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 
 

Abstract 
 

A novel impedance-controlled teleoperation system is developed for robot-assisted tele-echography of moving organs such as  

heart, chest and breast during their natural motions (beating and/or breathing). The procedure of devising the two impedance 

models for the master and slave robots is developed such that (a) the slave robot holding the ultrasound (US) probe follows the 

master trajectory but complies with the oscillatory interaction force of the moving organ, and (b) the sonographer receives 

feedback from the non-oscillatory portion of the slave-organ interaction force via the master robot similar to the haptic feedback 

received in echography of a stationary organ. These goals are achieved via appropriate parameter adjustment in the desired 

impedance models without requiring any direct measurement and/or online prediction of the organ’s motions. The stability and 

tracking convergence of the teleoperation system in the presence of communication delays and modeling uncertainties are proven 

in a Lyapunov-based framework. The performance of the proposed tele-echography system is evaluated experimentally using a 

master-slave telerobotic system, a US imaging system and a mechanical moving-organ simulator.  
 

Keywords: Tele-echography, medical robots and systems, impedance adjustment, telerobotics, physical human-robot interaction. 
 

 
1. Introduction 
 

 In recent years, remote diagnosis and health monitoring has drawn great attention due to the practical challenges associated 

with delivering health services to remote areas. Accordingly, telerobotic systems have been developed for different biomedical 

applications such as tele-surgery [1, 2], tele-rehabilitation [3, 4] and tele-echography [5, 6]. In a telerobotic system, the human 

operator applies forces to the master robot at the local site in order to control the position of the slave robot at the remote site 

which tracks the master robot’s trajectory.  

So far, some robot-assisted US imaging systems (e.g., [7, 8]) have been proposed for scanning the stationary tissues. In [9, 10], 

a force-based control strategy was employed for the robot to provide a specified interaction force between the US probe and the 

tissue while maintaining the contact. The telerobotic systems [5, 6, 11-18] have also been employed to perform remote 

ultrasound imaging using a slave robot based on the online motion measurement of the sonographer’s hand interacting with the 

master robot. In these systems, position tracking controllers were implemented sometimes with reflecting the tissue force [5, 11, 

14-16, 18] to the sonographer.  

While the above-mentioned works have focused on stationary organs, the remote US imaging (tele-echography) of the moving 

tissues such as the human heart and/or chest with a telerobotic system has remained as one of the challenging and open issues in 

the field of medical robotics. The ultrasound imaging of the heart during its normal beating will be significantly useful in the 

beating-heart surgeries (such as catheter ablation and mitral valve repair) for online detection of the catheter and/or surgery 

instrument inside the heart. Moreover, the tele-echography of other moving tissues inside the chest (e.g., lung) or outside it (e.g., 

breast) during normal respiration is useful for the intraoperative evaluations.  

Arresting the heart to perform a stationary surgery may have undesirable side effects due to the use of the heart–lung machine 
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for the circulation of blood and the ventilation of lungs. Also, after this operation, the surgeon attempts to restart the heart which 

may cause irregular heartbeats. Some other disadvantages of the arrested heart surgery are increasing the stroke risk [19] and 

long-time cognitive decline [20]. On the other hand, physical interaction with the heart as a moving organ is challenging due to 

its beating velocity and acceleration that are more than 210 mm/sec  and 2
3800 mm/sec , respectively [21]. Accordingly, in some 

surgeries such as catheter ablation and mitral valve repair, the heart is allowed to beat freely during the surgery operation to wipe 

out the mentioned risks and side effects.  

However, during these beating-heart surgeries, the online monitoring of the catheter and/or the surgical instruments’ position 

inside the heart is a vital requirement. A method for screening the position of an instrument inside a tissue would be online 

ultrasound imaging. Moreover, the imaging of moving organs such as the beating-heart and chest (during the normal breathing) 

is helpful and has important information for intraoperative evaluation of dynamic moving structures. This condition would be 

achieved via a telerobotic system in which a slave robot has a compliant interaction with the moving tissue, and the sonographer 

performs the US imaging via a master robot without the requirement of synchronizing with the oscillatory motions of the tissue.  

In the past decade, some control methods have been proposed for linear and nonlinear telerobotic systems [22-26] with the 

purpose of position and force tracking; however, they cannot be used in the tele-echography of a moving organ (e.g. the heart) 

which requires a motion or force compensation strategy in addition to a stable bilateral teleoperation.  

Some control strategies [27-31] have been suggested for the compensation of the heart’s physiological motion and 

synchronization of the robot with the heart using visual information and the predictive algorithms. In [32], the robot was 

synchronized with the heart using a high speed camera detecting target points. The Model Predictive Control (MPC) method was 

employed in [27, 29] to predict the heart motion (with a known constant heartbeat rate), and the Smith predictor and Kalman 

filter were suggested in [30] and [31], respectively. However, these position-based methods have some drawbacks such as: a) a 

vision device with artificial or natural landmarks inside the surgery environment is required, b) during the echography and/or 

surgery, the heart soft tissue deforms in physical interactions with the instrument that increases the error of the vision systems, c) 

the processing of some vision data is time-consuming and generate significant delays in addition to communication delays.  

Some other control strategies [1, 33, 34] were presented based on the force data to overcome the above-mentioned 

disadvantages. In this context, the iterative learning control [35] and active observer (AOB) based force control [36] methods 

were used to compensate the physiological motion. The MPC method was also proposed as a linear predictive force controller 

[37] and its performance was compared with the AOB approach in [38]. Lastly, a cascade force controller [39] was presented via 

a combination of the MPC and AOB approaches to compensate physiological disturbances. Moreover, a force-based position 

tracking system [40, 41] was developed to apply a constant force on the heart’s mitral valve using a catheter robotic system.  

It should be mentioned that none of the previous vision/position-based or the force-based controllers  for the beating-heart 

interaction was used for the tele-echography. Also, these controllers used predictive and/or observer-based methods or a 

combination of them while the convergence and robustness as well as the stability were not proved analytically. Moreover, the 

rate of disturbance observation and/or prediction should be significantly faster than the heart beat rate which is challenging to 

achieve in practice.  

In this paper, a novel impedance-controlled telerobotic system is proposed and tested for tele-echography (remote ultrasound 

imaging). For the first time, the robotic tele-echography is investigated for imaging of moving organs (e.g. beating-heart and 

chest). To this end, the proposed control method employs the measured robot-tissue interaction forces but does not require any 

prediction, observation and/or learning of the organ’s motion. In this bilateral telerobotic system, a virtual impedance model is 

implemented for the slave robot in order to comply with the natural force and/or disturbance of the moving tissue during the 

tracking of the master robot’s trajectory. Moreover, the sonographer senses the tissue interaction force through the haptic 

feedback by implementing another impedance model for the master robot end-effector. The master impedance model can be 

adjusted such that the non-oscillatory part of the tissue force is provided for the sonographer (similar to a stationary tissue), 

which is useful for the tele-echography of beating-heart that has high-frequency oscillatory interaction forces. Under this 

condition, the sonographer’s fatigue will decrease as he does not feel the high-frequency haptic force of the moving tissue during 

the imaging operation.  

For these purposes, the structure and parameters of the master and slave impedance models are designed appropriately such 

that they have desired responses with respect to the interaction forces of the sonographer and tissue. Also, the bounded time 

delays were taken into account in the communication channels between the local sonographer site and the remote patient site. 

The impedance models are realized on a multi-DOF master and slave robotic system with modeling uncertainties employing a 

new nonlinear bilateral adaptive controller. Using the Lyapunov stability theorem, the proposed telerobotic ultrasound imaging 

system is guaranteed to be stable and robust against communication delays and the modeling uncertainties..  
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2. Impedance-controlled Telerobotic System with Communication Delays for Tele-echography 
 

2.1. Signals in Delayed Communication Channels 
 

The transmitted signals and imaging data with bounded time delays inside the communication channels are expressed in Fig. 1 

for the presented robotic tele-echography system. As seen in this figure, the position xm, velocity ẋm and the sonographer-master 

interaction force sonf  are transmitted from the local site to the remote slave-patient site via a communication channel with a time 

delay of 1
T . On the other hand, the interaction force between the US probe (slave robot) and the moving tissue tisf  is transmitted 

back from the remote patient to the local sonographer. Also, the US data is transmitted from the US machine in the remote site to 

the sonographer. Moreover, the images of the patient’s organ during the interaction with the US probe/slave robot are captured 

using a camera and provided online for the sonographer to perform the operation appropriately on the master robot. These signals 

and imaging data are transmitted from the remote to local site by the other communication channel that has a time delay of 2
T .   

 
 

 

 

 

 

 

 
 

 

 
Fig. 1.  The signals and imaging data transmitted via delayed communication channels. 

 
 

The input and output signals of the communication channels are expressed in terms of time delays as 
 

1 1 1 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,d d d d

m m m m son son tis tisT T T Tt t t t t t t t      x x x x f f f f                (1) 
 

The position and velocity (trajectory) of the master/sonographer is scaled by p  and the interaction force between the US 

probe and the moving organ is scaled by 
f  before being used in the corresponding impedance model of the other robot: 

 

p p f, ,
scaled scaled scaledm m m m tis tis    x x x x f f                            (2) 

 

This feature is useful for scaling down or up the sonographer’s trajectory for the slave robot (US probe), and the haptic force 

feedback of the tissue for the sonographer. 

 

2.2. Master and Slave Impedance Models 
 

Two reference impedance models are designed for the slave and master robots to realize telerobotic remote ultrasound imaging 

on moving tissues (e.g. beating-heart and/or chest) using a nonlinear bilateral controller.   

The reference impedance model of the slave robot is defined as a dynamical relationship between the US probe-moving tissue 

interaction force tisf  and the desired slave deviation from the sonographer/master trajectory in Cartesian space as: 
 

s s simp imp imp tiss s sm c k   x x x f                            (3) 

 

where p

d

imp imp ms s
 x x x  is the error of the slave impedance response (desired slave deviation) with respect to the scaled 

delayed master trajectory. 
sk , 

sc  and 
sm  are the virtual stiffness, damping and mass parameters of the slave impedance model.  

The reference impedance model of the master robot is also defined as a dynamics between the summation of the sonographer 

and the scaled delayed moving tissue forces, from one side, and the desired master response trajectory in Cartesian coordinates, 

from the other side, as: 
 

fm m m

d

m imp m imp m imp son tism c k    x x x f f                            (4) 
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where 
mimpx  is the response position of the master impedance model. 

m
k , 

m
c  and 

m
m  are the virtual stiffness, damping and mass 

parameters of the master impedance model, respectively.  

The concepts of the two defined impedance models (3) and (4) are schematically expressed in Fig. 2. The master impedance 

model (4) is perceived by the sonographer (as the haptic perception), and the slave impedance model (3) is the flexibility of slave 

robot with respect to the sonographer/master trajectory in response to the natural heart tissue forces ( tisf ). Also, a nonlinear 

bilateral adaptive controller is designed in Sec. 3 for tracking the impedance models (3) and (4) by the slave and master robots.  

It should be mentioned as an important issue that both of the slave (3) and master (4) reference impedance models are stable 

second-order differential equations using positive impedance parameters. This stability characteristic of reference impedance 

models enhances the patient safety during the robotic US imaging. 
 

 

 
 

Fig. 2.  The concepts of master and slave reference impedance models in the proposed telerobotic remote US imaging systems. 
 

 

2.3. Adjustment of Slave Impedance Model 
 

The slave impedance model (3) should be adjusted such that the slave robot complies with the physiological force and/or 

disturbance of the moving tissue during the tracking of the scaled delayed sonographer’s hand/master robot trajectory. For this 

compliance behavior, the flexibility of the slave robot should be adjusted appropriately by using as small as needed parameters in 

the slave impedance model (3). In other words, the slave robot’s flexibility and its deviation from the master trajectory                  

( p

d

imp imp ms s
 x x x ) increase in response to the tissue force ( tisf ) by decreasing 

s
k , 

s
c  and 

s
m  in (3). Therefore, the slave 

robot’s end-effector (i.e. US probe) has an oscillatory motion in response to the oscillatory portion of the moving tissue 

interaction force tisf .  

Nevertheless, too small values of the slave impedance parameters (
sk , 

sc  and 
sm ) make the slave robot too flexible such that 

it cannot apply sufficient forces to the moving organ in order to have appropriate US probe-tissue contact. However, too large 

values of these impedance parameters cause a rigid (non-compliant) behavior for the US probe-tissue interaction. In this case, 

large forces are applied to the moving tissue. This implies a trade-off between the flexibility and force applying characteristics of 

the slave.  
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In this work, the damping ratio of the slave impedance model (3) as a second-order differential equation is set to 

2 0.7
s s ss

m kc    such that it has a fast behavior with respect to the dimensionless time 
sn
t  (also with a small over shoot 

in response to the step forces). In addition, the natural frequency 
n s ss

k m   (the cut-off frequency when

0.7
s

  ) of the slave impedance model (3) should be adjusted larger than the motion frequency range 
MT

  of the moving 

tissue (e.g. for the beating-heart 1 1.7 Hz
MT

  6.28 10.68 rad/sec  , or for the breathing-chest 0.2 0.5 Hz
MT

 

1.26 3.14 rad/sec  ) to have agile flexibility in response to the slave-tissue interaction force.  

Therefore, the procedure for choosing the slave impedance parameters (
s

k , 
s

c  and 
s

m ) is as follows:  

1)  The stiffness parameter 
s

k  is firstly set to an appropriate value based on the desired static relationship between the tissue 

interaction force and the slave robot’s deviation from the master trajectory (
s

k  mtis i ps
Xf  based on (3) when 

tis
f  and 

imps
X  

are assumed constant). The trade-off between the flexibility and force applying capacity of the slave robot should be 

considered, as discussed above.  

2)   In order to have a fast compliance with the oscillatory force and/or motion of the heart, the damping ratio of the slave 

impedance model is set to 0.7
s

   and its natural frequency is chosen larger than the moving tissue frequency range             

(
mn MT

  ). 

3)  The damping 
s

c  and mass 
s

m  parameters of the slave impedance model are obtained from the above adjusted quantities (
s

k , 

2
s s s s

c m k   and 
n s ss

k m  ).  

4)  The value of position scaling factor can be chosen less than one (
p

1  ) to enlarge the tissue dimensions perceived by the 

sonographer.  

 

2.4. Adjustment of Master Impedance Model 
 

In this bilateral telerobotic system, the master impedance model should provide the tissue interaction force for the sonographer 

as the haptic force feedback. Since sonf  and 
d
tisf  in the right side of master impedance model (4) are bounded, 

m
imp

x , 
m

imp
x  and 

m
imp

x in the left side of this equation are also bounded. Therefore, employing small values for the master impedance parameters 

m
k , 

m
c   and 

m
m , the left side of Eq.(4) becomes small due to the boundedness of 

m
imp

x , 
m

imp
x  and 

m
imp

x . Accordingly, the right 

side of Eq. (4) is also small ( f
( ) 0

d

son tis
 f f ); therefore, the force reflecting performance is achieved.  

Moreover, for the moving organs such as the beating-heart with the physiological high-frequency motions, the high-frequency 

portion (
HFtisf ) of the total tissue force (

HF LFtis tis tis f f f ) is preferred not to be reflected to the sonographer hand. Because it 

would be challenging and exhausting for the sonographer to perform a US imaging operation with an oscillatory force, especially 

when the tissue force tisf  is scaled up in (4) by 
f

1  .  

For this purpose, the second-order master impedance model (4) is designed such that its cut-off frequency (
mn

 
m m

k m ) 

be smaller than the tissue motion’s frequency range (
MT

 ). The damping ratio of the master impedance model (4) is also 

adjusted at 
m

  2 0.7
m m m

m kc   to have a fast response and a small overshoot, similar to the slave impedance adjustment in 

Sec. 2.3. 

It should be taken into account that the desired master stiffness 
m

k  in (4) should not be chosen too small because the 

amplitude of the high-frequency response of the master impedance model with respect to the high-frequency force of the tissue 

becomes large. In other words, 
HFmimp
X

f HFtis m
k F  increases by decreasing 

m
k  based on Eq. (4). Therefore, there is a trade-

off for the adjustment of the master stiffness such that choosing a too small value for 
m

k  enhances the force reflection 

performance f
( ) 0

d

son tis
 f f  as mentioned before; however, it weakens the filtration of the high-frequency force of the 

moving tissue (in the sonographer’s haptic feedback), and vice versa.  
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Accordingly, the adjustment procedure for the master impedance parameters (
m

k , 
m

c  and 
m

m ) is summarized as:  

1)  The stiffness parameter 
m

k  is firstly chosen small such that the static force reflection performance f
( ) 0

d

son tis
 f f  is 

approximately achieved under consideration of the high-frequency force filtration based on the above-mentioned trade-off.  

2)  The natural frequency is considered smaller than the tissue motion’s frequency (
mn MT

  ) such that the high-frequency 

force of the beating heart is filtered as much as needed. However, too much small values of the natural frequency (
mn

 ) will 

cause the master impedance dynamics to be too slow and sluggish for the sonographer. The master damping ratio is also 

adjusted at 0.7
m

  .  

3)  The damping 
m

c  and mass 
m

m  parameters are specified from the above chosen parameters (
m

k , 
m

  and 
mn

 ).  

4)  The force scaling factor can be chosen more than one (
f

1  ) to enlarge the tissue haptic force feedback tisf  provided for the 

sonographer during the US imaging. In this condition, the sonographer becomes more sensitive with respect to forces applied 

to the tissue (e.g. heart). 

 

3. Bilateral Control of a Master-Slave Telerobotic System 
 

3.1. Nonlinear Dynamics of Multi-DOF Telerobotic System 
 

The nonlinear model of a multi-DOF telerobotic system with modeling uncertainties is expressed in the Cartesian space for the 

master and slave robots’ end-effectors [42, 43]:   
 

, , , ,,( ) ( ) ( ) ( )
m m m m mm m m m m m m son   x x x xq q q q qM x C x G F f f                        (5) 

 

, , , ,,( ) ( ) ( ) ( )
s s s s ss s s s s s s tis   x x x xq q q q qM x C x G F f f                            (6) 

 

where 
m

q  and 
s

q  are the joint angles,  and 
m

x  and 
s

x  are the Cartesian end-effector positions of the master and slave robots, 

respectively. Also, , ( )
mmx qM  and , ( )

ssx qM  are the inertia/mass matrices, , ( , )
m mmx q qC  and , ( , )

s ssx q qC  include the centrifugal 

and Coriolis terms, , ( )
mmx qG  and , ( )

ssx qG  are the gravity terms, , ( )
mmx qF  and , ( )

ssx qF  are the friction torques, and 
m

f  and 
sf  

are the control torques (produced by the actuators) of the master and the slave robots, respectively. Moreover, 
sonf  is the 

interaction force that the sonographer applies to the master robot end-effector and 
tisf  is the interaction force that the slave robot 

applies to the remote patient organ (moving tissue).   

Using the subscript i m  for the master and i s  for the slave, kinematic transformations between the joint space and the 

Cartesian one for each robot are presented as 
 

( ) ( ) ( ) ( ), ,
i i i ii i i i i i i i i i   q q q qx x J q x J q J q                            (7) 

 

where ( ) ( )
i i i i i

d d J q q q  is the Jacobian matrix. The matrices of dynamic models in (5) and (6) have the following properties 

[24, 43, 44]: 
 

 The left side of (5) and (6) is linearly parameterized as 
 

, , , , , , , , , ,,( ) ( ) ( ) ( ) ( , , , )
i i i i i i ii i i i i i i i i i   x 1 x 2 x x x 1 2 xq q q q qM ψ C ψ G F Y ψ ψ q q β                 (8) 

 

where ,ix
β  is the vector of unknown parameters of each robot. The regressor matrix ,ix

Y  includes known functions [43] in 

terms of the vectors ,i1
ψ  and ,i2

ψ  which will be defined in the next section. 

 The inertia matrix ,
( )

iix
qM  is symmetric positive definite and the matrix 

, ,
( ) ( , )2

i i ii i


x x
q q qM C  is skew symmetric. 
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3.2. Nonlinear Adaptive Control Laws for Tracking of Impedance Responses 
 

Responses of the two reference impedance models (3) and (4) defined in Sec. 2 should be tracked by the multi-DOF slave and 

master robots, respectively, which are considered to have modeling uncertainties. Therefore, two nonlinear adaptive control laws 

are designed for the robots for tracking their corresponding impedance responses in the presence of uncertainties and 

communication delays. For this purpose, the master and slave sliding surfaces are designed as 
 

1, 2, 1, 2,
0 0

,
t t

m m m m m m s s s s s sdt dt         x x x x x xε ε                       (9) 

 

where 
mm m imp

 x x x  and 
ss s imp

 x x x  are the position tracking errors of the master and slave robots with respect to the 

responses of their impedance models (4) and (3), respectively. Also, 1,m
 , 2,m

 , 1,s
  and 2,s

  are positive constant parameters 

which provide the stability of the sliding surfaces (i.e. 0
i
x  as 0

i
ε ). The reference velocities for the master and slave are 

defined based on (9) as 

 

0 0
, 1, 2, , 1, 2,,

t t

m m s sm sref m imp m m ref s imp s sdt dt        x x x xx x x x                   (10) 

 

such that the sliding surfaces (9) can be rewritten as 
,m m ref m

 x xε  and 
,s s ref s

 x xε . Now, the nonlinear bilateral adaptive 

control laws for the master and slave robot’s end-effectors are defined as 
 

3, , , , , , , ,( ) ( ) ( , ) ( ) ( )ˆ ˆˆ ˆ ˆ
m m m m m mm m m m ref m m ref m m m sonm       x x x x xq q q q q qM M x C x G Ff ε f              (11) 

 

3, , , , 4, , , , ,( ) ( ) ( , ) ( ) ( )ˆ ˆˆ ˆ ˆsgn( )
s s s s s ss s s s ref s s s s ref s s s tiss         x x x x xq q q q q qM M x C x G Ff ε ε f          (12) 

 

The accent   denotes the estimated and/or updated values of matrices, vectors and scalars. 4,s  in (12) is a positive constant 

gain. It should be mentioned that the position 
d

m
x , velocity 

d

m
x  and acceleration 

d

m
x  of the master robot are required to obtain the 

desired slave response as 
d

imp m imps s
 x x x , 

d

imp m imps s
 x x x  and 

d

imp m imps s
 x x x ; these are used in the salve control law (12), 

which involves 
s
ε , 

,ref s
x  and 

,ref s
x . Moreover, since the measurement of the master robot acceleration 

d

m
x  is prone to noise, it 

can be estimated with good accuracy when the master robot mimics its reference impedance model (4) as expressed below. The 

delayed master robot acceleration (
d

m
x ) is estimated using Eq. (4) considering 1

T  time delay for all signals as 
 

 1 1 1

f
ˆ

m mm m m m m

d d dd d d

m son tis imp impm m mc k
  

  x f f x x                              (13) 

 

where 1 1 2
( ) ( ) ( )

dd d
tis tis tisT T Tt t t   f f f  has 1 2

T T  time delay, and other delayed signals in (13) with one superscript “ d ” 

have only 1
T  time delay. Using this estimation, 

d

imp m imps s
 x x x  is replaced by ˆ

imps
x ˆ d

m imps
 x x

d d

m m imps
  xx x

d

imp ms
  x x  in 

,ref s
x , which is used in the salve control law (12). The term 4,

sgn( )
ss ε  in Eq. (12) also provides the robustness of the system 

against the bounded estimation error of the master robot’s acceleration ( ˆd d d

m m m
  x x x ). It is worth noting that the acceleration 

should be measured and used in the previous nonlinear bilateral adaptive controllers [24, 45] for multi-DOF teleoperation 

systems; however, it can be estimated accurately in this proposed impedance-based controller.  
 

Based on the mentioned robots’ property in Sec. 3.1, one can write (11) and (12) using a linear parameterization: 
 

, ,
ˆ

sonm mm  x xY β ff  ,     , ,
ˆ

tiss ss  x xY β ff                           (14) 
 

where 
,mx

Y  and 
,sx

Y  are determined based on (8) in terms of the following known vectors: 
 

3, , 3, ,, , , , , ,, ,,
m m ref m s s ref sm m ref m s s ref s       1 2 1 2ψ ε x ψ x ψ ε x ψ x                  (15) 

 

The closed-loop dynamics of the master and slave using the presented nonlinear bilateral adaptive controller is obtained by 

substitution of the control laws (11) and (12) or (14) in the end-effector dynamics (5) and (6) of the telerobotic system, which 
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concludes as the following equations: 
 

, 3, , , ,( )m m m m m m m m  x x x xM C Y βε ε ε                           (16) 

 

p, 3, , , 4, , ,( ) sgn( )d
s s s s s s s m s s s s      x x x x xM C M x Y βε ε ε ε                        (17) 

 

where ,mx
Y  and ,sx

Y  are the regressor matrices defined in (8) in terms of ,m1
ψ , ,s1

ψ , ,m2
ψ , and ,s2

ψ  determined in (15). 

, , ,
ˆ

m m m
 

x x x
β β β  and , , ,

ˆ
s s s
 

x x x
β β β  are the estimation errors of master and slave dynamic parameters, respectively. 

ˆd d d

m m m
  x x x  is also the estimation error of the master robot’s acceleration.  

 
 

4. Stability and Convergence Proof in Presence of Time Delays and Modeling Uncertainties 
 

In this section, the stability of the proposed telerobotic ultrasound imaging system in the presence of communication delays 

and modeling uncertainties is investigated. Moreover, the tracking convergence of the master and slave robots’ trajectories to 

their desired impedance responses (
mm imp

x x  and 
ss imp

x x ) is proven. For these purposes, a positive definite Lyapunov 

function is introduced as 
 

 1 1

, , , , ,,( )
1

2

T T T T

m m m m m m s s s s s s
tV     

x x x xx xβ β β βM W M Wε ε ε ε                          

(18) 
 

where the inertia matrices 
,mx

M  and 
,sx

M  and the constant matrices 
m

W  and 
s

W  are positive definite. Now, the first time 

derivative of Lyapunov function (18) is found as 
 

1 1

, , , , , , , ,
ˆ ˆ( ) 1 2 1 2( ) ( )

T T T T T T

m m m m m m m m m s s s s s s s s s
tV

 
     

x x x x x x x x
β β β βM M W M M Wε ε ε ε ε ε ε ε            (19) 

 

where 
, ,

ˆ
i i

x xβ β  because 
, ,,

ˆ
i ii 

x xxβ β β  and the actual parameters are constant ( ,
0

i


x
β ). Employing 

,m mx
M ε  and 

,s sx
M ε  from 

the closed-loop dynamics (16) and (17) and based on the property of the robot manipulators’ dynamics (introduced in Sec. 3.1 as 

, ,
2

i i


x x
M C  is skew symmetric), Eq. (19) is obtained as 

 

1

3, , , , , ,

1

3, , p , 4, , , , ,

ˆ( )

ˆsgn( ))(

T T T

m m m m m m m m m m

T T d T T

s s s s s s m s s s s s s s s

tV 

  






   

    

x x x x x

x x x x x x

β β β

β β β

M Y W

M M x Y W

ε ε ε

ε ε ε ε ε
                  (20) 

 

The nonlinear adaptation laws for updating the estimated parameters of the telerobotic system are defined for the master and 

slave as 
 

, ,
ˆ T T

m m m m
 

x x
β W Y ε  ,   

, ,
ˆ T T

s s s s
 

x x
β W Y ε                            (21) 

 

such that the terms in (20) that include ,mq
β  and ,sq

β  are cancelled. As a result, the Lyapunov function’s time derivative (21) is 

simplified to: 
 

3, , 3, , p , 4,
( ) sgn( ))(T T T d

m m m m s s s s s s m s s
tV        

x x x
M M M xε ε ε ε ε ε                      (22) 

 

Note that 
mimpx and 

mimpx are bounded as the response of the stable master impedance model (4) with bounded inputs (bounded 

interaction forces 
sonf  and tisf ), which implies the boundedness of ˆ

mx  obtained from (13). Moreover, it is reasonable that the 

master acceleration 
m

x  is bounded because the master robot (5) is a physical system (with a second-order differential equation) 

having bounded input forces sonf  and 
mf . Therefore, the estimation error of the master robot’s acceleration ( ˆd d d

m m m
  x x x ) in 

Eq. (22) is bounded. Accordingly, the constant gain 4,s  is adjusted such that the robustness against the bounded acceleration 

estimation error (
d

m
x ) is guaranteed by satisfying the following inequality: 
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4, p ,
|| ||d

s s m
   

x
M x                             (23) 

 

Note that the actual salve inertia matrix ,sxM  is uncertain in this bilateral adaptive controller, and the bounded acceleration 

estimation error 
d

m
x  is also unknown. However, 4,s  should be chosen larger than the maximum value of 

p ,
|| ||

d

s m





x
M x  based 

on (23) to ensure robust stability against acceleration estimation error. According to Eqs. (22) and (23), the time derivative of the 

Lyapunov function is finally obtained as 
 

3, , 3, ,
( )

T T

m m m m s s s s
tV    

x x
M Mε ε ε ε                             (24) 

 

Since the Lyapunov function (18) is positive definite ( ( ) 0tV  ) and its first time derivative (24) is negative semi-definite          

( ( ) 0tV  ), it can be shown using the Barbalat’s lemma [43] that lim ( ) 0
t

tV


 . Thus, since 3, 0m  , 3, 0s  , 
,

0
T

m m m


x
Mε ε  

and 
,

0
T

s s s


x
Mε ε , Eq. (24) implies the convergence to sliding surfaces 0

m
ε  and 0

s
ε  as t  . In addition, it is concluded 

from Eq. (18) that the estimation errors ,mx
β  and ,sx

β  of the system parameters remain bounded due to the convergence of 

0
m
ε  and 0

s
ε  and the boundedness of ( )tV . 

According to the stable dynamics of the sliding surfaces 
m
ε  and 

s
ε  in (9), the convergence of the master and slave tracking 

errors to zero 0m x  and 0s x  (on the surfaces of 0
m
ε  and 0

s
ε ) are guaranteed. As a result, the proposed bilateral 

impedance-based control strategy ensures that the master and slave robots track their corresponding impedance models’ 

responses, i.e. 
mm imp

x x  and 
ss imp

x x  in the presence of parametric uncertainties and communication delays. It should be 

mentioned that the tracked slave impedance response is defined in terms of the delayed master trajectory (
d

m
x ) as 

p

d

imp m imps s
 x x x  where imps

x  is the response of (3). Also, the tracked master impedance response 
mimp

x  is obtained from (4) 

as the response of the delayed moving tissue 
d
tisf  and the sonographer’s 

son
f  forces. 

 

5. Experimental Evaluations 
 

In this section, the proposed bilateral impedance-based control strategy is evaluated experimentally for the tele-echography of 

moving organs employing a multi-DOF telerobotic system. Moving organs with different motion rates such as the beating-heart 

frequency and the breathing frequency of the chest are included.  

 

5.1. Telerobotic and Ultrasound Setup 
 

A Phantom Premium 1.5A robot (Geomagic Inc., Wilmington, MA, USA) with three DOFs (revolute joints) and the Quanser 

robot (Quanser Consulting Inc., Markham, ON, Canada) with two DOFs (revolute joints) are used as the master and slave, 

respectively (Fig. 3). The workspace of the slave (Quanser) robot is a subset of the x y  plane and the master (Phantom 

Premium) robot is controlled to move in the same 2D space, as shown in Fig. 3. The kinematics and dynamics of the Phantom 

and Quanser robots were presented comprehensively in [46] and [47, 48], respectively, and not repeated here for the sake of 

brevity.  

The applied interaction forces of the sonographer and the moving organ are measured by the 6-axis JR3 50M31 force/torque 

sensor (JR3 Inc.,Woodland, CA, USA) and the ATI Gamma force/torque sensor (ATI Industrial Automation, Apex, NC, USA) 

respectively attached to the Phantom Premium and Quanser robots’ end-effectors. The QUARC software (Quanser Consulting 

Inc., Markham, ON, Canada) is employed as a real-time control environment to implement the proposed controller with a Hz1 k  

loop frequency. 

A Sonix Touch ultrasound (US) imaging machine (Ultrasonix, Richmond, CA, USA) with a 4DL14-5/38 ultrasound probe is 

used in the experiments (Fig. 3). The two dimensional US image is recorded, transmitted and illustrated on the sonographer’s 

monitor with a sec20 m  sampling time. The images of the remote environment are also captured online and shown to the 

sonographer. In another monitor, the interaction forces and the master and slave positions are plotted online for the sonographer 

(Fig. 3).  
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                                   Local Master Site                                                                            Remote Slave Site 

 

     
 

Fig. 3.  The experimental setup for the tele-echography of moving organs, including the master and slave robots, the US machine, the motion simulator device. 

The left monitor is for on-line displaying the US images and the camera images of the remote slave site and the right monitor is for showing the interaction forces 

and the master and slave positions to the sonographer in the local site. 
 

 

5.2. Soft Moving Organ and its Motion Generator  
 

A motorized motion generator device (shown in Fig. 4) is designed and used to simulate the natural motion and force of the 

moving organ (or tissue) with an adjustable rate from high frequencies (such as the heart-beating) to lower ones (such as 

breathing). The position of this motion simulator is measured by the LP-30FP potentiometer sensor (Midori America Corp., 

Fullerton, CA, USA). This device is equipped with a DC motor and a cam-follower set to generate translational oscillatory 

motion for the artificial soft tissue attached to the end rod. Small spherical lumps are designed and incorporated inside the soft 

phantom tissue (Fig. 4) to represent muscles, tumors, or other tissues of interest to be visualized within the heart, chest, or breast. 

Imaging these lumps through ultrasound can be used to assess the performance of the proposed system in terms of image 

acquisition capability. 

Fig. 4.  The motorized motion generator device with the attached soft tissue containing small lumps. 
 

The parameter values used in the control laws (11) and (12) and the adaptation laws (21) are listed in Table 1. These 

parameters are adjusted experimentally such that the tracking convergence performance is obtained appropriately (with suitable 

transient responses and small steady-state tracking errors). The “ ( )sgn
s
ε ” function causes undesired discontinuities and 

chattering in the slave robot’s control input (12); thus, the continuous function (200 )tanh
s
ε  is employed in these experiments as 

an alternative to ( )sgn
s
ε . The transmitted signals inside the communication channels (shown in Figs. 1 and 2) are considered to 

have  T1 = 120 m sec and T2 = 120 m sec of time delays that are significant in common remote operations.  

Forces of 
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Table 1 

Parameters of the control and adaptation laws used in the experimental studies. 
 

Control  Adaptation 

1,
400

m
  , 2,

450
m

  , 3,
70

m
   

1,
400

s
  , 2,

450
s

  , 3,
540

s
  , 4,

1.8
s

   
 

2
m

IW , 32
s

IW  

 

 

 

5.3. Moving Tissue with Heart Beating Frequency (High Freq.)  
 

The US imaging of a beating-heart is important for intraoperative evaluations of its performance during its normal motion. For 

this purpose, the parameters of the slave (3) and the master (4) impedance models should be chosen based on the adjustment 

guidelines presented in Sec. 2.3 and Sec. 2.4, respectively. Accordingly, the employed impedance parameters and scaling factors 

in this experiment for the tele-echography of a moving tissue with heart-beating frequency are mentioned in Table 2 for both x  

and y  directions of Cartesian space. Since the heart-beating frequency range is 
MT

 6.28 10.68 rad/sec , the natural 

frequencies of the slave and master impedance models are set to 50 rad/sec
sn   and 0.5 rad/sec

mn  , respectively based on 

the discussions in Sec. 2.3 and Sec. 2.4.  

 
Table 2 

Parameters of the master and slave impedance models for ultrasound imaging of the 

moving tissue.  
 

Master impedance 
parameters 

Slave impedance 
parameters 

Force and position 
scaling factors 

N/m8
m

k   N/m100
s

k   
f 1.5   

N.s/m22.4
m

c   N.s/m2.8
s

c   p 0.5   

kg32
m

m   kg0.04
s

m    

 

The positions of the master and slave impedance models responses ( impm
x and imps

x ) with the master/sonographer and slave 

positions (
m

x and 
s

x )  in x  and y  directions of Cartesian space are shown in Fig. 5.  

 

 
 

            
                                                                     (a)                                                                                (b) 

 
 

Fig. 5.  Positions of the master and slave robots and their impedance models responses during US imaging of a moving tissue with heart-beating frequency: in  

(a) x  and (b) y  directions of Cartesian space. 

 

As seen in Fig. 5, the master and slave robots’ end-effectors track their corresponding impedance responses during the whole 

operation (before, after and during the moving tissue interaction) using the proposed nonlinear bilateral adaptive controller, as 

proved in Sec. 4. However, regarding the slave impedance model (3), after starting the US probe-tissue interaction and applying 

the tissue force tisf  to the slave robot, the slave has a flexibility and deviation imps
x  with respect to the master trajectory. 
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US Probe-Tissue Interaction 

 

 x𝑖𝑚𝑝𝑚 :  Master Imp. Model 

 x𝑚:  Master Robot 
 

 Moving Tissue 
 

 x𝑖𝑚𝑝𝑠 :  Slave Imp. Model 
 

 x𝑠:  Slave Robot 

 

 

 x𝑖𝑚𝑝𝑚 :  Master Imp. Model 
 

 x𝑚:  Master Robot 
 

 x𝑖𝑚𝑝𝑠 :  Slave Imp. Model 
 

 x𝑠:  Slave Robot 
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Therefore, the slave robot has a fast compliance with the oscillatory tissue motion in response to the interaction force tisf  based 

on the adjusted characteristics of the impedance model (3), as discussed before in Sec. 2. Since the slave robot approaches and 

applies normal palpation forces to the tissue in the x  direction of Cartesian space and the tissue motion is mostly in this direction 

(see Figs. 3 and 4), the slave deviation in the x  direction (Fig. 5a) is higher than the one in the y  direction (Fig. 5b). The 

sonographer also has a motion in the y  direction to slide the US probe on the tissue surface in order to scan different sections of 

this phantom tissue (containing lumps).  

To elaborate more on the convergence of tracking errors and the deviation of slave trajectory from the master’s, these errors 

and deviation are plotted in Fig. 6.  

 

        
                                                                    (a)                                                                             (b) 
 

Fig. 6.  Position tracking errors and slave deviation during US imaging of a moving tissue with heart-beating frequency: (a) in x  direction and (b) in y  

direction. 

 

The scaled-up applied interaction force from the slave robot to the moving tissue (
f tis

 f ) together with the applied interaction 

force from the sonographer hand to the master robot (
sonf ) are demonstrated in Fig. 7. As shown in Fig. 7, after starting the 

interaction, the oscillatory force of the moving tissue is applied to the slave (Fig. 7) and causes the deviation of the slave 

trajectory from the master one (Figs. 5 and 6). It is seen that the US probe-tissue interaction force in the y  (sliding) direction 

(Fig. 7b), which is mostly caused by friction, is significantly smaller than the interaction force in the x  (palpation) direction 

(Fig. 7a), which is perpendicular to the tissue surface. Note that ultrasound gel is utilized between the US probe and the tissue 

surface, which reduces the friction and makes the interaction force in the y  (sliding) direction small.  As a result, the slave 

position deviation in the y  direction (Fig. 6b) is considerably lower than the one in the x  direction (Fig. 6a).  

 

             
                                                                 (a)                                                                                   (b) 
 

Fig. 7.  Scaled tissue force (with 
f

1.5  ) and the sonographer force during US imaging of a moving tissue with heart-beating frequency: (a) in x  direction 

and (b) in y  direction. 
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 x 𝑚 = x𝑚 − x𝑖𝑚𝑝𝑚:  Master Track. Err. 
 

 x 𝑠 = x𝑠 − x𝑖𝑚𝑝𝑠:  Slave Track. Err. 
 

  x 𝑖𝑚𝑝𝑠 = x𝑖𝑚𝑝𝑠 − 𝜂
p
x𝑚
𝑑 :  Slave Dev. WRT Master 

 

 (x𝑠 − 𝜂
p
x𝑚
𝑑 ) = x 𝑠 + x 𝑖𝑚𝑝𝑠:  Master-Slave Track. Err. 

 x 𝑚 = x𝑚 − x𝑖𝑚𝑝𝑚:  Master Track. Err. 
 

 x 𝑠 = x𝑠 − x𝑖𝑚𝑝𝑠:  Slave Track. Err. 
 

 x 𝑖𝑚𝑝𝑠 = x𝑖𝑚𝑝𝑠 − 𝜂
p
x𝑚
𝑑 :  Slave Dev. WRT Master 

 

 (x𝑠 − 𝜂
p
x𝑚
𝑑 ) = x 𝑠 + x 𝑖𝑚𝑝𝑠:  Master-Slave Track. Err. 
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 According to Fig. 7, as the applied interaction force 
sonf  of the sonographer increases, the non-oscillatory value of the tissue 

force f tis f  increases as well. In other words, the sonographer perceives the non-oscillatory (low-frequency) portion f LFtis f of 

the moving tissue force as the haptic feedback, and its oscillatory (high-frequency) portion 
HFtisf is filtered. This performance is 

the result of adjustment of the master impedance model (4) described in Sec. 2.4. Thus, the force reflection performance is 

approximately achieved as f LFson tisf f , and the surgeon’s feeling is similar to the stationary echography (US imaging) 

operation on the tissue (such as an arrested heart).  

The trajectory of the slave robot in two-dimensional x y  plane with respect to the soft tissue (containing lumps) is shown in 

Fig. 8. Moreover, some of the US images provided online for the sonographer via his monitor are illustrated in Fig. 8 at different 

positions of the US probe during the scanning of a lump inside the moving tissue.  

 

 

 

 

 

 

 

   
 

Fig. 8.  The trajectory of the slave robot’s end-effector in two-dimensional x y  plane with respect to the soft tissue, and US images of some sections of the 

tissue containing lumps provided online for the sonographer.  

 
5.4. Moving Tissue with Breathing Frequency (Low Freq.)  
 

In this section, the experimental results for US imaging of a moving tissue with (low) breathing frequency are illustrated. This 

case occurs in US scanning of the patients’ chest and/or breast during the normal breathing. For this purpose, two cases of 

adjustment of the impedance models are taken into account: The first one is when the impedance parameters are considered the 

same as in previous section presented in Table 2 for high-frequency moving tissue. Therefore, the natural frequency (or cut-off 

frequency) of the master impedance model (4), 0.5 rad/sec
mn

  , is not much smaller than the low breathing frequency of the 

moving tissue Hz0.2 0.5
MT

  1.26 3.14 rad/sec   in comparison with the high beating frequency in Sec. 5.3. For this case, 

the position of the master and slave robots and their impedance models’ responses in x  direction are shown in Fig. 9a and the 

corresponding interaction forces are illustrated in Fig. 9b.  
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                                                             (a)                                                                                                                           (b) 

 

Fig. 9.  (a) Position trajectories and (b) interaction forces in x  direction , for US imaging of a moving tissue with breathing frequency, when 0.5 rad/sec
m

n
  . 

 

As observed in Fig. 9, the oscillatory force of the moving tissue is not filtered well by the master impedance model and it is 

transferred to the sonographer’s hand. This is due to the closeness of the natural frequency 0.5 rad/sec
mn   of the master 

impedance and the low (breathing) frequency 2.3 rad/sec
MT

  of the tissue motion.  In this case, the sonographer should 

overcome the oscillatory tissue force (Fig. 9b) in order to hold the master robot in a desired position (Fig. 9a) such that the slave 

robot remain in touch with the moving tissue via deviation from the master trajectory. If the sonographer does not overcome the 

oscillatory force and allow this tissue force to generate large oscillatory motions for the master robot, it may cause the slave 

robot/US’s probe to detach from the moving tissue and the image quality to degrade. Note that perceiving oscillatory force is not 

much annoying for the sonographer in this case because of low frequency of this force. 

In the next case of impedance adjustment with low breathing frequency, the master’s natural frequency is considered to be 

0.2 rad/sec
mn   that is less than half of the one used in the previous case. Accordingly, the parameters of the master impedance 

model (11) in Table 2 are changed to N.s/m56
m

c   and kg200
m

m   using the same stiffness N/m8
m

k   and damping ratio 

m
 0.7  as the previous section. The other parameters are the same as ones presented in Table 2. The positions and forces data 

for this case of US imaging is demonstrated in Fig. 10a and 10b, respectively.  

 

                     
                                                               (a)                                                                                                                                (b) 

 

Fig. 10.  (a) Position trajectories and (b) interaction forces in x  direction, for US imaging of a moving tissue with breathing frequency, when 0.2 rad/sec
m

n
 

. 

 

According to Fig. 10, the oscillatory force of the moving tissue with breathing frequency is filtered and not transferred to the 

sonographer during the US probe-tissue interaction. However, in free motions before and after the tissue interaction, the master 

robot becomes more sluggish and requires larger sonographer’s forces (Fig. 10b) in comparison with the previous case (Fig. 9b). 

This is due to the increase of the master damping and inertia (
m

c  and 
m

m ) as a result of the decrease of master natural frequency 

to 0.2 rad/sec
nm

  . Note that the natural frequency of the slave impedance model ( 50 rad/sec
ns

  ) is the same as in the 

previous section and not required to be changed because it is sufficiently larger than the low breathing frequency                           
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( 2.3 rad/sec
MT

 ) of the tissue motion. 

Based on the presented impedance adjustments for the master robot, the US scanning of a tissue having low frequency motion 

can be performed with two force reflection cases. In the first case with higher natural master frequency, the master robot can be 

moved easier in free space but the oscillatory force of the tissue is transferred to the sonographer’s hand during the interaction. In 

the second case with smaller natural frequency, the master robot becomes slower and requires much more force for the 

movement, however, the oscillatory force of the tissue is filtered and not transferred to the sonographer. 

 

6. Conclusion  
 

A new impedance-based control strategy for the tele-echography (remote ultrasound imaging) of moving organs, using multi-

DOF telerobotic systems subjected to time delays, was presented and experimentally evaluated. In this strategy, the slave robot 

holding the US probe has an adjustable flexibility with respect to the applied moving tissue force during tracking the master 

robot’s trajectory. Accordingly, continuous contact between the US probe and the tissue was achieved during oscillatory motions 

of the organ, which is necessary to maintain the quality of the US images. On the other hand, the oscillatory portion of the 

moving tissue force can be filtered from the haptic force feedback to the sonographer’s hand via the master robot. Therefore, the 

sonographer’s feeling is similar to the direct US imaging of a stationary (arrested) organ; however, the slave robot has a 

compliance with the organ’s motion during the operation. The proposed strategy can be used in the robot-assisted tele-

echography of the beating-heart, moving chest and/or breast during the normal breathing for remote patients.  

The mentioned performances were achieved by the appropriate adjustments of the two stable master and slave impedance 

models. Moreover, the trade-offs in choosing the master and slave impedance parameters were determined. The stability of the 

telerobotic system and the tracking convergence to the impedance models’ responses were provided in the presence of 

communication delays and modeling uncertainties, as proved via the Lyapunov stability theorem and evaluated experimentally.  

The experimental results were presented for the US imaging of a simulated moving organ with beating heart (high) and also 

breathing chest (low) motion frequencies. The presented theory and experiments indicated the capability of this method to be 

employed in the future patient studies. Due to the stability, robustness and tracking features, the patient safety in the remote site 

is significantly improved during the interaction with the US probe.   

 

Acknowledgements 

This research was supported by the Canada Foundation for Innovation (CFI) under grant LOF 28241, the Alberta Innovation 

and Advanced Education Ministry under Small Equipment Grant RCP-12-021, the Natural Sciences and Engineering Research 

Council (NSERC) of Canada, and the Quanser, Inc. 

 

References 
 

[1] Okamura AM. Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial Robot: An International Journal 2004; 31: 499-08. 
[2] Lee SJ, Lee SC, Ahn HS. Design and control of tele-matched surgery robot. Mechatronics 2014; 24: 395-06. 

[3] Carignan CR, Krebs HI. Telerehabilitation robotics: Bright lights, big future. Journal of Rehabilitation Research and Development 2006; 43: 695-10. 

[4] Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie S, Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. 
Mechatronics 2015; 31: 132-45. 

[5] Najafi F, Sepehri N. Design and Prototyping of a Force-Reflecting Hand-Controller for Ultrasound Imaging. Journal of Mechanisms and Robotics 2011; 3: 

021002 (11 pages). 
[6] Najafi F, Sepehri N. A novel hand-controller for remote ultrasound imaging. Mechatronics 2008; 18: 578-90. 

[7] Kim C, Chang D, Petrisor D, Chirikjian G, Han M, Stoianovici D. Ultrasound Probe and Needle-Guide Calibration for Robotic Ultrasound Scanning and 

Needle Targeting. IEEE Transactions on Biomedical Engineering 2013; 60: 1728-34. 
[8] Schneider C, Nguan C, Rohling R, Salcudean S. Tracked "Pick-Up" Ultrasound for Robot-Assisted Minimally Invasive Surgery. IEEE Transactions on 

Biomedical Engineering 2016; 63: 260-68. 

[9] Bell MAL, Sen HT, Iordachita I, Kazanzides P. Force-controlled ultrasound robot for consistent tissue pre-loading: Implications for acoustic radiation force 
elasticity imaging.  In: IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE; 2014. p. 259-64. 

[10] Bell MAL, Kumar S, Kuo L, Sen HT, Iordachita I, Kazanzides P. Toward standardized acoustic radiation force-based ultrasound elasticity measurements 

with robotic force control. IEEE Transactions on Biomedical Engineering 2016; 63: 1517-24. 
[11] Vilchis A, Troccaz J, Cinquin P, Masuda K, Pellissier F. A new robot architecture for tele-echography. IEEE Transactions on Robotics and Automation 

2003; 19: 922-26. 

[12] Sengupta PP, Narula N, Modesto K, Doukky R, Doherty S, Soble J, Narula J. Feasibility of Intercity and Trans-Atlantic Telerobotic Remote Ultrasound: 
Assessment Facilitated by a Nondedicated Bandwidth Connection. JACC: Cardiovascular Imaging 2014; 7: 804-09. 

[13] Sen HT, Bell MAL, Iordachita I, Wong J, Kazanzides P. A cooperatively controlled robot for ultrasound monitoring of radiation therapy.  In: IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS). IEEE; 2013. p. 3071-76. 



 

16 

 

[14] Koizumi N, Warisawa S, Nagoshi M, Hashizume H, Mitsuishi M. Construction Methodology for a Remote Ultrasound Diagnostic System. IEEE 

Transactions on Robotics 2009; 25: 522-38. 
[15] Santos L, Cortesao R. Admittance control for robotic-assisted tele-echography.  In: International Conference on Advanced Robotics (ICAR). IEEE; 2013. p. 

1-7. 

[16] Monfaredi R, Wilson E, Azizi koutenaei B, Labrecque B, Leroy K, Goldie J, Louis E, Swerdlow D, Cleary K. Robot-assisted ultrasound imaging: Overview 
and development of a parallel telerobotic system. Minimally Invasive Therapy & Allied Technologies 2015; 24: 54-62. 

[17] Schlosser J, Salisbury K, Hristov D. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery. Medical Physics 2010; 

37: 6357-67. 
[18] Zandsteeg CJ, Bruijnen DJH, Van de Molengraft MJG. Haptic tele-operation system control design for the ultrasound task: A loop-shaping approach. 

Mechatronics 2010; 20: 767-77. 

[19] Reed GL, Singer DE, Picard EH, DeSanctis RW. Stroke Following Coronary-Artery Bypass Surgery. New England Journal of Medicine 1988; 319: 1246-
50. 

[20] Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Reves JG, Blumenthal JA. Longitudinal Assessment of 

Neurocognitive Function after Coronary-Artery Bypass Surgery. New England Journal of Medicine 2001; 344: 395-02. 
[21] Kettler DT, Plowes RD, Novotny PM, Vasilyev NV, Del Nido PJ, Howe RD. An active motion compensation instrument for beating heart mitral valve 

surgery.  In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2007. p. 1290-95. 

[22] Tavakoli M, Patel RV, Moallem M, Aziminejad A. Haptics For Teleoperated Surgical Robotic Systems. NJ, World Scientific Publishing Co.; 2008. 
[23] Liu YC, Chopra N. Control of semi-autonomous teleoperation system with time delays. Automatica 2013; 49: 1553-65. 

[24] Liu X, Tao R, Tavakoli M, Adaptive control of uncertain nonlinear teleoperation systems. Mechatronics 2014; 24: 66-78.  

[25] Hashemzadeh F, Sharifi M, Tavakoli M. Nonlinear trilateral teleoperation stability analysis subjected to time-varying delays. Control Engineering Practice 
2016; 56: 123-35. 

[26] Cho HC, Park JH. Stable bilateral teleoperation under a time delay using a robust impedance control. Mechatronics 2005; 15: 611-25. 

[27] Ginhoux R, Gangloff J, de Mathelin M, Soler L, Sanchez MMA, Marescaux J. Active filtering of physiological motion in robotized surgery using predictive 
control. IEEE Transactions on Robotics 2005; 21: 67-79. 

[28] Bebek O, Cavusoglu MC. Intelligent Control Algorithms for Robotic-Assisted Beating Heart Surgery. IEEE Transactions on Robotics 2007; 23: 468-80. 

[29] Bachta W, Renaud P, Laroche E, Forgione A, Gangloff J. Active Stabilization for Robotized Beating Heart Surgery. IEEE Transactions on Robotics 2011; 
27: 757-68. 

[30] Bowthorpe M, Tavakoli M, Becher H, Howe R. Smith Predictor-Based Robot Control for Ultrasound-Guided Teleoperated Beating-Heart Surgery. IEEE 
Journal of Biomedical and Health Informatics 2014; 18: 157-66. 

[31] Bowthorpe M, Tavakoli M. Physiological Organ Motion Prediction and Compensation Based on Multi-rate, Delayed, and Unregistered Measurements in 

Robot-assisted Surgery and Therapy. IEEE/ASME Transactions on Mechatronics 2016; 21: 900-11. 
[32] Nakamura Y, Kishi K, Kawakami H. Heartbeat synchronization for robotic cardiac surgery.  In: IEEE International Conference on Robotics and Automation 

(ICRA). IEEE; 2001. p. 2014-19. 

[33] Wagner CR, Stylopoulos N, Jackson PG, Howe RD. The Benefit of Force Feedback in Surgery: Examination of Blunt Dissection. Presence: Teleoperators 
and Virtual Environments 2007; 16: 252-62. 

[34] Zarrouk Z, Chemori A, Poignet P. Force feedback control for compensation of physiological motions in beating heart surgery with real-time experiments.  

In: International Conference on Systems and Control (ICSC). 2013. p. 956-61. 
[35] Cagneau B, Zemiti N, Bellot D, Morel G. Physiological Motion Compensation in Robotized Surgery using Force Feedback Control.  In: IEEE International 

Conference on Robotics and Automation (ICRA). IEEE; 2007. p. 1881-86. 

[36] Moreira P, Liu C, Zemiti N, Poignet P. Beating Heart Motion Compensation Using Active Observers and Disturbance Estimation.  In: IFAC Symposium on 
Robot Control (SYROCO). IFAC; 2012. p. 741-46. 

[37] Dominici M, Poignet P, Dombre E. Compensation of physiological motion using linear predictive force control.  In: IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS). IEEE; 2008. p. 1173-78. 
[38] Dominici M, Cortesao R, Sousa C. Heart motion compensation for robotic-assisted surgery predictive approach vs. active observer.  In: IEEE International 

Conference on Robotics and Automation (ICRA). IEEE; 2011. p. 6252-57. 

[39] Dominici M, Cortesão R. Cascade force control for autonomous beating heart motion compensation. Control Engineering Practice 2015; 37: 80-88. 
[40] Kesner SB, Howe RD. Robotic catheter cardiac ablation combining ultrasound guidance and force control. International Journal of Robotics Research 2014; 

33: 631-44. 

[41] Yuen SG, Perrin DP, Vasilyev NV, del Nido PJ, Howe RD. Force tracking with feed-forward motion estimation for beating heart surgery. IEEE 
Transactions on Robotics 2010; 26: 888-96. 

[42] Sharifi M, Behzadipour S, Vossoughi G. Nonlinear model reference adaptive impedance control for human–robot interactions. Control Engineering Practice 

2014; 32: 9-27. 
[43] Slotine JJE, Li W. Applied nonlinear control. NJ, Englewood Cliffs: Prantice-Hall; 1991. 

[44] Sharifi M, Behzadipour S, Vossoughi GR. Model reference adaptive impedance control in Cartesian coordinates for physical human–robot interaction. 

Advanced Robotics 2014; 28: 1277-90. 
[45] Liu X, Tavakoli M. Adaptive Control of Teleoperation Systems With Linearly and Nonlinearly Parameterized Dynamic Uncertainties. Journal of Dynamic 

Systems, Measurement, and Control 2012; 134: 021015 (10 pages). 

[46] Çavuşoğlu MC, Feygin D, Tendick F. A Critical Study of the Mechanical and Electrical Properties of the PHANToM Haptic Interface and Improvements 

for High-Performance Control. Presence: Teleoperators & Virtual Environments 2002; 11: 555-68. 

[47] Dyck MD. Measuring the Dynamic Impedance of the Human Arm.  M.Sc. Thesis, Department of Electrical and Computer Engineering, University of 

Alberta. 2013. 
[48] Dyck M, Tavakoli M. Measuring the dynamic impedance of the human arm without a force sensor. In: IEEE International Conference on Rehabilitation 

Robotics (ICORR). IEEE; 2013. p. 1-8. 

 

 


