5.3.1. In

Section 5.3.2 and Section 5.3.3, these mappings will be applied to find stability con-

ditions for a two-port network with a non-passive and strictly-passive terminations,

respectively.

5.3.1 Mapping of regions via Mobius transformation

A two-port network is expressed by its impedance Z matrix as V1(s)

V2(s)

 =

Z11(s) Z12(s)

Z21(s) Z22(s)

 I1(s)

I2(s)

 (5.8)
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where the pairs (V1,V2) and (I1,I2) denote the voltages and currents at the two ter-

minals. When port 2 is connected to a termination with impedance z2 (Fig. 5.1-b),

the driving-point impedance Za1 at port 1 is expressed as

Za1 = Z11 −
Z12Z21

Z22 + z2
=
z2(Z11) + (Z11Z22 − Z12Z21)

z2 + (Z22)
(5.9)

In the following, the result of mapping two general areas representing the impedance

z2 – a rectangle and a disk – will be found in the Za1 impedance plane.

5.3.1.1 Mapping of a rectangular impedance via Mobius transformation

In order to investigate the stability of a two-port network with ISP or INP termina-

tions, we introduce the following theorem to study the mappings of such terminations.

Theorem 5.1. Suppose that the termination z2 has a rectangular shape in the complex

impedance plane, namely −a ≤ Rez2 ≤ b, −d ≤ Imz2 ≤ c as shown in Fig. 5.8-a. This

region in the z2 plane is mapped by the Mobius transformation (5.9) to a crescent-like

region in the Za1 plane defined by the outer circle

C( |Z12Z21|
2(R22 − a)

, Z11 −
Z12Z21

2(R22 − a)
) (5.10)

and the inner circle

C( |Z12Z21|
2(R22 + b)

, Z11 −
Z12Z21

2(R22 + b)
) (5.11)

after excluding the following two discs:

D(
|Z12Z21|
2c+ 2I22

,
Z11 + jZ12Z21

2c+ 2I22
) (5.12)

D(
|Z12Z21|
2d+ 2I22

,
Z11 + jZ12Z21

−2d+ 2I22
) (5.13)

2
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Proof. The rectangular shape in the z2 plane (Fig. 5.8-a) consists of four lines of

Rez2 = −a, Rez2 = b, Imz2 = c and Imz2 = −d. Each of these four lines will be

transformed to a circle in the Za1 plane. In the following, in Step 1 the mapping of

the vertical line Rez2 = −a is found to be (5.10). Then, in Step 2, the mapping of

the vertical line of Rez2 = b is found and it is shown to be inside and tangent to the

circle of (5.10). Finally, in Step 3 the mappings of the two horizontal lines are found

and the region inside the rectangles is transformed.

Step 1:

Let us consider the vertical line of Rez2 = −a. The Mobius transformation (5.9)

from z2 plane into Za1 plane is split to three transformations, namely a linear trans-

formation (ζ1 = z2 +Z22), an inversion (ζ2 = 1/ζ1) and another linear transformation

(ζ3 = Z11 − Z12Z21ζ2) [130].

The three transformations are considered separately:

1. The first transformation is a linear transformation as ζ1 = z2 + Z22 that trans-

lates the LHP to the right side by the real part of Z22, i.e. R22− a (Fig. 5.3-b).

The resulting line is expressed as Re{ζ1} = (R22 − a), which can be converted

to the general circle/line formulation as ζ1 + ζ̄1 = 2(R22− a) (i.e. A = 0, B = 1

and C = −2(R22 − a)).

2. The second transformation is an inversion ζ2 = 1/ζ1. Substitution of the defini-

tion of the new transformation into result of step 1 reads as 1/ζ2+1/ζ̄2 = 2(R22−

a), which can be expressed in the general form of−2(R22−a)ζ2ζ̄2+ζ2+ζ̄2 = 0(i.e.

A = −2(R22− a), B = 1 and C = 0). This is an equation for a circle and hence

this is a circle C(1/2(R22 − a), 1/2(R22 − a)) (Fig. 5.3-c). It should be noted

that R22− a has to be positive because the vertical line in Fig. 5.3b must be in

the RHP.

3. The third transformation is ζ3 = Z11−Z12Z21ζ2. Similar to the first transforma-

tion, the third transformation is a linear transformation (Fig. 5.3-d). For this
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transformation the magnifying factor is Z12Z21 and translation is Z11. There-

fore, the circle will be expanded or contracted by factor of and Z12Z21 and the

radius becomes ro = |Z12Z21|
2(R22−a) and the centre of the circle will be translated to

co = Z11 − Z12Z21

2(R22−a) . The latter shows that a region expressed as Rez2 ≥ −a is

mapped to a region inside a disc express as in (5.10).
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Figure 5.3: The Mobius transformation has been split into three transformations:
from (a) to (b) is a linear transformation (horizontal translation), from (b) to (c)
is an inversion, and from (c) to (d) is another linear transformation with expan-
sion/contraction in addition to a translation.

Step 2:

Similar to Step 1, it is easy to show that the vertical line of Rez2 = b is transformed

to a circle of (5.11). In the following it is shown that the circle of (5.11) is enclosed

by the circle of (5.11) and also the two circles are tangent at the furthest point from

the origin. Consequently, the area between the two vertical lines of Rez2 = −a and

Rez2 = b is transformed to a cresent as shown in Fig. 5.4.
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Figure 5.4: In analysis of the strip-like impedances the strip in the z2-plane (a) is
mapped to a rotated crescent in the Za1-plane (b).

In the following, it is proved that the circle corresponding to Rez2 = b is entirely

inside the circle corresponding to Rez2 = −a. The two circles of (5.10) and (5.11)

resulted from expansions/contractions term Z12Z21 followed by a translation by Z11

in the Za1-plane. Consequently, as depicted in Fig. 5.5-a, an extension of the line

connecting the centres of these two circles (tatb) goes through the origin. Another

conclusion is that the length of the line segment between the centres of the two circles,

i.e., |tatb|, is identical to the differences between to the radii of the two circles (i.e.,

|aro− bro|). Therefore, as shown in Fig. 5.5-a, the two circles must be tangent at their

farthest points from the origin. Additionally, changing the bounds on the real part

of z2 will result in the circles shown in Fig. 5.5-b. As the real value of z2 is allowed

to increase, the radius of the smaller circles decreases. Also, as the real value of z2

is allowed to decrease further into the negative values, the radius of the larger circles

increases (not shown in Fig. 5.5-b).

Step 3:

In this step of the proof, it is shown that the horizontal lines of Imz2 = c and

Imz2 = −d are transformed to circles of (5.12) and (5.13). Let us consider the

horizontal line of Imz2 = c.

Similar to Step 1, the Mobius transformation (5.9) is split into three transfor-

mations, in which the first and the third are linear transformations and the second
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Figure 5.5: The vertical lines in the z2-plane are mapped to circles in the Za1-plane.
The vertical line at Re z2 = −a is mapped to the larger circle in the Za1-plane while
the vertical line at Re z2 = b is mapped to the smaller circle (a). As the real value
of z2 is allowed to increase (i.e., larger b), the radius of the smaller circle decreases
while the circles still share the same tangent point.

transformation is an inversion. The line Imz2 = c is expressed as z2+ z̄2 = 2cj and the

definition of the first transformation ζ1 = z2 +Z22 is substituted to yield the resulting

line in ζ1-plane as ζ1 − ζ̄1 = 2cj + 2I22, where I22 = Im{Z22}. If it is assumed that

I22 +c ≥ 0, substituting the definition of the second transformation ζ2 = 1/ζ1 one can

find the transformed the circle in the ζ2 plane to be −(2c+ 2I22)ζ2ζ̄2 + jζ2− jζ̄2 = 0,

which has the general circle/line formulation with A = −(2c + 2I22), B = −j and

C = 0. The equation in the ζ2-plane is C(1/(2c + 2I22),−j/(2c + 2I22)), which is a

circle below the origin but tangent to the real axis at the origin. The third trans-

formation ζ3 = Z11 − Z12Z21ζ2 bears a translation of Z11, mirrors the circle, expands

the circle with expansion factor of |Z12Z21| and finally rotates the circle around Z11

about the angle of Z12Z21. The resulting circle in the Za1-plane is circle of (5.12).

As depicted in Fig. 5.6 by increasing the imaginary level c in z2-plane makes the

smaller circles in Za1-plane, where all of the circles have a tangent point in common

at Z11. The region corresponding the region lower than the upper limit of Imz2 = c

in the z2-plane is transformed to the region outside of the disc expressed by (5.12) in

the Za1-plane.

Similar to the above mapping for Imz2 = c, it is easy to show that the mapping
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Figure 5.6: The horizontal lines in the z2-plane are transformed into circles in the
Za1-plane. As the horizontal line moves up, the radius of the circles decreases. Yet,
all of the circles are tangent at one point.

of the horizontal line of Imz2 = −d is (5.13). The assumption of I22 + c ≥ 0 is also

replaced by I22 − d ≤ 0.

Note that by increasing the limit on the imaginary part of the upper limit to infinity

and decreasing the lower limit to minus infinity, the mapped region in the Za1-plane

becomes the entire plane due to the fact that the radii of the circles decreases as the

limit are going further from the real axis.

Combining the transformation of the four lines of Step 1, 2 and 3 the rectangle of

Fig. 5.8-a in the z2 plane is transformed to the portion of a crescent, where the two

sides of the crescent are excluded from the region as shown in Fig. 5.8-b expressed

with the circles of (5.10)-(5.13) in the Za1 plane.

The mapped region in the Za1 plane is shown in Fig. 5.8-b.
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Remarks:

• The circles shown in Fig. 5.8 resemble a rotated and translated Smith Chart,

which has been applied to investigating the stability of a bilateral teleoperation

via reflection coefficients [131].

• By increasing the parameters a, b, c and d in Fig. 5.8-a, the outer circle of the

crescent in Fig. 5.8-b enlarges, the inner circle shrinks, and the two discs on the

top and bottom shrink.

5.3.1.2 Mapping of a disc impedance via Mobius transformation

In order to investigate the stability of two-port networks with DNP or OSP termina-

tions, we introduce the following two theorems to study mappings of such termina-

95



Im

Re

(b)

ζ2-plane

Re

c2

c3

c1

Re

(c)

Im

Re

(a)

z2-plane
-d

c

Im

Re

(b)

Za1-plane

d

c

-a b

a

b

Figure 5.8: A rectangle in the z2-plane (a) is transformed into the hatched region in
the Za1-plane (b). The circles are marked in relation with the corresponding lines.

tions.

Theorem 5.2. Suppose that the termination impedance z2 is a disc defined by D(M, 0).

This region is mapped by the Mobius transformation (5.9) to the following region in

the Za1-plane:


D(
|Z12Z21|M2

||Z22|2 −M2|
,
−Z22Z12Z21

|Z22|2 −M2
+ Z11), if |Z22| 6= M.

ReZa1 >

(
R11 −

Im{Z12Z21}
2R22

)
, if |Z22| = M and Z22 ∈ R

(5.14)

2

Proof. As explained in the proof of Theorem 5.1 the Mobius transformation (5.9) is

split to three transformations. (1) a linear transformation of ζ1 = z2 + Z22, (2) an

inversion ζ2 = 1/ζ1, and (3) a linear transformation ζ3 = Z11 − Z12Z21ζ2. Lines or

circles are expressed in the formulation in the complex plane.

The border of the disc is C(M, 0) in the z2-plane and is expressed as z2z̄2 = M2 in

the circle/line formulation. From the first transformation of z2 = ζ1−Z22, substitution

of z2 is a shifted circle expressed as ζ1ζ̄1 − Z̄22ζ1 − Z22ζ̄1 + |Z22|2 −M2 = 0, which is

a circle in the general expression with A = 1, B = −Z̄22 and C = |Z22|2 −M2. The

second transformation is substituted as ζ1 = 1/ζ2. After simplification the resulting

shape is 1 − Z̄22ζ̄2 − Z22ζ2 + (|Z22|2 −M2) ¯ζ2ζ2 = 0. Now, this shape can be either
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a circle or a line depending whether |Z22| = M or not. If |Z22| 6= M the mapped

shape in the ζ2-plane is a circle otherwise it is a line. These two cases are considered

separately below.

• If |Z22| 6= M , resulting shape is a circle C( M2

||Z22|2−M2| ,
Z22

|Z22|2−M2 ). The third

transformation shift this circle to another circle C( |Z12Z21|M2

||Z22|2−M2| ,
−Z22Z12Z21

|Z22|2−M2 + Z11)

and the mapped region is inside this circle.

• If |Z22| = M , the result of the second transformation is a line 1−Z̄22ζ̄2−Z22ζ2 =

0. This line is vertical only if the coefficient of ζ̄2 is zero, which requires that Z22

to have no imaginary part, and otherwise the resulting region is a rotated and

shifted half plane and hence there is no condition in which guarantees the region

to be entirely in the RHP. With the assumption of ImZ22 = 0, the mapped region

in ζ2-plane is a vertical line at ζ2 = 1/2R22. The third transformation shifts

this vertical line to R11 − Im{Z12Z21}/2R22. Therefore, the mapped region in

the Za1-plane is the right hand side of this vertical line.
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Figure 5.9: (a) a disc in the z2-plane inside C(M, 0), (b) if |Z22| 6= M , the mapped
region is also a disc in the Za1-plane, (c) if |Z22| = M , the mapped region is a shifted
RHP.

While Theorem 5.2 finds the transformation of a disc-like region (corresponding

to a DNP termination), the following theorem finds the transformation if the disc is

shifted to the right by M (corresponding to an OSP termination).
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Theorem 5.3. Consider a Mobius transformation of (5.9). A disc in the z2-plane

inside of C(M,M) is mapped by the Mobius transformation (5.9) to the following

region in the Za1-plane:


D(

|Z12Z21|M2

||Z22 +M |2 −M2|
,
−Z22Z12Z21

|Z22 +M |2 −M2
+ Z11), if |Z22 +M | 6= M.

ReZa1 >

(
R11 −

Im{Z12Z21}
2(R22 +M)

)
, if |Z22| = M and Z22 ∈ R

(5.15)

2

Proof of Theorem 5.3 is similar to the proof of Theorem 5.2.

5.3.2 Stability of a two-port network with non-passive ter-

minations

Shortage of passivity for a termination of a two-port network means that the coupled

network may be unstable even if Llewellyn’s conditions are met. Therefore, more

stringent conditions for stability will be found in this section for two types of non-

passive terminations.

5.3.2.1 Stability of a two-port network with an INP termination

Let us assume that a non-passive termination’s impedance covers a rectangular area

in the complex plane. If the region is partially in the LHP with bounds on the real

and imaginary parts of the complex impedance, the termination is INP. In Theo-

rem 5.4 below, the absolute stability condition for a two-port network with this INP

termination is introduced.

Theorem 5.4. Consider the two-port network (5.8) and assume that, as shown in

Fig. 5.1-b, the driving-point impedance seen from port 1 is Za1 while port 2 of the

two-port network is terminated to an impedance z2. Assume that z2 is INP with
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−a ≤ Rez2 ≤ b and −d ≤ Imz2 ≤ c as shown in Fig. 5.8-a with a, b, c, d ≥ 0. If

port 1 of the two-port network is terminated to a passive impedance, the necessary

and sufficient condition for stability of the coupled system comprising the two-port

network, the passive termination at port 1, and the INP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ a

2R11R22 − Re{Z12Z21} − |Z12Z21| − 2R11a ≥ 0 (5.16)

2

Proof. Conditions (i) and (ii) are necessary conditions for ensuring positive realness

of Z11 and Z22 in zero-impedance conditions for ports 2 and 1, respectively. Let us

consider the third condition of Theorem 5.4. As shown in Fig. 5.1-b, the two-port

network is connected to a passive impedance z2 and the input impedance seen from

the other port is assumed to be Za1. The two-port network will be absolutely stable

if Za1 is passive as well. The driving-point impedance Za1 is expressed based on the

two-port network impedance parameters Zij’s and the termination impedance z2 as

in (5.9).

The borderline of passivity in the z2 complex plane is a vertical line at −a. If

ReZ22 ≥ a, and for similar reason ReZ11 ≥ 0, Theorem 5.1 applies with b =∞, c =∞

and d = ∞. The passive region is mapped to a disc inside of C(|Z12Z21|/(2(R22 −

a)), Z11 − Z12Z21/(2(R22 − a))). The condition for passivity of the driving-point
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impedance Za1 is that this disc with radius of ro and centre of co must be entirely in

the RHP, i.e., Reco − ro ≥ a. Thus, the absolute stability becomes

2ReZ11ReZ22 − Re{Z12Z21} − |Z12Z21|
2(R22 − a)

≥ 0 (5.17)

This completes the proof.

Remarks:

• The parameters b, c and d do not appear in the stability condition (5.16) due

to the fact that the inner circle and the top and bottom circles in Fig. 5.8-

b are not the source of any constraint when ensuring the passivity (i.e., the

positive realness) of the driving-point impedance Za1. In other words, besides

the parameters of the two-port network, stability depends only on the lower limit

of the real part of the INP impedance z2 (i.e., -a) for the two-port network.

• As a special case of Theorem 5.4, by setting a = 0, b = ∞, c = ∞ and

d = ∞, the region covered by the impedance z2 becomes the entire RHP (i.e.,

all passive impedances). Evidently, when a = 0, our stability condition (5.16)

reduces to the well-known Llewellyn’s absolute stability criterion for two passive

terminations [118]:

R11 ≥ 0

R22 ≥ 0

2R11R22 − Re{Z12Z21} − |Z12Z21| ≥ 0 (5.18)

• The difference between the stability conditions (5.16) and (5.18) is in their

second and third conditions. As expected, compared to (5.18), (5.16) is more

stringent because a ≥ 0 and it provides for stability of the two-port network

coupled to an INP termination.
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• a is indeed the SOP of the INP termination z2 according to Definition 5.4 and

the non-passive dual of Lemma 5.2.

5.3.2.2 Stability of a two-port network with a DNP termination

In many applications of bilateral teleoperation, the knowledge about the non-passive

termination, e.g., human arm, can be translated to a maximum amplitude of its

impedance [132, 133]. This maximum impedance is the same as the radius of the

disc for a DNP termination, which is expressed as |z2| ≤ M . Passivity of a two-port

network connected to a DNP termination can be studied using the following theorem.

Theorem 5.5. Consider the two-port network system (5.8) and assume that, as

shown in Fig. 5.1-b, the driving-point impedance seen from port 1 is Za1 while port

2 of the two-port network is terminated to an impedance z2. Assume that z2 is DNP

with |z2| ≤ M , where M > 0 is known. If port 1 of the two-port network is termi-

nated to a passive impedance, the necessary and sufficient condition for stability of

the coupled system comprising the two-port network, the passive termination at port

1, and the DNP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0
R22(|Z11|2 −M2)− Re{Z11Z12Z21} − |Z12Z21|M ≥ 0 if |Z11| > M.

−R22(|Z11|2 −M2) + Re{Z11Z12Z21} − |Z12Z21|M ≥ 0 if |Z11| < M.

− 2R22R11 − Re{Z12Z21} ≥ 0 if Z11 = M.

(5.19)
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2

Proof of Theorem 5.5 is similar to the proof of Theorem 5.4 with the difference

that the region covered by the non-passive termination is now a disc, which requires

using Theorem 5.2.

5.3.3 Stability of a two-port network with strictly-passive

terminations

Having excess of passivity for a termination of a two-port network allows for more

flexible stability conditions. Input and output strict-passivity of a termination are

considered separately in the following two subsections.

5.3.3.1 Stability of a two-port network with an ISP termination

Theorem 5.6. Consider the two-port network system (5.8) and assume that, as

shown in Fig. 5.1-b, the driving-point impedance seen from port 1 is Za1 while port 2

of the two-port network is terminated to an impedance z2. Assume that z2 is ISP with

Rez2 ≥ δ ≥ 0. If port 1 of the two-port network is terminated to a passive impedance,

the necessary and sufficient condition for stability of the coupled system comprising

the two-port network, the passive termination at port 1, and the ISP termination at

port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ −δ

2R11R22 − Re{Z12Z21} − |Z12Z21|+ 2R11δ ≥ 0 (5.20)
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2

Proof of Theorem 5.6 is similar to the proof of Theorem 5.4 with the difference

that δ = −a.

Remark:

• The last condition in (5.20) for coupled stability of a two-port network with an

ISP termination can be compared to its non-passive counterpart in (5.16). It is

clear that the latter is more conservative. Intuitively, for coupled stability, the

two-port network should absorb more energy when connected to a non-passive

termination than when connected to a strictly-passive termination.

5.3.3.2 Stability of a two-port network with an OSP termination

In many applications of bilateral teleoperation, the only knowledge about the strictly-

passive termination is that its Nyquist diagram is a disc that is centered on the positive

segment of the real axis and is tangent to the imaginary axis at the origin. This disc

can be expressed as ReG(jω) ≥ ε|G(jω)|2, where ε is EOP of the OSP termination.

If ε = 0, the termination becomes passive as its Nyquist diagram will be in the RHP.

Theorem 5.7. Consider the two-port network system (5.8) and assume that, as

shown in Fig. 5.1-b, the driving-point impedance seen from port 1 is Za1 while port

2 of the two-port network is terminated to an impedance z2. Assume that z2 is OSP

with Rez2 ≥ ε|z2|2, where ε > 0 is known. If port 1 of the two-port network is ter-

minated to a passive impedance, the necessary and sufficient condition for stability of

the coupled system comprising the two-port network, the passive termination at port

1, and the OSP termination at port 2 is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have positive residues, and
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(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ 0

R22(|Z11 +M |2 −M2)− Re{(Z11 +M)Z12Z21} − |Z12Z21|M ≥ 0 (5.21)

|Z11 +M | > M (5.22)

2

where M = 1/(2ε). Proof of Theorem 5.7 is similar to the proof of Theorem 5.4 with

the difference that the region occupied by the Nyquist diagram of the termination is

now a disc, which requires using Theorem 5.3.

5.4 Application to bilateral teleoperation

The coupled stability conditions presented in Sections 5.3 are valid for any two-port

network. In this section, the two-port network is assumed to be a bilateral teleopera-

tor. In this context, the voltage-current pair (V ,I) for the impedance matrix (5.8) is

replaced by the force-velocity pair (F ,sX). The coupled stability theorems in Section

5.3 for strictly-passive and non-passive terminations will be applied to a teleoperator

coupled with a non-passive human operator and a strictly-passive environment.

5.4.1 Modelling of bilateral teleoperation systems

For a 1 degree-of-freedom, bilateral teleoperation system, the master and the slave

robots are modelled as LTI systems

sXm(s) =
1

mms+ bm
(Fh(s)− Fm(s))

sXs(s) =
1

mss+ bs
(Fe(s)− Fs(s)) (5.23)
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Also, the operator and the environment are modeled as

Fh(s) = F̃h(s)− sZh(s)Xm(s) (5.24)

Fe(s) = F̃e(s) + sZe(s)Xs(s) (5.25)

In the above, F , Z and X denote the force, the impedance and the position, respec-

tively. Also, the subscripts h, e, m and s denote the operator, the environment, the

master and the slave, respectively. Furthermore, F̃ represents the exogenous force.
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Figure 5.10: A bilateral teleoperation system, (a) with PEB control, and (b) DFR
control.

Bilateral teleoperation systems with position error based (PEB) and direct force

reflecting (DFR) controllers are shown in Fig. 5.10. For the PEB architecture, the

teleoperation controllers and the impedance matrix of the teleoperator are shown in

105



Table 5.1, where Fm,s are the controller outputs. In this case, the controllers of the

master and the slave are Cs(s) = kps/s+ kvs and Cm(s) = kpm/s+ kvm , respectively,

where kvm , kvs , kpm , kps ≥ 0. For the DFR architecture, the slave robot’s position

controller may be PD3 (named DFR(PD) architecture) or P+D (named DFR(P+D)

architecture) [134]. The difference between these two is that position controller for

the slave robot; see Table 5.1. The controllers and the impedance matrices of these

two DFR controllers are shown in Table 5.1, where µ and λ are the position and force

scaling factors.

Table 5.1: Controllers of bilateral teleoperation systems and their impedance matrices
Controller Control law Impedance matrix

PEB

{
Fm(s) = Cm(s)(Xs(s)−Xm(s))

Fs(s) = Cs(s)(Xm(s)−Xs(s))

[
Ztm Cm
Cs Zts

]
DFR(PD)

{
F ′m(s) = Fh(s)− λFe(s)
F ′s(s) = Cs(s)(µXm(s)−Xs(s))− Fe(s)

[
Zm + µλCs λZts

µCs Zts

]
DFR(P+D)

{
F ′m(s) = Fh(s)− λFe(s)
F ′s(s) = kp(µXm(s)−Xs(s))− skvXs(s)− Fe(s)

[
Zm + µλkp

s
λZts

µkp
s

Zts

]

5.4.2 Teleoperation system stability conditions for passive,

INP and ISP terminations

3Note that the impedance matrix (5.8) relates velocity to force (instead of position to force);
this fact changes the representation of the position controller from PD to PI.
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Table 5.2 compares the necessary and sufficient stability conditions for the PEB,

DFR(PD) and DFR(P+D) controlled teleoperation systems when one of the ports is

connected a passive, INP or ISP termination. These conditions have resulted from

substituting the impedance matrices of PEB, DFR(PD) and DFR(P+D) controlled

teleoperation systems from Table 5.1 into the stability conditions (5.16), (5.18) and

(5.20) for INP, passive and ISP terminations, respectively. Note that the position

scaling factor µ and the force scaling factor λ appear together in the stability condi-

tions.

Discussions:

• Consider the (PEB, passive) entry of Table 5.2. The teleoperation system sta-

bility requires a lower bound on the robots damping terms bm and bs and bounds

on the master and slave controllers gains. A sufficient condition for stability of

this system is to have the master and the slave controllers proportional to each

other:
kps
kvs

=
kpm
kvm

(5.26)

The condition (5.26) is both necessary and sufficient for coupled stability if the

master and the slave dynamics only involves masses, i.e., bm = bs = 0.

• The (PEB, INP) entry of Table 5.2 is similar to the (PEB, Passive) entry of

Table 5.2 with the exception that bs is replaced by bs − η, where η is the SOP

for the INP termination. The physical interpretation of the above fact is that

the SOP of the INP termination (connected at port 2) reduces the effective

damping of the corresponding robot (the slave robot), which has to be greater

than a lower bound in order to ensure stability. In other words, SOP of the INP

termination necessitates higher damping for the robot and makes the stability

condition harder to satisfy. If the robot damping is not high enough to make

up for the SOP of the INP termination, the derivative term of the controllers

must be selected high enough to overcome non-passivity of the termination.
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• For the (PEB, INP) entry of Table 5.2, also note that the robot damping terms

bm and bs cannot be both zero because it causes the left hand side of the first

inequality to be negative. This result has an intuitive interpretation. In the

(PEB, Passive) case with no damping terms for the master and the slave robots,

we saw that the only choice for the controllers was (5.26). The non-passivity

of the termination should make this choice even more limited. However, no

freedom is left in the controller parameter space. Therefore, the termination

cannot be non-passive.

• The (PEB, ISP) entry of Table 5.2 is similar to the (PEB, Passive) entry of

Table 5.2 with the exception that bs is replaced by bs + δ, where δ is the EOP

for the ISP termination. The physical interpretation of the above fact is that

the EOP of the ISP termination (connected at port 2) increases the effective

damping of the corresponding robot (the slave robot), which has to be greater

than a lower bound in order to ensure stability. In other words, EOP of the

ISP termination relaxes the lower bound requirement on the robot damping and

makes the stability condition easier to satisfy. Also, the robot damping terms

bm and bs are allowed to be both zero and the controller gain do not necessarily

have to be chosen according to (5.26).

• The INP column of Table 5.2 includes conditions that are expectedly more limit-

ing than their counterparts in the Passive column. In fact, the more non-passive

the termination, the more restrictive the stability condition for the coupled sys-

tem. Conversely, the ISP column of Table 5.2 has stability conditions that are

less restrictive that their counterparts in the Passive column. In fact, the more

passive the termination, the more relaxed the stability condition for the coupled

system.

• With the DFR(PD) controller (i.e., force reflection for the master and PD po-

sition controller for the slave), substituting the impedance matrix ZPD into the
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stability conditions (5.18), (5.16) and (5.20) yields conditions that never hold

for ω = 0. This fact has previously been reported in [93]. However, with the

DFR(P+D) controller (i.e., force reflection for the master and a P position con-

troller and internal damping for the slave), there does exist a range of controller

gains for stability; this has also previously been reported in [134]. Similar to the

PEB controller, in the DFR(P+D) case the effective damping of the robot is re-

duced or increased by the non-passivity or excess of passivity of the termination,

making the stability conditions more restrictive or more relaxed, respectively.

5.4.3 Teleoperation system stability conditions for DNP and

OSP terminations

Substituting the impedance matrices of PEB, DFR(PD) and DFR(P+D) controlled

teleoperation systems from Table 5.1 into the stability conditions of DNP and OSP

termination, i.e., (5.19) and (5.21), results in conditions of the following form

N (ω) = N8ω
8 +N6ω

6 +N4ω
4 +N2ω

2 +N0 ≥ 0 (5.27)

whereNi’s, i = 0, 2, 4, 6, 8, are functions of system parametersmm, bm,ms, bs, µ, λ, kv, kp

and M . For the DNP termination, N0 ≥ 0 corresponding to ω = 0 yields necessary

conditions for stability that are shown in Table 5.3. For the OSP termination, N0 is

always non-negative for PEB, DFR(PD) and DFR(P+D) controllers. Furthermore,

in (5.27), the high frequency component N8 is non-negative for both DNP and OSP.

The terms N2, N4 and N6 may have sign changes depending on the parameters that

are involved.

In order to find stability bound, the stability conditions found in Theorems 5.5

and 5.7 can be tested over a range of frequencies of interest for a haptic teleoperation

system, e.g., 0-100 rad/sec. If the condition N (ω) ≥ 0 is satisfied for the entire

range of frequencies, the coupled system is considered stable. An example of the
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Table 5.3: Necessary conditions for stability of the teleoperation system with DNP
termination for PEB, DFR(PD) and DFR(P+D) controllers.

Controller Condition for having N0 ≥ 0

PEB M ≤ bskpm + bmkps + 2kpskvm + 2kpmkvs
kps

DFR(PD) M ≤ bm + 2µλ(Bs+ 2Kv)
DFR(P+D) M ≤ bm + 2µλ(Bs+Kv)

stability index N (ω) for the benchmark teleoperator, a DFR(PD) controller, and a

DNP termination with various values of disk radius M is plotted in Fig. 5.11. The

parameter of the teleoperation system are mm = 0.015, bm = 0.01822, ms = 0.15,

bs = 0.1822, kp = 10, kv = 2 and µλ = 0.02. In this example, the maximum value

of disk radius M of the DNP termination is found to be 4.92. Any higher M for the

DNP termination can cause instability.
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Figure 5.11: The stability index is evaluated for different values of the disc radius for
a range of frequencies.

5.5 Simulation study

A bilateral teleoperation system with PEB control (Fig. 5.10-a) is simulated in MAT-

LAB/Simulink. Whereas in the experiment in Section 5.6, we will be limited to
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having two identical master and slave robots, in the simulations in this section we

have the liberty of verifying the proposed stability criteria when the master and the

slave robots have different models. The selected model parameters are mm = 0.015

and bm = 0.0182 for the master and ms = 0.15 and bm = 0.182 for the slave. Table 5.4

compares the theoretical stability conditions (Theory columns) with the simulation

results (Simulation Column). In each row of Table 5.4, the PEB control gains, the

operator impedance, and the environment impedance are changed and the robots po-

sitions are monitored for boundedness to detect instability. In each Theory column

of the table, the theoretical stability conditions in Sections 5.4.2 and 5.4.3 are evalu-

ated and the results are listed as either absolutely stable (Abs. Stab.) or potentially

unstable (Pot. Unst.).

In Table 5.4, the terminations are GP = 1
s+1

, GISP = s+0.5
s+1

, GOSP = 1
s+1

, GINP =

s−0.5
s+1

and GDNP = s−1
s+1

. The Nyquist diagrams in Fig. 5.12 show that the EOP values

of the ISP and OSP terminations are 0.5 and 1, respectively. Also, the SOP values of

the INP and DNP terminations are 0.5 and 0.5, respectively. In all cases, the human

operator exogenous force F̃h(s) is assumed to be a sine wave with a magnitude of 1

and frequency of 2π rad/sec and the environment exogenous force F̃e(s) is assumed

to be zero.
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From rows 1 and 3 of the table, we see that if stability in simulations is shown

for a set of control gains under the assumption that the terminations are passive,

replacing a passive termination with a strictly-passive termination (ISP or OSP)

does not alter the result. Conversely, if instability in simulations is shown for a set

of control gains under the assumption that the terminations are passive, replacing a

passive termination with a non-passive termination may not alter the result; while

rows 5 and 7 show two cases of this.

Rows 6 and 8 show that the theoretical stability condition for passive terminations

(i.e., Llewellyn’s criterion) listed under the column (PEB, passive) expectedly fails to

recognize instability if that occurs because of a non-passive termination. Conversely,

Rows 2 and 4 show that the theoretical stability condition for passive terminations

(i.e., Llewellyn’s criterion) listed under the column (PEB, passive) fails to recognize

stability if that occurs because of a strictly-passive termination. In fact, when a

termination is strictly-passive, the teleoperation system may be stable even when

the teleoperator is recognized by Llewellyn’s criterion to be potentially unstable; our

proposed stability criterion informs us about this, thus providing an opportunity to

leverage higher control gains for improved transparency while preserving stability.

5.6 Experimental results

In order to test the stability conditions, experiments are conducted on a pair of

Phantom Premium 1.5A haptic devices (Geomagic Inc., Wilmington, MA), which

form a bilateral teleoperation system. In the following, two sets of experiments are

shown for a strictly-passive termination and a non-passive termination. Typically, it

is the environment termination that is strictly-passive while it is the human operator

termination that is non-passive.
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Figure 5.12: Nyquist diagrams of a ISP, OSP, INP and DNP terminations.

5.6.1 Experiments involving a strictly-passive environment

5.6.1.1 Experimental setup

We use the 1-DOF bilateral teleoperation system shown on Fig. 5.13 comprising two

3-joint Phantom Premium 1.5A robots as the master and as the slave. The sampling

period for the robot is Ts = 1ms. Out of the three joints of each robot, the first (x) is

teleoperated. In this direction, the robot dynamics was identified as a mass-damper

with a mass of mm = ms = 0.015 and a damper of bm = bs = 0.01822 [5]. The third

joint (z) is locked using high-gain control. The second joint (y) is used for a purpose

explained below. In the experiments, the environment is designed to be strictly-

passive. To design such an environment, the slave robot’s end-effector is connected

via two springs from opposite sides to a stiff wall and at the same time slides a block

of wood on the table. While the spring is passive (lossless), the wood-table viscous

friction (acting as a damper) makes the environment strictly-passive. The viscous

friction and, therefore, the EOP of the strictly-passive environment can by controlled
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Figure 5.13: The experimental setup for testing ISP environment.

by changing the perpendicular force, which comes from the robot’s second joint (y),

on the wood block by the slave robot. In the following experiments, the environment

either has a low EOP (τy = 0) or high EOP (τy = 0.2 N.m). Using the definition

of the EOP (5.2), in an experiment the values of EOP are identified to be 0.74 and

0.90, respectively. In the following, both PEB (Fig. 5.10-a) and DFR (Fig. 5.10-b)

controllers are used in the above-mentioned bilateral teleoperation system and in each

case the theoretical stability conditions are verified experimentally.

5.6.1.2 PEB architecture

The bilateral teleoperation system with PEB architecture (Fig. 5.10-a) is tested for

different control gains. The experimentally-obtained positions of the master and the

slave are shown in Fig. 5.14 when the control gains change according to Table 5.5.

The top and the bottom rows of Fig. 5.14 correspond to EOP values of 0.74 and 0.90

for the ISP environment, respectively.
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Figure 5.14: Master-slave positions for strictly-passive environment with PEB archi-
tecture. Top row has τy = 0 and and bottom row has torque of τy = 0.2 N.m. The
controller gains are given in Table 5.5.
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In Table 5.5, each row shows a selection of control gains for the PEB controller.

These controller gains and the robot model have been substituted in the stability

conditions of Table 5.2. In particular, the stability condition in the (PEB, Passive)

entry of Table 5.2 has led to the stability conclusion (i.e., stable or unstable) listed

in the (PEB, Passive) column of Table 5.5. Similarly, the stability condition in the

(PEB, ISP) entry of Table 5.2 has led to the stability conclusion listed in the (PEB,

ISP) column of Table 5.5. Furthermore, the cases of actual instability of the system

manifested by growing or sustained oscillations is observed and listed in the Experi-

ment column of Table 5.5. The last column shows the Euclidean norm of the position

tracking error between the master and the slave.

Comparing the controller gains in rows 1 and 2 of Table 5.5, it is seen that in-

creasing the controller gain kps leads to a lower tracking error; in general, higher

control gains improve performance but undermine the stability of the system. The

same phenomenon can be seen when comparing rows 4 and 5. On the other hand,

reducing the controller gain kpm from row 2 to row 3 or from row 5 to row 6 results

in an increase in the tracking error.

In all of the 6 experiments of Fig. 5.14, the conventional (Llewellyn’s) stability

criterion, i.e., the condition listed in the (PEB, Passive) entry of Table 5.2, predicts

that the teleoperation system is unstable; see the (PEB, Passive) column of Table 5.5.

In practice, however, EOP of the ISP termination causes the teleoperation system to

be stable; see the Experiment column of Table 5.5. This is because the conventional

stability condition in the (PEB, Passive) entry of Table 5.2 is conservative because

it guarantees stability of the two-port network for any passive termination regardless

of its EOP value (which can be as little as zero for a lossless termination). In reality,

excess of passivity in a termination allows for tolerating a shortage of passivity in

the two-port network such that coupled stability is preserved. Allowing a non-passive

two-port network (teleoperator) gives us the flexibility to design less conservative and

better performing controllers by increasing the controller gains.
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5.6.1.3 DFR architecture

The bilateral teleoperation system with a DFR architecture (Fig. 5.10-b) involves

a 6-DOF force/torque JR3 force sensor R©(Woodland, CA) and can have different

control gains. The force sensor has an internal low-pass filter with a cutoff frequency

at 31.25 Hz. Here, a DFR(P+D) controller as described in the last row of Table 5.1 is

used and hence the stability condition in the last row of Table 5.2 applies. In Table 5.6,

each row shows a selection of control gains for the DFR(P+D) controller. These

controller gains and the robot model have been substituted in the stability conditions

of Table 5.2. In particular, the stability condition in the (DFR(P+D), Passive) entry

of Table 5.2 has led to the stability conclusion (i.e., stable or unstable) listed in the

(DFR(P+D), Passive) column of Table 5.6. Similarly, the stability condition in the

(DFR(P+D), ISP) entry of Table 5.2 has led to the stability conclusion listed in the

(DFR(P+D), ISP) column of Table 5.6. Furthermore, the cases of actual instability

of the system manifested by growing or sustained oscillations is observed and listed

in the Experiment column of Table 5.6.

Table 5.6: Experiments on a teleoperation system with a DFR controller. The scaling
factors are λ = 0.2 and µ = 0.5.

#
Controller

EOP
Theory

Experiment
kp kv (DFR, passive) (DFR, ISP)

1 10 1 0.74 Pot. Unst. Abs. Stab. Stable
2 10 2 0.74 Pot. Unst. Abs. Stab. Stable
3 20 2 0.74 Pot. Unst. Abs. Stab. Stable
4 20 5 0.74 Pot. Unst. Abs. Stab. Stable
5 10 1 0.90 Pot. Unst. Abs. Stab. Stable
6 10 2 0.90 Pot. Unst. Abs. Stab. Stable
7 20 2 0.90 Pot. Unst. Abs. Stab. Stable
8 20 5 0.90 Pot. Unst. Abs. Stab. Stable

In Fig. 5.15, a comparison between DFR(P+D) and DFR(PD) controllers are

made. For both controllers, the parameters and gains are EOP = 0.74, λ = 0.5,

µ = 1, Kp = 20, and kv = 0.1. In the experiments, the DFR(P+D) controller

(Fig. 5.15-a) is stable while the DFR(PD) experiment (Fig. 5.15-b) is unstable. This
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is in agreement with the stability conditions given in the (DFR(P+D), ISP) and

(DFR(PD), ISP) entries of Table 5.2.
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Figure 5.15: Master-slave positions for an ISP environment in DFR teleoperation
with (a) a DFR(P+D) controller, and (b) a DFR(PD) controller.

5.6.2 Experiments involving a non-passive operator

5.6.2.1 Experimental setup

Typically, the master is manipulated by a human operator. For reasons described in

the following, in this set of experiments, the master is connected to another robot

whose task is to manipulate the master. The robot that takes the place of the hu-

man operator is called operator emulating robot (OER). Experiments involving a

human operator are not easily reproducible due to the fact that every person’s arm

has a unique physical characteristics. Even for the same human operator, the hand
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impedance and passivity/activity varies from the beginning to the end of the experi-

ment. Consequently, instead of a human operator, an OER is used to manipulate the

master. The OER comprises a controller that allows us to achieve a desired SOP level

while ensuring the non-passivity of the OER. In our experimental setup, the OER is

a Phantom Omni and is coupled to the master robot as depicted in Fig. 5.16.

Figure 5.16: An OER is used as a human operator in a bilateral teleoperation systems.

5.6.2.2 PEB architecture

The teleoperation system of Fig. 5.16 was controlled using a PEB controller. Two

sets of controller gains were used: (a) kpm = 10, kvm = 2, kpm = 10 and kvm = 2,

and (b) kpm = 30, kvm = 2, kpm = 10 and kvm = 2. In a separate experiment, the

SOP of the OER was identified to be η = 0.745. Based on this non-passivity, the

stability condition of the (PEB, INP) of Table 5.2 is checked for the two controller

gain sets. The stability condition for passive terminations, i.e., the (PEB, Passive)

entry of Table 5.2, identifies the system with the first set of control gains as stable and

with the second set of gains as unstable. However, both sets of control gains make
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the system become unstable in practice. The (PEB, INP) condition of Table 5.2 truly

identifies both of the cases as unstable, which is in agreement with practice.

5.7 Conclusions and future work

Conventional stability analysis for two-port network systems relies on the assump-

tion that the one-port network terminations for the two-port network are passive.

In the context of bilateral teleoperation systems, where the terminations are the

human operator and the environment, this assumption is less than accurate. As a

result, the conventional stability analysis will be either invalid (when a termination

is non-passive) or overly conservative (when a termination is strictly passive). In this

chapter, a powerful stability analysis tool has been developed based on complex-plane

Mobius transformations of the termination impedance. The new stability criterion

is able to give accurate assessment of (or conditions) for coupled two-port network

stability in the presence of a non-passive termination when the conventional stability

analysis may fail to identify potential instability. Conversely, the new stability crite-

rion can provide more flexibility in control design in the presence of a strictly-passive

termination and, therefore, help to achieve transparency improvement. Although the

resulting stability conditions are valid for any two-port network, they are applied to

PEB-controlled and DFR-controlled bilateral teleoperation systems and are tested

both in simulations and experiments. In the future, the proposed approach can be

extended to cases where both terminations of a two-port network are non-passive

or strictly-passive. For example, a non-passive human operator may teleoperate a

robot interacting with a non-passive (e.g., a beating heart) or a strictly-passive envi-

ronment (e.g., any environment modeled as a mass-spring-damper). Another useful

direction is to extend the approach presented here to multi-port network systems,

which represent multilateral haptic teleoperation systems.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In the context of stability analysis for bilateral teleoperation systems, conventional

passivity and absolute stability analyses involve assumptions that may stop the

control design from simultaneously achieving stability and maximum transparency.

Specifically, two assumptions are typically made in these stability analyses. The first

simplifying assumption is that the entire teleoperation system operates in continuous-

time even though we know that the controller implementation inevitably includes dis-

cretization components. The second simplifying assumption is about the passivity of

the teleoperator terminations, which can be violated (for a non-passive termination)

or not restrictive enough (for a strictly-passive termination).

To address the sampled-data teleoperator passivity analysis problem, in this thesis,

a passivity criterion was proposed for a bilateral teleoperator that included discrete-

time, position-error-based controllers for the master and the slave. The sampled-data

system included the exact models of the discretization components, i.e., the zero-

order-hold and the sampler. Parseval’s theorem was applied to convert the time-

domain passivity criterion into the frequency domain. The controllers of the master

and the slave must be selected to be inversely proportional to the position scaling in
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order to have a closed-form passivity condition. The passivity criterion resulted in a

lower bound on the robots damping terms, an upper bound on the sampling time, and

bounds on the controller gains. When the master and slave controllers were selected

to be PD controllers, the bounds on the gains become upper bounds. This passivity

criterion gives guidelines to tune the controller gains while ensuring the stability of the

coupled sampled-data teleoperation system. Computer simulations and experiments

with a teleoperation system comprising a pair of Phantom Omni robots validated the

new passivity criterion.

The above passivity condition was then improved to a less-conservative absolute

stability condition in order to obtain a more transparent and still stable teleoperation

system. The small gain theorem was applied to find a criterion for absolute stability

of a scaled teleoperation system with position-error-based controllers implemented in

discrete-time. In lieu of requiring the passivity of the two-port network teleoperator,

absolute stability only ensures the stability of the coupled teleoperation system. As

a result of reduction in the conservatism compared to the passivity analysis, the

absolute stability analysis of a two-port network teleoperator allows the controllers

to be selected arbitrarily. In other words, unlike passivity, in absolute stability the

controllers do not have to be selected to be inversely proportional to the position

scaling. When the controller architecture is known, substituting the controller into

the derived absolute stability criterion simplifies to bounds on the controller gains, the

sampling time, the master and the slave robot dampings, and the position and force

scalings. The resulting criterion was verified through experiments on a teleoperation

system including a pair of Phantom Omni robots.

The passivity and absolute stability analyses for two-port networks assume that the

terminations are passive. In a teleoperation system, assuming that the terminations

of the teleoperator are passive is less than accurate. Therefore, satisfying the conven-

tional absolute stability condition may not guarantee stability (due to a non-passive

termination) or may be overly conservative (due to a strictly-passive termination).
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A new stability analysis tool is developed for two-port networks using Mobius trans-

formations of the termination impedance in the complex-plane, which considers the

excess of passivity or the shortage of passivity of a termination. In the presence of

a strictly-passive termination, the new stability criterion provides more flexibility in

control design, which can be used to improve transparency. Although the resulting

stability conditions are valid for any two-port network, they were applied to a bilateral

teleoperation system with a position-error-based or direct-force-reflection controller.

The resulting conditions were tested on a pair of Phantom Premium robots.

6.2 Future directions

6.2.1 Passivity and absolute stability analyses for sampled-

data teleoperation systems with other control architec-

tures

The passivity and absolute stability conditions developed in the thesis apply to the

position-error-based control architecture. The position-error-based control architec-

ture is used in many applications especially when mounting a force sensor at the

slave end-effector is not plausible, for instance, due to the confined space or the tool

sterilization requirements in the surgical tools. However, in some other applications

including material handling, it is feasible to integrate a force sensor at the tip of the

slave robot. To benefit from having this force sensor, the control architecture for the

sampled-data teleoperation system should be based on the direct force reflection or

the four-channel control schemes. The passivity and absolute stability criteria for

the sampled-data teleoperation system can therefore be extended to these different

control architectures in the future.
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6.2.2 Stability analysis for two-port networks when both ter-

minations are non-passive or strictly-passive

The proposed approach for the stability analysis of a two-port network with a non-

passive or strictly-passive termination can be extended to cases where both termina-

tions are non-passive or strictly-passive. For example, a non-passive human operator

may teleoperate a robot interacting with a non-passive environment (e.g., a beating

heart) or a strictly-passive environment (e.g., an environment modeled as a mass-

spring-damper). Similar to the reasons given for the stability analysis of a two-port

network with a non-passive or strictly-passive termination, non-passivity of termina-

tions can jeopardize the stability of the coupled teleoperation system. Conversely,

strict-passivity of terminations allows having more flexibility in the control design.

When a two-port network is connected to a non-passive termination and another

strictly-passive termination, their impacts may simply cancel out. These issues re-

main to be studied in the future.

6.2.3 Stability analysis for multi-port networks when termi-

nations are non-passive or strictly-passive

A growing trend in teleoperation research is to extend the current bilateral teleop-

eration systems to multi-lateral teleoperation systems. For instance, in a trilateral

teleoperation system, besides having a human operator and an environment, there is

a third termination. In most applications, the third termination is a second human

operator that performs a remote task in collaboration with the first human operator.

One of the main applications of this dual-user tele-cooperation system is in training

of operators (tele-mentoring). For instance, user 1 can be an expert surgeon while

user 2 is a protégé. The contribution of each user to the remote task can be tuned

by an authority factor. This factor is a number between zero and 1 – zero for a fully

expert-controlled system and 1 for a fully protégé-controlled system. As an extension
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to the stability analysis of two-port networks with non-passive or strictly-passive ter-

minations, stability of multi-lateral tele-cooperation systems can be analyzed in the

future.

6.2.4 Integral quadratic constraints framework for stability

analysis of bilateral teleoperation systems

The mathematical framework used in the thesis enabled us to consider non-idealities

of teleoperation systems and to investigate their impacts on stability. Another frame-

work to consider is the integral quadratic constraints, which may prove useful in

finding the sampled-data passivity and sampled-data absolute stability criteria in

a unified formulation. In addition, it may be applied to investigate stability when

the terminations are either non-passive or strictly-passive. Applying the integral

quadratic constraints has the drawback that it neglects the information regarding the

impedance shape of the non-passive or strictly-passive termination. Studying relative

advantages and disadvantages remains as future work.
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Appendix A

Stability of continuous-time

teleoperation with DFR control

The controller defined in (4.2) is a PEB controller, which is the most commonly used

controlled due to the fact that it does not require force measurement. In another

controller method, the slave environment contact forces are measured and transmitted

to the master side, which is known as direct force reflecting (DFR) control. In the

following it will be shown that the absolute stability analysis of the continuous-time

teleoperation system with a DFR control is not satisfied and hence the absolute

stability of the sampled-data teleoperation system is not satisfied. For a continuous-

time bilateral teleoperation system the hybrid matrix for the DFR ( also known as

force-position) control reads as

H =

 Zm 1

− Cs

Zts

1
Zts

 (A.1)
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where Zts = Zs +Cs, Zs and Zm are the impedance of the slave robots, and Cs is the

slave controller. It can be seen that free motion force tracking is achieved H12 = 1

but free-motion impedance which is ideally zero cannot be accomplished H11 6= 0.

Obviously, the free-motion impedance H11 in the DFR case is closer to zero compared

to the PEB controller 3.63. As it can be seen, for both PEB and DFR controllers

the hybrid matrices cannot reach the values of the ideal transparency matrix because

of H12 and H22 values, which emphasizes that for ideal transparency at least three

channel of the 4-channel controllers are required.

Theorem A.1. The teleoperation system with a DFR controller is absolutely stable

if the controller derivative and proportional gains are positive, i.e. kvs , kps > 0 and

also |Cs| � |Zs|.

Proof. The Llewelly’n absolute stability criterion described in Section 2.4.4, is valid

for all immitance parameters including hybrid matrix H. In the following the hybrid

matrix A.1 will be tested in the Llewellyn’s criterion.

First, H11 has no poles and the characteristic polynomial forH22 isMss
2+kvss+kps ,

which has no RHP poles if kvs , kps > 0. Also, ReH11 = 0 and ReH22 is

ReH22 =
kvs

k2vs + (−kps/ω +Msω)2
(A.2)

which is non-negative if kvs > 0. In addition, the third condition in (2.2) yields

Re

(
Cs

Cs + Zs

)
−
∣∣∣∣ Cs
Cs + Zs

∣∣∣∣ ≥ 0 (A.3)

which is possible only when the controller Cs is greater than the impedance of the

slave robot |Cs| � |Zs|.

Based on the Theorem (A.1), the continuous-time teleoperation system with DFR
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controller is absolutely stable only if the controller gains are set to be infinity. For a

sampled-data system, since discretization does not make an unstable system stable,

the sampled-data equivalent system is not stable.
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Appendix B

Phantom Omni modelling and

identification

In this appendix dynamic model of the Phantom Omni has been shown and the

parameters have been determined through grey box system identification. The first

joint is the yaw angle and rotates the rest of the robot around the vertical axis. The

other two joints form a parallel, cable driven mechanism in which the actuators are

lumped on the main rotating body of the robot.

The dynamic model of the robot is

MI(q)q̈ + CI(q, q̇)q̇ + Fr(q̇) +G(q) = τ (B.1)

where MI(q) is the inertial term of the robot, CI(q, q̇) is the Coriolis and Centrifugial

term, Fr(q̇) is the friction term and G(q) is the gravity term. The right hand side is

the torque output vector. Also, q is the state vector q = [θ1 θ2 θ3]
T .

The values for the terms MI(q) , CI(q, q̇) and G(q) are derived in [135] for Phantom

Premium which has the same structure as Phantom Omni. The friction term Fr(q̇)
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comprises two terms

Fr(q̇) = Fv q̇ + Fd(q̇) (B.2)

where Fv is Viscous coefficient which is assumed to be a diagonal matrix – uncoupled

friction on the three joints. Also, Fd(q̇) is the dynamic friction term which is a

diagonal matrix function of signum of the velocity vector Fd(q̇) = diag(Kd,isgn(q̇i)).

Using system identification for Phantom Omni robot, in [136] the values of dynamic

friction term have been found to be

Kd = [1.980e− 2, 2.011e− 2, 1.689e− 2]T (B.3)

In the experiment of Chapter 3, the second and the third joints of the robot have

been controlled by a stiff controller and the experiment is done on the first joint of

the robot. The robot dynamic matrices will result in

M11θ̈1 +Kd,1sgn(θ̇1) + Kv,1θ̇1 = τ (B.4)

The parameters of the linear terms of (B.4) have been found through system iden-

tification [137]: M11 = 1.503 × 10−2 ± 1.7 × 10−4Kg.m2 and Kv,1 = 4.624 × 10−2 ±

1.1 × 10−3Kg.s.m2 and the parameter of the nonlinear term is Kd(1) in (B.3). The

latter term is internally compensated (as a feedforward term) in the dynamic model

for the experimental results. For the linear terms M11 and Kv,1, the identification

signals is a multiple sine with parameters of Table B.1.
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Table B.1: Parameters of the multisine identification signal
Frequency Amplitude
(rad/sec)

1.884 0.017
3.142 0.02
4.712 0.18
6.283 0.34
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Appendix C

Force observer

Passivity of the experiments have been determined using the time-domain passivity

definition (3.41). While in the simulation, the signals are available for calculation

the energy integral, in the experiments, it is required to estimate the forces from the

robot model and the measured signals. To achieve this goal, this appendix discusses

a force observer method. It should be noted that calculating the energy integral is

done offline and after the experiments and the estimated force using this method is

not used in the control loop for feedback.

The robot dynamic model (3.32) may be used to estimate the hand force knowing

the master position and the applied master force:

fh = fm −mmẍm − bmẋm (C.1)

However, the direct method requires the acceleration of the master robot, which may

be noisy because of the differentiation. To overcome this problem, a force observer is

used in the following.

˙̂
fh = −l(xm, ẋm)f̂h + l(xm, ẋm)(fm −mmẍm − bmẋm) (C.2)

147



where f̂h is the estimated hand force and l(xm, ẋm) is the observer gain. The observer

error is defined as eh = fh − f̂h, which leads to

ėh = ḟh − ˙̂
fh = ḟh + l(xm, ẋm)f̂h − l(xm, ẋm)fh (C.3)

The auxiliary variable z is defined as

z = f̂h − p(xm, ẋm) (C.4)

where p(xm, ẋm) is determined based on the observer gain as

d

dt
p(xm, ẋm) = l(xm, ẋm)mmẍm (C.5)
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