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Abstract: Wire and Arc Additive Manufacturing (WAAM) is a manufacturing technique capable of fabricating large -scale metallic
componentsin a layer-by-layer fashion. As an emerging technology, there still exist numerous challengesthat need to be overcome to
ensure the geometrical accuracy of the part produced. With an increasing number of deposited layers, geometrical errors often
accumulate in heightand the accumulated heat becomes significant, leading to the slumping of the beads. The quality of the part can
be enhanced through in-situ real-time feedback control. However, as the WAAM process is a time-variant process thatis highly non-
linear and multi-dimensional, it is difficult to model the process relating the process parameters to the final quality of the produced
part. To address this challenge, a sensor-based in-situ process control framework integrated with reinforcement learning (RL)
artificial intelligence (Al) is proposed to iteratively learn the impacts of various process parameters to finally control the output
geometry of a single-bead multi-layer part. The proposed control frameworks are then implemented and simulated on a robotic large-
scale WAAM system.
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1. Introduction

Interestin wire arc additive manufacturing (WAAM) hasgrown significantly in recent years dueto its numerousadvantagesover
traditionalsubtractive manufacturing [1]. It is capable of fabricating large-scale complex metallic componentsaswell ashave a
reduced buy-to-fly ratio [2]. One of the main challenges that limit the full potentialof WAAM is its lack of manufacturingaccuracy.
As WAAM fabricatesa componentina layer-by-layer fashion, a buildup of an error may occurwhere a small error in a previous layer
would gradually build up throughout every layer, further negatively affectingthe geometrical accuracy of produced part. There exist
various input parametersthat affect the geometricalaccuracy of the final part,and they are often difficult to control asthey are highly
non-linear and coupled [3]. To overcome this challenge, control of process parameters is required asit would be able to rectify errors
and correct itself throughout the manufacturingprocess. However, WAAM is a very complex time-variant dynamic process with

many different process parameters. Some of the input process parametersinclude torch positioning and speed, wire feed rate, voltage,
and current. Observable process parametersinclude thermal, geometrical information of beadsat the location of the deposition.

Heralic et al. [4] used a 3D laser scannerto obtain a profile of each layer afterevery deposition. Through iterative learning
control, the deviation of height was adjusted by controlling the wire feed speed for the next deposition layer. Xiong et al. [5]
established animproved self-learning neuron feedback controlof bead width with a visual sensor and its corresponding image
processing algorithm. Doumanidisand Kwak [6, 7] used a laser scannerand infrared sensor to monitor the gas metalarc welding
(GMAW) system. A simultaneous but independent closed-loop control of bead width and reinforcement height to the desired
specification was achieved. Smith et al. [8] used a CCD camera to capture the image of the molten pool surface and obtained the width
of its molten pool. This data wasthen used on a closed-loop control ofa GTAW system asa feedback signalto control weld
penetration. Fan et al. [9] implemented feedback controlto monitor welding penetration using temperature data. An infrared sensing
system monitors the surrounding temperature of the melt pool during a welding process. Liu and Zhang[10, 11] developed a linear-
model-based predictive controller to control the 3D weld pool geometry of a GTAW process. Dharmawan etal. [12] proposed a

reinforcement learning control framework for controlling layer height. The wire feed rate and torch travel speed were dynamically
adjusted accordingto the measured height using a laser 3D scanner.

Despite the effort of modeling and controlling the WAAM process, in the above reviewed literature, there are other relevant
parametersthatwere not considered. For instance, one would optimize bead height but not width. Often one of the process parameters



such asthe torch travelspeed is held constant ina feedback controlloop. This called fora use of control algorithms and techniques
thattakesinto account many more of the process parameters.

This paperproposes a method of sensor-based in-situ control of robotic WAAM integrated with reinforcement learning (RL)
techniques. The algorithm used is called Q-learning [13], also known asa model-free off-policy Temporal Difference method. The
control algorithm is applied to the WAAM system to iteratively learn the set of values for each of the various process parameters to
achieve a specified geometrical quality. After the algorithm converges with the Q-learning method, the system can effectively identify
what set of action is best for the system to deploy in a real-time mannerin a single-track, multi-layer printing scenario. The major
advantage of the method is that it can adjust wire feed rate, torch standoff distance, torch travelspeed, and voltage in accordance with
real-time sensory information from a profilometerand an infrared camera to achieve specified geometrical quality. The work is
performed on a simulation. Itis preliminary and is a beginning step towardsachieving a goal of further improving print quality using
intelligent in-situ WAAM control.

2. Reinforcement learning — Q-learning

Reinforcement learning (RL) is a type of Machine learning (ML) approach thatisused to trainan entity called an agentto
accomplish a specific task.Fig.1 depicts the interaction of agentand environmentin RL. The agentis the entity thattakessome
actions. These actions may impact the time-variantenvironmentand can be modeled asa Markov Decision Process (MDP) [14]. This
environment is then observed and returned to the agent in a form of state and reward. The reward is a numericalvalue that represents
the quality figure for the last action performed by the agent. This agent and environment interaction is illustrated in Fig.1. Through an
iterative process, the agent is able to learn the optimal policy, which is a rule forthe agentto select some action given a certain state.

Q-learning is one of the most well-known and employed RL algorithms that belong to the class of off-policy methodsas
convergence is guaranteed forany agent’s policy [14]. The basis of Q-Learning stems from a concept of Quality Matrix or Q-Matrix.
With a matrix size of N x Z where N is the numberof possible actionsand Z is the numberof possible actionsthat can be taken by
the agent. Thus, the state actionspace S x A is discrete. The Q-Matrix is populated with Q-values that represent “how good” is it to
take specific action given the current state. Algorithm 1 summarizesthe general Q-learning method.

The algorithm begins with initialized Q-matrix with a random value and is updated using the Bellman optimality equation (1).
QG a) =Q(s.,a) + a[R, + mex Q(spir, @) = Q(s,a,)] @)
Variables in (1) are defined as,

e s, ands.,: current and nextstate of the observed environment,where s, € S and S is the set of possible states.

e a,anda,,,: current and nextaction taken by the agent, where a, € A(S,) is the set of possible actions given state.

e y:discount factory € [0, 1]. Defines how much of future rewards are taken into account instead of the immediate rewards.
e «:learning reate, « € [0,1]. Defines how much of newest knowledge has to replace the older one.

e R, numerical value of animmediate reward, a consequence of the action, a taken.

Algorithm 1. Q-learning method [13]

Set algorithm parameters: a,y
Initialize the Q-matrix, Q(s,a) foralls € S, a € A, arbitrarily
Repeat forevery episode:
Initialize s
Loop for each step of episode:
Choose a, from s, with a set policy derived from Q (use e-greedy)
Take action a, and observe reward, R and nextstate s,
Q(sy,a) « Q(s,,a) +alR, + ymfo(stH,a) —Q(sp a,)] (update Q-matrix)

o St St
until s, is terminal
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Fig. 1 Agent-environment interaction

The type of Q-learning deployed here is specifically a e-greedy Q-learning. e-greedy method is a simple probabilistic exploratory
technique commonly used in RL. € represents a value of range [0, 1] atwhich if a randomly generated numberbetween that range falls
under, the agenttakesa completely random action given a state. Otherwise, take a best-known action.

3. Implementation of Q-learning in WAAM

The conceptualidea of reinforcement learning is translated into implementation in WAAM of single-track multi-layer wall.
Fig. 2 demonstratesthe flow of the system with the incorporation of the RL algorithm. The state of the environment correspondsto
the real-time observation data from a profilometerand an IR camera. The profilometer measures the width and height of the bead that
the deposition occurs at. Also, the IR camera providesthe temperature data at the point of the deposition. The thermaland geometrical
data of the previous layer largely affectsthe geometry of the next layer. With the two data combined, theagentis to takea
corresponding optimized action of changing wire feed speed, torch travel speed, and torch standoff distance to specific valuesthat
would ultimately give the desired geometry of the nextlayer and the next and so forth. As the Q-learning algorithm works with
discretized values, Table 1 and 2 is tabulated to show the equispaced and discretized values of various statesand actions considered in
this study.

Table 1. State or observed process parametersdiscretized within a specified range

State Range Discretized into counts of
Bead width at deposition point [mm] [6, 14] 4
Bead height atdeposition point [mm] [2, 4] 4
Temperature at deposition point [C°] [200, 700] 5
Table 2. Action or process input parametersdiscretized within a specified range
Action Range Discretized into counts of
Wire feed speed, WFS [m/min] [2, 3] 10
Torch standoff distance, SOD [mm] [10, 13] 3

Torch travel speed, TTS [cm/min] [25, 35] 4
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Fig. 2 System flow diagram for printing single-track multi-layer wall. Process monitoring gives data forRL to evaluate rewardsand
observe the state of the environment. Process control refers to the action taken by the agent.

The first layer is deposited with a commonly known process parameterand the profilometer mounted behind the torch
records the bead profile. The setup can beseen in Fig. 4. Along with the known temperature and the geometrical profile of the
previous layer, or a state, deposition of the next layer commences with specific valuesof wire feed speed, torch standoff distance,and
torch travelspeed, or anaction. As the deposition of the next layer occurs, the profiler observes the geometrical data of the bead just
deposited, given the state information of the previous bead’s width, height, and temperature data. The geometrical data of the bead that
just deposited is used to calculate the reward,

Ri= —lhy —hyl = lw, —wg| @)

Where h, and h, represent the objective height and measured actual height, respectively. w, and w, represents the objective width
and measured actualwidth, respectively. With the reward and through Bellman optimality equation (1), the Q-value can be obtained
and be tabulated into the Q-matrix of Table 3. The Q-matrix is tabulated at every intervalwhere the action parameterchanges anda
state observation occurs. The intervals at where action changesand state observation occursis portrayed in Fig. 3. The process iterates
for every episode where the terminal state is determined to be atthe point where the R, < —0.5.



Table 3. Q-matrix

State Action Ay = (Wfsy, sody, ttsy) Ay = (Wfsy, sody, ttsy) A7s = (Wfss, sods, ttss)
S1= (T, wy, hy) Q(S1,41) Q(S1,4z) Q(S1,475)
Sy = (Ty, wy, hy) Q(S2 4y) Q(S52,43)
Sss = (Ts, ws, hj) Q(S45,41) Q(S4s,475)
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Fig. 3 Layout of the setup shows thatthe agentsare discretized into sections. An action occurs and the result of the action is observed
with the profiler and the IR camera. The observed profile data isused to evaluate the reward.

Fig. 4 Profilometer attached behind and alongthe trajectory of the print path

Being a preliminary work, the Q-learning method wasvalidated using a simulator before commencingreal-life experiments.
The second-order regression model [15] was used to map the input parameters, namely the wire feed speed, standoff distance, torch
travel speed, to the resulting width and height of the printed bead. The output temperature datawas roughly simulated without an

expert modeling equation. The learning rate «, discount factory, exploratory threshold e, was set at0.5, 0.99, and 0.1, respectively
during the simulation.



4. Results and discussion

The simulation of the experiment was conducted to show the convergence. Fig. 6 shows thatthe first episode of learning had an
average reward of approximately -1.9 which corresponds to the summed deviation of width and height from the desired value in units
of mm. The individual result for deviation of width and height is shown in Fig. 7. This error is further minimized as the algorithm
further tabulates the Q-Matrix. The system, over 300 episodes seem to converge ataround a reward of -1.2.

Although cropped outfor a visual understanding of the performance, in Fig.5 (right), it is notable that the first episode took an
average of 300 iterations until reaching the terminal state and quickly down to 50 iterations for the nextepisode. This amount of
iteration counts may or may notbe a problem depending on how sparse the action change intervalis in Fig. 3 in thereal-life
experiment. The steady error of the resulting graph is occurred from the value of €, which is fixed throughout the entire simulation
experiment. The majordisadvantage of Q-learning is that it takesa long time and many iterations for the algorithm to reach the
optimal Q-value. As the Q-learning learns a deterministic policy, the agent either chooses the best action ora random action. This

could possibly be problematic in a non-stationary environment thatis influenced by an unknown disturbance. As the statesand actions
are discretized, the resolution of state observed and the actionstaken is limited to Table 1 and 2, respectively.
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Fig. 7 Averaged absolute value of width and height deviations per episode averaged over 1000 independent runs

5. Conclusionand future work

The manuscript presents a preliminary study of sensor-based in-situ control of robotic wire arcadditive manufacturingsystem
integrated with a reinforcement learning technique called Q-learning. The reinforcement learning framework enabled the system to
consider discretized valuesof wire feed speed, torch travelspeed, and torch standoff distance asthe system input while obse rving the
bead geometry and temperature for closed-loop control. The result shows thatthe algorithm converges with a steady error of
approximately 0.8 mmand 0.43 mm for width and height, respectively over iterations of many episodes. The encouraging preliminary
result of the study opens more opportunities for improving WAAM systems in making the process more efficient and reliable.

The future work based onthis outcome s to translate the simulation into real life. Also, therate of convergence could be
enhanced with lesser iteration and the steady error may be minimized by performing a hyperparameterstudy and deploying the
decayinge method. Other suitable RL algorithms that can take into account expert domain knowledge and model,and handle
continuous sets of action and state parameterswill be considered and explored.
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