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Abstract: Wire Arc Additive Manufacturing (WAAM) is a manufacturing technology that can fabricate a large-scale metallic part in a 

layer-by-layer fashion. It is receiving great attention from industries as a viable method of manufacturing due to its high deposition 

rate and cost-efficiency. However, there still exist numerous challenges that need to be overcome to ensure the geometrical accuracy 

of the part produced. WAAM process is highly non-linear and multi-dimensional and is difficult to model the input process parameters 

to the output geometrical quality of the final part, especially with an increasing number of materials introduced to WAAM. To 

overcome this challenge, a supervised learning control algorithm is implemented to search for a parameterized welding process while 

optimizing the geometry of a single-track multi-layer bead. The input parameters include torch travel speed, wire feed speed, previous 

layer's geometrical data, and dwell time. The output parameter is the geometry of the printed bead. The proposed algorithm is 

implemented and validated on a 3-axis gantry WAAM system. 
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1 Introduction 

Wire arc additive Wire arc additive manufacturing (WAAM) has been receiving great attentions from industries and academia 

due to its numerous advantages over traditional subtractive manufacturing [1]. It is capable of fabricating large-scale complex metallic 

components as well as low buy-to-fly ratio [2]. One of the main challenges that limit the full potential of WAAM is its lack of 

manufacturing accuracy.  As WAAM fabricates a component in a layer-by-layer fashion, a buildup of an error may occur where a 

small error in a previous layer would gradually build up throughout every layer, further negatively affecting the geometrical accuracy 

of produced part. There exist various input parameters that affect the geometrical accuracy of the final part, and they are often difficult 

to control as they are highly non-linear and coupled [3]. To overcome this challenge, control of process parameters is required as it 

would be able to rectify errors and correct itself throughout the manufacturing process. However, WAAM is a very complex time-

variant dynamic process with many different process parameters. Some of the input process parameters include torch travel speed and 

wire feed rate. Observable process parameters that impact the quality of the layered beads include thermal, geometrical information of 

already deposited beads of the previous layer. 

Heralic et al. [4] used a 3D laser scanner to obtain a profile of each layer after every deposition. Through iterative learning 

control, the deviation of height was adjusted by controlling the wire feed speed for the next deposition layer. Xiong et al. [5] 

established an improved self-learning neuron feedback control of bead width with a visual sensor and its corresponding image 

processing algorithm. Doumanidis and Kwak [6, 7] used a laser scanner and infrared sensor to monitor the gas metal arc welding 

(GMAW) system. A simultaneous but independent closed-loop control of bead width and reinforcement height to the desired 

specification was achieved. Smith et al. [8] used a CCD camera to capture the image of the molten pool surface and obtained the width 

of its molten pool. This data was then used on a closed-loop control of a GTAW system as a feedback signal to control weld 

penetration. Fan et al. [9] implemented feedback control to monitor welding penetration using temperature data. An infrared sensing 

system monitors the surrounding temperature of the melt pool during a welding process. Liu and Zhang [10, 11] developed a linear-

model-based predictive controller to control the 3D weld pool geometry of a GTAW process. Dharmawan et al. [12] proposed a 

reinforcement learning control framework for controlling layer height. The wire feed rate and torch travel speed were dynamically 

adjusted according to the measured height using a laser 3D scanner. 

Despite the effort of modeling and controlling the WAAM process, in the above reviewed literature, there are other relevant 

parameters that were not considered. For instance, one would optimize bead height but not width. Often one of the process parameters 

such as the torch travel speed is held constant in a feedback control loop. This called for a use of control algorithms and techniques 

that considers many more of the process parameters. 
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This paper proposes a method of sensor-based in-situ control of robotic WAAM integrated with reinforcement learning (RL) and 

supervised learning (SL) techniques. The algorithm used is called reinforced inverse supervised learning. The control algorithm is 

applied to the WAAM system to iteratively collect data from experiment in real time to reinforce the supervised learning neural 

networks to model the input and output relations to ultimately achieve desired geometrical quality of a single-track multi-layered wall. 

After sufficient training data and model is developed, the system can identify the best possible action parameters to be chosen given 

the state of the environment. The action parameters include wire feed speed and torch travel speed. The observable state includes 

previously deposited layer’s geometrical and thermal data. The major advantage of the method is that it can adjust the wire feed rate 

and the travel speed in accordance with real-time sensory information from a profilometer and an infrared camera to achieve specified 

geometrical quality. The experiment is conducted to show its effectiveness towards achieving a geometrical conformance of single-

track multi-layer wall 

2 Supervised learning 

Supervised learning is applied when the training data is given in form of input and output target value pairs [13]. Supervised 

learning algorithm learns the mapping function that models the input to output relation. It is utilized when specific goals are identified 

to be accomplished from specific set of inputs. It is a “task-driven approach” [14]. 

Supervised learning can be classified into a classification or a regression problem. First, classification algorithms are used in 

supervised learning to address problems in which the output variable is categorical, such as male or female, good or bad and yes or no. 

The classification algorithm can predict the outcome based on the input. Popular example of application of classification is spam 

filtering. Next, regression is used to solve problems that has a correlation between the input and output variables. Regression finds this 

correlation to predict continuous output variables given input variables. Weather prediction is one example of supervised learning 

regression problem. 

3 Experimental setup 

3.1 Profile sensor 

 The profilometer utilized in the experiment is SICK PRO2-N100B25A1. It is capable of high-precision measurements by 

emitting a band-shaped laser beam and using a light-plane-intersecting method that triangulates the reflected light. The reflected light 

from the emitted band-shaped laser beam is received by the CMOS (complementary metal oxide semiconductor) light receiving unit 

and the profile is obtained using the resulting image data. The schematic diagram of the profiler measurement can be seen in the 

Figure 1.  It has a measuring distance that ranges from 75 mm to 125 mm away from the light emitting unit, and measuring width 

ranging from 17 mm to 27 mm. It uses RS-485 serial communication with laser class of 2.  

 

Figure 1 Schematic diagram of SICK profilometer measurements [15] 

Profiler was mounted on an instrumentation rig that was attached to the neck of the torch. This setup enabled in-situ monitoring 

of each layer of bead deposited. 



 

  

 

3.2 Thermal sensor 

Short wavelength IR (infrared) camera, Optris PI 1M is used to measure the temperature of the printing part in real-time for 

dwell time control. It is suitable for temperature measurements in metal as this IR camera exhibit distinctly higher emissivity at the 

short measurement wavelength of 1μm than at the measurements in the conventional wavelength range of 8 ~ 14 μm. It has fast 

reaction time of 1ms with high dynamic CMOS detector with 764 x 480 pixel resolution with temperature measurement ranging from 

450 to 1800 °C. The accuracy of the IR camera is ± 5.0 °C at the room temperature and is ±1% for temperature under 1400 °C. 

An IR camera was setup on a tripod aloof of the location of deposition such that the field of view of the camera captures the 

entirety of the build process from the first to the last layer. The highest temperature of the bead under the perspective of camera is 

obtained then transmitted to the main controller at frequency of 10 Hz. When the controller is received with the highest temperature 

data that is below a specified threshold, the dwell time is signaled to end to resume the deposition process of the following layer. 

 

Figure 2 Optris PI 1M infrared camera with CMOS detector 

3.3 Software hardware interface 

The experiment was conducted with multitude of devices connected to one another.  The overview of the system process is 

shown in Figure 3 Software and hardware interface and system flow diagram. 

 

Figure 3 Software and hardware interface and system flow diagram 



 

  

 

Starting with pre-processing stage where the custom gcode file is in input to the ROS head controller, the deposition takes place 

while the sensors are actively measuring the system output. This real-time data from the sensors such as geometry data from profiler 

and thermal data of the IR camera are fed back into the custom algorithm where it can command the deposition parameters to change. 

The welding wire used for the study is ER70S. 

 

Figure 4 Close view of setup at location of deposition 

4 Methodology 

 

4.1 Reinforced supervised learning inverse control 

To find the optimal wire feed speed and torch travel speed to output desired layer width and height, a supervised learning 

inverse control algorithm framework is applied. This framework utilizes historical deposition rollout data model the input to output 

relation and finally can predict the optimal wire feed speed given desired layer width and height. Also, the framework enhances in 

robustness during deposition process. With more rollout data, the weights of the neural network are adjusted accordingly in-situ. 

4.2 Neural network setup 

The thermal, geometrical data of the previously deposited layer, wire feed speed and torch travel speed are set of data 

composing the input layer of the supervised learning neural network and the output are the deposited layer width and the height. The 

neural network model that maps the input to the output parameters was initially trained with data from 700 layers of bead deposition 

or a multiple of 14 different 50 layers walls. During the training stage, the layers were deposited with random wire feed speed for 

every layer, ranging from 60 inches per minute (IPM) to 120 IPM with interval of 10 IPM. 



 

  

 

 

Figure 5 Neural network setup consisting of three layers. Wire feed speed and torch travel speed are set as controlled variables 

 

4.3 First deposited layers initialization 

For both training and rollout stage of the experiment, the first layer must be initialized. Deposition of the first layer occurs on 

the substrate plate with no dwell time and geometrical information of the previously deposited bead. Although the minimum number 

of layers that must be deposited prior to deploying the control algorithm is one, the initialization is done with deposition of two layers. 

This is because the first layer is a special case where the deposition occurs on a cool surface, causing the bead to be very different in 

size in relation to the following layers. Subsequently, the second layer is also considered a special case as the deposition occurs on top 

of the first layer. Thus, the first two layers are deposited with a fixed input process parameter. The wire feed speed is set as 90 IPM 

and 350 cm/min as the torch travel speed for the first two layers initialization. After the initialization layers have been deposited, the 

dwell time, layer width and height of the consequent layers are monitored and measured. 

 

4.4 Control algorithm 

The control algorithm given layer width, height and the dwell time of the previous layer can predict the optimal wire feed 

speed where the optimality criteria is set by a reward function. The policy in choosing the optimal wire feed speed is as follows: 

𝜋 = argma𝑥
𝑊𝐹𝑆𝑖,𝑇𝑇𝑆𝑗 

(𝑟𝑒𝑤𝑎𝑟𝑑) 

Where, 

𝑟𝑒𝑤𝑎𝑟𝑑 = −|𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑤𝑖𝑑𝑡ℎ − 𝑙𝑎𝑦𝑒𝑟 𝑤𝑖𝑑𝑡ℎ| −  
|𝐷𝑒𝑠𝑖𝑟𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡|

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
 

The various level of the wire speed available is denoted as 𝑖. The wire speed level ranges from 60 to 120 IPM, inclusive with 

interval of 5 IPM. Although the training of the neural network was trained with a broader interval of 10 IPM, the wire feed speed was 

interpolated to maximize the reward function. The importance weight represents the magnitude at which it diminishes the importance 



 

  

 

of the height error.  An exemplary graph showing how the algorithm decides on the optimal wire feed speed based on the reward 

calculated with the neural network modeled function is illustrated in Figure 6 Schematic of how reward is perceived by the model 

created by the supervised learning neural network. Dwell time is also in place as an extra controller to wait for the system to cool 

down to 600 °C. 

 

Figure 6 Schematic of how reward is perceived by the model created by the supervised learning neural network 

Algorithm 1. Inverse supervise learning method 

 

 

 

 

 

 

 

 

 

5 Results and discussion 

With pretraining of neural network dynamic function, 𝑓�̂� with 200 pretraining data tuples, new walls are deposited with target 

width of 5 mm and 5.5 mm. The pretraining was done using random policy. 

Initialize neural network layers with random weights 

Pretrain the neural network dynamics function,  𝑓�̂� with historical data tuple of  𝐷𝑛 = {(𝑊𝐹𝑆1, 𝑇𝑇𝑆1, 𝐿𝑊1,
𝐿𝐻1, 𝐷𝑇1, 𝐿𝐻2, 𝐿𝑊2) … (𝑊𝐹𝑆𝑛 , 𝑇𝑇𝑆𝑛 , 𝐿𝑊𝑛 , 𝐿𝐻𝑛 , 𝐷𝑇𝑛, 𝐿𝐻𝑛+1, 𝐿𝑊𝑛+1)}  Where 𝑛 represents number of data 

tuples  

Initialize first layers 

Observe  𝐿𝐻1, 𝐿𝑊1, 𝐷𝑇1 

For layer number  𝑖 to max number of layers, do: 

     Predict  𝐿𝐻𝑖+1, 𝐿𝑊𝑖+1 with dynamics function 𝑓�̂� 

     Perform optimal action,  𝑊𝐹𝑆𝑖 , 𝑇𝑇𝑆𝑖   

     Observe  𝐿𝐻𝑖+1, 𝐿𝑊𝑖+1 

     Append 𝐷𝑖 = (𝑊𝐹𝑆𝑖 , 𝑇𝑇𝑆𝑖 , 𝐿𝑊𝑖 , 𝐿𝐻𝑖 , 𝐷𝑇𝑖 , 𝐿𝑊𝑖+1, 𝐿𝑊𝑖+1) to 𝐷𝑛 

     Train 𝑓�̂� using 𝐷 

End for 



 

  

 

 

Figure 7  200 random policy datasets visualized with resulting height as function of TTS and WFS 

 

 

Figure 8 200 random policy datasets visualized with resulting width as function of TTS and WFS 

 

 Despite the effects of previous layer’s geometry and thermal data is not illustrated in the 3D plots of Figure 7  200 random 

policy datasets visualized with resulting height as function of TTS and WFS and Figure 8 200 random policy datasets visualized with 

resulting width as function of TTS and WFS, there is an evident trend in how TTS and WFS are negatively and positively correlated to 

both of the resulting width and height, respectively. Using the training data, the supervised learning neural network was trained to 

learn the model of the system. With 200 layers worth of training dataset, 4 walls were printed with two different target width. First two 

walls were printed to have 5.5 mm as width and latter two as 5 mm. Target height for all experiments were set to 1.3 mm as it is the 

distance increment for the gcode to deposit every layer. The importance weight was set as 6 for all experiments to have the algorithm 

prioritize tracking the width more than the height.  



 

  

 

 

Figure 9 Width of the bead as a function of number of layers deposited 

  

Figure 10 Height of the bead as a function of number of layers deposited, with varying target width 



 

  

 

 The result show that both the width and height of the wall tracks the specified target value of 5 mm and 5.5 mm for width and 

1.3 for the height. Also, the tracking performance enhances as number of deposited layers increase. This may be due to accumulation 

of more data appended into the training dataset to provide more accurate model and prediction. This relatively low tracking for the 

first few layers also may have happened due to the generalization of the supervised learning model, generalizing the higher layer 

deposition process to that of the lower layers. For example, as the training dataset were obtained from producing four sets of 50 

layered wall, most of the data constitutes the deposition process at high temperature environments.  

 

Figure 11 Side profile of the first deposited wall of desired width of 5.5mm 

 The side profile of the first printed wall with target width of 5.5 mm is shown in Figure 11. The largest dimensional error in 

terms of width is shown to be 0.259 mm. The scanned area is a partial to the middle of the wall with dimension of 32 mm by 75 mm 

this equates to approximately 25 layers of deposited part. 

6 Conclusion 

Through Reinforced supervised learning inverse control, 50 layered walls of varying target geometry were deposited. The 

algorithm uses previously trained dataset in tuple of previous layer’s width, height, wire feed speed, torch travel speed, dwell time and 

resulting width and height to model the supervised learning neural network. The learned model is then used to predict the best sets of 

wire feed speed and torch travel speed, given the information of the previously deposited wall’s width and height. Through printing 

walls with target width of 5.5mm and 5mm both with target height of 1.3mm, the algorithm showed great tracking performance for 

both width and height as layer number increased. The height tracking performance was great as well, giving average height of 1.330 

mm, deviating only 0.03 mm from the desired height. The algorithm reinforces itself in-situ every layer by appending the obtained 

data from the sensors to the training dataset for the neural network.  The future studies to be done is first, testing the system for 

robustness to disturbance and next, to optimize the neural network architecture to make the system more sample efficient and analyze 

how many samples are required to output satisfactory tracking performance. Then the similar experiments are to be done with higher 

geometrical complexity such as a part that contains various angles.   
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