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Abstract— Virtual fixture (VF) has been playing a vital role in
robot-assisted surgeries, such as guiding surgical tools’ move-
ment and protecting a beating heart. In orthopedic surgery,
preplanned images are often used in the operating room, on
which planning curves might be drawn, for instance, to mark
out the boundaries for osteophytes to be removed. These curves
can be used to generate VF to assist in removing osteophytes
during the operation. A challenge is that the hand-drawn curves
usually have a random shape and cannot be mathematically
represented by equations, thus most of the existing algorithms
will not work in this scenario. In this paper, an algorithm of
VF generating based on point clouds is presented, with which
VF can be generated directly from cloud points, for example,
point clouds of hand-drawn curves extracted from an image.
The effectiveness of the VF algorithm is evaluated by a series of
simulations and experiments. The VF algorithm is also tested in
an image-based scenario and its effectiveness is demonstrated.
The presented point-based VF algorithm is promising to be used
in various applications in image-guided surgery to generate VF
for objects with various shapes.

I. INTRODUCTION

Virtual fixture (VF), also known as active constraint and
first proposed in [1], is usually categorized into two types
according to its purpose, that is guidance virtual fixture
(GVF) and forbidden-region virtual fixture (FRVF) [2], [3].
Intuitively, the GVF serves like a ruler to assist in drawing a
straight line, while the FRVF serves like an armor to prevent
tool tip from entering a protected area. Both types play a
vital role during various surgical procedures in robot-assisted
surgery, such as suturing [4], knot tying [5], dissection [6],
either assisting in moving the surgical tool along a trajectory
or preventing it from entering a specific area for protecting
the objects (e.g., beating heart or nerve) inside [7], [8].

VF is usually generated based on geometric elements, such
as lines, planes, surfaces, and volumetric primitives [3]. The
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vector field approach is the most common one to be used
for VF generating, which works for any shape that can be
expressed as mathematical equations [9]. The advantage of
the vector field approach is that it is simple, straightforward,
and stable, while the disadvantage is that it requires an
explicit/implicit mathematical representation for the object to
be modeled as VF. For objects with regular shapes like cubes
and spheres, their mathematical representations can be easily
established then the VF can be constructed relatively easily.
However, for objects with irregular shapes like a humerus
bone or skull, they may not be able to be expressed by
equations, then the vector field approach may not work for
these objects anymore.

The vector field approach cannot correctly handle situa-
tions of being in contact with multiple objects simultane-
ously and situations of thin objects. To solve this problem,
Zilles and Salisbury developed a constraint-based god-object
algorithm [9]. In their work, the god-object is a proxy of
the haptic interface point (HIP) which is attached to the
HIP when it is in free motion. Once the HIP encounters
VF (e.g., a virtual wall), the proxy will always remain
on the top of the virtual wall and never penetrate into it.
This is ensured in their algorithm by applying the Lagrange
multiplier technique on a set of active constraints to find the
position of the proxy in each servo loop. Meanwhile, the
virtual spring and/or damper linkage between the HIP and
the proxy will render a haptic force that tries to pull the HIP
back out of the virtual wall.

Kapoor et al. developed a constrained optimization method
for generating VF [10], in which a suitable objective function
is required in order to do the optimization. In the method,
five basic geometric constraints are established as VF task
primitives which can be used for assembling customized VF.
With similar techniques, Marinho et al. employed a method
of vector-field inequalities to generate VF for collision avoid-
ance [11] and guidance in a looping task during suturing [4].
Xia et al. developed a constrained optimization framework
of VF generating for multi-robot collaborative teleoperation
tasks, e.g., knot positioning [5].

There are also some other methods for VF generating for
different purposes, such as potential field method for colli-
sion avoidance or guidance [12], [13] and nonenergy storing
method for a more stable robot behavior [14]. Readers are
directed to [3] for a comprehensive review of VF.

In the field of robot-assisted surgery, VF has been widely
used due to plenty of advantages, such as reducing surgeons’
cognitive load [5], improving surgical performance [15],
making the surgical outcome more accurate and safe. Park et
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al. [16] conducted a preliminary test before applying VF in
coronary artery bypass surgery. In the test, VF is generated
for a blunt dissection task at a position determined from a
preoperative CT scan image, and the VF is a regular plane
thus the VF generating is relatively easy in their work.

Ryden et al. [7] developed a method to generate VF
directly from point cloud to protect the beating heart during
surgery. They improved their method in [17], [18], which
established a solid foundation for point-based VF algorithm.

In orthopedics, a series of preoperative images of a patient
are first acquired before the surgery. Then, some surgical
preplans will be made on the images, for example, drawing
some curves to mark out areas to remove osteophytes, or
to protect nerves inside. During the surgery, these hand-
drawn curves can be used to generate VF which can assist in
removing osteophytes or protecting the nerves by providing
haptic feedback. The main challenge here is that the hand-
drawn curves are usually in irregular shapes which may not
be able to be presented mathematically by equations that are
often required by most of existing VF-generating algorithms.

Inspired by Ryden’s work and motivated to solve the
challenge mentioned above, in this paper, an algorithm for
VF generating from cloud points is developed and presented.
The effectiveness of the VF algorithm is evaluated by a series
of simulations and experiments on geometric entities with
regular or irregular shapes. Lastly, the algorithm is tested
in a specific preplanned image-based scenario which can be
further generalized to image-based surgery.

The remainder of this paper is organized as follows: Sec-
tion II is devoted to presenting and explaining the complete
point-based VF algorithm. Section III presents simulations,
experiments, and corresponding results in different scenarios
where the VFs are with various shapes. Some advantages
and limitations of the algorithm are discussed in Section IV.
Finally, conclusions are provided in Section V.

II. METHODS

In this section, an algorithm for point cloud based virtual
fixture (VF) generation method is presented, which includes
one main algorithm and three embedded proxy algorithms
for the proxy in different states. The major parameters used
in the VF algorithm are summarized in Table I. The general
idea of the VF algorithm is explained as follows. The robot
end-effector (EE) position denotes as PHIP while its virtual
proxy denotes as Pproxy. As illustrated in Fig. 1, taking
the proxy point Pproxy as the center, three spheres with
radii (r1 < r2 < r3) are defined as proxy regions while a
contacting region rc is determined by rc = (r1+r2)/2. When
there is no contact between the robot EE and the point cloud,
the Pproxy always coincides with PHIP, whereas they may
be detached from each other in order to generate force
feedback when a contact or penetration occurred. The state
of the proxy (stateproxy) will be determined as −1/0/1/2
based on the relative position relationship between the proxy
regions and the point cloud, i.e., no neighbor (−1), in free
motion (0), in contact (1), entrenched (2). The last three
states may be combined together as a state of in-neighbor

TABLE I: Major parameters and description.

Parameters Description

PHIP haptic interface point (= robot EE point)
Pproxy proxy point, the avatar of HIP
Lpcloud point cloud list, the collection of all cloud points
pi a single point in the point cloud
N the number of points in the point cloud
stateproxy proxy state, from {-1,0,1,2}
r{1,2,3,c} proxy regions radii, r1 < rc < r2 < r3, rc =

(r1+r2)
2

rv radius of each cloud point (default as 0)
ŝ step vector for proxy movement in each servo loop
n̂ normal vector of the point cloud
u⃗ a vector pointing from Pproxy to PHIP

Fig. 1: Illustration of the proxy in different states.

(0/1/2) for some explanations. For each proxy state, a
step vector ŝ will be determined by the proxy algorithms
which will be introduced later in this section. Finally, the
determined ŝ will be used to move the proxy point at the
end of each servo loop while ensuring that it is always on
the surface of the point cloud and never penetrates into it.

The general idea described above will be explained in
detail in the remaining part of this section based on one
main algorithm (algorithm 1) and three proxy algorithms
(algorithm 2, algorithm 3, algorithm 4). An illustration of
the proxy in different states is shown in Fig. 1. Note that in
this paper point cloud refers to a set of points representing
a target object, and virtual fixture refers to all areas defined
by the cloud points and their radius rv .

A. Main algorithm

The main algorithm for generating VF from point cloud is
presented in algorithm 1 including parameterization realized
in this paper. A set of point cloud is acquired in advance and
their 3D coordinates are expressed in the robot base frame.

First of all, all parameters are initialized including the
initial position of the HIP and the proxy. Note that PHIP

is initialized as [−1, 0, 0] for the simulations while [0, 0, 0]
for the experiments. The proxy point position is initialized
as the same as the HIP point position (Pproxy = PHIP).

In each servo loop of the VF algorithm, the HIP position
(PHIP) will first be updated as the real-time position of the
robot EE. Then, the distance de between the proxy position
(Pproxy) and each point in the cloud will be calculated. Based



on the distance de, each point in the cloud will be categorized
into one of four lists, i.e., list of entrenched (LEntrenched),
in contact (LInContact), in free motion (LFreeMotion), and
out neighbor (LOutNeighbor), respectively. Note that the first
three lists together composed a new list of in-neighbor
(LInNeighbor), while all the four lists together composed the
whole point cloud. Then, based on the number of points in
each of the four lists, the proxy state (stateproxy) can be
determined as one of the four states, i.e., state of entrenched
(2), state of in contact (1), state of in free motion (0), state of
no neighbor (−1). Note that for high computing efficiency,
the point cloud needs to be treated as a whole matrix when
calculating the distance de and doing the categorization.

A normal vector (n̂) needs to be determined when the
proxy is in state of in contact or entrenched (stateproxy =
1/2). The normal vector (n̂) is originated from the proxy
point, normal to the local surface formed by the point cloud,
and pointing outwards. The normal vector (n̂) is determined
by all the cloud points that fell in the proxy neighbor region
(LInNeighbor). Let pi, i = 1, 2, ...,M be the points fell in
LInNeighbor, then the normal vector n̂ can be determined by{

n⃗k =
∑M

i=1
Pproxy−pi

∥Pproxy−pi∥2
ϕ(r)

n̂ = n⃗k

∥n⃗k∥2
(normalization)

(1)

where ϕ(r) is a modified version of the Wendland function
[17], [19] given by (2), which can provide a smoothly and
monotonically decreasing between r1 and r3.

ϕ(r) =


1 for r ∈ [0, r1]

[1 + 4(r−r1)
r3−r1

](1− r−r1
r3−r1

)4 for r ∈ (r1, r3)

0 for r ∈ [r3,+inf)
(2)

where r = ∥Pproxy − pi∥2 is the distance between a cloud
point and the proxy point.

Finally, in each of the four states (stateproxy =
−1/0/1/2), a step vector (̂s) of the proxy movements will
be determined based on proxy algorithms (algorithm 2, al-
gorithm 3, algorithm 4) that will be introduced subsequently.
Once the step vector (̂s) is determined, the proxy point
position (Pproxy) can be updated correspondingly.

B. Proxy algorithms

In this subsection, three proxy algorithms are presented
and explained in detail in order to determine the step vector
(̂s) in different proxy states, i.e., algorithm 2 for state of
in free motion (stateproxy = 0), algorithm 3 for state of in
contact (stateproxy = 1), algorithm 4 for state of entrenched
and no neighbor (stateproxy = −1/2). Then, the determined
step vector (̂s) will be used to move the proxy a step in each
servo loop while ensuring the proxy point does not penetrate
into the point cloud.

(a) State of in free motion (stateproxy = 0)
The proxy movement algorithm for this state is presented

in algorithm 2. When the proxy is in free motion state
(stateproxy = 0) and assuming the HIP is going to penetrate

Algorithm 1: Main algorithm
Data: A set of point cloud (Lpcloud) is predefined.
Result: A step vector (̂s) is calculated in each servo loop

according to different states of the proxy
(stateproxy), which can ensure that the proxy
point (Pproxy) always remains outside of the point
cloud and never penetrates into it.

%(Initialization) ;
PHIP ← [−1, 0, 0] (for simulations) ;
Pproxy ← PHIP ;
rc ← 5 ∗ 10−3 ;
r1 ← rc − 0.01 ∗ 10−3 ;
r2 ← rc + 0.01 ∗ 10−3 ;
r3 ← 2 ∗ rc ;
rv ← 0 ;
while in a servo loop do

%(Update HIP position) ;
PHIP ← real-time robot EE position ;
%(To categorize point cloud) ;
for each point pi in cloud Lpcloud do

de = ∥pi −Pproxy∥2;
LEntrenched ← who has de < r1 + rv ;
LInContact ← who has r1 + rv ≤ de ≤ r2 + rv ;
LFreeMotion ← who has r2 + rv < de < r3 + rv ;
LOutNeighbor ← who has de ≥ r3 + rv ;

end
Note: Here the for-loop is only for illustration. ;
For efficiency, the point cloud needs to be treated ;
as a whole matrix when doing the categorization. ;
%(To determine proxy state stateproxy) ;
if LEntrenched ̸= null then

stateproxy = 2 (entrenched) ;
else

if LInContact ̸= null then
stateproxy = 1 (in contact) ;

else
if LFreeMotion ̸= null then

stateproxy = 0 (free motion) ;
else

stateproxy = −1 (no neighbor) ;
end

end
end
%(To determine normal vector n̂) ;
if stateproxy = 0/1/2 then

find the normal vector n̂ via (1) and (2) ;
end
%(To determine proxy movement step ŝ) ;
if stateproxy = −1/0/1/2 then

To determine ŝ from proxy algorithms
(algorithm 2, algorithm 3, algorithm 4) ;

(̂s determined) ;
end
%(Update proxy position) ;
Pproxy = Pproxy + ŝ ;

end



into the point cloud, the proxy needs to move towards the
HIP in aiming to be in contact with the point cloud. In this
scenario, the step vector (̂s) for the proxy movement can be
determined based on the cloud points fell in LInNeighbor (note
that now LInNeighbor = LFreeMotion) by solving for d0 in (3).

rc + rv = ∥pi −Pproxy − d0i
u⃗

∥u⃗∥2
∥2 (3)

where u⃗ = PHIP − Pproxy is a vector pointing from Pproxy

to PHIP, and pi, i = 1, 2, ...,M is the cloud point fell in
LInNeighbor, and d0i is a scalar step size needs to be solved
for the ith point in LInNeighbor. Therefore, this procedure has
to be done M times. After that, step size d will be determined
by the minimum value of d0i, i.e., d = min(d0i). Then, the
step vector (̂s) will be determined by ŝ = d ∗ u⃗

∥u⃗∥ which
means to bring the proxy point a step towards the HIP point.

Before updating the proxy point position, three special
scenarios may need to be considered:

• If d = 0 and the HIP is inside of the point cloud, then a
projection vector u⃗p, which is obtained by projecting u⃗
onto the normal plane determined by the normal vector
n̂, will be used to determine d (5). In this scenario, the
step vector will be determined by ŝ = d ∗ u⃗p

∥u⃗p∥ .
• If the HIP is outside of the point cloud and

1
M

∑M
i=1 ∥pi−PHIP∥2 > 1

M

∑M
i=1 ∥pi−Pproxy∥2 (pi ∈

LInNeighbor), i.e., the HIP is moving away from the
point cloud, then set ŝ = PHIP −Pproxy, which means
to detach cloud-proxy and attach proxy-HIP by setting
Pproxy = PHIP.

The normal vector n̂ can solely determine a normal plane
that is going through the proxy point and normal to n̂. The
vector u⃗ = PHIP−Pproxy pointing from Pproxy to PHIP can
be projected onto the normal plane, and the projection u⃗p

can be obtained by

u⃗p = u⃗− (n̂ · u⃗)n̂ (4)

Based on the projection u⃗p, the step size d can be
determined by

d =

{
ξ∥u⃗p∥2 for ∥u⃗p∥2 ≤ r1

ξr1 for ∥u⃗p∥2 > r1
(5)

where 0 < ξ ≤ 1 is a constant gain used to ensure that one
step size is not greater than the smallest proxy region r1.

(b) State of in contact (stateproxy = 1)
The proxy movement algorithm for this state is presented

in algorithm 3. When the proxy and the point cloud are in
contact (stateproxy = 1), the step size d will be determined
by the projection u⃗p via (5). Then, the proxy step vector ŝ
will be determined by

ŝ =

{
d ∗ u⃗p

∥u⃗p∥2
for HIP is inside of VF

d ∗ u⃗
∥u⃗∥2

for HIP is outside of VF
(6)

where d is the step size, u⃗p indicates a direction tangential
to the VF, u⃗ indicates a direction pointing from the proxy to
the HIP, while whether the HIP is inside or outside of VF is
determined by the angle between the vector n̂ and u⃗.

Algorithm 2: Proxy movement step (stateproxy = 0)

Result: To determine step vector ŝ for proxy state of
in free motion (stateproxy = 0).

%(When proxy state is in free motion) ;
if stateproxy = 0 then

if Pproxy = PHIP then
ŝ = [0, 0, 0] ;

else
if Pproxy ̸= PHIP then

d = min(d0i), if min(d0i) < ∥u⃗∥ ;
d = ∥u⃗∥, if min(d0i) ≥ ∥u⃗∥ ;
ŝ = d ∗ u⃗

∥u⃗∥ ;
end
%(To do a special case-1 check on ŝ) ;
if d = 0 & HIP inside VF then

To determine d via projection u⃗p (5) ;
ŝ = d ∗ u⃗p

∥u⃗p∥ ;
end
%(To do a special case-2 check on ŝ) ;
if HIP is moving away from point cloud then

ŝ = PHIP −Pproxy ;
end
(̂s determined) ;

end
end

Algorithm 3: Proxy movement step (stateproxy = 1)

Result: To determine step vector ŝ for proxy state of
in contact (stateproxy = 1).

%(When proxy state is in contact) ;
if stateproxy = 1 then

HIP inside/outside VF ← angle between n̂ & u⃗ ;
projection vector u⃗p ← from n̂ & u⃗ ;
if ∥u⃗p∥ ≤ r1 then

d = ξ∥u⃗p∥ ;
else

if ∥u⃗p∥ > r1 then
d = ξr1 ;

end
end
(d determined) ;
if HIP inside VF then

ŝ = d ∗ u⃗p

∥u⃗p∥ ;
else

if HIP outside VF then
ŝ = d ∗ u⃗

∥u⃗∥ ;
end

end
(̂s determined) ;

end



(c) State of entrenched (stateproxy = 2)
The proxy algorithm for this state is presented in algo-

rithm 4. When the proxy is entrenched into the point cloud
(stateproxy = 2) occasionally, the proxy needs to be moved
onto the top of the point cloud surface with a single step.
The step size d can be determined by solving for d2i in (7).

rc + rv = ∥pi −Pproxy − d2i ∗ n̂∥2 (7)

where pi ∈ LEntrenched, i = 1, 2, ...,M , and d2i is a scalar
step size corresponding to the ith cloud point. Therefore,
this procedure has to be done M times. Then, the step size
d will be determined by the maximum value of d2i, i.e.,
d = max(d2i), which means that a max step size will be
used to bring the proxy point out of the point cloud along
the direction of the normal vector n̂.

(d) State of no neighbor (stateproxy = −1)
When there is no cloud point in the neighbor region of

the proxy (stateproxy = −1), simply set ŝ = PHIP −Pproxy.
This means that the proxy point (Pproxy) always coincides
with the HIP point (PHIP).

Algorithm 4: Proxy movement step (stateproxy = −1/2)

Result: To determine step vector ŝ for proxy state of
entrenched (stateproxy = 2) and no neighbor
(stateproxy = −1).

%(When proxy state is entrenched) ;
if stateproxy = 2 then

d = max(d2i) from (7) ;
ŝ = d ∗ n̂ ;
(̂s determined) ;

end
%(When proxy state is no neighbor) ;
if stateproxy = −1 then

ŝ = PHIP −Pproxy ;
(̂s determined) ;

end

C. Virtual force rendering

Once the proxy point Pproxy is determined in each servo
loop, the virtual force can be rendered based on the coordi-
nates of the HIP point (PHIP) and the proxy point (Pproxy).
The force rendering algorithm can be expressed as

Fv = K(Pproxy −PHIP) (8)

where K ∈ R3×3 is a diagonal matrix indicating the stiffness
of the VF along each axis and can be tuned as necessary, and
Fv is the rendered VF force which will be delivered to the
human user via the robot. Note that friction is not rendered
for the VF in this work.

For implementing the VF algorithm onto a robot, in
this paper, the rendered VF force is directly added into
the impedance control law as an independent term since
our robot employs an impedance controller. Note that the
VF algorithm is independent of the controller design and

controller implementation, thus they work independently and
do not affect each other in terms of functioning. For robot
running with other controllers, e.g., admittance controller,
velocity controller, the rendered VF force may need first to
be converted to a displacement or velocity by differentia-
tion/integration or an appropriate gain.

III. SIMULATIONS, EXPERIMENTS, AND RESULTS

In this section, a series of simulations and experiments
are conducted to evaluate the effectiveness of the point-
based VF algorithm. The employed point clouds are with
various shapes and dimensionality (ranging from 0D to 3D).
The corresponding results are presented and analyzed. The
last experiment is designed to assess the VF algorithm in
a preplanned image scenario which can be generalized to
image-guided surgery in orthopedics.

A. Apparatus

The simulations are conducted in MATLAB/Simulink
(version R2020a, MathWorks Inc., Natick, MA, USA). The
MATLAB/Simulink runs on a computer with a 3.70 GHz
Intel(R) Core(TM) i5-9600K CPU and a Windows 10 Ed-
ucation 64-bit operating system. The HIP point (i.e., the
robot EE) in the simulations is represented by the mouse
pointer controlled by a human user, and the 2D position of
the pointer is retrieved at a frequency of about 50 Hz when
it moves in a MATLAB figure window.

The experiments are performed on a 7-DOF Franka Emika
Panda robot (Franka Emika GmbH, Munich, Germany). The
proposed VF algorithm is implemented on the Panda robot
via an impedance control interface and C++ code. The Panda
robot is controlled on a workstation computer of Intel(R)
Core(TM) i5-8400 CPU @ 2.80 GHz × 6 with the Ubuntu
16.04 LTS (Xenial Xerus) 64-bit operating system. The con-
trol rate of the Panda robot is 1000 Hz. MATLAB/Simulink
(version R2019a) with Quarc real-time control software
(Quanser Inc., Markham, ON, Canada) is used for visualizing
the real-time position of the robot EE, the point cloud, and
the rendered VF force. The communications between the
Robot Operating System (ROS) nodes of the workstation
computer and the MATLAB/Simulink (version R2019a) are
realized via User Datagram Protocol (UDP) at a frequency of
100 Hz. The demonstrations of simulations and experiments
can be found in the supplementary video1.

B. Simulations

In this section, simulations in four scenarios are conducted
separately in aiming to evaluate the point-based VF algo-
rithm. The four scenarios are regarding to point clouds with
various shapes and dimensions as follows,

1) a 0D single point, (see Fig. 2a);
2) a 1D line segment, (see Fig. 2b);
3) a 2D teapot, (see Fig. 2c);
4) a 2D hand-drawn Ω symbol from image, (see Fig. 2d).

1online video link: https://drive.google.com/file/d/
1dIR8yllubIRubRXq9nhGsfazgDtSizF6/view?usp=share_
link



Note that there is no scenario of a 3D point cloud is
considered in the simulations due to the fact that the mouse
pointer representing the HIP point cannot be controlled to
accurately move in a virtual 3D space. The ability of the VF
algorithm in 3D space will be evaluated by experiments.

In each of the four simulated scenarios, as shown in Fig. 2,
the HIP point represented by the mouse pointer, moves from
left to right in a 2D MATLAB figure window, and during
the movement, it will encounter the point cloud. The VF
algorithm will calculate the position of the proxy point in
real time while the proxy point is expected to remain on
the surface of the point cloud and never penetrate into it.
The HIP point can penetrate into the point cloud and the
relative position between the HIP point and the proxy point
will determine the rendered VF force. Note that the VF force
is not considered in the simulations but will be rendered in
the physical experiments.

The simulation results of the four scenarios are presented
in Fig. 2. As can be seen in the figure, as the HIP point
(represented as green point) moves along the contour of the
point cloud from left to right, the proxy point (represented
as the center of the red circle) always stay outside of the
point cloud (represented as the blue cross markers) which
is expected. The proxy point with its contacting region rc
are represented by a circle in 2D space whose radius is
predefined and can be tuned as necessary (in this paper all
rc = 5 mm ). The normal vector n̂ (represented as arrows
in magenta color) should be always orthogonal to the local
contour of the point cloud and be pointing outwards.

The simulation results indicated that the proposed VF
algorithm works well for point cloud not only with regular
shapes (e.g., single point, line) but also with free-style
irregular shapes (e.g., teapot, hand-drawn Ω symbol). The
effectiveness of the VF algorithm on geometric entities from
0D to 2D is well demonstrated by the simulations.

C. Experiments

Two physical experiments on a 7-DOF robot are designed
to evaluate the point-based VF algorithm. In Experiment 1,
a set of point cloud with a regular 2D square shape in 3D
space (Fig. 3b) is employed, while in Experiment 2 of an
image-based scenario, a set of point cloud with a shape of
hand-drawn curve (Fig. 3d) from a preplanned 2D image
(Fig. 5) is employed. The point clouds are registered in the
robot base frame as illustrated in Fig. 3a, 3c.

Experiment 1: 2D square
In Experiment 1, a set of point cloud with a 2D square

shape is generated in the area of x = [0.4, 0.5], y = 0.1, z =
[0.4, 0.5] m in robot base frame, and the step size is 0.5
mm (meaning a density of 2.01 points/mm) for x-axis and
z-axis. Therefore, a total of 40401(= 201× 1× 201) points
are generated for the 2D square point cloud.

During the experiment, the user moves the robot EE to
probe both sides of the VF (i.e., the 2D square point cloud),
and the rendered VF force, as shown in Fig. 4a, is delivered
to the user via the robot. In the figure, the green-colored area
represents a specific trial. The trajectory of the specific trial

(a) A single point (N = 1) (b) A line segment (N = 100)

(c) A 2D teapot (N = 41472) (d) An inverted Ω (N = 2062)

Fig. 2: Simulation results of implementing the VF algorithm
in four different scenarios. The HIP point is represented by
green point, the proxy contacting region is represented by
red circle while the center represents the proxy point, the
normal vector n̂ is represented by magenta arrow. Black
arrow represents the vector u⃗ pointing from the proxy to
the HIP. The point cloud of a 2D teapot is obtained from
MATLAB via command pcread(‘teapot.ply’), then
scaled in this work. Note that the movement of the green
point is controlled by a human user via mouse, thus the
trajectory is irregular and the speed is not constant.

is shown in Fig. 4b, with the proxy and its contacting region
(red circle and its center), and the normal vector n̂ (magenta
arrow) are visualized in a frequency of 10 Hz.

Experiment 1 demonstrates that the VF force can be
appropriately rendered, and the robot EE may penetrate
into the point cloud but the proxy point should never. The
VF force can be rendered on both sides of the 2D square
point cloud (i.e., y < 0.1, and y > 0.1), which indicates
that the VF algorithm is valid in 3D space. The results in
Experiment 1 show that the VF algorithm in the physical
experiment behaves the same as that in the simulations.

Experiment 2: Image-based scenario
In Experiment 2, the point-based VF algorithm is im-

plemented and evaluated in a preplanned image scenario.
Before the experiment, some preparation work is needed.
First, a series of 2D CT images are acquired from a patient
who has been diagnosed with osteoarthritis and an elbow
arthroscopic debridement surgery is required. Then, preplans
are conducted on one image as shown in Fig. 5a. In the
preplanned image, a hand-drawn curve in red color is shown
for planning to remove osteophytes. Nine markers (x1-x9)
are marked in the image which will be used later for image-
robot registration. Once the preplans are done, the hand-
drawn curve is extracted and the corresponding binary image
is shown in Fig. 5b. Lastly, a set of point cloud representing
the preplans is extracted from the binary image.



(a) Experiment 1 setup (b) Experiment 1 point cloud

(c) Experiment 2 setup (d) Experiment 2 point cloud

Fig. 3: Setup and point cloud patterns for Experiment 1 and
Experiment 2. Experiment 1 employs a set of point cloud
with a 2D square shape (N = 40401 = 201 × 1 × 201),
while Experiment 2 employs a set of point cloud with a
hand-drawn curve shape (N = 2204). Note that the VF in
Experiment 2 along z-axis is set as continuous and infinite
by ignoring the z-axis coordinate during VF force rendering.
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Fig. 4: Experiment 1 of implementing VF on a 2D square
point cloud with a size of N = 40401 = 201×1×201. The
blue cross, green point, and magenta point represent the point
cloud, the robot EE (the HIP), and the proxy, respectively.
The proxy contacting region and the normal vector n̂ are
represented by red circle and magenta arrow, respectively.

Now we start to do image-robot registration. Considering
that the main purpose of this experiment is to evaluate the
effectiveness of the VF algorithm, and for simplicity, a paper-
printed 2D bone instead of a 3D physical bone is used in
the registration. The paper-printed 2D bone is fixed on a
horizontal desktop in the workspace of the Panda robot (see
Fig. 3c for illustration). The registration is done by using the
ordinary least-squares (OLS) method [20] based on the nine
markers (x1-x9) on both the paper and the digital image.

The point cloud of the hand-drawn curve extracted from
the image consists of 2204 points with a density of 5.3

(a) Preplanned image (b) Curve extracting

Fig. 5: Preplanned 2D image of a patient with osteoarthritis
diagnosed and elbow arthroscopic debridement surgery re-
quired. Preplanned image size 871 × 786 (width × height)
pixels. The red curve is hand-drawn for planning to remove
osteophytes. The markers x1 to x9 will be used to do an
image-robot registration.
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(a) VF force (b) Trajectory for colored area

Fig. 6: Experiment 2 of implementing VF on point cloud of a
hand-drawn curve with a size of N = 2204. The blue cross,
green point, and magenta point represent the point cloud, the
robot EE (the HIP), and the proxy, respectively. The proxy
contacting region and the normal vector n̂ are represented
by red circle and magenta arrow, respectively.

points/mm. During the experiment, the user moves the robot
EE to probe the point cloud several rounds, and the corre-
sponding VF force is rendered and delivered to the human
user as shown in Fig. 6a, in which the green-colored area
indicates one specific trial. The robot EE trajectory in the
specific trial is represented by green dots as shown in Fig. 6b.
In the figure, the proxy and its contacting region (red circle
and its center), and the normal vector n̂ (magenta arrow) are
visualized in a frequency of 10 Hz. Note that the z-axis is
ignored when rendering the VF force, which means that the
generated VF along z-axis is continuous and infinitely long.

Experiment 2 demonstrates that the proposed VF algo-
rithm is valid in the image-base scenario. The VF can be
generated based on a hand-drawn curve from an image while
the VF force can be appropriately rendered in 3D space.

IV. DISCUSSIONS

In this paper, an algorithm for generating virtual fixture
(VF) directly from a set of point cloud data is presented. The
effectiveness of the VF algorithm is evaluated by a series of
simulations and experiments.

The simulations demonstrated that the VF algorithm works
well on point clouds of various geometric entities, i.e., a
single point, a line segment, a 2D teapot, and a 2D hand-
drawn curve. In Experiment 1, the results demonstrated that



the VF algorithm works well in 3D space by employing a set
of point cloud in the shape of a 2D square, while the user can
feel the resistant force generated by the VF when touching
either side of the square via robot EE. In Experiment 2,
3D VF is generated based on a hand-drawn curve extracted
from a preplanned image, and the VF force is appropriately
rendered. Both the simulations and the experiments verified
the effectiveness of the VF algorithm. Particularly, the results
of Experiment 2 showed the possibility to implement the VF
algorithm in image-guided surgery.

The VF algorithm is used for static VF in this paper. It
should be noted that the algorithm is capable of serving for
dynamic VF, i.e., generating and updating VF in an online
manner. This can be realized by online updating the point
cloud dataset. This feature could be very useful for some
surgical scenarios, such as bone burring during arthroscopic
surgery, in which case the VF can online update itself based
on the real-time shape of the target bone.

One advantage of the point-based VF algorithm is that the
VF is generated directly from points, the simplest geometric
entity. Therefore, there is no need for 2D/3D surface/volume
reconstruction before generating VF which can save a sub-
stantial amount of procedures and computations. More im-
portantly, the point cloud can be in any shape.

A limitation of this work is visualization. In our experi-
ments, only the point cloud and the robot EE (i.e., the HIP)
is visualized on a monitor during the task. In future work,
all key VF features (e.g., proxy point, contacting region,
normal vector) in 3D space will be visualized by using the
augmented reality (AR) technique, which can better help
surgeons to utilize the VF.

V. CONCLUSIONS

Virtual fixture (VF) plays an important role in robot-
assisted surgeries. A variety of algorithms for generating
VF have been developed for various surgical applications.
However, generating VF for a free-style curve/surface, e.g.,
a hand-drawn spline, is still a challenging problem due
to the fact that an accurate mathematical function cannot
always be found for such types of curves and surfaces. In
this paper, a point-based VF algorithm is presented which
allows to generate VF directly from the point cloud data.
The effectiveness of the algorithm is demonstrated by both
simulations and experiments. An experiment in an image-
based scenario verified the capability of the algorithm to
generate VF based on a hand-drawn curve in an image.

The point-based VF algorithm is promising to be applied
in various surgical scenarios in robot-assisted surgery and
image-guided surgery, as long as a set of point cloud of the
target object can be obtained. In future work, we will imple-
ment the VF algorithm into a realistic arthroscopic surgery
scenario by using 3D physical bones and develop accurate
registration methods for robot-image-bone registration.
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