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Recent studies in surgical robotics have focused on automating common surgical subtasks such as grasping and manipulation using
deep reinforcement learning (DRL). In this work, we consider surgical endoscopic camera control for object tracking – e.g., using
the endoscopic camera manipulator (ECM) from the da Vinci Research Kit (dVRK) (Intuitive Inc., Sunnyvale, CA, USA) – as a
typical surgical robot learning task. A DRL policy for controlling the robot joint space movements is first trained in a simulation
environment and then continues the learning in the real world. To speed up training and avoid significant failures (in this case, losing
view of the object), human interventions are incorporated into the training process and regular DRL is combined with generative
adversarial imitation learning (GAIL) to encourage imitating human behaviors. Experiments show that an average reward of 159.8
can be achieved within 1,000 steps compared to only 121.8 without human interventions, and the view of the moving object is lost
only twice during the training process out of 3 trials. These results show that human interventions can improve learning speed and
significantly reduce failures during the training process.

Keywords: Surgical Autonomy; Reinforcement Learning; Human-in-the-Loop Deep Reinforcement Learning; Learning from Demon-
stration.

1. Introduction

Several recent advances in surgical robotics focus on au-
tomating common surgical subtasks such as grasping, su-
turing, and tissue manipulation [1–5] to reduce the work-
load of the surgeons. Furthermore, these studies lay the
groundwork for increasing the level of surgical robot auton-
omy, as the automation of these subtasks can serve as the
low-level robot skills needed for achieving a higher level of
autonomy such as task reasoning and planning. In this con-
text, deep reinforcement learning (DRL) which uses deep
neural networks as function approximators in reinforcement
learning (RL), is becoming increasingly popular for learn-
ing to automate surgical subtasks, largely due to their high
generalizability and less need for human knowledge.

DRL has helped achieve high-level autonomy in other
fields, including general robot manipulation and unmanned
vehicles. Typically, an RL agent explores the environment
by starting with random actions and gradually improves
its decision policy to take better actions, based on the
reward feedback from the environment. Since it requires
a large number of explorations before learning an effec-
tive policy, one typical procedure to train an RL agent
is the “simulation-to-reality” (sim-to-real) technique where

an agent is first trained in a simulated environment and
then transferred to the real world. While this approach has
achieved some promising results in surgical robot learn-
ing [2–5], the level of autonomy that has been achieved and
the tasks that have been automated are still limited com-
pared to other fields such as autonomous vehicles where
research is advancing towards Level 5 autonomy [6]. One of
the reasons is the lack of high-fidelity simulators for surgical
environments in which an RL agent can be trained. There-
fore, even after a successful policy is learned in the sim-
ulator, it can suffer from performance degradations when
transferred to the real world due to the sim-to-real gap,
such as inaccurate robot dynamics or registration [2].

Continuing the learning process in the real world,
specifically fine-tuning a pre-trained policy, is a logical step
when applying DRL to real-world tasks. Although some
sim-to-real techniques such as domain randomization [7]
and utilizing offline RL approaches [8] aim at eliminating
the need for online exploration in the real world, fine-tuning
with online experiences in the real world is still a com-
mon strategy for improving the performance of a simulator-
trained policy. However, learning in the real world for sur-
gical robots is usually considered impractical, since un-
safe robot actions during the learning agent’s exploration

1

This paper appears in the Journal of Medical Robotics Research, 2023.
https://doi.org/10.1142/S2424905X23400044



October 27, 2023 2:46 output

2 OU et al.

can cause significant damage to the environment, which
is particularly undesirable in surgeries. Furthermore, even
though fine-tuning a pre-trained model requires less explo-
ration than training from scratch, a relatively large number
of samples from the real world are still needed in general.
Therefore, sample efficiency and safety considerations are
two of the major challenges in surgical robot learning.
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Fig. 1. A human supervisor can intervene during the training
process of an RL agent by overwriting the actions.

One approach to both expediting learning and prevent-
ing unsafe actions is leveraging real-time human interven-
tions [9]. In this case, a human supervisor monitors the
training process and overwrites the agent’s action when
necessary, as shown in Fig. 1. This can be viewed as in-
termittent human demonstrations that happen through-
out the training. However, unlike LfD, real-time human
interventions in RL allow the human to provide impor-
tant demonstrations only when needed without having to
demonstrate the entire task.

While directly overwriting agent actions is impracti-
cal in some cases such as when a legged robot is learn-
ing to walk, this approach is more intuitive for the human
supervisor if the task is traditionally completed by a hu-
man, such as teleoperation or driving, compared to provid-
ing evaluative feedback or demonstrating unsafe actions.
Furthermore, although interventions are more demanding
of skills for the human, the actions taken by the human
are usually informative and can make the learning process
more effective compared to evaluative feedback. In addi-
tion, safety is much more assured since preventing danger-
ous actions is not dependent on an algorithm or a trained
model. As a result, it is particularly suitable for use in sur-
gical robot learning. While prior work has shown success in
applying DRL with real-time human interventions in prob-
lems such as unmanned aerial vehicles [10] and autonomous
driving [11,12], its application in surgical robot learning has
not been extensively studied. Recent work has attempted

to incorporate human interactions in surgical robot learn-
ing environments [13]. However, it only considers human
interaction as full task demonstrations, and is limited to
simulation environments.

In this work, we consider surgical endoscope naviga-
tion as a typical surgical support task that could be learnt.
A training framework based on our earlier work, [14], that
combines DRL with real-time human interventions through
the incorporation of generative adversarial imitation learn-
ing (GAIL) is applied to learn to automate endoscopic cam-
era control for tracking a moving object in the real world.
A DRL agent is first trained in the simulator with different
robot and camera configurations than in the real world and
fine-tuned in the real world in the presence of possible real-
time human interventions. The main contributions of this
work are: (a) we propose a DRL framework that enables
learning endoscopic camera control first in a simulation en-
vironment and then transferred to the real world with fine-
tuning for the endoscopic camera manipulator (ECM) of da
Vinci Research Kit (dVRK) [15]; (b) we propose a training
methodology that utilizes real-time human interventions by
combining regular RL with GAIL to accelerate training and
prevent catastrophic failures when the agent is fine-tuned
in the real world. We validate the proposed framework and
show that the endoscopic camera navigation task can be
learned in the real world with few failures by utilizing hu-
man interventions. To the best of our knowledge, this is the
first time a surgical support task is learned through human
intervention in the real world using the dVRK.

This paper is organized as follows. Section 2 briefly re-
views the related studies. Section 3 introduces the proposed
method. In Section 4, we present the results obtained from
the simulation environment, and in Section 5 the real-world
experimental setup is discussed. Section 6 outlines and dis-
cusses the results. Section 7 concludes the paper with dis-
cussions on the limitations and potential future work.

2. Related Work

2.1. Incorporating Human Knowledge in RL

Leveraging human knowledge is an intuitive method to ac-
celerate learning or prevent unsafe actions. For instance,
using behavior cloning (BC), a naive learning from demon-
stration (LfD) approach, to pre-train the policy in a super-
vised manner is a common strategy used to accelerate learn-
ing. Additionally, humans can observe the training process
and provide feedback on how good a given robot action is,
which can be used directly to update the policy [16] or as
an auxiliary reward to speed up the training process [17].
Humans can also provide initial demonstrations of unsafe
actions for training a safety critic that prevents the agent
from taking dangerous actions in the exploration [18].

Leveraging human interventions is one other effective
strategy for both preventing catastrophic incidents during
exploration and enhancing sample efficiency. Saunders et
al. introduced a training mechanism that involves human
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monitoring of the training process [9]. When the agent is
in a dangerous situation, the human intervenes and over-
rides the agent’s actions, resulting in a penalty in the re-
ward function. Furthermore, an action blocker is trained us-
ing human interventions, enabling it to automatically block
risky actions of the agent and eventually this action blocker
replaces the human supervisor. Similarly, Xu et al. pro-
posed a safe model-based RL framework by incorporating
human interventions, where an action blocker is trained to
mimic the human’s blocking decisions [19]. Not only can
interventions happen when the agent is acting dangerously,
but they can also be used for assisting the agent to learn
more efficiently. In [20], the human provides interventions
to help overcome the bottleneck of inserting a pod into a
machine slot. Wang et al. developed an algorithm for safe
RL with human interventions by adding a BC loss to the
original policy loss of proximal policy optimization (PPO),
which accelerates the training process in the meantime [10].

2.2. DRL and LfD for surgical robot
autonomy

The use of DRL and LfD in surgical autonomy has gained
increasing attention in recent years. A number of recent
studies have examined the automation of common subtasks
that frequently occur during surgeries, such as knot-tying
[1], needle hand-over [3, 4] and tissue manipulation [2, 5],
with the goal of relieving surgeons from repetitive and
monotonous tasks. For example, Tagliabue et al. trained
a policy in a simulated environment using PPO for the
robot to grasp and lift the tissue and reveal a region of
interest underneath it, and validated the performance in a
real-world setup [2]. Osa et al. used LfD for planning the
motion trajectories to achieve autonomous knot-tying [1].
In addition, DRL and LfD approaches have also been in-
vestigated for achieving shared autonomy and control in
robotic surgery. For instance, Zhu et al. proposed a DRL-
based semi-autonomous control framework for peg transfer,
where the coarse control is automated by the agent while
the user only needs to focus on fine control and make de-
cisions at critical points [21]. Zhang et al. applied dynamic
movement primitives (DMP), an LfD approach to achieve
shared control in a peg transfer task [22].

LfD is frequently integrated into DRL to enhance per-
formance as it capitalizes on demonstrations provided by
human experts. For instance, in [3], BC is used to help
the exploration of a deep deterministic policy gradients
(DDPG) agent in learning bimanual needle regrasping. In a
follow-up study of [2], Pore et al. combined PPO with GAIL
using human demonstrations to achieve a faster learning
speed [23]. While these approaches involve integrating LfD
into DRL by utilizing human demonstrations gathered be-
fore training, our work allows the human to start and stop
intervention at any point during the training process.

2.3. Autonomous endoscopic camera control

As a surgical support task, adjusting the motion of the en-
doscopic camera is traditionally carried out by the surgeons
to realign the field of view in accordance with the surgical
procedure during surgery. Therefore, automating the task
could potentially reduce the burden on the surgeons.

Autonomous endoscopic camera control has been thor-
oughly explored in a number of studies. Traditional ap-
proaches focus on hand-crafting or developing knowledge-
based rules for controlling the camera motion based on
surgical tool position [24–28] and eye gaze [29, 30]. Sepa-
rate feature extraction pipelines, such as detecting surgical
tools, as well as human knowledge about the task are usu-
ally required for these approaches to be successful.

Recent advances show the potential of utilizing data-
driven approaches, especially LfD methods to automate
endoscopic camera control [31–34]. In [32], the authors
utilized inverse reinforcement learning (IRL), an LfD ap-
proach, to learn the task from expert trajectories. Li
et al. used GAIL for learning an end-to-end policy that
takes the image feedback from the endoscopic camera as
the input to generate camera motions directly from the en-
doscopic videos recorded during surgery [33]. A supervised
learning approach has also been explored in [34], where a
sequence-to-sequence recurrent network was trained to gen-
erate future camera movements based on previous motions.
This type of work learns an endoscopic camera control pol-
icy from prior expert demonstrations or video recordings.
In contrast to these studies that utilize LfD approaches,
we consider endoscopic camera control as an RL problem,
where an agent is trained first in a simulator from scratch,
and then fine-tuned in the real world.

3. Methods

3.1. Soft actor-critic

RL typically addresses the problem of a Markov decision
process (MDP) defined as ⟨S,A, P, r, γ⟩. S and A are the
state and action space, respectively. The corresponding
state and action variables are s and a. P : S×A×S → [0, 1]
is the state transition function which maps a state-action
pair (st,at) at time step t to the next state st+1. r : S×A →
R is the reward function that relates a state-action pair
(st,at) to a reward value. γ ∈ [0, 1] is the discount factor.

Since off-policy algorithms allow the behavior policy
used for collecting experience to be different from the target
policy being learned, experience replay can be utilized to
reuse previous experiences during training, which improves
sample efficiency compared with on-policy algorithms. Ad-
ditionally, this naturally allows for human interventions
during exploration, since the human policy is essentially
different than the target policy. It is therefore more appro-
priate to use off-policy algorithms in this case.

We use soft actor-critic (SAC) [35], an off-policy DRL
algorithm that considers the maximum entropy reinforce-
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ment learning problem. The learning objective is to find
an optimal policy that maximizes the expectation of the
discounted return and the policy entropy at the same time:

π∗ = argmax
π

T∑
t=0

E(st,at)∼ρπ

[
γtr(st,at) + αH(π(·|st))

]
(1)

Here, π is the policy, ρπ is the trajectory distribution pro-
duced by the policy π, T is the horizon, H(π(·|at)) is the
entropy of the action distribution, and α is a weighting
factor. Taking into account maximum entropy encourages
exploration and enables learning a more robust policy [35].

SAC exploits an actor-critic structure. The critic is a
neural network Qθ(st,at) with trainable parameters θ for
estimating the soft Q-value, and the actor is the policy
πϕ parameterized by ϕ that generates actions from given
states. Qθ(st,at) is trained by minimizing the Bellman
residual

JQ(θ) = E(st,at)∼R

[
1

2
(Qθ(st,at)− ŷt)

2

]
(2)

where R is the trajectories stored in the experience replay
buffer, and

ŷt = r(st,at) + γEst+1∼p[Vθ(st+1)] (3)

is the temporal difference (TD) target, with Vθ(st) being
the soft state-value function implicitly parameterized by θ.

The policy πϕ is trained by maximizing the sum of
the soft Q-value predicted by the critic and the α-weighted
policy entropy, i.e. minimizing the loss

Jπ(ϕ) = Est∼R
[
Eat∼πϕ

[−Qθ(st,at) + α log(π(at|st))]
]
(4)

In practice, two Q networks (Qθ1 and Qθ2) and two target
networks (Qθ̄1

and Qθ̄2
) are used to mitigate the overesti-

mation problem and stabilize training.

3.2. Generative adversarial imitation
learning

Generative adversarial imitation learning (GAIL) is an LfD
algorithm that is based on RL and generative adversar-
ial networks (GANs). In GAIL, the reward function of the
task is unknown. As an alternative, successful trajectories
from human experts are collected as demonstrations that
an RL agent should imitate. During training, a discrimina-
tor Dφ(st,at) is jointly trained with an RL agent to dis-
criminate between expert human actions and the actions
taken by the learning agent. While the true reward func-
tion of the task is unknown, the RL agent uses a value
predicted by the discriminator as the reward instead (“sur-
rogate reward”), which indicates how similar an action is
to the human expert.

GAIL is originally implemented for on-policy algo-
rithms [36], but can be extended to off-policy algorithms as
well [37–39]. In off-policy GAIL, the expert demonstrations
are stored in the dataset D, and the trajectories generated

by the agent during training are stored in the replay buffer
R. The discriminator and the RL agent are trained in an
adversarial manner and both of them improve eventually
during the training process. The discriminator is trained
by minimizing the loss

JGAIL
D (φ) = E(st,at)∼D [logDφ(st,at)] +

E(st,at)∼R [log(1−Dφ(st,at))]
(5)

In practice, gradient penalization is used to encourage the
Lipshizness ofDφ, which is essential for successful off-policy
GAIL [39].

Three common forms of rewards are often used
as the surrogate reward function for the RL agent:
r(st,at) = − log(1−Dφ(st,at)), r(st,at) = log(Dφ(st,at)),
or r(st,at) = log(Dφ(st,at))−log(1−Dφ(st,at)). As in reg-
ular RL, the surrogate reward function is used for training
the agent.

3.3. Incorporating human interventions in
SAC with GAIL

During the training of an RL agent, a human can supervise
the process and choose to intervene by directly overwriting
the actions taken by the agent, as shown in Fig. 1. The
occurrence of human interventions during the training can
be formulated as a switching function that is only known
by the human supervisor. Thus, the actual action taken at
time step t can be expressed by

at = I(st)aHt + (1− I(st))aAt (6)

where I(st) ∈ {0, 1} is the switching function representing
whether the human intervenes or not, aHt is the action pro-
posed by the human, and aAt is the action proposed by the
RL agent.

By considering the human interventions as intermit-
tent demonstrations, GAIL can be incorporated into reg-
ular RL to encourage the agent to imitate human behav-
ior and accelerate learning. During training, the transitions
caused by the agent are stored in the agent replay bufferRA

the transitions caused by human interventions are stored in
a separate replay buffer RH . Same as GAIL, a discrimina-
tor Dφ(st,at) is trained jointly with the RL agent to pre-
dict whether an action is taken by the human or the agent.
Similar to (5), the loss of the discriminator is

JD(φ) = E(st,at)∼RH
[logDφ(st,at)] +

E(st,at)∼RA
[log(1−Dφ(st,at))]

(7)

Unlike GAIL, RH which stores the human transitions is
also changing since more human interventions are added
throughout the training process. The reward used for train-
ing the agent is then augmented by the GAIL reward:

r′(st,at) = (1− β)r(st,at) + β rGAIL(st,at) (8)

where β is a weighting factor, r is the actual reward func-
tion of the environment, and

rGAIL(st,at) = Dφ(st,at) (9)
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is the auxiliary reward predicted by the discriminator.
Without applying logarithm, the output of the discrimi-
nator Dφ(st,at) ∈ [0, 1] is directly used as the auxiliary
reward to avoid large values. In practice, β can be small
and decay gradually throughout training. The critic net-
work Qθ is trained with the augmented reward using the
same equation as (2) without any modification.

Similar to [38], an imitation loss term is added to the
original policy loss to encourage the policy to generate ac-
tions similar to the human expert by making the policy
update similar to the training of a GAN generator:

JGAIL
π (ϕ) = Jπ(ϕ) + Est∼RA

[
Eat∼πϕ

[−ω logDφ(st,at)]
]

(10)
where ω is a weighting factor. Therefore, the policy loss of
SAC is changed to

Jπ(ϕ) = Est∼R
[
Eat∼πϕ

[−Qθ(st,at) + α log(π(at|st))
−ω logDφ(st,at)]

(11)
We name the proposed RL framework with human in-

terventions “RLHI-SAC”. Fig. 2 shows an overview of the
framework and the detailed procedure is summarized in Al-
gorithm 3.1.

Algorithm 3.1. RLHI-SAC

1: Initialize actor network πϕ, critic networks Qθ1 , Qθ2 ,
discriminator network Dφ

2: Initialize target networks Qθ̄1 = Qθ1 , Qθ̄2 = Qθ2
3: Initialize empty human replay buffer RE and empty

agent replay buffer RA, R ≡ RE ∪RA

4: for each iteration do
5: for each environment step do
6: aAt ∼ πϕ(st)
7: if human intervenes then
8: at ← aHt
9: st+1 ∼ p(st+1|st,at)

10: RH ← RH ∪ {st,at, r(st,at), st+1}
11: else
12: at ← aAt
13: st+1 ∼ p(st+1|st,at)
14: RA ← RA ∪ {st,at, r(st,at), st+1}
15: end if
16: end for
17: if train discriminator now then
18: for each discriminator gradient step do
19: Update Dφ using (7)
20: end for
21: for each policy gradient step do
22: Sample {(st,at, st+1, rt)} ∼ R
23: Augment the reward using (8)
24: Update Qθ1 , Qθ2 using (2)
25: Update πϕ using Equation (11)
26: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
27: end for
28: end for

4. Simulation Results

To validate the proposed method (RLHI-SAC), we train
agents in the simulator using different approaches and com-
pare their performances. The task to learn is endoscopic
camera control where the endoscopic camera manipulator
(ECM) from the dVRK should move and keep tracking
a moving object in a plane, as introduced in SurRol [40].
Fig. 3 shows the original ECM ActiveTrack tasks developed
in [40].

Fig. 3. ECM ActiveTrack from SurRol. Bottom-left: image
captured from the simulated endoscopic camera.

As part of method validation, in this section, we use
the original environment setup without modification. In the
original environment of ActiveTrack, the action is the cam-
era velocity in its own frame coordinate cVc. The obser-
vation is the robot and the object poses in the Cartesian
space. The reward function is

r(st,at) = C − (∥pijt − pc∥2 + λ · |θ∗|) (12)

where C = 1 is a constant and λ = 0.1 is a weighting factor,
pijt is the normalized position of the tracked object in the
image, and pc is the image center.

We compare RLHI-SAC with the following baseline
approaches:
IA-SAC: Intervention-aided reinforcement learning
(IARL) is derived from [10, 11], where a behavior cloning
loss (BC loss) is added to the policy loss for the human-
intervened state-action pairs to encourage the agent to gen-
erate actions close to the human actions. It was originally
implemented based on PPO and was reimplemented for
DDPG in [11]. In this work, we reimplement this method
based on SAC and name it IA-SAC.
HI-SAC: Human intervention reinforcement learning
(HIRL) is derived from [9]. This method also allows a hu-
man to directly overwrite agent actions. However, no mod-
ification is made to the learning algorithm and human ac-
tions are treated in the same manner as agent actions. We
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Fig. 2. Framework of the proposed method with human interventions.

re-implement this method based on SAC and name it HI-
SAC.

Standard SAC without human interventions
(“Unguided”) is also implemented as a comparison to
assess the effectiveness of adding human interventions. It
is worth noting that in some of the related methods, train-
ing techniques such as penalizing human interventions,
auto-tuning weighting parameters, and non-uniform data
sampling strategies are employed. However, since these
techniques are generally applicable to the proposed and
the compared methods, they are not implemented and
compared for simplicity and fair comparison.

A total of 5,000 steps are trained for each method and
repeated for 3 trials, and each trial consists of at most
500 steps of human interventions. Multilayer perceptrons
(MLPs) are used as the policy and value networks, and
the learning rate is set to be 3 × 10−4. The GAIL reward
weight is β = 0.2 and the imitation weight is ω = 4, both of
which decay exponentially over time. Same as in [40], the
maximum allowed number of steps is 500 during training.
However, during evaluation, it is set to 200 to discard the
repetitive trajectories of the moving object for faster evalu-
ation. The learning curves are shown in Fig. 4. RLHI-SAC
achieves a faster learning speed in general compared to the
other approaches and outperforms both HI-SAC and IA-
SAC. IA-SAC reaches a higher average return compared to
other approaches during the initial training stage, possibly
due to the effect of BC as it is known to be able to encourage
the policy to imitate human actions rapidly. However, in the
long term, there is no significant difference between IA-SAC
and HI-SAC in this specific task and IA-SAC reaches even
a lower average return compared to HI-SAC at 5,000 steps.
Despite this, both IA-SAC and HI-SAC with human in-
terventions achieve better results than “Unguided”, which
does not include any human interventions. The differences

in the learning curves between RLHI-SAC and HI-SAC also
show the effectiveness of incorporating GAIL for imitating
human behavior, as HI-SAC can be viewed as an ablation
of RLHI-SAC and IA-SAC that does not include any imi-
tation components.

RLHI-SAC learns faster and outperforms standard
SAC without human interventions and HI-SAC where a
BC loss is added for imitating human behaviors.
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Fig. 4. Evaluation performance of the trained models in sim-
ulation experiments. The solid line is the mean value and the
shaded area represents half of a standard deviation across the
three trials.
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5. Experimental Setup

5.1. Learning endoscopic camera control for
object tracking in the real world

Different from Section 4, we now focus on learning the task
of tracking the moving object directly in the joint space of
the robot, which is more practical since the image Jaco-
bian is camera-specific and the mapping from image space
motion to the joint space actions is also dependent on the
camera mounting configuration. Learning a direct mapping
from the observation to the joint space motion of the robot
eliminates the need for extra calibration and the calculation
of the Jacobians at each step. In this case, the observation
is the same as that in the ActiveTrack task, but the actions
are now changed to the joint movements of the robot. The
reward function is similar to that in the ActiveTrack task:

r(st,at) = 1−

(
∥pijt − pc∥2√

2
+ 0.1 · |θ∗|

)
(13)

A simulation environment for learning in the joint space
is built, as shown in Fig. 5. A regular RL agent is first
trained in the simulator without human interventions and
then transferred to the real world to continue training with
human interventions. To widen the sim-to-real gap, making
transferring from simulation to the real world more chal-
lenging, and testing the effectiveness of the proposed ap-
proach, the camera orientation in the simulator is set to be
90 degrees different than that in the real world along its
Z-axis.. Furthermore, the distance between the robot and
the plane where the object moves, and the range and speed
of the object’s movement are different in the simulator and
in the real world. This simulates a practical surgical robot
learning situation where the simulation in which the agent
is initially trained is different from the real world due to
various factors such as different camera configurations and
reconstruction errors.

Fig. 5. Simulation environment for learning endoscopic camera
control in the joint space. Bottom-right: image captured from
the simulated endoscopic camera.

During training in the real world, human intervention
is utilized to prevent failures, which happens when the ob-
ject is completely out of the view of the camera image since
tracking has to be terminated in this case. While it is dif-
ficult for the human to provide correct actions in the joint
space, we use a naive visual servoing approach to allow the
human to act in the camera frame and map the actions to
the joint space. This is essentially the same as the case when
a human holds an impedance-controlled endoscope camera
holder robot and moves it directly in the task environment.
It is worth noting that the image and robot Jacobians for
this visual servoing purpose are only used for mapping the
human actions to the joint space, and the learning agent
does not have access to them.

Fig. 6. Real-world training setup for learning endoscopic cam-
era control.

The real-world training setup is shown in Fig. 6, where
the tracked object (a red circle) is displayed on a 22-inch
computer monitor (LG Corporation, Seoul, South Korea)
placed underneath the ECM robot. The random movement
trajectories of the object are generated using the same
method as in [40]. A naive image processing approach us-
ing adaptive thresholding and contouring is applied to de-
tect the red circle and its centroid. During training, a hu-
man supervisor watches the monitor and proposes expert
actions occasionally through an Xbox Wireless Controller
(Microsoft Corporation, Redmond, WA, USA) by pressing
a button and moving the two joysticks. Three inputs are
recorded from the joysticks, representing the movement of
the camera along the three axes of its own 3D frame. As
discussed previously, these inputs are mapped to the joint
space movements of the robot by utilizing the image and
robot Jacobians. These mapped joint space actions are then
viewed as the expert interventions and stored in the replay
buffer as discussed in Section 3.

We build the RL environment of endoscopic camera
control using the real dVRK ECM robot with OpenAI
Gym-like interfaces [41]. This enables a smooth transfer
when fine-tuning a trained model from the simulator. On
top of the existing dVRK software [15], changes have been
made to manually handle some of the safety violations
imposed by the low-level controller to make the behavior
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consistent with the simulation environments, including the
joint space limits and Cartesian workspace limits. When the
robot reaches the joint or Cartesian limits in some DoFs,
instead of raising errors and stopping moving the robot,
the modification allows the robot to still move in the other
DoFs that have not reached the limits.

5.2. Training settings

An RL agent is first pre-trained in the simulator for 10,000
steps and continues learning in the real world with human
interventions for 2,000 steps. It is recorded when the hu-
man intervenes and when the object is out of sight dur-
ing training in the real world. The results are compared to
those obtained when the same pre-trained model learns in
the real world without human interventions (“Unguided”).
The hyper-parameters are the same as in Section 4. The
maximum number of steps is 200 in both training and eval-
uation. Three trials are trained for both with and without
human interventions.

6. Results and Discussion

Fig. 7 shows the number of times the view of the moving
object is lost during training in the real world. With hu-
man interventions, the cases of the object being out of view
are significantly fewer than without human interventions.
In all three trials with human interventions, this occurred
only twice when the human intervened too late.

0-2 2-4 4-6 6-8 8-1
0

10
-12
12
-14
14
-16
16
-18
18
-20

Training step intervals (#100)

0

2

4

6

8

10

12

N
u
m
b
er

of
ti
m
es

of
lo
si
n
g
tr
ac
k

Unguided
RLHI-SAC

Fig. 7. Number of times of losing track of the moving object
during training with and without human interventions within
different training step intervals. The error bars represent the
standard deviations out of three trials.

The human intervention rate is shown in Fig. 8. It is
calculated using the total number of interventions divided
by the number of steps within a time interval. As expected,
the intervention rate decreases gradually throughout train-
ing as the performance of the agent improves.

Since testing in the real world takes a large amount
of time, we evaluate the models for only 2 episodes after
training for 300, 1,000, and 2,000 steps. As shown in Fig. 9,
while there is no significant difference between the cases
with and without human interventions during the initial
stage of training, the model achieves a much higher aver-
age return of around 159.8 within 1,000 steps with human
interventions, compared to only 121.8 without human in-
terventions. As the misalignment error |θ∗| has a relatively
small contribution to the reward function (13) compared
with the tracking error due to its small weighting factor, a
larger accumulative reward suggests that the tracking error
is generally lower and the object is closer to the center of
the camera frame. Considering that a smaller tracking error
is generally associated with a lower chance of losing view
of the object in the short term, the results also indicate
that by imitating the preventative behavior from human
interventions, the trained policy learns to behave in a safe
manner at a faster rate than merely relying on reward sig-
nals.
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Fig. 8. Intervention rate throughout the training process with
human interventions.
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Fig. 9. Evaluation performance of the trained models after
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training for 300, 1,000, and 2,000 steps. The solid line is the
mean value and the shaded area represents half of a standard
deviation.
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Fig. 10. Normalized object positions in the image frame dur-
ing tracking across 15 trials (5 trials for each model trained with
different seeds). Each point represents the position of the object
at one step.

After training for 2,000 steps, we further evaluate each
of the 3 models trained with human interventions for 5
episodes and plot the positions of the object centroids in
the image frame (normalized) at each step during tracking
in all 15 trials, as shown in Fig. 10. The tracking perfor-
mance in the horizontal direction is not as good as that in
the vertical direction, which is related to the higher move-
ment speed of the object horizontally, since it moves in a
rectangular region. Around 85% of the points are inside a
circle with a radius of 0.5, and 53% are within a radius of
0.3. The root mean square error measured in normalized
units is 0.35 (the maximum possible value is

√
2). Fig. 11

shows a sequence of screenshots during one trial.

7. Conclusion

In this work, we presented a DRL method for surgical robot
learning to automate endoscopic camera control for mov-
ing object tracking. The proposed method leverages hu-
man interventions during training to improve the training
speed and avoid significant failures. By viewing the hu-
man interventions as intermittent demonstrations, regular
RL is combined with GAIL, an LfD approach to improve
the training process. Experimental results using simulation
first show the effectiveness of this approach in accelerating

training, and real-world experiments using the real ECM
robot are further carried out to show that it can achieve
faster learning speed with few significant failures. The hu-
man intervention rate decreases throughout the training
process. The trained policy can achieve good tracking per-
formance by directly controlling the joint space movements
of the robot.

One major limitation of this work is that the task is rel-
atively simple to learn since the position of the object in the
image frame is assumed to be known through traditional
image processing. End-to-end policies that directly use im-
ages as input for generating motion commands are usually
more desired. Additionally, the safety consideration in this
task is straightforward, while more complicated safety re-
strictions can exist in complex surgical tasks. However, as
an initial attempt to learn directly in the real world using
the dVRK, this work has shown the potential of incorporat-
ing human interventions in surgical robot learning. Poten-
tial challenges and limitations exist if the proposed method
is to be applied to more complex scenarios, as the effort of
human experts can be demanding and the diverse behaviors
of humans for completing a complex task may have adver-
sarial effects on the training. While increasing the number
of experts included could potentially mitigate the issues by
distributing the workload and providing sufficiently diverse
behaviors to overcome the adversarial effects, further stud-
ies are needed to investigate the effectiveness of the pro-
posed approach in more complex situations, such as con-
sidering image-based policies or complex surgical tasks.
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