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Abstract

Human safety and data security are two of the main concerns that have limited the utilization of
deep learning-based techniques in medical robotic applications. Such concerns are amplified by
uncertainty in the deep learning run-time predictions. In this paper, we propose a novel framework
for incorporating uncertainty analysis that is fast enough (updates in 20Hz) to be used in the control
loop of a medical robot and that considers both the training and testing phases of the deep learning
algorithm. As a case study focusing on the use of a lower-limb exoskeleton to assist the walking of
people with disability, we learn the passive human-exoskeleton system’s dynamics using Random
Forest Regression (RFR) and quantify the uncertainty level of its prediction. Whereas prior art fed
the estimated human-robot interaction torque values to the adaptable Central Pattern Generators
(CPGs) to refine the gait trajectories, our contribution is to leverage the knowledge of the predic-
tions’ uncertainty levels to ensure safety in human-robot interaction. Our proposed framework
for uncertainty-aware control of medical robots finds the similarities of labels and predictions in
the training set using Kullback-Leibler (KL) divergence, while in the test phase, it detects out-of-
distribution (OOD) data using Mahalanobis distance between test feature and training distribution.
As compared to state-of-the-art methods, the proposed method is real-time and addresses the is-
sue of uncertainty in the decisions of the robot controller. We have tested the proposed method
on ExoH3 (Tehnaid S.L.) lower-limb exoskeleton. The experiments were conducted to evaluate
the performance of the uncertainty analysis technique. The results demonstrate that our proposed
uncertainty analysis technique can detect OOD features resulting in unsafe motion planning. We
also showcase the importance and effectiveness of using uncertainty analysis in the lower-limb
exoskeleton case study.
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τexo HRI Torque Applied to Exoskeleton’s Joints

τmotor Exoskeleton Motor Torque

τh Human Torque Vector

τHRI Physical Human-robot Interaction Torque

τh,pass Passive Torque Dynamic of Human-Exoskeleton

Mq(q) Inertia Matrix

Cq(q) Coriolis, Centrifugal and Damping Term

Gq(q) Gravitational Torque

q, q̇, q̈ Position, Velocity and Acceleration of Joints

Ei(t) Energy Transferred to Joint i

Ni Number of Adjacent Joints to Joint i

a(t) Amplitude of the Movement

f (t) Frequency of the Movement

ftest Test Feature

CRF( ftest) Adaptable Uncertainty Gain

D Adaptable Uncertainty Threshold

ci j ,di j Fourier Series Coefficients

Otrain Random Forest Predictions for Training Data

Ltrain Training Labels

Ftrain Training Features

DKL KL Divergence

DM Mahalanobis Distance

DMt Mahalanobis Distance after Thresholding

Pl(
−→x ) Distribution of Training Labels

Pp(
−→x ) Distribution of Training Predictions

Pt(
−→x ) Distribution of Training Set
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−→x Vector of One Feature

xi Element of Feature Vector

yi Sample from Training Predictions

N f Total Number of Samples in Feature Set

µl , σl Training Labels Mean and Standard Deviation

µp, σp Predictions Mean and Standard Deviation

µ f , Σ f Training Data Mean and Standard Deviation

1. Introduction and Background

Deep learning has been successfully applied to many medical applications over the past decades,
empowered by a large amount of available data and the data-driven system development paradigm.
However, current deep learning-based methods still suffer from quality issues that can give rise to
major concerns, especially in the context of medical applications [1], many scenarios of which
have high safety requirements. In general, medical robots are often safety-critical systems and
thorough safety analysis is required, especially when data-driven Artificial Intelligence (AI) is in-
tegrated as part of the brain of the robot control system as a decision-maker [2]. In particular, a
typical data-driven AI model (e.g., deep neural network) learns the decision logic to handle future
unseen data that follow a similar training data distribution. In other words, the safety concern is
highlighted by the fact that deep learning does not provide a statistical guarantee of reliable per-
formance for a wide range of input scenarios and has limited capability in handling data that fall
outside the learning distribution [3]. For example, in the context of autonomous driving systems
that use a visual perception system to understand the environment, although the visual system
may have faced many situations during training, it still cannot be trained on all possible scenarios.
Therefore, it is essential to perform analysis to understand when an input data point is outside
the decision boundary of the deep neural network (DNN) to avoid actions based on uncertain pre-
dictions that could have catastrophic safety repercussions. The same situation may happen for
medical robots with even greater safety-critical concerns as AI-enabled medical robots rely on
imagers and sensors that feed a DNN to help decision-making. This motivates us to propose the
uncertainty assessment technique in the control loop of the medical robot, to continuously mon-
itor the actions and decisions of DNN in the AI-powered medical robots and enhance safety in
human-robot interaction.

Uncertainty analysis of DNN prediction against a particular input has been investigated in
the literature for different types of DNNs [4]. In [5], Abdar et al., do a comprehensive review
of different techniques, applications and challenges in uncertainty quantification of deep learning
while [6, 7] discuss the challenges of uncertainty estimation in the context of medical applications.
Based on the literature, there are three main categories of uncertainty analysis techniques in the
prediction of DNN so far. The first category learns model uncertainty along with its prediction in
the DNN’s feedforward, which means that a well-trained DNN should have a prediction label and
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its corresponding uncertainty of the prediction result vector [8]. The second category of methods
considers the uncertainty brought in the DNN development process, such as from different DNN
architectures, which can be simulated methods like adding some additional layers to estimate the
uncertainty of predictions. This is usually implemented with dropout layers. Gal and Izmailov
et al. [9, 10, 11] propose a method for uncertainty analysis of DNNs by mathematical modelling
their dropout layers based on intrinsic dropout features. Dropout layers randomly select a ratio
of input features for training to prevent overfitting in DNNs. Using the gradient of batches is a
common method for training DNNs and updating their weight. Wen et al. [12] introduce a new
type of layer inspired by dropout called Flipout for decorrelating the gradient within mini-patch
during training and also estimating uncertainty by measuring perturbation in the weights. The
idea developed by Liu et al. [13] shows that adding a weight normalization step during training
and replacing the output layer with a Gaussian Process increases the uncertainty awareness of the
DNN.

In addition to the two main categories of uncertainty analysis mentioned above, out-of-distribution
(OOD) is a widely used safety analysis method and can be considered an uncertainty analysis tech-
nique. The method proposed in [13, 14] uses the distance between the test sample and training
data for OOD detection and uncertainty level estimation in DNN. Several other state-of-the-art
OOD detection techniques are commonly used in the literature. The first one is the simple base-
line method [15] where in and out of distribution samples are classified with different probability
distributions with softmax probability. The softmax layer is used at the end of the network struc-
ture to assign a probability to each output label. The second method is called Out-of-DIstribution
detector for Neural Networks (ODIN) [16]. This method shows that small perturbations substan-
tially affect in-distribution samples more than OOD samples. The third method is Mahalanobis
[17] that computes a score by measuring Mahalanobis distance [18] between the test sample and
the closest Gaussian distribution. The fourth method called Outlier Exposure [19] is the enhance-
ment of the simple baseline method with the integration of the OOD data into the training of the
DNN model. The last method is Likelihood-Ratio [20] that utilizes a separately trained neural
network for learning OOD score. A review and a comparison of the OOD detection methods men-
tioned above and uncertainty analysis in deep learning can be found in [1, 21, 22]. The methods
mentioned above are not fast enough to be used in real-time applications such as within the con-
trol loop of a robot. Therefore, this paper revisits the algorithms mentioned above to make them
real-time for integration into the robot control loop.

Lower-limb exoskeleton is a case study that we use to evaluate the performance of the pro-
posed uncertainty analysis algorithm in the control loop of the robot. Central Pattern Generators
(CPGs) is a strategy for motion planning of lower-limb exoskeleton and bio-inspired robots, whose
inherent features like time-continuous rhythmic motions are similar to natural bipedal locomotion
[23]. Up to the present, CPG for trajectory planning of exoskeleton has been investigated in
[24, 25, 26, 27, 28]. In addition, DNNs have been used in different parts of exoskeleton control
such as torque estimation, trajectory shaping, etc., by taking advantage of their model-free nature
and fast processing rate. The techniques proposed in [23, 27] use a DNN for passive torque esti-
mation based on kinematic inputs and leverage the estimation inside the CPG for gait trajectory
planning. To this end, they collected exoskeleton joint torques for driving the user to different
frequencies of walking in the absence of any interaction between the human and the robot. The
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collected data was then fed into the DNN to estimate the passive torque for any given position
and velocity of the joints. However, the previous methods that have been proposed in DNN-based
exoskeleton control have missed the critical consideration of the reliability and safety of the DNN
predictions for irrelevant, unseen, or unprepared scenarios, especially when the input lies outside
their learned decision boundary [1]. The proposed method considers the training data and test
input to analyze the trajectory shaping algorithm’s reliance on the deep learning algorithm’s pre-
diction. As a result of this method, the safety issue of using an exoskeleton for walking while a
CPG is used for trajectory shaping will be resolved.

In this paper, we solve the problem of using uncertainty of deep learning decision-makers in the
control loop of the robot while maintaining the real-time necessity of the algorithm, which has not
been investigated as mentioned above. In this regard, random forest regression (RFR) is adopted
to predict the passive dynamics of the human-exoskeleton system (known as a human user inter-
acting with the exoskeleton) using the position, velocity and acceleration of six joints as inputs.
This generates an estimation of the human-exoskeleton interaction torque, which is used to inform
and update the motion planning (put simply, the human applying positive/negative torques on the
exoskeleton joints results in a faster/slower planned motion). Our contribution is to further ma-
nipulate CPG dynamics by performing uncertainty estimation to reduce the potential safety risks.
Specifically, we consider the uncertainty of RFR predictions in the adaptable CPG dynamics for
gait motion planning to control the exoskeleton and enhance safety in human-robot interaction ap-
propriately. Our proposed uncertainty analysis technique uses Kullback-Leibler (KL) divergence
between training labels and predictions to measure the random forest uncertainty. In addition, we
use Mahalanobis distance between the current input and training distributions to check the dis-
tance between the test feature and the training set to refine the uncertainty value. The Mahalanobis
distance acts as the OOD detection part of our proposed technique. Note that the proposed uncer-
tainty analysis technique is a framework that considers the distribution of data and is independent
of the specific learning technique used inside the framework. Overall, the contributions of this
paper are summarized as follows:

• We propose a novel uncertainty analysis technique for deep learning-based medical systems
considering the training and testing data distributions. We leverage KL divergence as the
prediction uncertainty measure and refine its value using Mahalanobis distance of the test
sample from the training distribution. We demonstrate the effectiveness of the proposed
framework in the control of exoskeletons. We design to move the computational complexity
to the training phase to adapt the uncertainty analysis to be applicable in real-time control
of exoskeletons for the first time compared with the latest existing methods like [29] which
has significant computational complexities.

• We manipulate the CPG dynamics using the calculated uncertainty in predictions to have
a safe human-robot interaction during task execution. For the first time, our proposed un-
certainty technique detects potentially unsafe actions of the exoskeleton resulting from less
certain predictions by deep learning. Furthermore, it adjusts CPGs trajectory’s amplitude
and frequency while de-emphasizing the contribution of such uncertain predictions.

• Another novelty of our proposed method comes from leveraging RFR for predicting the in-
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teraction torque between the exoskeleton and the passive component of human-exoskeleton
dynamics based on velocity, position and acceleration of the exoskeleton joints as input. The
advantages of using RFR compared to the state-of-the-art methods [30, 31, 32] are its model-
free nature and independence from the type of the exoskeleton, which are very important for
our application due to the complex user-exoskeleton dynamic nature and different types of
exoskeleton being used in clinics. Furthermore, RFR has low computational complexity,
which is of great importance for our application scenario, considering the real-time control
requirement compared with DNNs.

The rest of this paper is organized as follows. First, in Section 2, we introduce the proposed
uncertainty analysis technique and details of modified CPG equations with the consideration of
prediction uncertainty. Then, in Section 3, we demonstrate the experimental result of the proposed
method, followed by the concluding remarks in Section 4.

2. Methodology

This section introduces the background and mathematical formulations of the proposed uncertainty-
aware exoskeleton control technique. This strategy adjusts the gains in the CPG based on the un-
certainty of random forest predictions to give the exoskeleton the ability to have safe interactions
with human users. The overview of the proposed technique is summarized in Figure 1. Here,
τmotor is the total torque measured by exoskeleton torque sensors, τexo is the torque applied to the
exoskeleton’s joint by joint-level position controller, and τh is the human torque vector.

Figure 1: Overview of proposed uncertainty-aware exoskeleton control method.

2.1. Random Forest Regressor Method for HRI Estimation
The non-linear dynamics of multi-DOF lower-limb exoskeleton interacting with the human

user is
Mq(q)q̈+Cq(q)q̇+Gq(q) = τHRI + τmotor + τh,pass. (1)

Here, q is the exoskeleton’s joint positions vector, Mq(q) is the inertia matrix, Cq(q) is the Cori-
olis, centrifugal and damping term, and Gq(q) is the gravitational torques. The torque values on
the right side of (1) are exoskeleton motor torque (τmotor), human-robot interaction (HRI) torque
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(τHRI), and passive dynamics of human exoskeleton system (τh,pass). The passive dynamics of the
human exoskeleton system is defined as the exoskeleton joint torques required to drive a user in
the absence of any interaction between the human and the exoskeleton. Given these passive torque
values, the active human-robot interaction torque can be calculated as the difference between mea-
sured joint torque applied by human (τh) and estimated passive torque. Our proposed method uses
ensemble decision trees in the form of a random forest regression (RFR) for estimating the passive
torque (τh,pass) that is used for estimating HRI torque (τHRI) using

τHRI = τh − τh,pass. (2)

τHRI calculated in (2) is used to calculate the energy transferred between the human user and
exoskeleton. The frequency and amplitude of the desired trajectory will be affected by the energy
in walking with an exoskeleton. The mathematical details are given in Section 2.2.

Random forests are multiple decision trees with voting schemes at the end of these trees for
making predictions. Decision trees have proven to have a good performance for regression prob-
lems and are easy to be trained on commodity hardware [33, 34]. The complexity and the perfor-
mance of the regression algorithm are essential considerations in our application under the context
of a medical robot. The performance is also critical as the decision coming from RFR affects the
physical human-robot interaction (pHRI). Figure 2 shows the structure of the model that has been
developed for estimating the passive torque of the human (τh,pass).

Figure 2: Random forest model for human passive torque estimation τh,pass

In this paper, we asked a human user to walk with an exoskeleton over the ground in several
training data collection trials. We used CPGs with different walking speeds for trajectory shaping
during these trials. Each exoskeleton joint’s position, velocity, acceleration and corresponding
motor torques have been saved. The user was asked to comply with the exoskeleton-imposed
motion and not apply any force to the exoskeleton so that the torque of each joint equals the passive
torque. We changed the velocity of the exoskeleton walking for training the random forest. The
position, velocity and acceleration of the exoskeleton’s joints (q, q̇, q̈) are the input to the random
forest model and the estimated passive torques of each joint (τh,pass) is the output. Applying
torques to the joint of the exoskeleton will result in faster motions. Hence, τHRI , which has a
direct relation to the energy transferred between the user and exoskeleton, is used in the modified
adaptable CPGs algorithm for shaping the trajectory of the exoskeleton along with its uncertainty.
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2.2. Modified Adaptable CPG for Trajectory Shaping
Modified adaptable CPG dynamics are used for designing gait trajectories based on HRI

torque. The HRI torque (τHRI) is used for calculating the energy transferred between the user
and exoskeleton. This is inspired by the method in [27, 23]. We calculate the energy of each joint
i by using the HRI torque and the velocity of each joint as

Ei(t) =
∫ t

0
τHRIi(t)q̇i(t). (3)

Here, τHRIi(t) is calculated using (2) for each joint and q̇i(t) is the velocity of each joint coming
from the exoskeleton sensors (i = 1, ...,n). The modified adaptable CPG dynamics for the desired
joint trajectory generation based on the amplitude and the frequency update are proposed as

φ̇i(t) = f (t)+
Ni

∑
j=1

νi j sin(φi(t)−φ j(t)−ψi j)

f̈ (t) = α f (
α f

4
(F +CRF( ftest)

n

∑
k=1

λkEk − f (t))− ḟ (t))

ä(t) = αa(
αa

4
(A+CRF( ftest)

n

∑
k=1

ηkEk −a(t))− ȧ(t)).

(4)

Here, Ni is the number of adjacent joints to the joint i. a(t) is the amplitude of the movement,
and f (t) is the frequency of the movement. α f and αa are constant parameters. λk and ηk are
constant gains for updating the frequency and amplitude of the gait cycles, based on the injected
pHRI energy Ek defined in (3). A change in frequency will result in changes in walking speed,
while a change in amplitude will result in changes in the walking step length of the user with the
exoskeleton. In the above, we have modified the adaptable CPG dynamic proposed in [27, 23]
by adding CRF( ftest) to the energy term in the frequency and amplitude dynamic formula. Here
CRF( ftest) is the uncertainty in the estimation of passive torque using RFR and will be explained in
Section 2.3. Adding CRF( ftest) to (4) enables the algorithm to scale the effect of the pHRI energy
in the CPG gait trajectory update. For instance, if the input feature is far from the distribution of
the training data, the distance value will be high. Then this technique is able to reduce the effect
of the energy term in (4) by using CRF( ftest) found in (8).

We now can formulate the desired trajectory of joint i using (4) and Fourier series as

qdi(t) = a(t)(ci0 +
Ni

∑
j=1

(ci j cos jφi(t)+di j sin jφi(t))). (5)

Here, ci j and di j are the Fourier series coefficients for each joint’s trajectory. The trajectory calcu-
lated in (5) considers the uncertainty of the prediction in real-time using (8) and (4). The proposed
adaptable CPG can be used in any other motion planning approach for exoskeletons in a simi-
lar manner. We did it for CPGs as one example of motion planning methods for the lower-limb
exoskeleton.
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2.3. Uncertainty Analysis & OOD Detection
Our proposed uncertainty analysis technique considers both the training and run-time predic-

tion phase for determining the uncertainty of the prediction. The similarity between training labels
and model predictions during training is a measure that can be used to assess the model’s reliability
for an input that falls inside the training distribution. We use Kullback-Leibler (KL) divergence
as a similarity measure in this regard. Our proposed technique finds the Mahalanobis distance
between the input feature and training data distribution during the test phase to check how far the
test feature is from the training data for updating uncertainty values. This mechanism refines the
initial uncertainty measure found using KL divergence for the test sample in real time. Using Ma-
halanobis distance for OOD detection is inspired by the method proposed in [17]. The overview of
the proposed uncertainty analysis and OOD detection technique is shown in Figure 3. Otrain, Ltrain
and Ftrain are predictions of the training set, labels of the training set and input training features,
respectively. These data are used for calculating KL divergence.

Figure 3: Overview of proposed uncertainty analysis and OOD detection technique.

2.3.1. KL Divergence as Similarity Measure
The Kullback-Leibler (KL) divergence, DKL(Pl(

−→x ),Pp(
−→x )) is a statistical measure of how a

distribution Pp(
−→x ) is similar to a reference distribution Pl(

−→x ). The KL divergence between two
discrete distributions Pl(

−→x ) and Pp(
−→x ) is calculated as

DKL(Pl(
−→x ),Pp(

−→x )) = ∑
−→x ∈χ

Pl(
−→x ) log

Pl(
−→x )

Pp(
−→x )

. (6)

Here, Pl(
−→x ) and Pp(

−→x ) are the distributions of the labels and predictions on the training set,
respectively. χ is the probability space where distributions are defined. The mathematical details
of the distribution analysis for KL divergence is demonstrated in Section 5 (Appendix).

2.3.2. Mahalanobis Distance for OOD Detection
Mahalanobis distance is a statistical measure of the distance between a point and a distribution.

Assume a vector −→v = [vi]
n
i=1 and a distribution P with mean value of −→µ and covariance matrix

(Σ). The Mahalanobis distance between vector −→v and distribution P is

DM(P,−→v ) =

√
(−→v −−→

µ )T Σ−1(−→x −−→
µ ). (7)
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The covariance matrix Σ is a positive definite matrix; hence its inverse exists and is also positive
definite, and the root square is shown in (7) always has a real value.

In this paper, we use (7) to check how far input feature ( ftest) is to the distribution of the
training set (Pt(

−→x )) for OOD detection. We calculate the histograms of training data, mean value
−→
µ f and covariance matrix Σ f . Then we use (7) to find the distance value (DM(Pt(

−→x ), ftest)). The
distance found using (7) refines the initial uncertainty estimation obtained using (6) in real-time
for the test sample. The resulting Mahalanobis distance is used in our proposed adaptable CPGs
gain tuning technique described in Section 2.3.3.

2.3.3. Adaptable CPGs Gain Tuning Technique
Our proposed adaptable gain tuning algorithm should have the ability to account for the effect

of uncertainty in the CPGs trajectory planning based on the distance between input feature and
training distribution. We propose

CRF( ftest) =

{
DKL(Pl(

−→x ),Pp(
−→x ))×D, if D < 1

0, if D ≥ 1
(8)

as the uncertainty input to be fed into the CPGs for controlling human-robot interaction during task
execution. Here, C is a constant value (in the range of 60 to 80, which has been found empirically).
D ≜ |1− DM(Pt(

−→x ), ftest)
C |, and DKL(Pl(

−→x ),Pp(
−→x )) and DM(Pt(

−→x ), ftest) are from (6) and (7). The
summarized version of the proposed uncertainty technique for adaptable CPG gain tuning is shown
in Algorithm 1. This is important to note that the proposed method only changes the coefficients
of some terms in 2nd-order ordinary differential equations (ODEs) shown in (5) at a 20Hz rate.
The ODEs will be numerically solved at a higher rate, so in practice, we see only a smooth and
continuous gradual transition. The mathematical explanation of the effect of uncertainty in the
CPG algorithm is demonstrated in Section 2.2.

Algorithm 1 Proposed Adaptable CPG Gain Tuning

Require: Training feature distribution (Pt(
−→x )), Training label distribution (Pl(

−→x )), Random for-
est prediction for training set distribution (Pp(

−→x )), Gain constant (C), Training data distribu-
tion −→

µPt , KL divergence between predictions and labels DKL(Pl(
−→x ),Pp(

−→x ))
1: for each ftest do
2: Find DM(Pt(

−→x ), ftest) using (7)
3: Find CRF( ftest) using (8)
4: Update CPG equations and calculate amplitude and frequency of the trajectory using (4)

and find CRF( ftest) using (8)
5: end for

3. Results and Discussion

As a showcase of the proposed framework, an exoskeleton was utilized in this paper. The
exoskeleton is operated by a human user who applies force to its joints, resulting in additional
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torques on the torque sensors. If the interaction torque does not align with the distribution of
data on which the model was trained, an unsafe situation may arise. This would result in the
model making inaccurate decisions and potentially endangering the user who interacts with the
exoskeleton.

We have tested our proposed method on the ExoH3 (Technaid S.L.) exoskeleton, Madrid,
Spain. A non-disabled human user with a height of 173 cm and weight of 67 kg wore the ex-
oskeleton while also using crutches as shown in Figure 4. The trajectory of the walking has been
saved and Fourier series analysis was conducted on the acquired trajectory to obtain a minimum
number of series and the best coefficients. Eight terms of the Fourier series were sufficient and
attained coefficients of the hip, knee and ankle motions are listed in Table 1. Additionally, param-
eters and initial values of the CPG dynamics for hip, knee and ankle joints of both legs are listed
in Table 2.

Figure 4: Experimental setup with the human user.

This experiment was planned for two scenarios with and without uncertainty analysis to eval-
uate the proposed technique’s performance in the exoskeleton’s control loop. Real-time Desktop
MATLAB/Simulink was employed for receiving the sensory data and sending the control com-
mands to the exoskeleton. The sampling frequency was 20 Hz. For this, the exoskeleton was
connected to a laptop with a CAN interface (Vector VN1610) running on a Core i7 CPU with 16
GB RAM. We implemented the RFR model on a different PC using Python programming lan-
guage and scikit-learn machine learning library [35]. We used the UDP communication protocol
for sending and receiving data between the PC and the laptop.

We trained the RFR model for learning the passive human-exoskeleton dynamics using our
training dataset. The same user was asked to wear the exoskeleton and walk on the ground with-
out interacting with the exoskeleton. The authors are aware that it is hard to make human-robot
interaction zero during the experiment. The HRI torque has two parts, intentional and uninten-
tional torque. The intentional torque is used in the adaptable CPG for trajectory shaping. The
average value of the torque was subtracted from the experimental torque to make sure that un-
intentional torque is not included in the experiment. The kinematic data (position, velocity and
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Hip initial
motion

Knee initial
motion

Ankle initial
motion

C
oefficients

ofFourierseries

a0 = 5.057,
a1 = 6.222,
a2 = 0.521,
a3 = 0.052,
a4 = 0.456,
a5 = 0.032,
a6 = 0.186,
a7 = −0.06,
a8 = 0.014,
b1 = 19.24,
b2 = 5.028,
b3 = 1.272,
b4 = −0.01,
b5 = −0.49,
b6 = 0.131,
b7 = −0.01,
b8 = 0.073,

a0 = 12.28,
a1 = 19.88,
a2 = 11.76,
a3 = 7.327,
a4 = 4.888,
a5 = 2.369,
a6 = 0.957,
a7 = −0.38,
a8 = 0.180,
b1 = −0.95,
b2 = −0.37,
b3 = 0.707,
b4 = 1.083,
b5 = 1.231,
b6 = 0.962,
b7 = 0.405,
b8 = 0.115,

a0 = 6.842,
a1 = −6.46,
a2 = −2.77,
a3 = −0.35,
a4 = 0.369,
a5 = 0.590,
a6 = 0.552,
a7 = −0.28,
a8 = 0.165,
b1 = −4.03,
b2 = 4.996,
b3 = 5.156,
b4 = 1.475,
b5 = 0.876,
b6 = 0.388,
b7 = 0.242,
b8 =−0.004,

Table 1: Coefficients of the Fourier series (5) for the hip, knee and ankle initial motions based on the analysis of
normal gait trajectories

Hip, knee and ankle CPGs’ parameters
Dynamic param-
eter values

νh−h = 0.5, νh−k = 0.5, νk−h = 0.5, νa−k = 0.5,
νk−a = 0.5, νa−a = 0.5, α f = 15π , αa = 15π ,
ψ = 0.7, λ = 0.3, η = 0.3, F = 0.35π , A = 1

Initial values φright(0) = 2 rad, φle f t(0) = 2+π rad, f (0) =
0.1π rad/s, a(0) = 0.1π rad

Table 2: Parameter and initial values of CPG dynamics (4) for the hip, knee and ankle joints
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acceleration) and the torque values of each exoskeleton joint were recorded during this walking.
80% of the data was used to train the model, and the rest was used for testing. After training the
model using 5-fold cross-validation, we reached the average mean absolute error (MAE) value of
0.014(N.m) on our test set.

In the first scenario, the user walked with the exoskeleton while interacting with it, but the
uncertainty analysis algorithm was turned off. In this scenario, we revised the CPG algorithm
to create the desired trajectory for the exoskeleton joints by considering the energy transferred
between the user and the exoskeleton. In the second scenario, while the CPG was revised accord-
ing to the user-exoskeleton energy transfer, we also turned the uncertainty analysis technique on.
We evaluated its performance in detecting unsafe decisions and changing CPG’s gains when the
exoskeleton is making a potentially unsafe decision and taking potentially unsafe action in two
user trials. In this way, we evaluated and compared the performance of the uncertainty analysis
technique by monitoring the amplitude and frequency of the trajectory created by the CPG with
and without the uncertainty gain. We present the experimental results for the first scenario in the
time interval between 20 (sec) and 80 (sec) as it is a time interval during which the user interacts
with the exoskeleton. The time interval for the second scenario is between 50 (sec) and 250 (sec)
as in this time interval, the user interacts with the exoskeleton and applies additional torques to the
exoskeleton’s joint.

3.1. Scenario one: CPG without Uncertainty Estimation Technique
We used eight terms of typical human gait’s hip, knee and ankle motions Fourier coefficients

for calculating CPGs’ gait trajectory. The walking data were acquired during our experiment to
make a training dataset. During the experiment, first, the CPG dynamics calculates the amplitude
and frequency of the trajectory using (4) with CRF( ftest) = 1. Then, the desired trajectory is
calculated in (5) using Fourier series coefficients.

A human user wore the exoskeleton as shown in Figure 4. We evaluated the position control
algorithm’s performance by comparing the exoskeleton points desired and current trajectories.
This result is shown for the left and right knees in Figure 5. Figure 5 shows that the exoskeleton is
able to follow the desired trajectory created by the CPG dynamics as the user interacts with it.

Next, the user applies active torques on different joints of the exoskeleton to analyze the CPGs’
performance in changing the frequency and amplitude of the motions based on the energy trans-
ferred between the user and the exoskeleton. Figure 6a shows the total energy transferred between
the user and the exoskeleton during the experiment. Figure 6b and Figure 6c show the amplitude
and frequency of the desired trajectory created by CPGs following this energy transformation.

The experimental results in Figure 6 show that CPGs is able to change the desired trajectory
of the robot as the user applies active torque to the robot’s joints. This is implied in the spikes
of Figure 6b and Figure 6c that happen when the user adds active torque to the system, shown in
Figure 6a.

3.2. Scenario Two: Uncertainty Estimation Technique Performance Analysis
The performance of the proposed uncertainty analysis technique experimented with decisions

from exoskeletons that may be unsafe for human users. This may result from irregular changes
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Figure 5: Desired and current trajectories of the right and left knee joints of the exoskeleton.

(a) Energy transferred between user and ex-
oskeleton during an experiment.

(b) Amplitude of the desired trajectory calcu-
lated by CPGs

(c) Frequency of the desired trajectory calcu-
lated by CPGs

Figure 6: Performance of CPGs in designing trajectory based on energy transferred between user and exoskeleton

in the velocity of the exoskeleton during usage. As mentioned earlier, the training data was col-
lected for walking on the ground with no interaction between the user and the exoskeleton. If
the situation changes, the user may apply irregular torque to the joints of the exoskeleton, and
CPG may interpret it as a speed-up request from the user. This can be an unsafe decision, and
the uncertainty technique should detect it as OOD and stop the exoskeleton from speeding up.
We tried to simulate this situation for the exoskeleton during our experiment in two separate user
trials to evaluate the performance of the proposed uncertainty analysis technique. During our first
user trial, we analyzed the performance of Mahalanobis distance and the thresholding algorithm
in detecting unsafe actions. The proposed uncertainty analysis technique monitored the distance
between the coming features and training set to inform the exoskeleton when an unsafe situation
happens. The Mahalanobis distance between a test sample and the training set is a criterion for
the proposed OOD detection algorithm. The distance between test features and training set before
(Figure 7a) and after thresholding (Figure 7b) are shown in Figure 7.

The uncertainty detection technique should detect unsafe decisions of the exoskeleton and ap-
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(a) Original values of Mahalanobis distance between test features and
training set

(b) Mahalanobis distance between test features and training set after
thresholding.

Figure 7: Mahalanobis distance between test features and training set (7a) before and (7b) after thresholding for user
trial #1.

ply appropriate gains to CPG dynamics to modify its trajectory. The performance of the proposed
uncertainty detection technique is shown in Figure 7b. During our first user trials, the distance
between input features and the training set jumps when the user applies excessive torques to the
exoskeleton, which results in an unsafe decision from the RFR. This situation is simulated in the
experiment by asking the user to resist the changes in the trajectory coming from CPG. These
jumps were exactly when we asked the user to start applying additional torques to the joint of the
exoskeleton. We used two threshold values to keep jumps in Figure 7a and discard the rest. thup
and thdown are two threshold values that isolate unsafe actions of the user using

DMt ( ftest) =


S, if S < thdown

0, if thup > S > thdown

S, if S > thup.

(9)

Here, S ≜ DM( ftest)−Do f f set and we chose thdown = −20 and thup = 25 to make sure that the
thresholding method only selects unsafe actions and discards smooth interactions between the
user and exoskeleton. We found these thresholds experimentally by walking with exoskeleton.
The value of offset is Do f f set = 15. The results shown in Figure 7b present a corresponding peak
that can be considered as the level of uncertainty in our test feature.

Our proposed adaptable CPG gain tuning technique should limit the trajectory’s amplitude
and frequency growth whenever the user applies excessive torques to exoskeleton joints, which is
caused an unsafe decision from exoskeleton. Furthermore, the gain value should be tuned based on
the level of the uncertainty coming from the Mahalanobis distance of the test feature and training
set using (8) and (7). We investigated the performance of our proposed adaptable CPG gain tuning
during our second user trial. For this purpose, we first need to check whether our algorithm is
real-time or not. Figure 8 shows the real-time features of our proposed method as an adaptable
CPG gain tuning algorithm is triggered whenever the distance exceeds the tolerance interval. This
is shown with lines from the top figure to the bottom figure in Figure 8. Figure 8 shows that our
proposed method is able to detect unsafe decision from the kinematic data of the robot in real time,
which make it applicable to real-time applications like robotic trajectory shaping.
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Figure 8: Analyzing real-time performance of proposed method in user trial # 2.

Secondly, we monitored the amplitude and frequency of the trajectory generated by CPG dur-
ing user trial # 2. The results are reported in Figure 9. The frequency and amplitude shown in
Figure 9b and Figure 9a indicate that our proposed uncertainty algorithm is able to detect irregular
actions and control the trajectory generated by CPG. The behaviour of the proposed method can
be seen in Figure 9 as the blue trajectory, which is an output of the proposed algorithm, cancels
the effect of unsafe actions in the trajectory generated by CPG (the blue line does not follow the
orange line in the unsafe situations). The proposed method detects irregular jumps, decreases the
trajectory’s amplitude and frequency, and smoothly converges to the corresponding value (the blue
line was shown with the thicker font for demonstration purposes. In the actual result, the two lines
are exactly fit to each other). This decrease and smooth convergence in the frequency and ampli-
tude of the trajectory will vanish the effect of unsafe action on the user. Furthermore, a decrease
in frequency will control the speed of the exoskeleton. A decrease in the amplitude will control
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the gait of the trajectory generated by CPG to enhance the safety of human-robot interaction.

(a) Comparison of amplitude of the desired trajectory with and without
uncertainty analysis.

(b) Comparison of frequency of the desired trajectory with and without
uncertainty analysis.

Figure 9: Performance of the proposed uncertainty analysis algorithm in adjusting trajectory’s amplitude and fre-
quency during user trial # 2.

4. Conclusion and Future Works

Deep learning has been applied in many medical applications. However, the safety and security
concerns of using it in the control loop of medical robots have not been thoroughly investigated,
which is a safety-critical application of deep learning. In this paper, we proposed a method that
can evaluate the uncertainty of the deep learning algorithm in real-time and use this uncertainty
measure in the control loop of the robot to inform the system whenever the situation is unsafe for
the user. Our proposed method finds the training features and label distributions during the training
phase. When the training phase ends, the proposed method finds the distribution of the predictions
when the training features feed into the model. The Kullback-Leibler (KL) divergence between
predictions and labels is the initial uncertainty of the model. The uncertainty of the prediction for
the input feature is updated based on the Mahalanobis distance of the test feature from the training
distribution. The calculated uncertainty will update the effect of energy transferred between the
user and the robot in the CPGs dynamics. This paper used a random forest regression to estimate
the human robot’s passive torque.

The proposed method has been tested in the control loop of the ExoH3 (Technaid S.L.) ex-
oskeleton with six degrees of freedom. The experiments were conducted in two scenarios. In the
first scenario, we asked the user to walk with the exoskeleton and apply active torque to its joints
to revise the CPG dynamics. In the second scenario, we evaluated the performance of the pro-
posed uncertainty analysis technique in two user trials. The proposed technique was able to detect
unsafe decisions of the exoskeleton and tuned CPGs gains considering the level of uncertainty in
the coming data during both user trials.
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Although the proposed method has the ability to reduce the safety concerns in using medical
robots for clinical applications, it has some limitations that need to be addressed. In the next steps
of this project, we will address the concerns and limitations of the proposed method. The first
concern is the energy loss in changing trajectories generated by CPGs. This issue has a direct
impact on the ability of our proposed method to satisfy the preferences of the user. The second
concern is fixing the user-dependant nature of the training data which can be fixed by state-of-the-
art online learning algorithms like reinforcement learning. The last concern is the stability analysis
of the gait generated by the CPGs which can be addressed in future. The proposed method can
be used as a framework for uncertainty analysis and will be used in different medical robotic
applications in the future.

5. Appendix

5.1. Distribution Analysis
Let us define xi as a sample from −→x , where −→x is the vector of one feature and xi is an element

of this vector (xi ∈ −→x ). Then nxi is the number of times that the input data is in the interval of
[xi−ε,xi+ε]. Here ε is the value that controls the length of histogram intervals in our probability
function estimation. Then we have

M

∑
i=1

nxi = N f

Pxi =
nxi

N f
.

(10)

Here, M is the number of distinguished samples and N f is the total number of samples in the
dataset. We need to calculate the distribution of the dataset to find KL divergence using (6), while
(10) is only useful for finding the probability of one sample. To solve this problem, we estimate
the distribution of (Ltrain) and (Otrain) using Gaussian fitting as the distribution of the acquired
data follows Gaussian distribution shown in Figure 10. Then we have

Figure 10: Training dataset with Gaussian distribution fitted to the data.
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Ltrain ∼ N (µl,σl), (11)

where mean value (µl) and standard deviation (σl) can be calculated using µl = ∑
N
i=1 xi and σl =√

1
N ∑

N
i=1(xi −µl)2. We now formalize the distribution of the training labels Pl(

−→x ) as

Pl(
−→x ) =

1√
2πσ2

l

exp
(−→x −−→

µl )
2

2σ2
l

. (12)

We follow the same procedure for finding the distributions of Otrains (Pp(
−→x )) as

Otrain ∼ N (µp,σp)

µp =
N

∑
i=1

yi

σp =

√
1
N

N

∑
i=1

(yi −µp)2.

(13)

We now formalize Pp(
−→x ) as

Pp(
−→y ) =

1√
2πσ2

p

exp
(−→y −−→

µp)
2

2σ2
p

. (14)

Here, yi is the sample from Otrain. We calculate the required distributions using (12) and
(14), then we use (6) for calculating KL divergence between distributions as our initial uncertainty
measure.
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