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Abstract— Recent research in surgical robotics has focused
on increasing the level of autonomy in order to reduce the
workload of surgeons. While deep reinforcement learning
(DRL) has shown promising results in automating some surgical
subtasks, due to its demand for a large number of random
explorations, safety and learning efficiency remain the primary
challenges when applying it to surgical robot learning. In this
work, we present a DRL framework with real-time human
supervision during the training process for surgical robot
learning to avoid significant failures and speed up training.
A novel training methodology based on the combination of
DRL and generative adversarial imitation learning (GAIL) is
proposed to further improve learning efficiency by imitating
human behaviors. The proposed method is validated using
two simulated environments, where human intervention is
performed via teleoperation. Results show that our method
outperforms baseline algorithms and can achieve safe and
efficient learning.

I. INTRODUCTION
Among the various approaches to the automation of sur-

gical robotic systems, machine learning-based approaches
have gained increasing attention due to their generalizability
and adaptability to complex tasks. Compared with hand-
crafting task-specific control policies, these methods require
less human knowledge and understanding of the task thanks
to their data-driven nature. Reinforcement learning (RL), or
more specifically, deep reinforcement learning (DRL) that
utilizes deep neural networks as function approximators for
RL, is one of the most frequently investigated learning-based
approaches to automating surgical tasks in recent research
and has already shown promising results in some surgical
subtasks such as needle regrasping and tissue retraction [1],
[2], [3], [4], [5].

As the learning agent in RL explores an environment
and improves its policy based on reward feedback, all that
is usually required of humans is a well-designed reward
function. Although it is obvious that this approach signif-
icantly reduces the need for the understanding of the task, it
requires a large number of explorations before it can learn
a good policy. This problem is even worse in the case of
complex surgical scenarios such as tissue manipulation or
needle passing, where millions of steps of exploration can
be necessary. Depending on the complexity of the task and
the algorithm used, learning a good policy for a given task
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Fig. 1. Conceptual framework of DRL with real-time human guidance for
surgical robot learning.

can often take from several hours to a few days. As a result,
sample efficiency is one of the major issues when using RL
for surgical robot learning. Furthermore, as the agent has no
prior knowledge about the environment, random explorations
during training may result in catastrophic failures, such as
damage to the soft tissue. While it is possible to train a policy
in the simulation and transfer it to the real environment,
additional explorations in the real world are usually needed
for fine-tuning the policy if the dynamics of the environment
is complex [6]. This raises another issue when using RL in
surgical robots, which is safety.

An intuitive approach to accelerating training and ensuring
safe exploration is to incorporate more human knowledge.
For example, a human expert can provide evaluative feedback
by labeling how good an action taken by the agent is. This
feedback can be directly applied to guide policy updates [7]
or indirectly used as an additional reward signal [8] in order
to speed up training. To avoid catastrophic failures, a safety
critic [9] or an action blocker [10] can be trained based on
human knowledge of dangerous situations, which prevents
the agent from taking actions that can lead to catastrophes.

Leveraging real-time human intervention is a more
straightforward approach that can both accelerate training
and avoid catastrophes at the same time. During training,
a human expert supervises the training process and occa-
sionally takes over control by overwriting agent actions to
avoid dangers. Additionally, the human can assist the agent
in overcoming task performance bottlenecks by guiding it to
an unseen state with better rewards, which is particularly
important when the reward signal is so sparse that it is
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difficult for the agent to receive any positive rewards during
random explorations. In fact, this is often the case in complex
surgical tasks such as needle passing and knot tying, where
designing a dense reward is challenging and only a sparse
reward can be provided indicating whether the goal has been
achieved or not.

Real-time human intervention or guidance in RL can be
viewed as intermittent human demonstrations during train-
ing, as opposed to gathering them beforehand, as is the
norm in the field of imitation learning or learning from
demonstration (LfD). Different from LfD, RL with real-
time human guidance allows the human to only provide
important demonstrations when necessary without the need
for demonstrating the whole task. Furthermore, this approach
makes the training process much safer by including a human
supervisor as the agent explores. Despite the fact that RL
has been combined with LfD and applied to surgical robots
to accelerate training [1], [11], RL with real-time human
guidance has not been investigated in the context of surgical
robot automation to the best of the authors’ knowledge.

In this work, instead of focusing on automating a specific
surgical task, we present a general DRL framework that
leverages human guidance for teleoperated surgical robotic
systems. Inspired by recent advances in generative adver-
sarial imitation learning (GAIL) [12], we propose a novel
training methodology based on the combination of DRL and
LfD by introducing a discriminator and an imitation loss to
further improve sample efficiency and accelerate learning.
The main contributions of this work are: (1) we build a
human-guided DRL setup for teleoperated surgical robots
in a simulated environment, where a joystick controller and
a real master tool manipulator (MTM) from the da Vinci
Research Kit (dVRK) [13] provided by Intuitive Surgical,
Inc. are used for human guidance through teleoperation; (2)
we propose a novel training methodology for DRL with real-
time human interventions by combining DRL with LfD; (3)
we validate the performance of the proposed methodology
using two experimental tasks in the simulated environment.
A conceptual illustration of the framework is shown in Fig 1.

This paper is organized as follows. Section II provides
a brief review of related research. Section III summarizes
the mathematical preliminaries of our proposed method. In
Section IV, we introduce the proposed training methodol-
ogy. In Section V, we describe the experimental setup for
validating the proposed method. The results are presented
and discussed in Section VI. Lastly, concluding remarks and
potential future work are provided in Section VII.

II. RELATED WORK
A. DRL with Real-time Human Intervention

Human intervention is an effective approach for increasing
sample efficiency and preventing catastrophes during DRL
training. Saunders et al. [9] proposed a straightforward
training mechanism in which the human monitors the training
process and overwrites agent actions when in dangerous
situations, and a penalty is assigned when human interven-
tion occurs. In addition, an action blocker is trained based

on human interventions to automatically block dangerous
actions, which eventually replaces the human. Wang et al.
[14] developed an algorithm for RL with human intervention
by modifying the loss of proximal policy optimization (PPO),
which accelerates the training process. The method was
extended to off-policy methods such as deep determinis-
tic policy gradient (DDPG) [15] and twin-delayed DDPG
(TD3) [16] with improvements. Although these methods have
shown success in video games, unmanned aerial vehicles, and
autonomous vehicles, DRL with real-time human interven-
tions has not been exploited for the purpose of automating
teleoperated surgical robots.

B. DRL and LfD for Surgical Robots

The automation of surgical robots using DRL and LfD
has gained increasing attention in recent years, and various
simulated environments have been developed for this purpose
[2], [17], [18], [19]. A number of recent works have focused
on automating surgical subtasks that commonly exist during
surgeries in order to relieve surgeons of tedious and repetitive
work. For instance, Tagliabue et al. [2] trained a policy using
PPO for the robot to grasp and lift the tissue to reveal a region
of interest underneath it. Li et al. [20] applied GAIL, an LfD
approach, to the automation of laparoscope motion during
surgery. Our group has previously applied LfD approaches
to the automation of rehabilitation robots [21], [22], [23],
[24], [25], [26].

Since LfD takes advantage of demonstrations from human
experts, it is often incorporated into DRL to achieve better
performance. In a follow-up study of [2], Pore et al. [11]
combined GAIL with PPO to achieve a faster learning
speed. Chiu et al. [1] used DDPG to learn autonomous
bimanual needle regrasping, where behavior cloning (BC),
a simple LfD approach, was utilized to help exploration.
These methods incorporate LfD into DRL by using human
demonstrations collected prior to training, which is different
from this work where the human can start or stop intervention
at any time during the training process.

III. BACKGROUND

A. Soft Actor-Critic (SAC)

In this subsection, we recall soft actor-critic (SAC), an off-
policy DRL algorithm introduced in [27], which will act as
a backbone of our proposed method. Compared with on-
policy algorithms, off-policy algorithms are known to be
more sample efficient and require less exploration, thanks
to the usage of an experience replay buffer that stores
all the experienced transitions, thus more suitable for our
application.

An RL problem can be formulated as a Markov deci-
sion process (MDP) described by a five-tuple (S,A,P,R,γ),
where S is the state space, A is the action space, P :
S×A×S→[0,1] is the state transition function, R:S×A→R
is the reward function, and γ∈[0,1] is the discount factor.
SAC algorithm considers the maximum entropy reinforce-
ment learning problem whose learning objective is to find
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Fig. 2. Framework of the proposed human-guided RL scheme.

an optimal policy that maximizes the expectation of the
cumulative reward and the policy entropy at the same time:

π∗=argmax
π

T∑
t=0

E(st,at)∼ρπ

[
γtr(st,at)+αH(π(·|st))

]
(1)

where π is the policy to be optimized, ρπ represents the
trajectory distribution produced by the policy π, T is the
horizon, r(st,at) is the reward for the state-action pair (st,at)
at time step t, H(π(·|at)) is the entropy of the action
distribution under the state st, and α is a weighting factor.
Considering maximum entropy encourages exploration and
enables learning a more robust policy [27].

SAC algorithm exploits an actor-critic structure. The critic
is a function approximator Qθ(st,at) parameterized by θ for
estimating the soft Q-value (action-value), indicating how
good an action at taken at st is, and the actor is the policy πϕ

parameterized by ϕ that generates actions from given states.
Qθ(st,at) is trained using the temporal difference (TD) target

ŷt=r(st,at)+γEst+1∼p[Vθ(st+1)] (2)

where Vθ(st) is the soft state-value function implicitly pa-
rameterized by θ [27]. Therefore, θ can be updated by
minimizing the Bellman residual

JQ(θ)=E(st,at)∼R

[
1

2
(Qθ(st,at)−ŷt)2

]
(3)

where R is the trajectories stored in the experience replay
buffer. The policy πϕ is encouraged to generate actions that
maximize the sum of the soft Q-value predicted by the critic
and the α-weighted policy entropy. Therefore, the parameters
ϕ can be updated by minimizing the loss

Jπ(ϕ)=Est∼R
[
Eat∼πϕ

[−Qθ(st,at)+αlog(π(at|st))]
]

(4)

In practice, both the actor and the critic are implemented
using neural networks. To mitigate the overestimation prob-
lem and stabilize training, two Q networks (Qθ1 and Qθ2)
and two target networks (Qθ̄1

and Qθ̄2
) are used.

B. Behavior Cloning (BC)

Learning from demonstration (LfD), or imitation learning,
aims to learn a policy directly from human demonstrations,
without knowing the reward function r(st,at). Behavior
cloning (BC) is a simple supervised learning approach for
LfD. In behavior cloning, human demonstrations are col-
lected and the state-action tuples are stored in a dataset RE.
A policy πϕ parameterized by ϕ, usually a neural network,
is trained by minimizing the BC loss:

JBC
π (ϕ)=E(st,at)∼RE

[
∥π(st)−at∥2

]
(5)

C. Generative Adversarial Imitation Learning (GAIL)

Generative adversarial imitation learning (GAIL) is an
LfD algorithm that has recently shown great promise. In-
spired by the idea of generative adversarial networks (GAN),
GAIL utilizes a discriminator Dφ parameterized by φ to
discriminate between expert human actions and the actions
taken by the learning agent. The human demonstrations are
stored in the dataset RE, and the trajectories generated by
the agent during training are stored in another dataset RA.
The discriminator and the agent are trained in an adversarial
manner. The discriminator takes in the state-action pair as
input and is trained to predict whether the action is taken by
the human or by the agent, while the agent is trained towards
cheating the discriminator by taking actions that are close to
the human expert. The loss for the discriminator Dφ is

JGAIL
D (φ)=E(st,at)∼RE

[logDφ(st,at)]+

E(st,at)∼RA
[log(1−Dφ(st,at))]

(6)

After updating the discriminator, we can re-sample state-
action pairs (st,at) from RA and use the output of the
discriminator Dφ(st,at) as the predicted rewards. Thereby,
standard RL algorithms can now be used to learn a policy πϕ.
Alternating between updating the discriminator and applying
standard RL updates will eventually result in a policy that is
close to the human.

Although on-policy RL algorithms such as PPO are more
often used in GAIL, recent work has shown that GAIL can
also be adapted for off-policy algorithms such as DDPG.



When using off-policy algorithms, the value network is up-
dated directly using the predicted reward Dφ(st,at) without
changing the loss function, while the policy network can be
updated by adding an imitation loss term to the original loss

JGAIL
π (ϕ)=Jπ(ϕ)+Est∼RA

[
Eat∼πϕ

[−ωlogDφ(st,at)]
]
(7)

where ω is a weighting factor. Updating the policy using
JGAIL
π (ϕ) will encourage the policy to generate actions close

to the human demonstrations and accelerate the speed of
convergence [28].

IV. PROPOSED METHOD

A. Leveraging Human Guidance

To incorporate human guidance in reinforcement learning,
a human expert monitors the training process and provides
guidance when necessary by directly overwriting the actions
taken by the agent. Therefore, the actual action taken during
training can be expressed by

at=I(st)aEt +(1−I(st))aAt (8)

where I(st)∈{0,1} is a function representing whether the
human intervenes or not, aEt is the action taken by the
human, and aAt is the action taken by the RL agent.

With the real actions stored in the replay buffer R, we
can directly apply SAC algorithm using (2)-(4). However,
simply replacing agent actions with human actions with-
out further modification of the learning structure results in
poor performance. This is due to the fact that the critic
is always updated according to the trajectories extracted
from the replay buffer R, which includes both agent and
human trajectories, while the actor loss is computed using
the on-policy actions predicted by the current policy. Prior
work proposes adding a BC loss term to the policy loss to
encourage the policy to imitate human actions when human
intervention occurs [14], [15]. Specifically for SAC, (4) can
be modified by adding a BC loss,

Jπ(ϕ)=Est∼R
[
Eat∼πϕ

[−Qθ(st,at)+αlog(π(at|st))]
]

+E(st,at)∼RE

[
ω·∥π(st)−at∥2

] (9)

where ω is a weighting factor andRE is the buffer that stores
the trajectories with human intervention.

Instead of adding a BC loss, in this work we incorporate
the idea from GAIL by training a discriminator Dφ(st,at)
to discriminate between human and agent actions and use
the predicted value as the imitation loss added to the policy
loss. During training, the trajectories produced by the RL
agent and the human are stored in two separate replay buffers
RA and RE respectively, and the discriminator is trained by
minimizing the classification loss, as in (6):

JD(φ)=E(st,at)∼RE
[logDφ(st,at)]+

E(st,at)∼RA
[log(1−Dφ(st,at))]

(10)

The critic is updated directly using (3) without modification:

JQ(θ)=E(st,at)∼R

[
1

2
(Qθ(st,at)−ŷt)2

]
(11)

Here, the replay buffer R now contains all the trajectories
produced by both the agent and the human. Similar to (7),
an imitation loss term is added to the policy loss:

Jπ(ϕ)=Est∼R
[
Eat∼πϕ

[−Qθ(st,at)+αlog(π(at|st))
−ωlogDφ(st,at)]

(12)

Based on prior work in the context of LfD [11], it is intuitive
that this modification will encourage the agent to imitate
human behaviors and can achieve faster convergence, as will
be shown through experiments in Section V.

B. Implementation Details
The proposed human-guided RL framework is shown in

Fig. 2. The detailed procedure is summarized in Algorithm 1.

Algorithm 1: Human guided reinforcement learning
Initialize actor network πϕ, critic networks Qθ1, Qθ2,

discriminator network Dφ;
Initialize target networks Qθ̄1=Qθ1, Qθ̄2=Qθ2;
Initialize empty human replay buffer RE and empty
agent replay buffer RA, R≡RE∪RA;

for each iteration do
for each environment step do

aAt ∼πϕ(st) ▷ Sample agent action
if human intervenes then

at←aEt ;
Rstore←RE ▷ Set RE as the replay
buffer to store the transition

else
at←aAt ;
Rstore←RA ▷ Set RA as the replay
buffer to store the transition

end
st+1∼p(st+1|st,at) ▷ Sample transition from

the environment
Rstore←Rstore∪{st,at,r(st,at),st+1} ▷ Store

transition
end
if train discriminator now then

for each discriminator gradient step do
Update Dφ using Equation (10)

end
end
for each policy gradient step do

Update Qθ1, Qθ2 using Equation (11);
Update πϕ using Equation (12) ;
θ̄i←τθi+(1−τ)θ̄i for i∈{1,2} ▷ Update the

target networks using Polyak averaging
end

end

V. EXPERIMENTAL SETUP
To validate the proposed human-guided reinforcement

learning scheme for automating surgical robots, we design
two different tasks in a simulated environment based on
SurRol [19], which simulates the dVRK medical robotic
system.



(a) (b)

Fig. 3. Task environments: (a) ActiveTrack; (b) GauzeRetrieve (Modified).

A. Tasks

1) ActiveTrack: The ActiveTrack environment proposed
in [19] is used without modification in this work. The goal
of the task is for the endoscopic camera manipulator (ECM)
to keep tracking a red cube moving in a 2D plane, as shown
in Fig 3a. The action is the camera velocity in its own frame
coordinate cVc. The observation includes the robot pose and
the object pose in the Cartesian space. The reward function
is

r(st,at)=C−(∥pijt −pc∥2+λ·|θ∗|) (13)

where C=1 and λ=0.1. While the maximum number of
steps in each episode during training is 500, we reduce
the number to 200 during the evaluation to eliminate the
repeated motion of the object. It is also worth noting that
early termination will be triggered when the camera totally
loses track of the object, although there will be no penalty
for this situation. The purpose of choosing this task is to
test the performance of the proposed method when using
environments with dense rewards and to examine the capa-
bility of the proposed method in learning to avoid significant
failures, i.e. losing track of the object in camera images.

2) GauzeRetrieve (Modified): We build a modified ver-
sion of the original GauzeRetrieve task, where the patient
side manipulator (PSM) needs to grasp a piece of gauze and
lift it above a certain height. The movement of the PSM
is restricted in a 2D plane, and the orientation of the end-
effector (EE) is locked. The initial position of the PSM is
randomized between each episode. The action contains 3
elements in continuous space, including the movement of
the EE in the 2D space, plus the closing or opening of the
gripper. The observation space is the same as the original task
environment, which includes the robot pose and the object
pose in the Cartesian space, and the position of the object
relative to the EE. The environment will return a sparse
reward of 100 when the gauze is lifted above a certain height;
otherwise, the reward is zero. A screenshot of the environ-
ment is shown in Fig 3b. The purpose of choosing this task
is to verify the proposed method when using environments
with sparse rewards and requiring human guidance to help
overcome a bottleneck in the task performance.

B. Baseline Algorithms

For a comparison, we also implement several related
baseline algorithms.

(a) (b)

Fig. 4. Experimental setup using teleoperation: (a) ActiveTrack using a
joystick controller; (b) GauzeRetrieve using MTM.

1) IA-SAC: Intervention-aided reinforcement learning
(IARL) [14] and human-guidance-based deep reinforcement
learning (Hug-DRL) [15] add a behavior cloning loss (BC
loss) to the policy loss for the human-intervened state-action
pairs. The original method was implemented based on PPO
and was re-implemented for DDPG in [15]. In this work,
we re-implement this method based on SAC and name it
IA-SAC.

2) HI-SAC: Human intervention reinforcement learning
(HIRL) is derived from [9]. In this method, the human
directly overwrites agent actions while no modification is
made to the learning algorithm. We re-implement this method
based on SAC and name it HI-SAC.

3) Standard SAC: This method is the standard SAC
algorithm without human intervention.

The hyperparameters for each method are set to be the
same and the imitation weight ω=4. It is worth noting
that although in some of the related methods (and their
improvements), training techniques such as penalizing hu-
man interventions and auto-tuning weighting parameters are
exploited, we do not include these implementations for a fair
comparison, because these approaches are also applicable to
our method and can be implemented in future work.

C. Human Guidance using Teleoperation

Human interventions are achieved through teleoperation
using a joystick controller and an MTM of the dVRK, as
shown in Fig 4. To ensure a fair comparison, the interventions
of the human supervisor follow a similar pattern regarding
their quality and timing during each training instance, where
the frequency of human intervention is reduced throughout
training, and all the interventions are done in the first half
of the training process. In addition, the human provides
approximately 200 steps of initial full demonstrations in the
GauzeRetrieve task in order to help the agent receive positive
reward feedback.

VI. RESULTS AND DISCUSSION

For the ActiveTrack task, we train using each of the
methods for 10,000 steps and repeat for 3 instances (trials).
The number of total human interventions is fixed at 500 steps
for all methods and training instances for a fair comparison.
The learning curves of the DRL algorithms are shown in 5.
As shown, since the reward signal is dense, a standard DRL
agent can reach a relatively high return after being trained
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for 10,000 steps without human intervention. However, the
methods with human interventions outperform the standard
DRL method and achieve much faster learning. Moreover,
the proposed method outperforms the two other baseline
methods that utilize human guidance (IA-SAC and HI-SAC)
from the aspect of the convergence speed and final return
achieved after training for 10,000 steps. This shows that
the proposed method is more efficient compared with the
baseline algorithms and aligns with our expectation that
using a discriminator and imitation loss will help drive
the agent toward learning human behaviors. In addition,
fewer fluctuations, which are caused by the early termination
scheme when the camera loses the object completely, exist
in the learning curve of our method after training for 50,000
steps. As the human operator intervenes when the camera is
about to lose the object, by imitating human behaviors, our
method learns to avoid significant failures more efficiently.
To further investigate the matter, we count the total number
of times of completely losing the view of the object during
the evaluation phase starting from 5,000 steps, as shown in
Fig 6. We saw no failures in any of the training instances
after 5,000 training steps when using the proposed method,
while IA-SAC and HI-SAC saw a number of failures ranging
from 0 to 30 among the training instances (IA-SAC has a
slightly better performance than HI-SAC). The standard SAC
algorithm yields the highest number of failures.

For the GauzeRetrieve task, we train using each of the
methods for 3 different instances with 40,000 steps. We eval-
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uate the policy every 1,000 steps for 100 episodes and use
the policy that yields the highest success rate for comparison.
In addition, to examine the effect of using different numbers
of human interventions during training, we limit the total
number of human interventions to 1,000, 1,500, and 2,000
and compare the resulting best policy. The results are shown
in Fig 7. As expected, standard SAC without human inter-
vention cannot learn the task, since it is almost impossible
for the agent to receive any positive rewards with random
explorations. For all three methods with human interventions,
there is a trend where more human interventions result in
better performance. While the proposed method has only a
small advantage over the other two baselines when the total
number of interventions is 1,000, it yields a much higher
success rate when the number of interventions is 1,500 and
2,000. Although variations of other factors between each
training instance such as the quality and the timing of human
interventions are inevitable and may affect the results, it is
nonetheless reasonable to state that the proposed method is
generally more efficient in learning when a sufficient number
of human interventions is allowed.

VII. CONCLUSIONS

In this work, we presented a DRL framework for surgical
robot learning that leverages real-time human supervision
during training to speed up the training process and avoid sig-
nificant failures. A novel training methodology that combines
the DRL algorithm with LfD was proposed to further accel-
erate learning by encouraging the agent to imitate human
behaviors. Experimental results in simulated environments
show that the proposed method achieves safe and efficient
learning for surgical robots, outperforming the compared
baseline algorithms. Since human supervision is utilized
during training to speed up learning and avoid danger, the
proposed method has a strong potential for application to
surgical robot learning in the real world. While this work
features simple learning tasks in the simulated environment,
future work will include extending the method to real sur-
gical scenarios and more specific surgical tasks, such as
soft tissue manipulation and needle regrasping. Additional
research is also needed to investigate the feasibility of
employing experienced physicians as supervisors.
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