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Abstract: Wire and Arc Additive Manufacturing (WAAM) is a manufacturing technique capable of fabricating large -scale metallic 

components in a layer-by-layer fashion. As an emerging technology, there still exist numerous challenges that need to be overcome to 

ensure the geometrical accuracy of the part produced. With an increasing number of deposited layers, geometrical errors often  

accumulate in height and the accumulated heat becomes significant, leading to the slumping of the beads. The quality of the part can 

be enhanced through in-situ real-time feedback control. However, as the WAAM process is a time-variant process that is highly non-

linear and multi-dimensional, it is difficult to model the process relating the process parameters to the final quality of the produced 

part. To address this challenge, a sensor-based in-situ process control framework integrated with reinforcement learning  (RL) 

artificial intelligence (AI) is proposed to iteratively learn the impacts of various process parameters to finally control the output 

geometry of a single-bead multi-layer part. The proposed control frameworks are then implemented and simulated on a robotic large-

scale WAAM system. 
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1. Introduction
Interest in wire arc additive manufacturing (WAAM) has grown significantly in recent years due to its numerous advantages over

traditional subtractive manufacturing [1]. It is capable of fabricating large-scale complex metallic components as well as have a 

reduced buy-to-fly ratio [2]. One of the main challenges that limit the full potential of WAAM is its lack of manufacturing accuracy.  

As WAAM fabricates a component in a layer-by-layer fashion, a buildup of an error may occur where a small error in a previous layer 

would gradually build up throughout every layer, further negatively affecting the geometrical accuracy of produced part. There exist 

various input parameters that affect the geometrical accuracy of the final part , and they are often difficult to control as they are highly 

non-linear and coupled [3]. To overcome this challenge, control of process parameters is required as it would be able to rectify errors 

and correct itself throughout the manufacturing process. However, WAAM is a very complex time-variant dynamic process with 

many different process parameters. Some of the input process parameters include torch positioning and speed, wire feed rate, voltage, 

and current. Observable process parameters include thermal, geometrical information of beads at the location of the deposition. 

Heralic et al. [4] used a 3D laser scanner to obtain a profile of each layer after every deposition. Through iterative learning 

control, the deviation of height was adjusted by controlling the wire feed speed for the next deposition layer. Xiong et al. [5] 

established an improved self-learning neuron feedback control of bead width with a visua l sensor and its corresponding image 

processing algorithm. Doumanidis and Kwak [6, 7] used a laser scanner and infrared sensor to monitor the gas metal arc welding 

(GMAW) system. A simultaneous but independent closed-loop control of bead width and reinforcement height to the desired 

specification was achieved. Smith et al. [8] used a CCD camera to capture the image of the molten pool surface and obtained the width 

of its molten pool. This data was then used on a closed-loop control of a GTAW system as a feedback signal to control weld 

penetration. Fan et al. [9] implemented feedback control to monitor welding penetration using temperature data. An infrared sensing 

system monitors the surrounding temperature of the melt pool during a  welding process. Liu and Zhang [10, 11] developed a linear-

model-based predictive controller to control the 3D weld pool geometry  of a GTAW process. Dharmawan et al. [12] proposed a 

reinforcement learning control framework for controlling layer height. The wire feed rate and torch travel speed were dynamically 

adjusted according to the measured height using a laser 3D scanner. 

Despite the effort of modeling and controlling the WAAM process, in the above reviewed literature, there are other relevant 

parameters that were not considered. For instance, one would optimize bead height but not width. Often one of the process parameters 
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such as the torch travel speed is held constant in a feedback control loop. This called for a use of control algorithms and techniques 

that takes into account many more of the process parameters. 

This paper proposes a method of sensor-based in-situ control of robotic WAAM integrated with reinforcement learning (RL) 

techniques. The algorithm used is called Q-learning [13], also known as a model-free off-policy Temporal Difference method. The 

control algorithm is applied to the WAAM system to iteratively learn the set of values for each of the various process parameters to 

achieve a specified geometrical quality. After the algorithm converges with the Q-learning method, the system can effectively identify 

what set of action is best for the system to deploy in a real-time manner in a single-track, multi-layer printing scenario. The major 

advantage of the method is that it can adjust wire feed rate, torch standoff distance, torch travel speed, and voltage in accordance with 

real-time sensory information from a profilometer and an infrared camera  to achieve specified geometrical quality. The work is 

performed on a simulation. It is preliminary and is a beginning step towards achieving a goal of further improving print quality using 

intelligent in-situ WAAM control. 

2. Reinforcement learning – Q-learning  
Reinforcement learning (RL) is a type of Machine learning (ML) approach that is used to train an entity called an agent to 

accomplish a specific task. Fig.1 depicts the interaction of agent and environment in RL. The agent is the entity that takes some 

actions. These actions may impact the time-variant environment and can be modeled as a Markov Decision Process (MDP) [14]. This 

environment is then observed and returned to the agent in a form of state and reward. The reward is a numerical value that represents 

the quality figure for the last action performed by the agent. This agent and environment interaction is illustrated in Fig.1. Through an 

iterative process, the agent is able to learn the optimal policy, which is a rule for the agent to select some action given a certain state. 

Q-learning is one of the most well-known and employed RL algorithms that belong to the class of off-policy methods as 

convergence is guaranteed for any agent’s policy [14]. The basis of Q-Learning stems from a concept of Quality Matrix or Q-Matrix. 

With a matrix size of 𝑁 ×  𝑍  where 𝑁  is the number of possible actions and Z is the number of possible actions that can be taken by 

the agent. Thus, the state action space 𝑆 × 𝐴 is discrete. The Q-Matrix is populated with Q-values that represent “how good” is it to 

take specific action given the current state. Algorithm 1 summarizes the general Q-learning method. 

The algorithm begins with initialized Q-matrix with a random value and is updated using the Bellman optimality equation (1).  

𝑄(𝑠𝑡 , 𝑎𝑡
) = 𝑄(𝑠𝑡 , 𝑎𝑡

) + 𝛼[𝑅𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1 , 𝑎) − 𝑄(𝑠𝑡 ,𝑎𝑡 )]    (1) 

Variables in (1) are defined as, 

• 𝑠𝑡  and 𝑠𝑡+1: current and next state of the observed environment, where 𝑠𝑡 ∈ 𝕊 and 𝑆 is the set of possible states. 

• 𝑎𝑡  and 𝑎𝑡 +1: current and next action taken by the agent, where 𝑎𝑡 ∈ 𝔸(𝕊𝑡) is the set of possible actions given state. 

• 𝛾: discount factor 𝛾 ∈ [0, 1]. Defines how much of future rewards are taken into account instead of the immediate rewards. 

• 𝛼 : learning reate, 𝛼 ∈ [0,1]. Defines how much of newest knowledge has to replace the older one.  

• 𝑅𝑡: numerical value of an immediate reward, a consequence of the action, 𝑎 taken. 

 

Algorithm 1. Q-learning method [13] 

 

 

Set algorithm parameters: 𝛼, 𝛾 

Initialize the Q-matrix, 𝑄(𝑠, 𝑎)  for all 𝑠 ∈ 𝕊, 𝑎 ∈  𝔸, arbitrarily 

Repeat for every episode: 

 Initialize 𝑠  

 Loop for each step of episode: 

  Choose 𝑎𝑡  from 𝑠𝑡  with a set policy derived from 𝑄 (use 𝜖-greedy) 

  Take action 𝑎𝑡  and observe reward, R and next state 𝑠𝑡 +1 

  𝑄(𝑠𝑡 , 𝑎𝑡
)  ← 𝑄(𝑠𝑡 , 𝑎𝑡

) + 𝛼[𝑅𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡 +1,𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (update Q-matrix) 

  𝑠𝑡 ← 𝑠𝑡 +1 

 until 𝑠𝑡  is terminal 

 



 

  

 

 

Fig. 1 Agent-environment interaction 

The type of Q-learning deployed here is specifically a  𝜖-greedy Q-learning. 𝜖-greedy method is a simple probabilistic exploratory 

technique commonly used in RL. 𝜖 represents a value of range [0, 1] at which if a  randomly generated number between that range falls 

under, the agent takes a completely random action given a state. Otherwise, take a best-known action. 

3. Implementation of Q-learning in WAAM 
The conceptual idea of reinforcement learning is translated into implementation in WAAM of single-track multi-layer wall. 

Fig. 2 demonstrates the flow of the system with the incorporation of the RL algorithm.  The state of the environment corresponds to 

the real-time observation data from a profilometer and an IR camera. The profilometer measures the width and height of the bead that 

the deposition occurs at. Also, the IR camera provides the temperature data at the point of the deposition. The thermal and geometrical 

data of the previous layer largely affects the geometry of the next layer. With the two data combined, the agent is to take a  

corresponding optimized action of changing wire feed speed, torch travel speed, and torch standoff distance to specific values that 

would ultimately give the desired geometry of the next layer and the next and so forth . As the Q-learning algorithm works with 

discretized values, Table 1 and 2 is tabulated to show the equispaced and discretized values of various states and actions considered in 

this study. 

 

  Table 1. State or observed process parameters discretized within a specified range 

State Range Discretized into counts of 

Bead width at deposition point [mm] [6, 14]  4 

Bead height at deposition point [mm] [2, 4] 4 

Temperature at deposition point [C°] [200, 700] 5 

 

  Table 2. Action or process input parameters discretized within a specified range 

Action Range Discretized into counts of 

Wire feed speed, WFS [m/min] [2, 3]  10 

Torch standoff distance, SOD [mm] [10, 13] 3 

Torch travel speed, TTS [cm/min] [25, 35] 4 

 



 

  

 

 

Fig. 2 System flow diagram for printing single-track multi-layer wall. Process monitoring gives data for RL to evaluate rewards and 

observe the state of the environment. Process control refers to the action taken by the agent. 

 

The first layer is deposited with a commonly known process parameter and the profilometer mounted behind the torch 

records the bead profile. The setup can be seen in Fig. 4. Along with the known temperature and the geometrical profile of the 

previous layer, or a state, deposition of the next layer commences with specific values of wire feed speed, torch standoff distance, and 

torch travel speed, or an action. As the deposition of the next layer occurs, the profiler observes the geometrical data of the bead just 

deposited, given the state information of the previous bead’s width, height, and temperature data. The geometrical data of the bead that 

just deposited is used to calculate the reward,  

 

𝑅𝑡 =  −|ℎ𝑜 − ℎ𝑎
| −  |𝑤𝑜 − 𝑤𝑎

|   (2) 

 

Where ℎ𝑜  and ℎ𝑎  represent the objective height and measured actual height, respectively. 𝑤𝑜 and 𝑤𝑎  represents the objective width 

and measured actual width, respectively. With the reward and through Bellman optimality equation (1), the Q-value can be obtained 

and be tabulated into the Q-matrix of Table 3. The Q-matrix is tabulated at every interval where the action parameter changes and a 

state observation occurs. The intervals at where action changes and state observation occurs is portrayed in Fig. 3. The process iterates 

for every episode where the terminal state is determined to be at the point where the 𝑅𝑡 <  −0.5. 

 



 

  

 

Table 3. Q-matrix 

 

 

Fig. 3 Layout of the setup shows that the agents are discretized into sections. An action occurs and the result of the action is observed 

with the profiler and the IR camera . The observed profile data is used to evaluate the reward. 

 

Fig. 4 Profilometer attached behind and along the trajectory of the print path 

Being a preliminary work, the Q-learning method was validated using a simulator before commencing real-life experiments. 

The second-order regression model [15] was used to map the input parameters, namely the wire feed speed, standoff distance, torch 

travel speed, to the resulting width and height of the printed bead. The output temperature data was roughly simulated withou t an 

expert modeling equation. The learning rate 𝛼, discount factor 𝛾, exploratory threshold 𝜖 , was set at 0.5, 0.99, and 0.1, respectively 

during the simulation.  

                  Action 

State 
𝐴1 = (𝑤𝑓𝑠1,  𝑠𝑜𝑑1,  𝑡𝑡𝑠1) 𝐴2 = (𝑤𝑓𝑠1,  𝑠𝑜𝑑1,  𝑡𝑡𝑠2) … 

𝐴75 = (𝑤𝑓𝑠5 ,  𝑠𝑜𝑑3,  𝑡𝑡𝑠5) 

 

𝑆1 = (𝑇1,  𝑤1,  ℎ1) 𝑄(𝑆1,𝐴1) 𝑄(𝑆1,𝐴2 ) … 𝑄(𝑆1 ,𝐴75) 

𝑆2 = (𝑇1,  𝑤1,  ℎ2) 𝑄(𝑆2, 𝐴1) 𝑄(𝑆2,𝐴2 )   

… …  …  

𝑆45 = (𝑇5 ,  𝑤3,  ℎ3) 𝑄(𝑆45, 𝐴1)   𝑄(𝑆45 , 𝐴75) 



 

  

 

4. Results and discussion 
The simulation of the experiment was conducted to show the convergence. Fig. 6 shows that the first episode of learning had an 

average reward of approximately -1.9 which corresponds to the summed deviation of width and height from the desired value in units 

of mm. The individual result for deviation of width and height is shown in Fig. 7. This error is further minimized as the algorithm 

further tabulates the Q-Matrix. The system, over 300 episodes seem to converge at around a reward of -1.2.  

Although cropped out for a  visual understanding of the performance, in Fig.5 (right), it is notable that the first episode took an 

average of 300 iterations until reaching the terminal state and quickly down to 50 iterations for the next episode. This amount of 

iteration counts may or may not be a problem depending on how sparse the action change interval is in Fig. 3 in the real-life 

experiment. The steady error of the resulting graph is occurred from the value of 𝜖, which is fixed throughout the entire simulation 

experiment. The major disadvantage of Q-learning is that it takes a long time and many iterations for the algorithm to reach the 

optimal Q-value. As the Q-learning learns a deterministic policy, the agent either chooses the best action or a random action. This 

could possibly be problematic in a non-stationary environment that is influenced by an unknown disturbance. As the states and actions 

are discretized, the resolution of state observed and the actions taken is limited to Table 1 and 2, respectively.  

 

 
Fig. 5 Sum of reward during each episode (left), Number of actions taken by the agent until reaching the terminal state (right) 

averaged over 1000 independent runs 

 

Fig. 6 Average reward observed per iteration, averaged over 1000 independent runs 



 

  

 

 

Fig. 7 Averaged absolute value of width and height deviations per episode averaged over 1000 independent runs 

 

5. Conclusion and future work 
The manuscript presents a preliminary study of sensor-based in-situ control of robotic wire arc additive manufacturing system 

integrated with a reinforcement learning technique called Q-learning. The reinforcement learning framework enabled the system to 

consider discretized values of wire feed speed, torch travel speed, and torch standoff distance as the system input while obse rving the 

bead geometry and temperature for closed-loop control. The result shows that the algorithm converges with a steady error of 

approximately 0.8 mm and 0.43 mm for width and height, respectively  over iterations of many episodes. The encouraging preliminary 

result of the study opens more opportunities for improving WAAM systems in making the process more efficient and reliable.  

The future work based on this outcome is to translate the simulation into real life. Also, the rate of convergence could be 

enhanced with lesser iteration and the steady error may be minimized by performing a hyperparameter study and deploying the 

decaying ϵ method. Other suitable RL algorithms that can take into account expert domain knowledge and model, and handle 

continuous sets of action and state parameters will be considered and explored.   
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