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Abstract— Robot-assisted arthroscopic surgery is transform-
ing the tradition in orthopaedic surgery. Compliance and
stability are essential features that a surgical robot must have
for safe physical human-robot interaction (pHRI). Surgical
tools attached at the robot end-effector and human-robot
interaction will affect the robot dynamics inevitably. This could
undermine the utility and stability of the robotic system if
the varying robot dynamics are not identified and updated
in the robot control law. In this paper, an integrated frame-
work for robot impedance control and nonlinear disturbance
observer (NDOB)-based compensation of uncertain dynamics is
proposed, where the former ensures compliant robot behavior
and the latter compensates for dynamic uncertainties when nec-
essary. The combination of impedance controller and NDOB is
analyzed theoretically in three scenarios. A complete simulation
and experimental studies involving three common conditions
are then conducted to evaluate the theoretical analyses. A pre-
liminary pHRI application on arthroscopic surgery is designed
to implement the proposed framework on a robotic surgeon-
assist system and evaluate its effectiveness experimentally. By
integrating impedance controller with NDOB, the proposed
framework allows an accurate impedance control when dy-
namic model inaccuracy and external disturbance exist.

I. INTRODUCTION

Elbow arthroscopy is a novel and complex procedure
that allows management of elbow stiffness, arthritis and
fractures in a minimally fashion [1]. Minimally invasive
surgery (MIS) has been gaining popularity due to its potential
benefits of faster recovery time and decreased pain [2].
Recent advancements in surgical robotics are transforming
the traditional orthopaedic surgeries and helping the surgeons
generate more successful and precise surgical outcomes [3]–
[5]. Furthermore, MIS has been adopted due to the widely
used da Vinci robot system in more and more types of
surgical operations [6], [7].
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In robot-assisted elbow arthroscopy, a robot can help to
increase surgical accuracy and precision, e.g., for bone align-
ment. It can also serve as an auxiliary surgical support, e.g.,
to help surgeons reduce fatigue by holding the arthroscope
[5]. In such a robot-assisted surgical support system, the
robot dynamics can be dramatically affected due to the extra
surgical tools attached onto the robot end-effector (EE) and
the physical human-robot interaction (pHRI). Here both the
mass of the surgical tools and the interaction force can be
viewed as external disturbance. Therefore, an accurate esti-
mation and compensation for dynamic uncertainties can be
a critical step towards a stable and accurate control system.

Many methods have been proposed for estimating dynamic
uncertainties and eliminating their effects on robot dynamics.
A main solution is to design a linear or nonlinear disturbance
observer (NDOB) which can monitor the dynamic uncertain-
ties in real-time, and make a compensation when necessary.
A comprehensive review on NDOB can be found in [8], and
a historical review on versatile observers can be found in [9].

A classic first-order momentum observer and its variations
of sliding mode momentum observers have been designed
to estimate an external disturbance/force [10]. A disadvan-
tage of these observers is that they require an accurate
dynamic model and negligible/known friction torque for an
accurate estimation. This makes sense since the observer
usually estimates a lumped dynamic uncertainty term which
includes both the dynamic model inaccuracy and the external
disturbance/force. Therefore, only when the dynamic model
is accurate, the estimation from the observer is of any
accuracy. Additionally, the classic approach can provide
exact estimation only when the external force is constant
rather than time-varying.

A model-based extended state observer (ESO) [11] is
used for estimating human-robot interaction force on an
impedance-based three degrees-of-freedom (DOF) rehabili-
tation robot when a healthy subject and a post-stroke patient
operates the robot separately. The effectiveness of ESO is
demonstrated by simulation. However, as the authors ana-
lyzed, the experiment result on force estimation is not accu-
rate enough due to the inaccurate dynamic model they used.

A NDOB observer is used to estimate constant external
payloads on the robot EE of a 6-DOF WallMoBot [12].
Only 1-DOF is involved in the experiments for the sake of
simplicity. The effectiveness of the NDOB observer has been
demonstrated in that work.

As mentioned earlier, the output from an observer is a
lumped uncertainty term that incorporates both the dynamic
model inaccuracy and the external disturbances. In order
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to have an accurate estimation on the external disturbances
(e.g., interaction force), the dynamic model inaccuracy (e.g.,
friction) is better to be estimated independently. Research has
focused on this issue by employing an additional observer.
A neural network (NN) is utilized to reconstruct friction
dynamics while a general momentum disturbance observer is
used to estimate the external forces in [13]. The estimation
accuracy on the external force is considerably improved
since the friction is separately estimated by the NN. Similar
approaches of combing a disturbance observer and a deep
learning technique are also introduced in [14], [15].

Impedance control is widely used for human-robot col-
laboration due to its intrinsic property of compliance [16].
By an impedance controller, a robot can be controlled to be
soft (compliant) or rigid (non-compliant) as necessary, which
can ensure a safe human-robot interaction [17]. Furthermore,
the measurement on the interaction force is not necessary
for impedance control. Therefore, the sensor-free and com-
pliance properties make it popular for surgical robots. One
main issue for implementing an impedance controller is that
it requires full knowledge of the robot dynamics whereas
the identified dynamic parameters are usually inaccurate in
practice. Note that admittance control, which can be viewed
as a counterpart of impedance control, does require an
external sensor to measure the interaction force though it
does not require full knowledge of the robot dynamics [18].

During arthroscopic surgery, knowing the position and
orientation of the arthroscope is critical for improving the
surgeon’s situational awareness by allowing the surgeon to
know the relationship between the current field of view and
the surgical pre-plan [19], [20]. A common way to monitor
the position and orientation of the arthroscope is to employ
a tracking system [21]. The drawback of using a tracking
system is that the marker could be easily obstructed by the
surgeon’s body or other objects in the operating room. A
robot-assisted surgical system is another promising solution
where the coordinate system of the arthroscope-holding robot
can be used for the tracking. Meanwhile, the robot can
help to improve surgical accuracy and reduce the surgeon’s
effort by holding the arthroscope’s weight. Developing such
a robot-assisted surgical system as the physical user interface
is meaningful both for a virtual surgical training simulator
and for supporting the surgeon in live surgical procedures.

In our specific application of elbow arthroscopy MIS, an
integrated framework consisting of impedance control and
NDOB is constructed as illustrated in Fig. 1. In the proposed
framework, the impedance control is selected to guarantee
compliant robot behavior without using a force/torque sensor
[16], while the NDOB is used to estimate dynamic uncertain-
ties and compensate for them when necessary. In summary,
the contributions of this paper are: (1) A novel framework
for integrating impedance control and NDOB is proposed
and the effectiveness is evaluated; (2) The combined output
is analyzed in three scenarios, and evaluated by simulation
and experimental studies.

The remainder of this paper is organized as follows:
Section II is devoted to the description of impedance control

and nonlinear disturbance observer as well as their com-
bination. Section III presents simulations, experiments, and
corresponding results in different conditions. A preliminary
application scenario is presented in section IV to evaluate
the effectiveness of the proposed framework in arthroscopic
surgery. Section V gives the concluding remarks.

II. METHODS

A. Robot dynamics and impedance control

A general dynamic model for an n-degree-of-freedom
(DOF) rigid robot [22] can be given by

M(q)q̈+ S(q, q̇)q̇+ g(q) = τ + JTFext (1)

where M ∈ Rn×n denotes the inertia matrix, S ∈ Rn×n

denotes a matrix related to the Coriolis and centrifugal
forces, g ∈ Rn represents a gravity-related vector, τ ∈ Rn is
the commanded joint torque vector, Fext ∈ R6 is the external
force in Cartesian space, and J ∈ R6×n is the Jacobian
matrix. Note that friction is not included in (1).

A full impedance model [16], [17] for robot-environment
contact can be expressed as

Fimp = Mm(ẍ− ẍd) +Dm(ẋ− ẋd) +Km(x− xd)
(2)

where Mm,Dm,Km are user-designed matrices for iner-
tia, damping, and stiffness, respectively. xd, ẋd, ẍd are the
desired position, velocity, and acceleration, respectively in
Cartesian space, while x, ẋ, ẍ are the actual robot position,
velocity, and acceleration, respectively. Fimp ∈ R6 is the
interacting wrench (force and torque) between the robot EE
and the environment in Cartesian space.

To avoid the requirement for external force measurement,
let us set the designed inertia matrix equal to the inherent
inertia matrix of the robot, i.e., Mm = Mx, where Mx

is the inherent inertia of the robot in Cartesian space and
Mx = J−TMJ−1 [23]. By substituting (2) into (1) using
Fext = Fimp and setting Mm = Mx, the first simplified
version of impedance control law (V1) can be expressed as

τimp = MJ−1(ẍd − J̇q̇) + Sq̇+ g

+JT[Dm(ẋd − ẋ) +Km(xd − x)],
(3)

where J−1 will be replaced with the pseudo-inverse of the
Jacobian J# = JT(JJT)−1 when J is not a square matrix.

In order to represent a real mechanical system, a Coriolis
and centrifugal term can be included into the impedance
model (2). Accordingly, the augmented impedance model is

Fimp = Mx(ẍ− ẍd)

+(Sx +Dm)(ẋ− ẋd) +Km(x− xd)
(4)

where Sx is the Coriolis and centrifugal matrix of the
robot in Cartesian space and Sx = J−TSJ−1 −MxJ̇J

−1.
By substituting (4) into (1) using Fext = Fimp, the second
simplified version of impedance control law (V2) can be
expressed as

τimp = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd + g

+JT[Dm(ẋd − ẋ) +Km(xd − x)]
(5)
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Furthermore, for a set-point regulation problem, we set
ẍd = ẋd = 0. Then, the impedance control law V2 (5) can
be simplified to V3 as expressed by (6), which is also known
as task-space PD controller with gravity compensation.

τimp = JT[Km(xd − x)−Dmẋ] + g (6)

The relationships among the three versions of the
impedance control law V1, V2, and V3 are summarized as
follows. All of the three versions avoid measuring external
force by setting Mm = Mx. V1 is based on a general
impedance model that is widely used in robotics control
systems. V2 is based on an augmented impedance model
that may represent a real mechanical system by including a
Coriolis and centrifugal term into the model as shown in (4).
V3 focuses on a specific set-point regulation problem based
on V2. Therefore, V2 can be viewed as a bridge from V1 to
V3, while V2 itself also represents an important simplifica-
tion. For the subsequent simulations and experiments, only
V2 and V3 are employed such that V2 can perfectly reduce
to V3 when a set-point regulation problem is encountered.
V1 was also implemented for testing but not reported here
since no difference was found between V1 and V2 in terms
of task performance.

B. Nonlinear disturbance observer

A nonlinear disturbance observer (NDOB) can be used to
estimate all dynamic uncertainties as a lumped term [24],
comprised of two categories. One is the dynamic model
inaccuracy caused by inaccurate dynamic parameters (e.g.,
friction, center of mass location, and link weight), while
the other is the external disturbance (e.g., extra payload
attached onto the robot body, and robot-environment inter-
action force). From an analytical perspective, in the absence
of external disturbance, the NDOB estimates the difference
between the real dynamic model and the estimated dynamic
model of the robot, and it can be expressed as

τNDOB = −[(M− M̂)q̈+ (S− Ŝ)q̇+ (g − ĝ)]

= −∆Mq̈−∆Sq̇−∆g
(7)

where M̂, Ŝ, ĝ are the estimations on M, S, g, respectively.
An adapted NDOB design based on [24]–[26] is used in

this paper which can be expressed as
L = YM̂−1

p = Yq̇

ż = −Lz+ L(Ŝq̇+ ĝ − τ − p)

τNDOB = z+ p

(8)

where L ∈ Rn×n is the observer gain matrix, Y ∈ Rn×n

is a constant invertible matrix needs to be designed, M̂
is designed to be a symmetric and positive definite matrix
and thus invertible, z is an auxiliary variable, p is an
auxiliary vector determined from Y, τNDOB is the estimated
lumped uncertainties via the NDOB observer. Note that
the disturbance estimation error ∆τNDOB = τNDOB − τ̂NDOB, i.e.,
the difference between the real lumped uncertainties and
the estimated lumped uncertainties, is globally uniformly

ultimately bounded for this NDOB design according to [24],
and will converge asymptotically to zero if the rate of change
of the lumped uncertainties is negligible. For simplicity, in
this paper we assume ∆τNDOB = 0, i.e., the NDOB can
accurately estimate the exact difference between the real
dynamic model and the estimated dynamic model. Therefore,
we denote the NDOB output as τNDOB instead of τ̂NDOB in (8).

In (8), the first two equations are the specific user design
on the vector p and matrix L. The third equation is to update
the auxiliary variable z. The advantage of the adapted NDOB
design is that it does not require acceleration measurement.
Considering that designing an observer is not the focus in
this paper, only summarized information about the adapted
NDOB is introduced above. For a specific observer design
methodology with detailed procedures, please refer to [24].

C. Integration of impedance controller and NDOB

In this section, we mathematically explore the outcome of
the combination of impedance controller and NDOB. Three
scenarios of the combination are considered according to the
variations of the impedance control law introduced earlier.

In practice, for both the impedance control law and
NDOB, the estimations of the dynamic coefficient matrices,
i.e., M̂, Ŝ, ĝ are used, due to the fact that their real values
(M, S, g) are unavailable.
Scenario 1, for impedance control law V1.
Using M̂, Ŝ, ĝ, the combined outcome of the impedance
control law V1 (3) and NDOB (7) can be given by

τ̂imp − τNDOB = MJ−1{ẍd − J̇q̇}+ Sq̇+ g +PD︸ ︷︷ ︸
τimp

+∆MJ−1(ẍ− ẍd)︸ ︷︷ ︸
residual

(9)

As shown in (9), the combined output is equal to the
ideal impedance control law (i.e., the impedance control law
assuming full knowledge of robot dynamics) τimp in (3)
together with a residual term. This residual term is tending
to zero as ẍ → ẍd, e.g. it is negligible when Cartesian
acceleration tracking performance is accurate enough.
Scenario 2, for impedance control law V2.
Using M̂, Ŝ, ĝ, the combined output of the impedance
control law V2 (5) and NDOB (7) is calculated as

τ̂imp−τNDOB

= MJ−1{ẍd − J̇J−1ẋd}+ SJ−1ẋd + g+PD︸ ︷︷ ︸
τimp

+∆M(q̈− q̈d) +∆S(q̇− q̇d)︸ ︷︷ ︸
residual

(10)
As shown in (10), the combined output is equal to the ideal
impedance control law τimp in (5) together with two residual
terms. The two residual terms are tending to zero as q̈ → q̈d

and q̇ → q̇d, which means that they are negligible when the
joint acceleration and velocity tracking are accurate enough.
Scenario 3, for impedance control law V3.

In this scenario, we assume that a steady state is achieved
in set-point regulation, i.e., q̇ = q̈ = 0. Then using M̂, Ŝ,
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Fig. 1: Block diagram of the proposed control scheme with
integrating impedance controller and nonlinear disturbance
observer (NDOB). Note that the dashed line means a linked
switch. τdisturb is the dynamic model inaccuracy and the
external disturbance.

ĝ, the combined output of the impedance control law V3 (6)
and NDOB (7) is calculated as

τ̂imp − τNDOB = JT[Km(xd − x)−Dmẋ] + ĝ − (−g + ĝ)

= JT[Km(xd − x)−Dmẋ] + g︸ ︷︷ ︸
τimp

(11)
As shown in (11), the combined output is exactly equal

to the ideal impedance control law τimp in (6). This means
that the NDOB can accurately compensate for inaccuracies
in the estimation of the gravity term when the steady state
is achieved in set-point regulation.

An integrated framework of impedance control and NDOB
is proposed based on the analyses presented above. The block
diagram of the control system is shown in Fig. 1 which
incorporates the proposed framework.

III. SIMULATIONS, EXPERIMENTS, AND RESULTS

A. Robotic system

A 3-DOF PHANToM Premium 1.5A robot (3D Systems,
Inc., Cary, NC, USA) is used for simulations and exper-
iments in this paper. For the simulations, we reconstruct
the kinematic model and dynamic model of the PHANToM
robot based on [27] and conduct the simulations using
MATLAB/Simulink (version R2017a, MathWorks Inc., Nat-
ick, MA, USA). For the experiments, the physical robot is
controlled via joint torque command, which is sent from
MATLAB/Simulink using Quarc real-time control software
(Quanser Inc., Markham, ON, Canada). The control rate
of the robot is 1, 000 Hz. The MATLAB/Simulink and
Quarc software run on a computer with a 3.33 GHz Intel(R)
Core(TM) 2 i5 CPU with a Windows 7 Enterprise 64-bit
operating system.

B. Parameterization

For all simulations and experiments in the remaining part
of this paper, the parameter values used in the impedance
model and NDOB are listed in Table I. In order to have a
simple but natural movement, a circular and cyclic trajectory

TABLE I: Parameterization for simulation, experiment, and
application of pHRI on elbow arthroscopic surgery simulator.

Parameters Simulation Experiment pHRI Application

Spring Km = 7.5I Km = 0

Damping Dm = 2
√
7.5I Dm = 7.5I

Inertia matrix M̂ = 1.0× 10−3 × I
Observer gain Y = 9.58× 10−3 × I

Note: I ∈ R3×3 denote identity matrix.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
x (m)

-0.01

0

0.01

0.02

0.03

0.04

y 
(m

)

desired
actual

start point
end point

(a) Case-00

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
x (m)

-0.01

0

0.01

0.02

0.03

0.04

y 
(m

)

desired
actual

start point
end point

(b) Case-01

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
x (m)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

y 
(m

)

desired
actual

start point
end point

(c) Case-10

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
x (m)

-0.01

0

0.01

0.02

0.03

0.04

y 
(m

)

desired
actual

start point
end point

(d) Case-11

Fig. 2: Simulation results of the four cases of a circle tracking
task in free space in Condition 1.

is selected for the simulations and experiments, which can
be expressed as a function of time as the following

xd = R sin( 2πt1 t)

yd = R cos( 2πt1 t) +R

zd = 0

(12)

where R = 0.02 m is the radius of the circle and t1 = 5 s
is the period for generating a full cycle.

In the following sub-sections, three conditions related
to the combination of impedance controller and NDOB
are presented. Both simulation and experimental results are
included for each condition. The experiments are shown in
the attached video1.

C. Condition 1: Constant payload

Simulation
In Condition 1, a constant payload of 22 g is attached

onto the robot EE as external disturbance, and there is no
dynamic model inaccuracy involved. A circle tracking task
in free space is employed and the circle trajectory is given
by (12). This condition is performed by implementing the

1online video: https://drive.google.com/file/d/
1kO5bhTbCwjgBDIsHyy22EkwMozGQGr5H/view?usp=sharing
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Fig. 3: Experimental results of the four cases of a circle
tracking task in free space in Condition 1.

impedance control law V2 and NDOB, i.e., the Scenario 2
given by (10). Four cases are designed for this condition:

• Case-00: External disturbance OFF , NDOB OFF ;
• Case-01: External disturbance OFF , NDOB ON ;
• Case-10: External disturbance ON , NDOB OFF ;
• Case-11: External disturbance ON , NDOB ON .
The trajectory tracking results of the simulations are

shown in Fig. 2. Note that no dynamic model inaccuracy
is involved in the simulations, which means that the only
dynamic uncertainty is the external disturbance of the con-
stant payload. As can be seen in Fig. 2a, 2b, without the
disturbance of the constant payload, the tracking results are
the same no matter the NDOB is implemented or not. When
the payload is attached as shown in Fig. 2c, the actual
tracking trajectory deviates largely from the desired one if
the NDOB is not implemented. However, by implementing
a NDOB as shown in Fig. 2d, the disturbance from the
constant payload can be fully detected and compensated for,
thus good tracking performance is recovered. Note that there
is a deviation between the actual trajectory and the desired
trajectory at the beginning of the task. The reason is that their
initial positions are not exactly the same. To this point, a low-
pass infinite impulse response (IIR) filter can be implemented
as necessary to ensure the smoothness of the movement at
the beginning of the task.
Experiment

Similar to the simulations, experiments on the four cases
are conducted by implementing the impedance controller and
NDOB on a 3-DOF PHANToM robot. The experimental
results of the four cases are shown in Fig. 3.

As can be seen in Case-00 (Fig. 3a), the circle tracking
performance is poor. The reason is that dynamic model
inaccuracies do exist (e.g., joint friction) for the physical

robot. As expected, when a NDOB is implemented in Case-
01, this dynamic model inaccuracy is compensated for,
and tracking performance is back to normal as shown in
Fig. 3b. For Case-10 and Case-11, the experimental results
similar to the corresponding simulation are obtained, i.e.,
without NDOB, the tracking task fails due to the external
payload as well as the model inaccuracy (Fig. 3c), while
with NDOB, good tracking performance is recovered (Fig.
3d). Note that, here the NDOB in Case-11 has detected both
the dynamic model inaccuracy (e.g., joint friction) and the
external disturbance (i.e., the constant payload).

D. Condition 2: Time-varying payload

Simulation
In the simulation part of Condition 2, two types of time-

varying payload are investigated. One is sinusoidal payload
while another is a suddenly added constant payload. The
former is to simulate a scenario of time-varying contact force
during bone debridement while the latter is to simulate a
scenario of sudden contact force when the tool hits a bone.

The same circle tracking task (12) is employed, whereas
only Case-10 and Case-11 are considered. This condition is
also performed by implementing the impedance control law
V2 and NDOB, i.e., the Scenario 2 given by (10). No dy-
namic model inaccuracy is involved in the simulations here.

The sinusoidal payload is applied onto the robot EE as
external disturbance which can be expressed by

Fxd = a1 sin(
2π
t1
t)

Fyd = a2 sin(
2π
t2
t)

Fzd = a3 cos(
2π
t3
t)

(13)

where t1 = 2, t2 = 5, t3 = 2 are cycles of the desired
time-varying EE payload for each axis in units of second,
and a1 = 0.01, a2 = 0.2, a3 = 0.01 are the corresponding
amplitudes in units of Newton.

The simulation results of Condition 2 with a sinusoidal
payload are shown in Fig. 4. As can be seen in Fig. 4a (Case-
10), without NDOB, the tracking performance is distorted
due to the sinusoidal payload. By implementing NDOB,
normal tracking performance is obtained as shown in Fig. 4b
(Case-11). The tracking performance with NDOB in Case-11
is shown in Fig. 4c, and the disturbance estimation on the
external payload from the NDOB is shown in Fig. 4d.

The simulation results of Condition 2 with a suddenly
added payload are shown in Fig. 5. In this simulation, a con-
stant payload of 22 g is attached at the robot EE throughout
the task, while another payload of 23 g is suddenly added
onto the robot EE at 5.5 s and remains there since then. This
procedure can be easily identified in Fig. 5a where the actual
tracking trajectory is deviated due to the two payloads when
NDOB is not activated. When the NDOB is activated, the
tracking performance is well-recovered as shown in Fig. 5b
and Fig. 5c. And the NDOB can immediately and accurately
estimate the suddenly added payload as shown in Fig. 5d.
The simulation results in Condition 2 demonstrate that the
NDOB is able to accurately estimate the external time-
varying disturbances in real-time as well.
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Fig. 4: Simulation results of a circle tracking task with
sinusoidal time-varying payload in Condition 2.
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(c) Case-11 tracking result
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Fig. 5: Simulation results of a circle tracking task with a
suddenly added payload (23 g) in Condition 2. Note that the
23 g payload is added at 5.5 s and remains there since then.

Experiment
For the experiment part of Condition 2, since it is impossi-

ble to apply a sinusoidal payload of (13) in practice, only an
experiment with the suddenly added payload is performed.
In the experiment, an extra magnetic constant payload of 23
g is added onto the robot EE in the middle of the circle
tracking task. Note that a constant payload of 22 g is always
attached at the robot EE in this experiment.

The experimental results of Condition 2 are shown in Fig.
6. As can be seen in Fig. 6a, only a small perturbation is ob-
served immediately after the extra magnetic payload is added
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Fig. 6: Experimental results of a circle tracking task with
a suddenly added payload (23 g) in Condition 2. An extra
magnetic payload of 23 g is added onto the robot EE at some
time point during 5-6 s (the colored area) in practice, and it
remains there since then.

and good tracking performance is recovered very quickly.
In Fig. 6b, the estimated force component Fy from NDOB
is not piecewise constant compared with its corresponding
simulation in Fig. 5d. The main reason should be that the
estimation from NDOB in the physical experiment (Fig.
6b) involves both dynamic model inaccuracy and external
payloads, while in the simulation (Fig. 5d) it involves only
external payloads.

The experimental results in Condition 2 indicate that
the NDOB is able to immediately detect and accurately
compensate for a time-varying payload, thus protect the
tracking performance from being affected. This verified the
corresponding simulation results.

E. Condition 3: Set-point regulation

Simulation
In Condition 3, a set-point regulation problem is explored.

The coordinates of the initial point and the desired set-
point in Cartesian space are [0, 0, 0] m and [0.01, 0.04, 0] m,
respectively. This condition is performed by implementing
the impedance control law V3 and NDOB, i.e., the Scenario 3
given by (11). Only Case-10 and Case-11 are considered. For
both simulation and experiment in Condition 3, a constant
payload of 22 g is always attached at the robot EE. Addition-
ally, during the set-point regulation, an external disturbance
force in a range of [0, 2] N is applied onto the robot EE
along y+ axis. In the simulation, the external disturbance
is designed by (13) with a1=a3=0, a2=t2=2, which means
that this time-varying disturbance is along y-axis and the
maximum amplitude is 2 N. The external disturbance is
applied only in the period of 6-7 s in the simulation.

The simulation results of Condition 3 are shown in Fig.
7. As can be seen in Case-10 (Fig. 7a), without NDOB, the
regulation is failed with a large constant error between the
desired (solid red line) and actual (dashed green line) set-
point along y-axis. Here note that, even if with a higher
stiffness in the impedance controller in Case-10, a constant
error will still be remained if the gravity term cannot be
appropriately compensated for. With NDOB in Case-11 (Fig.
7b), the regulation task achieves good performance.

For the external disturbance during 6-7 s (the colored
area in Fig. 7), without NDOB, a large deviation as high
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Fig. 7: Simulation results of a set-point regulation task with
a constant payload and 1s-disturbance in Condition 3. Note
that, during the first two seconds, the desired point position
is linearly increased to the final desired point position to
ensure a smooth robot behavior at the moment of startup.
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Fig. 8: Experimental results of a set-point regulation task
with a constant payload and 1s-disturbance in Condition 3.
Note that the 1s-disturbance here is not exactly occurred
during 6-7 s for 1 s since it is controlled by a human user.

as 14 cm is observed. But with NDOB, the deviation is
significantly reduced to be less than 0.5 cm. This confirms
the NDOB capability for disturbance rejection. The constant
payload and the extra 1s-disturbance can be appropriately
compensated for by using NDOB.
Experiment

For the corresponding experiment in Condition 3, the 1s-
disturbance in a range of [0, 2] N is exerted by a human user.
Therefore, it is not exactly occurred during 6-7 s and not
strictly lasted for 1 s in practice. The experimental results are
shown in Fig. 8. As can be seen from the figure, the NDOB
is able to minimize the effect induced by the external 1s-
disturbance, which experimentally verified the corresponding
simulation results. The results of Condition 3 indicate that the
NDOB is also able to perform external disturbance rejection.
From another perspective, the NDOB might undermine the
compliant behavior brought by the impedance controller to
some extent due to the disturbance rejection effect.

IV. APPLICATION ON ELBOW ARTHROSCOPIC SURGERY

The simulation and experimental results of the three con-
ditions in the previous section demonstrate that the NDOB
is capable of accurately estimating dynamic uncertainties
of both constant (Condition 1) and time-varying (Condi-
tion 2) payloads attached at the robot EE, and performs
suitable compensation in the control system as necessary.
The NDOB has a intrinsic property to reject external dis-
turbance no matter the disturbance is expected or not (e.g.,
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Fig. 9: Setup and free trajectory for implementing the
proposed framework. FAST, fundamentals of arthroscopic
surgery training. The robot and arthroscope are connected
via a ball joint.

the 1s-disturbance in Condition 3). However, some human-
generated disturbance, e.g., human-robot interaction force,
may be expected thus shouldn’t be rejected. To solve this
problem, NDOB-online and NDOB-offline are designed as
shown in Fig. 1. With NDOB-online, a lumped dynamic
uncertainties is estimated and compensated in real time, i.e.,
all uncertainties will be rejected as disturbance. With NDOB-
offline, only an appropriate constant gravity is compensated
for which enables the human-robot interaction. Please note
that this online/offline design is just what we needed since we
do not want the robot to be compliant to occasional external
disturbances when it is holding the tool still. One limitation
here is that rigorous stability analysis has to be conducted in
future work since controller online-switching is involved.

In a specific application on elbow arthroscopic surgery,
a robot will hold the arthroscope as an auxiliary supporter
to reduce the surgeon’s fatigue. More specifically, when
the surgeon moves the arthroscope, the robot should pro-
vide compliant behavior while complying with the external
human-robot interaction force but compensating all other
uncertainties. This can be realized via NDOB-offline. On
the other hand, when the arthroscope is left in an unattended
state, the robot should keep it stably stay there and be able
to reject any external disturbance. This can be realized via
NDOB-online. This illustrates the integrated framework in
our specific application scenario. To this end, a practical
application on the robot-assisted arthroscopic surgery is
developed to assess the framework. In the application, it is
expected that the proposed control system allows the surgeon
to move the arthroscope freely and keeps the arthroscope
stay still wherever the surgeon left it. A FAST simulator,
as shown in Fig. 9a, is employed in the application where
FAST is short for Fundamentals of Arthroscopic Surgery
Training which is a commonly used physical model for
training novices with their arthroscopic surgical skills. By
implementing the framework, the arthroscope can move
freely and stay in the air as shown in Fig. 9b.

Although this is a preliminary experiment, it is an im-
portant step towards constructing a robot-assisted elbow
arthroscopic system. The results of this paper enable the
system to accurately estimate and compensate for the robot
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dynamic uncertainties for a stable control system. Also, the
robot holds the arthroscope for the surgeons such that they
can focus on other tasks during the surgery. In future work,
the tool pose tracked by the marker-free robot system can be
visualized and provided to the surgeons in real-time. More
practically, the robot-assisted system can be used either for
a training simulator by integrating with a virtual/phantom
patient body via AR/VR techniques, or in real elbow arthro-
scopic surgery. The system is also promising to help guide
the surgeon to perform tasks precisely and accurately, and
to expand the application of elbow arthroscopy into various
elbow conditions.

V. CONCLUSIONS

Robot-assisted arthroscopic surgery is a thriving field in
orthopaedics. To build control system for a surgeon-assist
arthroscope-holding robot, dynamic uncertainty is a critical
point that needs to be estimated and compensated for during
pHRI to ensure the system stability and accuracy. This paper
proposed an integrated framework of combining impedance
control and nonlinear disturbance observer (NDOB). The
combined outcomes were mathematically analyzed. Three
common conditions were presented to evaluate the combined
outputs by both simulations and experiments on a 3-DOF
PHANToM robot. A preliminary application of pHRI on
elbow arthroscopic surgery simulator was realized by imple-
menting the proposed framework, and its effectiveness was
demonstrated. The core contribution of this paper is that,
by combining impedance control and NDOB, the integrated
framework can achieve an accurate impedance control under
condition of that external uncertainties exist while only
roughly estimated dynamic parameters are known.

The integrated framework is able to provide compliant
behavior by the impedance controller during pHRI while
compensating for the robot dynamic uncertainties by the
NDOB. The NDOB used in this paper estimates a lumped
value for model inaccuracy and external disturbance, and
is not able to separate them. In future work, we will try
to separate the interaction force from the lumped term by
introducing additional observers or learning techniques into
our system.
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