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ABSTRACT 
 

A new nonlinear adaptive impedance-based trilateral controller is proposed to ensure the absolute 

stability of multi-DOF dual-user haptic teleoperation systems subjected to communication delays. Using 

this strategy, reference impedance models are realized for the trilateral teleoperation system represented 

by a three-port network to facilitate cooperation of two human operators in order to perform a remote 

physical task. For this purpose, an impedance model defines the desired haptic interaction between the 

two human operators while another impedance model specifies the desired behavior of the slave robot in 

terms of tracking the mater robots’ trajectories during interaction with the remote environment. It is 
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shown that different performance goals such as position synchronization and force reflection can be 

achieved via different adjustments to the impedance parameters. The sufficient conditions for the 

trilateral haptic system’s absolute stability are investigated in terms of the impedance models’ 

parameters. Accordingly, guidelines for modification of the impedance parameters are obtained to 

guarantee the absolute stability of the trilateral haptic system in the presence of communication time 

delays. A trilateral nonlinear version of the Model Reference Adaptive Impedance Control (MRAIC) scheme 

is developed for implementing the proposed reference impedance models on the masters and the slave. 

The convergence of robots’ trajectories to desired responses and the robustness against modeling 

uncertainties are ensured using the proposed controller as proven by the Lyapunov stability theorem. The 

proposed impedance-based control strategy is evaluated experimentally by employing a nonlinear multi-

DOF teleoperated trilateral haptic system with and without communication delays. 

 

 

1.  INTRODUCTION 

 

In recent years, research in the field of haptic teleoperation has moved beyond 

the bilateral single-master/single-slave systems by introducing multilateral systems with 

multiple masters and/or slaves. Using multilateral teleoperation systems, operators can 

cooperatively perform a physical operation by a slave robot in a remote environment. 

Novel practical applications of these systems include telesurgical training (mentoring a 

trainee surgeon by an experienced surgeon during tele-surgery operations) [1, 2], 

robotic tele-rehabilitation [3, 4] and complementary motion teleoperation (sharing the 

motions of a multi-DOF slave robot in different directions between two master robots 

(operators) to perform complex tasks) [5].  The control of multilateral systems is an 

important issue to perform teleoperation tasks successfully with the required stability. 
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Accordingly, the literature of previous multilateral controllers and the contribution of 

the proposed strategy are mentioned in the rest of this section.  

Different control architectures have been suggested for bilateral single-

master/single-slave systems. Among them, many controllers have been designed for 1-

DOF linear teleoperation systems [6-10], including the 4-channel control architecture as 

the most successful one in providing transparency [8, 9]. However, to solve the issue of 

master and slave modeling uncertainty, adaptive controllers have been suggested for 

linear teleoperation systems dealt with parametric uncertainties [11, 12]. 

In order to perform complex tasks in multi-dimensional space, multi-DOF 

nonlinear telerobotic systems have been studied and utilized instead of 1-DOF linear 

ones. Accordingly, bilateral adaptive controllers [13, 14] have been presented to provide 

the stability of uncertain nonlinear teleoperation systems. Also, PD [15] and other 

adaptive [16-18] control strategies have been suggested for synchronization of the 

master and slave positions in the presence of time delays. Aimed at both position and 

force tracking in bilateral multi-DOF systems (i.e., transparency condition), nonlinear 

adaptive controllers have been extended in [19-21].  

In recent years, multilateral (e.g., trilateral) controllers and corresponding 

stability analyses have been developed for multi-user (e.g., dual-user) teleoperation 

systems in order to perform cooperative tasks. Lo et al. [22] have investigated a two-

channel position–force controller to enable the cooperation of multiple operators by 

employing multiple robots. A four-channel control architecture has been suggested in 

[23], which has been implemented on a haptic training system [24].  
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Robust H∞ − based [1] and µ − synthesis [25] approaches have been developed 

for linear multilateral systems, and some adaptive controllers [26, 27] have been also 

proposed for collaborative training applications using a dual-user haptic system. In these 

controllers [1, 25, 26], the stability of uncertain teleoperation system has been ensured 

for a limited range of the human’s and environment’s dynamic parameters. A six-

channel multilateral shared control method [28] has been used to evaluate the 

kinesthetic performance of a dual-user system. The human operators’ performance has 

been evaluated in [29] for different factors of virtual environment using a dual-user 

haptic guidance system. Due to the challenges of stability proof for multilateral 

teleoperation systems, the communication delay has not been considered in the 

mentioned previous works [23-26, 28, 29] and their stability analyses.  

Some other control architectures [30-33] have been suggested based on the 

passivity criterion for multilateral teleoperation systems, which is more conservative 

and results in more limiting conditions in comparison with the absolute stability 

criterion as shown in [34]. Also, a multilateral control method [35] has been proposed 

and analyzed for the stability using the small-gain theorem, which resulted in bounds on 

the human operator and the environment dynamics. 

In some recent studies [36-38], the third port of a dual-user teleoperation 

system (modeled as a three-port network) has been assumed to be coupled to a known 

termination such that the system can be reduced to a two-port network. This 

assumption may not be met in all practical applications of trilateral haptic systems. As a 

result of this limiting assumption, stability analyses of bilateral teleoperation systems 
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(modeled as two-port networks) based on the Llewellyn’s criterion [39] for absolute 

stability have been presented. However, the conditions of absolute stability as an 

efficient criterion have been recently obtained in [40] for trilateral haptic systems, which 

is an extension of the Llewellyn’s criterion for bilateral systems. 

Accordingly, in the present work, a new nonlinear Trilateral Model Reference 

Adaptive Impedance Controller (TMRAIC) is developed for dual-user multi-DOF haptic 

systems. This strategy has the following novel characteristics and advantages in 

comparison with the previous trilateral controllers: 

1. New impedance-based trilateral control objectives are defined for the cooperation of 

two operators to perform a task in the remote environment using a dual-user haptic 

teleoperation system. For this purpose, a reference impedance model is designed for 

the master robots that incorporates the forces applied by the two operators and the 

environment, and dictates the haptic force feedback from the environment and one 

operator to the other operator. Another reference impedance model is considered 

for the slave robot, which defines the flexibility of the slave in tracking two masters’ 

position trajectories in response to the environment force. Accordingly, two new 

impedance models are the control objectives of trilateral system (including three 

robots) instead of previous position-force based objectives [25-30, 33, 37, 38].  

2. In order to implement these impedance models and track their responses by the 

multi-DOF masters and slave robots, a new nonlinear Trilateral Model Reference 

Adaptive Impedance Control (TMRAIC) scheme is presented based on the MRAIC 

method [41] suggested and evaluated recently for a single robot. Since the closed-
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loop dynamics of the robot is made similar to the corresponding reference 

impedance model in the MRAIC, this scheme [41] is more effective than other 

nonlinear adaptive impedance controllers (such as [42]) in implementing an 

impedance model for a haptic robot. This strategy (MRAIC) is extended for nonlinear 

trilateral teleoperation systems (including 3 robots) in the current work with two new 

cooperative impedance objectives (described in above item 1). 

3. The absolute stability of the trilateral haptic system is proven using the criterion 

obtained recently in [40] for three-port networks, without assuming any reduction to 

a two-port network through coupling the third port to a known termination (like [36-

38]). The possibility of absolute stability proof (without any reduction to a two-port 

network) is due to the trilateral impedance control (TMRAIC) that is described in the 

above items 1 and 2. Based on the obtained conditions for the trilateral absolute 

stability, the required adjustments for the impedance parameters are investigated in 

terms of bounds on the communication delays. In other words, using appropriate 

parameters in the reference impedance models, the trilateral haptic system becomes 

robust against time delays. In addition, a Lyapunov stability analysis is employed to 

prove the tracking convergence of the masters and slave trajectories to their 

corresponding desired responses in the presence of modeling uncertainties. 

Therefore, the absolute stability and Lyapunov stability criteria are combined in this 

work to guarantee the robustness and tracking convergence of the proposed 

trilateral teleoperation system in the presence of communication delay and dynamics 

uncertainties. 
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4. As another feature of the proposed method, desirable performances of the dual-user 

haptic system can be achieved using appropriate adjustments to the impedance 

models.  In a case of impedance adjustment, the trilateral position synchronization 

and force reflection objectives can be provided (as the transparent case of 

teleoperation). Guidelines for impedance parameters adjustment to achieve 

transparency and absolute stability are also presented. 

 

2.  Nonlinear Dynamics of Trilateral Haptic Systems 

 

The nonlinear model of a trilateral multi-DOF haptic system including two master 

and one slave robots interacting with two human operators and a remote environment, 

respectively, is defined in the Cartesian space as [43, 44]: 

1 1 1 1 11 1 1 1 1 1 1 1
, , , ,,( ) ( ) ( ) ( )m m m m mm m m m m m m hum++ + + =x x x xq q q q qM x C x G F f fɺ ɺɺɺ ɺ                       (1) 

2 2 2 2 22 2 2 2 2 2 2 2
, , , ,,( ) ( ) ( ) ( )m m m m mm m m m m m m hum++ + + =x x x xq q q q qM x C x G F f fɺ ɺɺɺ ɺ                (2) 

, , , ,,( ) ( ) ( ) ( )s s s s ss s s s s s s env−+ + + =x x x xq q q q qM x C x G F f fɺ ɺɺɺ ɺ                                              (3) 

where indices 1m , 1m  and s  correspond to master 1, master 2 and the slave robots. 
1m

q , 

2m
q  and sq  are the joint positions, 

1mx , 
2mx  and sx  are the Cartesian positions, 

11, ( )
mmx qM , 

22, ( )
mmx qM  and , ( )

ssx qM  are the inertia matrices, 
1 11, ( , )

m mmx q qC ɺ , 

2 22, ( , )
m mmx q qC ɺ  and , ( , )

s ssx q qC ɺ  represent the Coriolis and centrifugal terms, 
11, ( )

mmx qG , 

22, ( )
mmx qG  and , ( )

ssx qG  are the gravity terms, 
11, ( )

mmx qF ɺ , 
22, ( )

mmx qF ɺ  and , ( )
ssq qF ɺ  are the 

friction forces, and 
1mf , 

2mf  and sf  are the input control forces for master 1, master 2 

and the slave robots, respectively. Also, 
1humf  and 

2humf  are the interaction forces of the 
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human operators applied to masters 1 and 2, and envf  is the interaction force that the 

slave robot applies to the remote environment. The above mentioned dynamic matrices 

and vectors have these properties [43, 44] (considering 1 2, ,j m m s= ): 

Properties. ,
( )

jjx
qM  is symmetric and positive definite, ( ), ,

( ) ( , )2
j j jj j

−
x x

q q qM C ɺɺ  is skew 

symmetric, and the left sides of (1), (2) and (3) can be linearly parameterized as 

, ,, , , , , ,, ,,( ) ( ) ( ) ( ) , , ,( )j j j j j j jj jj j j j j jj j+ + + = 1 2x x x x x x1 2q q q q q ξ ξ q qM ξ C ξ G F R δɺ ɺ ɺ         (4) 

where 
, jx

δ  is the vector of unknown dynamic parameters of each robot, and 
, jx

R  is the 

regressor matrix including known functions of the vectors , j1
ξ  and , j2

ξ . 

2.1. Trilateral Signal Transmission in the Proposed Teleoperation System 

 

The schematic diagram of the trilateral teleoperated haptic system and required 

transmitted signals for the proposed control method are illustrated in Fig. 1. The 

bounded time delays 1T  and 2T  are considered in the communication channels between 

the master console (operators' site) and the slave console (environment site). As shown 

in Fig.1, the combination of operators forces (
1humf  and 

2humf ) and the transmitted 

environment forces ( d
envf ) are used in the master impedance model to obtain the 

desired masters trajectory 
mimpx . This trajectory is tracked by the master robots 1 and 2 

using their nonlinear MRAIC controllers. The position data of two master robots or 

operators (
1

d
mx and 

2

d
mx ) are also transmitted to the slave console to obtain the desired 

slave trajectory 
simpx  as a response of the slave impedance model. The slave robot 

should also track the response of this impedance model using its MRAIC controller. The 
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structures of impedance models and the trilateral controller are described in Sec. 3 and 

4, respectively. 

The transmitted input and output signals via the communication channels (Fig. 1) 

have the following relation: 

1 1 21 1 2 2
( ) ( ) ( ) ( ) ( ) ( ), ,d d d

m m m m env envT T Tt t t t t t− − −= = =x x x x f f                                           (5) 

Note that the time delays ( 1
T , 2

T ) of real communication channels are usually close to 

constant and do not change very much during a teleoperation task and an upper bound 

of delay can be considered as the worst case for them. However, if the communication 

delays are considerably time-varying, they can be measured online based on the sending 

and receiving times of transmitted signals as proposed in [45]. Therefore, the varying 

portion of communication delays can be obtained [45] and then compensated [46] such 

that the upper bound of delay in each channel is treated as a permanent constant delay 

for absolute stability analysis, as considered in this work. The basis of delay 

compensation is introduced in [46] by modeling a time-varying delay in the 

communication channel as a constant value together with an external disturbance that 

can be estimated.  

The positions and haptic forces are scaled between the masters and the slave 

robots (due to the application of teleoperation system) using scaling factors xη  and fη : 

1 1 2 2x x f, ,
scaled scaled scaled

d d d d d d
m m m m env envη η η= = =x x x x f f                                           (6) 

These scaled position and forces are utilized in the control objectives presented in the 

next section.  
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3.  TRILATERAL IMPEDANCE-BASED CONTROL OBJECTIVES 

 

3.1. Master Reference Impedance Model: For Cooperative Haptic Force Perception 

 

The first reference impedance model is defined for the two master robots such 

that each operator perceives the other operator force and also the environment force 

applied to the slave robot. Accordingly, the inputs of this impedance model (as a desired 

dynamics) are the human operators’ forces 
1humf and 

2humf  and the transmitted 

environment force 
d

envf , and its output is the desired masters’ trajectory 
mimpx  as  

1 2f f f(1 )
m m m m

d
envimp imp imp imp hum hum

m b α α η−+ = + −x x f f fɺɺ ɺ                                           (7) 

where 
mimpx  is the position response of this reference impedance model, and the force 

authority factor f0 1α≤ ≤  specifies the haptic force authority of operators with respect 

to each other. Using f 0.5α = , operators 1 and 2 have the same authority to affect the 

desired master impedance response 
mimpx  based on (7). Also, employing f 0.5α >  or 

f 0.5α <  the authority of Operator 1 becomes higher or lower than that of Operator 2, 

respectively. 
mimpm  and 

mimpb  in (7) are the desired virtual mass and damping 

parameters of the master reference impedance model, respectively. When the master 

robots achieve their control objective, which is tracking the response of the master 

reference model (7) (
1 mm imp→x x  and 

2 mm imp→x x ), each operator senses the interaction 

forces of the other operator and the environment and also the mass 
mimpm  and damping 

mimpb  elements. Note that a stiffness parameter is not used in the impedance model (7) 

such that the force reflection performance can be achieved at every arbitrary position, 
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i.e., 
1f( humα +f

2f(1 ) humα− f f ) 0d
envη− →f  as will be described in Sec. 3.3. If a stiffness 

element 0( )
m mimp impk −x x  was considered at the left side of (7), when the impedance 

response 
mimpx takes a distance from the origin 

0x , a nonzero steady-state force error 

will be obtained from the right side of (7), i.e., 
1f( humα +f

2f(1 ) humα− f f ) 0d
envη− ≠f , which is 

not desirable for the transparency condition. 

 

3.2. Slave Reference Impedance Model: For Position Synchronization 

 

Another reference impedance model is defined for the slave robot as the desired 

dynamics between the remote environment force envf  (as the input) and the slave 

robot’ deviation 
simpxɶ from a linear combination of the master robots’ trajectories (as 

the output): 

s s s s s s envimp imp imp imp imp impm b k+ + = −x x x fɺɺ ɺɶ ɶ ɶ                                                                 (8) 

Here,  

1 2x xx (1 ) )(
s s

d d
m mimp imp α αη −= − +x x x xɶ                                                                     (9) 

where x
0 1α≤ ≤  is the position dominance factor. Since master 1 (or operator 1) and 

master 2 (or operator 2) will track the same desired trajectory (that is the master 

impedance response 
mimpx ), the value of x

α  does not considerably affect the linear 

combination 
1x( mα +x

2x(1 ) )mα− x  in Eq. (9). 
simpm , 

simpb  and 
simpk  are the desired virtual 

mass, damping, and stiffness parameters of the slave reference impedance model (8) 

that specify the level of the slave robot’s flexibility 
simpxɶ  with respect to the masters’ 

trajectories in response to the environment force envf . 
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The parameters of master (7) and slave (8) impedance models should be 

adjusted appropriately based on the required characteristics of the teleoperation 

system and the stability analysis. The appropriate impedance adjustment for the 

transparent case of tele-haptic system is described in Sec. 3.3, and the required 

modifications of the impedance parameters to ensure the trilateral absolute stability in 

the presence of communication delays are presented in Sec. 5. 

 

3.3. Impedance Adjustment for Trilateral Position Synchronization and Force 

Reflection (Transparency) 

 

The two employed reference impedance models (7) and (8) can be adjusted such 

that the position synchronization and force reflection objectives are achieved in the 

trilateral haptic system. For the purpose of force reflection, small values should be 

considered for the parameters 
mimpm  and 

mimpb  in the master reference impedance 

model (7). In this case, due to the boundedness of 
mimpxɺ  and 

mimpxɺɺ , the left side of (7) is 

small. Therefore, the right side of (7) also becomes small, i.e., 
1f( humα +f

1f(1 ) humα− f  

f ) 0d
envη− ≈f , which provides the cooperative force reflection performance in the 

trilateral teleoperation case. In other words, the environment interaction force is sensed 

and shared between two operators such that the combination of operators’ forces 

converges to the scaled environment force: 

1 2f f f(1 ) d
envhum hum

α α η−+ →f f f                                                                                 (10) 

Thus, operators 1 and 2 have a haptic cooperation in performing a remote task and 

applying forces to the task environment.  
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Also, in order to have a position synchronization performance, large values 

should be employed for the parameters 
simpm , 

simpb  and 
simpk  in the slave reference 

impedance model (8). Given the boundedness of env−f in the right side of (8), the terms 

simpxɶ , 
simpxɺɶ , 

simpxɺɺɶ  in the left side of (8) become small under large slave impedance 

parameters 
simpm , 

simpb  and 
simpk . Therefore, the desired position tracking error 

becomes small ( 0
simp →xɶ ) using this impedance adjustment, and the trilateral position 

synchronization is achieved based on Eq. (9) as 

1 2x x x(1 ) )(
s

d d
m mimp α αη −→ +x x x                                                                                 (11) 

This means that the slave robot tracks the trajectory of the master robots (i.e., the 

operators). Note that simultaneous position synchronization and force reflection 

performances can be achieved using the above-mentioned impedance adjustments, 

which provide a trilateral transparency condition for the telerobotic system. 

 

4.  NONLINEAR TRILATERAL MODEL REFERENCE ADAPTIVE CONTROL 

 

The schematic block diagram of the proposed nonlinear trilateral model 

reference adaptive impedance controller (TMRAIC) is shown in Fig. 2. As introduced in 

Sec. 3, two reference impedance models (7) and (8) are defined for the dual-user tele-

haptic system. The dynamic models of two masters and the slave robots are allowed to 

have parametric uncertainties. Note that the dynamic models of the human operators 

and the remote environment are not required due to the direct measurement of their 

applied interaction forces (
1humf , 

2humf  and envf ) using three force sensors. 
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4.1. Controller Design 

 

The nonlinear trilateral control laws of the masters and the slave are designed 

based on the nonlinear Model Reference Adaptive Impedance control (MRAIC) scheme 

suggested recently in [41] for the physical interaction with one robot. In this method, 

the robot’s closed-loop dynamics is made similar to the reference impedance model. It 

has been shown in [41] that the MRAIC scheme is more effective than other simple 

adaptive impedance controllers (such as [42]) in tracking the impedance model 

response by the robot. The nonlinear trilateral extension of this MRAIC strategy is 

developed and used in this work by defining two new cooperative impedance objectives 

(Eqs. (7) and (8)). For this purpose, using positive parameters in the master and slave 

reference impedance models (7) and (8), the following properties are obtained: 

1 0
m mimp impm b− >  ,   1 0

s simp impm b− >  ,   1 0
s simp impm k− >                                                          (12) 

In this scheme, the above-mentioned properties of reference models are employed in 

the controller structure. Accordingly, based on the reference impedance models (7) and 

(8) and their properties (12), the masters and slave sliding surfaces are defined as 

( )

( )

( ) ( )

1 1 1 11

2 2 2 22

1
2,

0

1
2,

0

1 1

0

,

,

m m

m m

s s s s

t

m m m mimp imp m

t

m m m mimp imp m

t

s s s simp imp imp imp

m b dt

m b dt

m b m k dt

λ

λ

−

−

− −

= + +

= + +

= + +

∫

∫

∫

s x x x

s x x x

s x x x

ɺɶ ɶ ɶ

ɺɶ ɶ ɶ

ɺɶ ɶ ɶ

                                                         (13) 

where 1

m mimp impm b− , 
12,mλ , 

22,mλ , 1
imp imps s

m b−  and 1
imp imps s

m k−  are positive constants. 

1 1 mm m imp= −x x xɶ , 
2 2 mm m imp= −x x xɶ  and 

ss s imp= −x x xɶ  are the master 1, master 2 and slave 

position tracking errors with respect to responses of the master impedance model 
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(
mimpx ) and the slave impedance model (

simpx ), respectively. The reference velocities are 

also defined for the robots as 

1 1 11

2 1 2 22

1
, 2,

0

1
, 2,

0

1 1
,

0

,

,

m m m

m m

ss s s s s

t

m m mimp imp imp m

t

m m m mimp imp m

t

s simp imp imp imp imp

m b dt

m b dt

m b m k dt

λ

λ

−

−

− −

−

−

−

= −

= −

= −

∫

∫

∫

r

r

r x

x x x x

x x x x

x x xɶ

ɺ ɺ ɶ ɶ

ɺ ɺ ɶ ɶ

ɺ ɺ ɶ

                                                         (14) 

such that the sliding surfaces (13) are rewritten as 
1 1 1,m m m

= −
r

s x xɺ ɺ , 
2 2 2,m m m

= −
r

s x xɺ ɺ  and 

,s s s
= −

r
s x xɺ ɺ . Now, the nonlinear trilateral model reference adaptive impedance control 

(TMRAIC) scheme for the two masters and the slave robots are designed in Cartesian 

space as 

1 2

1 1

1 1 11 1

1 1 1 1 1

1
f f f

,
1

2, 3,

, , , ,

(1 )
ˆ

ˆ ˆ ˆ

m

m m

d
envimp hum hum

m

m m mimp imp m m

m m m m hum

m

m

m b

α α η

λ λ

−

−

  
  
  

  
 

+ − −
=

−

+ + + −

− −
x

x r x x

f f f
M

x x s

C x G F f

f
ɺ ɶ

ɺ

                                             (15) 

1 2

2 2

2 2 22 2

2 2 2 2 2

1
f f f

,
1

2, 3,

, , , ,

(1 )
ˆ

ˆ ˆ ˆ

m

m m

d
envimp hum hum

m

m m mimp imp m m

m m m m hum

m

m

m b

α α η

λ λ

−

−

  
  
  

  
 

+ − −
=

−

+ + + −

− −
x

x r x x

f f f
M

x x s

C x G F f

f
ɺ ɶ

ɺ

                                           (16) 

1 2

1 2

1 2

1
x x x

1
x x x

1
x x x

4,

,

3,

, , , ,

(1 )

(1 )

(1 )

ˆ ˆ( )

ˆ ( )

( )

ˆ ˆ ˆ sgn( )

( )

( )

( )

s

s s

s s

d d
imp m m

d d
imp imp s m m

d d
imp imp s m m

ss

s

ss

s s s s env

env

s

m

m b

m k

α α

α α

α α

η

η

η λ

λ

−

−

−

−

−

−

−

−

 + +
 
 = − +
 
 − + −
 

−

+ + + + −

x

x r x x

f x x

M x x x

x x x s

C x G F sf

f

ɺɺ ɺɺ

ɺ ɺ ɺ

ɺ

                                 (17) 

 

where the accent ∧  is used for the estimated matrices, vectors and scalars. 
13,mλ , 

23,mλ , 

3,sλ  and 4,sλ  are positive constant parameters. As seen in Eq. (17), the estimation of 
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masters’ accelerations is used in the slave control law. Since the acceleration signals of 

the masters (
1

d
mxɺɺ and 

2

d
mxɺɺ ) are prone to measurement noises, they can be estimated 

(
1

ˆ d
mxɺɺ and 

2

ˆ d
mxɺɺ ) in this architecture as the master robots 1 and 2 mimic their reference 

impedance model (7). For this purpose, the delayed master robots’ accelerations 

(
1

d
mxɺɺ and 

2

d
mxɺɺ ) are estimated using Eq. (7) by considering 1T  time delay for all signals as 

1 2

1 1
f f f(1 )ˆ

m m m ml
envimp imp imphum hum

d d d dd d
m impm m bα α η− − 

 
 

+ − −= −x f f f xɺɺ ɺ                      (18) 

for 1l =  (master 1) and 2l =  (master 2), where 1 1 2( ) ( ) ( )
dd d
env env envT T Tt t t= − = − −f f f  has 

1 2T T+  time delay, and other signals in (18) with one superscript “ d ” have 1T  time 

delay. Moreover, it will be shown that the term 4, sgn( )s sλ− s  in Eq. (17) provides 

robustness of the trilateral control strategy against the bounded estimation error of the 

master robots’ acceleration (
1 1

ˆ
m m−x xɺɺ ɺɺ  and 

2 2

ˆ
m m−x xɺɺ ɺɺ ). 

The trilateral control laws (15)-(17) can be represented in a linearly 

parameterized form based on (4) as 

1 11 11 1, ,1 1
, ,, , ,( ) ˆ

m mm mm m humm = −1 2x xξ ξ q qR fδf ɺ                                                                 (19) 

2 22 22 2, ,2 2
, ,, , ,( ) ˆ

m mm mm m humm = −1 2x xξ ξ q qR fδf ɺ                                                             (20) 

, ,, , 4,, , ,( ) sgn( )ˆ
s ss ss s env sss λ= + −1 2x xξ ξ q qR f sδf ɺ                                                          (21) 

where 
1,mxR , 

2,mxR  and ,sxR  are defined in terms of the following 
1,m1ξ , 

2,m1ξ , ,s1ξ , 

1,m2ξ , 
2,m2ξ  and ,s2ξ  vectors according to (4): 
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( )

( )

1 2

1 2

1 1 11 1

22

2 2 22 2

1
f f f

11 11
2, 3,

1
f f f

2 1
2, 3,

,, ,

,, ,

(1 )
, ,

(1 )
, ,

m

m m

m

m m

d
imp envhum hum

imp imp m m mm m

d
imp envhum hum

imp imp m m mm m

mm m

mm m

m

m b

m

m b

α α η

λ λ

α α η

λ λ

−

−

−

−

 
 
 
 
 

 
 
 
 
 

+ − −

−

+ − −

−

= =
− −

=
− −

=

r1 2

r1 2

f f f

x x s

f f f

x x s

ξ ξ x

ξ ξ x

ɺ ɶ

ɺ ɶ

ɺ

ɺ

1 2

1 2

1 2

1
x x x

1
x x x

1
x x x 3,

,, ,

(1 )

(1 )

(1 )

ˆ ˆ( ) ( )

( ) ,

( )

( )

( )

s

s s

s s

d d
imp env m m

d d
imp imp s m m

d d
imp imp s m m ss

ss s

m

m b

m k

α α

α α

α α

η

η

η λ

−

−

−

 −
 
 −
 
  −
 

− + +

− − +

− − + −

== r1 2

f x x

x x x

x x x s

ξ ξ x

ɺɺ ɺɺ

ɺ ɺ ɺ ɺ

                       (22) 

 

4.2. Nonlinear Closed-loop System 

 

In this section, the closed-loop dynamics of the dual-user trilateral haptic system 

is obtained by employing the proposed nonlinear TMRAIC scheme (presented in Sec. 

4.1). The control laws (15)-(17) are substituted in the nonlinear dynamics of trilateral 

haptic system (1)-(3), which yields, 

( )

( ) ( )

( )

1 1 11

1

1 2

1 2

1 1

1 1 11 1

1 1 1

1
2,

, 1
f f f

1
f f f

, ,
1

2, 3,

, , , ,

(1 )

(1 )
ˆ

ˆ ˆ

m m

m

m

m m

m imp imp m mm

m d
imp envhum hum

d
imp envhum hum

m m

imp imp m m mm m

m m m m

m b

m

m

m b

λ

α α η

α α η

λ λ

−

−

−

−

 
 
 
 
 

 
 
 
 
 

+
=

− + − −

+ − −
−

− − −

+ − +

+

x

x x

x x r x

x x x

M
f f f

f f f
M M

x x s

C C x G

ɺɺ ɺ ɶ

ɺ ɶ

ɺ ( ) ( )1 11 1 1 1 1 11, , , , ,3,
ˆ

m m m m m m mmλ− + − − −x x x x xG F F C s M s

         (23) 

( )

( ) ( )

( )2 2 2

2 2 21

2

1 2

1 2

2 2

2 2 22 2

1
2,

, 1
f f f

1
f f f

, ,
1

2, 3,

, , , ,

(1 )

(1 )
ˆ

ˆ ˆ

m m

m

m

m m

m imp imp m mm

m d
imp envhum hum

d
imp envhum hum

m m

imp imp m m mm m

m m m m

m b

m

m

m b

λ

α α η

α α η

λ λ

−

−

−

−

 
 
 
 
 

 
 
 
 
 

+
=

− + − −

+ − −
−

− − −

− +

+

+

x

x x

x x r x

x x x

M
f f f

f f f
M M

x x s

C C x G

ɺɺ ɺ ɶ

ɺ ɶ

ɺ ( ) ( )2 2 2 2 2 2 2 22, , , , ,3,
ˆ

m m m m m m mmλ−− + − −x x x x xG F F C s M s

     (24) 
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( )

1 2

1 2

1 2

1 1 2 2

,

,

x x x

1
x x x

1
x x x

1

x x x

(1 )

(1 )

(1 )

(1 )(

ˆ

( )

( )

( )

( )

ˆ ˆ( ) )

( )

( )

( )

s s

s s

s

s

s

d d
s m m

d d
s m mimp imp

d d
s m mimp imp

envimp

d d d d
m m m m

m b

m k

m

α α

α α

α α

α α

η

η

η

η

−

−

−

 
 
 
 
 
 
 
 
 

−

−
=

−

−

+

− +

+ − +

+ − +

− −

− + −

x

x

M

M

x x x

x x x

x x x

f

x x x x

ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ

ɺɺ ɺɺ ɺɺ ɺɺ

( )

( ) ( ) ( )

1 2

1 2

1 2

, ,

, , , , , , , ,

1
x x x

1
x x x

1
x x x 3,

ˆ ˆ ˆ

ˆ ˆ( ) ( (1 ) )

( ( (1 ) ))

( ( (1 ) ))

s

s s

s s

s s

s s s s s s s s s

d d
env m mimp

d d
s m mimp imp

d d
s m m simp imp s

m

m b

m k

λ

η α α

η α α

η α α λ

−

−

−

 
 
 
 
 
 
 

−

+ − + − + − − −

− + + −

− − + −

− − + − −

x x

x x r x x x x x

M M

C C x G G F F C s

f x x

x x x

x x x s

ɺ

ɺɺ ɺɺ

ɺ ɺ ɺ

,3, 4, sgn( )s s ss sλ−xM s s

     (25) 

Now, the master reference impedance model (7) is multiplied by 1

, 1 m
impm

m
−

x
M  and 

subtracted from (23) and (24), and the slave reference impedance model (8) is 

multiplied by 1

, impss
m

−

x
M  and subtracted from (25). Then, using Eq. (4) and based on Eq. 

(22), Eqs. (23)-(25) are reduced to 

( )1 1 1 1 1 1 1 1 1 11 1

1
, , , , ,2, 3,m mm m m m m m m m m mimp imp m mm b λ λ−+ = − −+x x x x xM x x x R δ C s M sɶɺɺ ɺɶ ɶ ɶ       (26) 

( )2 2 2 2 2 2 2 2 2 21 2

1
, , , , ,2, 3,m mm m m m m m m m m mimp imp m mm b λ λ−+ = − −+x x x x xM x x x R δ C s M sɶɺɺ ɺɶ ɶ ɶ  (27) 

( )

( )1 1 2 2

1 1

, x x x 4,

, , , , ,3,

ˆ ˆ( ) (1 )( ) sgn( )

s s s simp imp imp imp

d d d d
s m m m m ss

s s s s s s s s s ssm b m k λ

η α α λ

− −

+

+ = − −

− + − − −

+

x

x x x x xM x x x R δ C s M s

M x x x x s

ɶɺɺ ɺɶ ɶ ɶ

ɺɺ ɺɺ ɺɺ ɺɺ
  (28) 

where 
1 1 1, , ,

ˆ
m m m= −x x xδ δ δɶ , 

2 2 2, , ,
ˆ

m m m= −x x xδ δ δɶ  and , , ,
ˆ

s s s= −x x xδ δ δɶ  are the estimation error 

vectors for the master 1, master 2 and the slave robots, respectively. Finally, by 

substituting the time derivatives of the sliding surfaces (13) in the left side of Eqs. (26)-

(28), the closed-loop dynamics of the trilateral haptic system is obtained as 
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1 1 1 1 1 1 1 11
, , , , ,3,m m m m m m m mmλ= − −x x x x xM s R δ C s M sɶɺ                                                 (29) 

2 2 2 2 2 2 2 22
, , , , ,3,m m m m m m m mmλ= − −x x x x xM s R δ C s M sɶɺ                                             (30) 

( )1 1 2 2

4,

x x x

, , , , ,3,

, (1 )

sgn( )

ˆ ˆ( ) ( )

sss s s s s s s ss

d d d d
s m m m mα α

λ λ

η −

− − −

+ − + −

=x x x x x

x

M R δ C s M s s

M x x x x

s ɶ

ɺɺ ɺɺ ɺɺ ɺɺ

ɺ
                                     (31) 

According to above-mentioned trilateral MRAIC scheme, the master and slave 

impedance parameters ( 1

m mimp impm b− , 1
imp imps s

m b−  and 1
imp imps s

m k− ) are employed in the 

control laws (15)-(17) and the sliding surfaces (13).  

 

4.3. Lyapunov-based Proof of Tracking Convergence and Required Adaptation Laws 

 

In this section, the tracking convergences of the master robots’ trajectories to 

the response of master reference model (
1 mm imp→x x , 

2 mm imp→x x ) and the slave 

robot’s trajectory to the response of slave reference model ( impss →x x ) are proven. To 

this end, a positive definite Lyapunov function candidate is suggested as 

1 21 2

1 1 1 2 2 2

1 2

, , ,

1 1 1
, , , ,, ,

( )
1

2

T T T
m m m m m m s s s

T T T
m m m m s s sm m

tV
− − −

 
 
 
 

+ +
=

+ + +

x x x

x x x xx x

s M s s M s s M s

δ H δ δ H δ δ H δɶ ɶ ɶ ɶ ɶ ɶ
                                          (32) 

where 
1mH , 

2mH  and sH  are constant symmetric positive definite matrices that will act 

as the gains of adaptation laws. The time derivative of V is then determined: 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

, ,

, ,

, ,

1
, ,

1
, ,

1
, ,

1
( )

2

1

2

1

2

ˆ

ˆ

ˆ

m m m m

m m m m

T
s s s s s

T T
m m m m

T T
m m m m

T
s s s

tV −

−

−

 
 
 

 
 
 

 
 
 

= +

+

+ +

+

+ +

+

x x

x x

x x

x x

x x

x x

M s M s

M s M s

s M s M s

s δ H δ

s δ H δ

δ H δ

ɺ ɺɺ

ɺɺ

ɺɺ

ɺ ɶ

ɺ ɶ

ɺ ɶ

                                                (33) 
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where , ,
ˆ

j j=x xδ δ
ɺɺɶ  (for 1 2

, ,j m m s= ) because , , ,
ˆ

j j j= −x x xδ δ δɶ  and , jxδ  is the vector of 

unknown real parameters that is constant: , 0j =xδ
ɺ . Substituting the final dynamics of 

closed-loop trilateral haptic system (29)-(31) in Eq. (33) yields to: 

( )

( )

1 1 1 1 1 1 1 1 11

2 2 2 2 2 2 2 2 22

1 1 1 1

2 2 2 2

1
, , , , , , ,3,

1
, , , , , , ,3,

1
, , , , ,

1
( )

2

1

2

1

2

ˆ 2

ˆ 2

ˆ

T T T T
m m m m m m m m m m m m mm

T T T T
m m m m m m m m m m m m mm

T T T
s s s s s s s s

tV λ

λ

−

−

−

= + + − −

+ + + − −

+ + +

x x x x x x x

x x x x x x x

x x x x x

s R δ δ H δ s M C s s M s

s R δ δ H δ s M C s s M s

s R δ δ H δ s M

ɺɶ ɶɺ ɺ

ɺɶ ɶ ɺ

ɺɶ ɶ ɺ( )

( )( )1 1 2 2

, ,3,

x x x 4,, (1 )

2

ˆ ˆ( ) ( ) sgn( )

T
s s s s ss

T
s ss

d d d d
s m m m mα α

λ

η λ−

− −

+ − + − −

x x

x

C s s M s

s M x x x x sɺɺ ɺɺ ɺɺ ɺɺ

 (34) 

Now, three adaptation laws for updating the estimated dynamic parameters of 

the master 1, master 2 and slave are defined as 

1 1 1 2 2 21 2, , , , , ,
ˆ ˆ ˆ, ,T T T

m m m m m m s s s sm m= − = − = −x x x x x xH R s H R s H R sδ δ δ
ɺ ɺ ɺ

                                 (35) 

By substituting the adaptation laws (35) in the time derivative of the Lyapunov function 

(34) and employing the robots’ property that , ,2j j−x xM Cɺ  is skew symmetric, Vɺ is 

obtained as 

( )( )
1 1 1 2 2 21 2

1 1 2 2

, , ,3, 3, 3,

x x x 4,,

( )

(1 )ˆ ˆ( ) ( ) sgn( )

T T T
m m m m m m s s sm m s

T
s ss

d d d d
s m m m m

tV

α α

λ λ λ

η λ

− − −

+ −

=

− + − −

x x x

x

s M s s M s s M s

s M x x x x s

ɺ

ɺɺ ɺɺ ɺɺ ɺɺ
                  (36) 

To provide robustness against the bounded estimation errors of the masters’ 

accelerations (
1 1

ˆ
m m−x xɺɺ ɺɺ  and 

2 2

ˆ
m m−x xɺɺ ɺɺ ), the positive constant parameter 4,sλ  in the slave 

control law (17) should be chosen such that the following inequality is satisfied: 

( )
1 1 2 2x x x,4, (1 )ˆ ˆ( ) ( )d d d d

s m m m ms α αηλ
∞

−− + −≥ xM x x x xɺɺ ɺɺ ɺɺ ɺɺ                                           (37) 
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Note that the errors of acceleration estimation (
1 1

ˆ
m m−x xɺɺ ɺɺ , 

2 2

ˆ
m m−x xɺɺ ɺɺ ) are unknown, and 

the parameters in ,sxM  have uncertainty in this trilateral adaptive controller. However, 

based on (37), the maximum value of ( )
1 1 2 2x x x, (1 )ˆ ˆ( ) ( )

d d d d

s m m m m
α αη

∞
−− + −xM x x x xɺɺ ɺɺ ɺɺ ɺɺ  should 

be bounded and 4,sλ  should be chosen larger than its upper bound to have the stability. 

Then, the time derivative of the Lyapunov function (36) can be written as 

1 1 1 2 2 21 2, , ,3, 3, 3,( ) T T T
m m m m m m s s sm m stV λ λ λ≤ − − −x x xs M s s M s s M sɺ                                        (38) 

Theorem. Due to the uniform positive definiteness of inertia matrices (
1,mxM , 

2,mxM  and 

,sxM ) and adaptation gains (
1mH , 

2mH  and sH ), the Lyapunov function (32) is positive 

definite ( ( ) 0tV > ) and its time derivative (38) is negative semi-definite ( ( ) 0tV ≤ɺ ). Thus, 

the convergence to sliding surfaces (
1

0m =s , 
2

0m =s  and 0s =s ) and the boundedness of 

parameter estimation errors (
1,mxδ

ɶ , 
2,mxδ

ɶ  and ,sxδ
ɶ ) are ensured. 

Proof. Regarding Eq. (38) and considering ( )tg =
1 1 1 13, ,

T
m m m mλ +xs M s

2 2 2 23, ,
T

m m m mλ +xs M s  

3, , 0
T

s s s sλ ≥xs M s   as a uniform continuous function, one can write 

0
( )(0) ( ) lim

t
d

t
V V g φ φ

→∞
∞− ≥ ∫                                                 (39) 

Moreover, ( ) ( ) 0t d tV V dt= ≤ɺ  is negative semi-definite based on Eq. (38), which implies 

that (0) ( ) 0V V− ∞ ≥  is positive and finite. Therefore, 
0

( )lim
t

t
dg φ φ

→∞∫  in (39) exists and has a 

finite and positive value based on the positiveness of ( )tg . Consequently, according to 

the Barbalat lemma [43]: 



Journal of Dynamic Systems, Measurement, and Control 

22 

 

( )1 1 1 2 2 21 2, , ,3, 3, 3,lim ( ) lim 0T T T
m m m m m m s s sm m st t

tg λ λ λ
→∞ →∞

= + + =x x xs M s s M s s M s                       (40) 

Since 
13, 0mλ > , 

13, 0mλ >  and 3, 0sλ >  are non-zero constants, 
1 11 , 0

T
m mm

≥xs M s , 

1 11 , 0
T

m mm
≥xs M s  and , 0

T

s s s ≥xs M s , Eq. (40) implies the convergence to sliding surfaces            

(
1

0m =s , 
2

0m =s  and 0s =s ) as t → ∞ . Since ( ) 0tV >  and ( ) 0tV ≤ɺ , the Lyapunov function 

(32) remains bounded. As a result, the convergence of 
1

0m →s , 
2

0m →s  and 0s →s  

together with the boundedness of ( )tV  in Eq. (32) imply that the errors of parameter 

identification (
1,mxδ

ɶ , 
2,mxδ

ɶ  and ,sxδ
ɶ ) remain bounded. This concludes the proof. 

According to the stable dynamics of the masters and slave sliding surfaces 

defined in (13), the tracking errors also converge to zero (
1

0m →xɶ , 
2

0m →xɶ  and 0s →xɶ ) 

on the surfaces of 
1

0m =s , 
2

0m =s  and 0s =s . As a result, the master 1, master 2 and 

slave track their desired trajectories (i.e., 
1 mm imp→x x , 

2 mm imp→x x  and 
ss imp→x x ), 

which is the objective of the proposed nonlinear trilateral controller. 

 

5.  ABSOLUTE STABILITY OF TRILATERAL HAPTIC SYSTEM SUBJECTED TO TIME DELAYS 

 
After the tracking convergence proof for the masters and slave robots, the 

absolute stability [39] of the trilateral haptic system is investigated using the proposed 

TMRAIC scheme in this section. Absolute stability [39, 47, 48] is a well-known tool for 

the stability analysis of two-port teleoperation systems, which is tested using the 

Llewellyn’s criterion. This criterion guarantees the stability of a coupled system including 

a two-port network connected to two passive but otherwise arbitrary terminations [39]. 
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Recently, the Llewellyn’s absolute stability criterion has been extended to three-

port network systems in [40]. Accordingly, it is shown in this section that the proposed 

TMRAIC method can provide the absolute stability of trilateral haptic systems in the 

presence of bounded communication delays through the suitable adjustment of 

impedance parameters. 

For this purpose, the relation between the interaction forces (
1,hum if , 

2 ,hum if , 

,env if ) and robots velocities (
1,m ixɺ , 

2 ,m ixɺ , ,s ixɺ ) of the trilateral system, in each direction 

( i ) of the Cartesian space, is defined in terms of a hybrid matrix iH  as 

1 1

2 2

, ,11, 12, 13,

, 21, 22, 23, ,

31, 32, 33,, ,

( ) ( )

( ) ( )

( ) ( )

hum i m ii i i

m i i i i hum i

i i is i env i

i

s s

s s

s s

F Vh h h

V h h h F

h h hV F

    
    
    
    
        

=

−

H
���������

                                                           (41) 

where 
1 , ( )hum i sF , 

2 , ( )hum i sF , , ( )
env i

sF , 
1 , ( )m i sV , 

2 , ( )m i sV  and , ( )
s i

sV  are the Laplace 

transforms of 
1,hum if , 

2 ,hum if , ,env if , 
1,m ixɺ , 

2 ,m ixɺ  and ,s ixɺ , respectively. The sufficient 

conditions for the absolute stability of trilateral systems in terms of the elements of 

hybrid matrix iH  have been introduced in [40, 49] as 

(a) The elements of i
H  do not have any pole in the right half of the complex plane 

(RHP). 

(b) Any pole of the elements of i
H  that exists on the imaginary axis should be simple 

with real and positive residue. 

(c) The following symmetrization condition is satisfied: 

13, 21, 32, 12, 23, 31, 0i i i i i ih h h h h h =−                                                                               (42) 
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(d) The following inequalities are satisfied for the real values of ω  ( s jω= ): 

11,1( ) 0Re( )ihωβ = ≥                                                                          (43a) 

22,2( ) 0Re( )ihωβ = ≥                                                                          (43b) 

33,3( ) 0Re( )ihωβ = ≥                                                                          (43c) 

11, 22, 12, 21, 12, 21,4 ( ) 02Re Re Re( ) ( ) ( )i i i i i ih h h h h hωβ = − − ≥                                            (44a) 

11, 33, 13, 31, 13, 31,5( ) 02Re Re Re( ) ( ) ( )i i i i i ih h h h h hωβ = − − ≥                                            (44b) 

22, 33, 23, 32, 23, 32,6 ( ) 02Re Re Re( ) ( ) ( )i i i i i ih h h h h hωβ − −= ≥                                           (44c) 

( )
( )
( )

11, 22, 33,

11, 23, 32, 23, 32,

22, 13, 31, 13, 31,

33, 12, 21, 12, 21,

12, 21, 13, 31, 23, 32,

7 ( )

0

2Re Re Re

Re Re

Re Re

Re Re

2Re Re Re

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

i i i

i i i i i

i i i i i

i i i i i

i i i i i i

h h h

h h h h h

h h h h h

h h h h h

h h h h h h

ωβ =

− +

− +

− +

≥+

                                            (45) 

Here, 1β  to 7β  are called the absolute stability indices. If the hybrid matrix elements 

iH  satisfy the above conditions, the trilateral haptic system is absolutely stable, i.e., the 

master 1, master 2 and slave will be stable during their physical interactions with any 

passive human operators and any passive environment. 

Based on the position tracking convergence proven in Sec. 4.3, the masters 1 and 

2 track the response of master impedance model (7): 
1 mm imp→x x , 

2 mm imp→x x , and the 

slave tracks the response of slave impedance model (8): 
ss imp→x x . In addition to the 

position tracking performance, the closed-loop dynamics of the masters and the slave 

are made similar to their corresponding reference impedance models (7) and (8), 
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respectively, by utilizing the suitable impedance parameters in the proposed nonlinear 

TMRAIC structure (13)-(17). As a result of these conditions, the hybrid matrix of the 

proposed controlled trilateral haptic system in each direction i  of Cartesian space is 

obtained as 

2

1

f f

f f f

x 2

1 e

1 0 0

e 0

m m

s s s

T
imp imp

i

T

imp imp imp

s

s

m b

m b k

s

s

s s

α η
α α α

η

−

−

 
 
 
 
 
 
 
 
 

=

+ − −

+ +

H                                           (46) 

The first row of above matrix comes from mimicking the reference impedance model (7) 

and tracking its response by the master 1 using the corresponding MRAIC law (15). As 

master 2 tracks the response of master impedance model (
2 mm imp→x x ) via its 

controller (16), similar to the master 1 (
1 mm imp→x x ), one can write 

2 1m m→x x  which is 

represented in the second row of hybrid matrix in Eq. (46). The third row of iH  comes 

from mimicking the reference impedance model (8) and tracking its response by the 

slave robot using the corresponding MRAIC law (17). Note that as a result of tracking 

convergence, the master 2 trajectory converges to the same response as the master 1 

(
2 1m m→x x ); therefore, the total masters trajectory used in the slave impedance model 

(8) will be: 
1 2 1x x(1 )( )d d d

m m mα α−+ →x x x , as reflected in the third row of iH  in Eq. (46). 

Accordingly, the symmetrization condition (c) and inequalities (43b), (44a), (44c) 

and (45) in the condition (d) of the absolute stability are satisfied based on the final 

hybrid matrix (46). The conditions (a), (b), (43a) and (43c) imply that the positive 

impedance parameters should be employed. Moreover, the condition (44b) of trilateral 



Journal of Dynamic Systems, Measurement, and Control 

26 

 

absolute stability enforces an additional inequality for the impedance parameters that is 

obtained after simplifications as 

( )
( )

2

xf
1 22

2 2 2
5( ) cos 0

2
1 ( )m s

s ss

imp imp

imp impimp

T T
b b

b k m

ω
ω η η

β ω
ω ω

 
 

= − − + ≥
+ −

                          (47) 

As a result, if the chosen positive impedance parameters for masters and the slave 

satisfy inequality (47) for the stability index 5β  in the range of operating frequencies, 

the proposed trilateral haptic system is absolutely stable. In the absence of time delays 

in communication channels ( 1 2 0T T= = ), arbitrary positive impedance parameters will 

satisfy Eq. (47). However, in the presence of communication delays ( 1 0T ≠  and/or 

2 0T ≠ ), the impedance parameters 
mimpb , imps

k , imps
b  and imps

m  should be adjusted 

appropriately in order to satisfy (47) for all working frequencies ω . Then, the absolute 

stability of three-port teleoperation system in the presence of time delays is 

guaranteed. 

 

5.1. Adjustment of Impedance parameters for Absolute Stability 

 

The initial master and slave impedance parameters should be chosen in each 

application based on the desired characteristics of the trilateral haptic system. For 

example, the appropriate impedance adjustment for the transparency condition 

(perfect position synchronization and force reflection) was described in Sec. 3.3. 

However, these initially chosen impedance parameters should be modified to guarantee 

the absolute stability (by satisfying (47)) if communication delays exist in the system. To 
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specify these required modifications, the partial derivatives of 
5 ( )ωβ  with respect to 

the impedance parameters are obtained using Eq. (47) as 

( )
2

2 2 2 25 ( )

s s ss

m

imp imp impimp
imp

b b k m
b

ωβ
ω ω ω 

= − 
 

∂
+

∂
                                     (48) 

( )

( )

2 2

5
2

2
2 2 2

( ) 2
m s s s

s

s ss

imp imp imp imp

imp

imp impimp

b b m k

k
b k m

ω ω ωβ

ω ω

−

 
− 

 

∂
=

∂
+

                                                (49) 

( )

( )

2
2 2 2 2

5
2

2
2 2 2

( ) m s ss

s

s ss

imp imp impimp

imp
imp impimp

b b k m

b
b k m

ω
ω ω ω

β

ω ω

 
− 

 

 
− 

 

− +
∂

=
∂

+

                                    (50) 

( )

( )

4 2

5
2

2
2 2 2

( ) 2
m s s s

s

s ss

imp imp imp imp

imp

imp impimp

b b k m

m
b k m

ω ω ωβ

ω ω

−

 
− 

 

∂
=

∂
+

                                                (51) 

Thus, if inequality (47) is not satisfied ( 5 ( ) 0ωβ < ) in some frequency ranges using 

the initially chosen parameters, Eqs. (48)-(51) will help the designer to increase the 

value of stability index 5 ( )ωβ  by modifying the impedance parameters (
mimpb , imps

k , 

imps
b  and imps

m ) until inequality (47) is satisfied for different frequencies. Accordingly, 

the frequency intervals in which the decrease of each impedance parameter will 

increase the value of 5 ( )ωβ  (when 5 pβ∂ ∂  is negative) and improve the stability of 

trilateral tele-haptic system are determined using Eqs. (48)-(51) and listed in Table 1. 

Based on Table 1, the stability will be improved in low, moderate and high 

frequencies by reductions in imps
k , imps

b  and imps
m , respectively. However, decrease of 

these slave impedance parameters weakens the position synchronization performance 

as described in Sec. 3.3. Also, the stability index 
5 ( )ωβ  increases in all frequencies with 
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an increase in the master damping impm
b  according to Table 1; however, it may weaken 

the force reflection performance during high velocity motions as discussed in Sec. 3.3. 

Therefore, the position synchronization and force reflection performances 

(generally, the transparency of tele-haptic system) may be attenuated by revising the 

impedance parameters in order to ensure the absolute stability in the presence of 

communication delays. This indicates a trade-off between the transparency and the 

required absolute stability of delayed trilateral teleperation systems using the proposed 

impedance controller (i.e., the TMRAIC scheme). 

 

 

6.  EXPERIMENTAL STUDIES 

 

The proposed trilateral impedance-based control strategy is evaluated by some 

experiments on two 3-DOF Phantom Premium robots (Geomagic Inc., Wilmington, MA, 

USA) as the masters (Fig. 3a) and one 2-DOF Quanser robot (Quanser Consulting Inc., 

Markham, ON, Canada) as the slave (Fig. 3b), all with nonlinear dynamics. The Phantom 

robots 1 and 2 are respectively equipped with a 6-axis JR3 50M31 force/torque sensor 

(JR3 Inc., Woodland, CA, USA) and a 6-axis ATI Nano43 force/torque sensor (ATI 

Industrial Automation, Apex, NC, USA) to measure the operators forces (
1humf , 

2humf ). 

The Quanser robot is also equipped with a 6-axis ATI Gamma F/T sensor (ATI Industrial 

Automation, Apex, NC, USA) to measure the applied force to the environment ( envf ). The 

proposed controller is implemented with the sampling rate of 1 kHz by employing the 

QUARC software (Quanser Consulting Inc., Markham, ON, Canada) as a real-time control 

environment. 
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The masters and slave robots’ end-effectors can move in the horizontal x y−  

space as shown in Fig. 3. Therefore, the end-effector position of each robot is defined in 

the Cartesian coordinates as [ ]
T

j jx y=x  (for 1 2, ,j m m s= ). A stiff environment is 

prepared by a set of springs (Fig. 3b) that physically interacts with the slave robot. The 

kinematics and dynamics of the Phantom and Quanser robots were comprehensively 

described in [50] and [51, 52], which are not mentioned here for the brevity. The 

parameters of the designed control laws (15)-(17) and adaptation laws (35) in these 

experimental evaluations are listed in Table 2. The function ( )sgn ss  in the slave control 

law (17) is replaced by the continuous alternative function of 160( )tanh ss  to prevent 

from undesired discontinuities and chattering in the applied control forces. 

 

6.1. Without Communication Delays 

 

In the first part of experiments, the communication channels between the 

masters and slave are delay-free ( 1 2 0T T= = ). According to the absolute stability analysis 

of the proposed controlled system in Sec. 5, the parameters values of the impedance 

models (7) and (8) should be only positive. Moreover, to provide the transparency 

condition (simultaneous force reflection and position synchronization), the masters 

impedance parameters should be small and the slave impedance parameters should be 

large as discussed in Sec. 3.3. Accordingly, the employed impedance parameters for the 

delay-free case are mentioned in Table 3. Due to the similar workspaces of the masters 

(Phantom robots) and the slave (Quanser robot) in planar motions, the position scaling 

factor is considered to be x 1η = . The force scaling factor is also chosen f 1 2η =  in order 
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to have two times larger environment force ( envf ) in comparison with the sum of scaled 

human operators forces (
1f humα +f

2f(1 ) humα− f ). Two different cases of the authority 

factors ( fα , xα ) are employed in these experiments as listed in Table 3. 

6.1.1. Case 1: With the same authority for Operators 1 and 2 

As the first case of delay-free teleoperation, the position and force authority 

factors are set as f x 0.5α α= =  in order to provide the same authority for the Operators 

1 and 2 to manipulate robots. For this case, the position trajectory of the masters and 

slave robots’ end-effectors with the desired responses of the master and slave reference 

impedance models (7) and (8) in x  direction are shown in Fig. 4a. The position tracking 

errors between robots and their desired impedance response (
1mxɶ , 

2mxɶ , sxɶ ) and 

between the masters and slave robots s −x
1x x( mη α +x

2x(1 ) )mα− x  are shown in Fig. 4b. 

Considering Fig. 4, the position tracking performance between each robot and its 

desired reference impedance trajectory (
1

0m →xɶ , 
2

0m →xɶ , 0s →xɶ ) is obtained as a 

result of the proposed nonlinear TMRAIC scheme, which was proven in Sec. 4.3 via the 

Lyapunov method. Moreover, the position difference between the masters and the 

slave robots ( s −x
1x x( mη α +x

2x(1 ) )mα− x ) remains small (less than 0.0007 m ) after the 

convergence of position tracking errors in the proposed teleoperation system because 

of choosing large parameters (
simpm , 

simpb  and 
simpk ) for the slave impedance model 

(8), as described in Sec. 3.3. However, this masters-slave position difference does not 
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converge exactly to the zero whenever there is a non-zero environment force envf  based 

on (8) and (9).  

The interaction forces applied from the human operators to the masters (
1humf  

and 
2humf ), the scaled combination of these forces (

1f humα +f
2f(1 ) humα− f ) and the scaled 

interaction force applied from the slave to the stiff environment ( f envη f ) in x  direction 

are shown in Fig. 5a. The force reflection error as the difference of operators’ and 

environment’s forces (
1f humα +f

2f(1 ) humα− f f envη− f ) is also illustrated in Fig. 5b, which is 

less than N0.14 . As seen, the force reflection performance is achieved because of 

choosing small parameters (
mimpm  and 

mimpb  in Table 3) for the master impedance 

model (7), which is discussed in Sec. 3.3. 

In this case, the magnitude of scaled forces of the operators 1 and 2 are similar 

for approximately the same movements, by considering the same authority for them. 

 

6.1.2. Case 2: With higher authority for Operator 1 

In the second case, the proposed trilateral impedance-based controller is 

evaluated when a higher authority ( f x 0.8α α= = ) is considered for the operator 1 in 

comparison with the operator 2 (that has f x1 1 0.2( ) ( )α α− = − =  authority). As shown in 

Fig. 6 (for y  direction), the position synchronization and force reflection performances 

are achieved due to the appropriate masters and slave impedance adjustments, similar 

to the previous case. The sequence and duration of applying the force by the operators 

1 and 2 are expressed in Fig. 6. 



Journal of Dynamic Systems, Measurement, and Control 

32 

 

As seen in Fig. 6b, the applied force by the operator 2 that was multiplied by 

f1 0.2( )α− =  has four times smaller authority in comparison with the force of operator 1 

multiplied by f 0.8α = . Similar to the presented results in Sec. 6.1, the transparency 

condition (position synchronization plus force reflection) was provided appropriately for 

the nonlinear trilateral tele-haptic system using the nonlinear TMRAIC control scheme. 

This condition is achieved in this part of experiments via the arbitrary adjustment of 

positive impedance parameters due to the absence of communication delays (
1 2

0T T= = ) 

as discussed in Sec. 5. 

 

6.2. With Communication Delays 

 

In this part of experiments, the proposed controller is evaluated in the presence 

of bounded time delays in the communication channels. In this condition, the trilateral 

teleoperation system should become robust against the upper bounds of 

communication delays that are considered to be 
1

70 secT m=  and 
2

70 secT m= . This 

assumption is due to the fact that the coast-to-coast round trip communication delays 

are usually in the order of 60 msec [1]. As discussed in Sec. 5, the inequality (47) for the 

absolute stability index 
5 ( )ωβ  may not hold for every arbitrary set of positive 

impedance parameters. 

As a result, the mentioned parameters in Table 3 for delay-free condition 

(provided the transparency) should be modified based on the guidelines presented in 

Sec. 5.1 in order to guarantee the trilateral absolute stability of the system. The 

modified impedance parameters that satisfy inequality (47) of the stability index 
5 ( )ωβ  
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in working frequencies are listed in Table 4. The force and position scaling factors ( fη , 

xη ) are not changed in order to have the same ratio of interaction forces as the delay-

free teleoperation (Sec. 6.1) and due to the same robots’ workspaces. 

Figure 7 shows the positive value of the absolute stability index 
5β  for a wide 

range of frequencies by employing the modified impedance parameters (Table 4), which 

demonstrates the satisfaction of (47). 

6.2.1. Case 1: With the same authority for Operators 1 and 2 

As shown in Fig. 8a for f x 0.5α α= = , the combination of human operators’ 

interaction forces 
1f humα +f

2f(1 ) humα− f  is a little different from the scaled environment 

force f envη f , especially during the motion when the robots’ velocities are not zero. This 

force reflection error (Fig. 8b) is due to the increase of modified damping coefficient 

mimpb in the master impedance model (7) for the absolute stability guarantee. As a 

result, the maximum force reflection error in this case ( N0.6 ) is about 4 times larger 

than the maximum error ( N0.14 ) obtained in the previous delay-free experiments (Fig. 

5). However, in stationary positions when the robots have approximately zero velocities 

and accelerations, the force reflection error becomes zero (
1f humα +f

2f(1 ) humα− −f  

f envη f ) 0→ , which is in accordance with Eq. (7).  

Note that the high-frequency variation of force reflection errors shown in Figs. 

5b and 8b is due to the variation of human operators’ forces (
1hum

f  and 
2hum

f ). These 

variations (which have the amplitude of about 0.05 N in Figs. 5b and 8b) are less than 3 

% of the maximum total force of each operator that is about 2.2 N in Figs. 5a and 8a. 
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This behavior is due to the human operators’ force regulation performance during their 

hand motions and interaction with the master robots. 

In addition, due to the modification and decrease of the slave impedance 

parameters (
imps

k , 
imps

b  and 
imps

m  in Table 4), the remaining maximum position error 

( 0.007 m  in Fig. 9) of the slave robot with respect to the master robots becomes about 

10 times larger in comparison with the previous experiments (illustrated in Fig. 4) 

without time delay.  

 

6.2.2. Case 2: With higher authority for Operator 1 

The force and position data when the higher authority is considered for the 

operator 1 in comparison with the operator 2 using f x 0.8α α= =  and the upper bounds 

of communication delays are 
1

70 secT m=  and 
2

70 secT m= , are shown in Fig. 10a and 

10b, respectively (for y  direction). As seen, the operator 2 applies larger forces to move 

the robots in comparison with the operator 1 because of the smaller authority 

f(1 ) 0.2α− =  of operator 2 in this case. 

According to the obtained results for the proposed trilateral controller in the 

presence of communication delays (Sec. 6.2), the force reflection performance (Figs. 8 

and 10a), the position synchronization performance (Figs. 9 and 10b) and consequently 

the transparency of teleoperation system are affected by the required modifications to 

the impedance parameters; however, the absolute stability is ensured. This implies a 

trade-off between the absolute stability and the transparency in the proposed trilateral 

system that was introduced in Sec. 5.1. 
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As discussed before, the time delays (
1

T , 
2

T ) of real communication channels are 

usually close to constant and do not change very much during a teleoperation task and 

an upper bound of delay can be considered as the worst case which can be estimated by 

comparing the sending and receiving times of transmitted signals [45]. The performance 

of the proposed trilateral control strategy with the compensation of highly varying time 

delays will be studied in future works. 

 
 

 

5.  CONCLUSION 
 

In this paper, a new nonlinear Trilateral Model Reference Adaptive Impedance 

Controller (TMRAIC) was presented and tested for nonlinear dual-user multi-DOF 

teleoperation systems including two masters and one slave robots. The proposed 

controller provided the position synchronization and the force reflection by 

implementing two reference impedance models and adjusting their parameters. These 

impedance parameters were employed in trilateral control laws to make the closed-loop 

dynamics of robots similar to their corresponding reference impedance models. The 

tracking convergence to the reference models’ responses in the presence of parametric 

uncertainties were proven via the Lyapunov method and evaluated experimentally. 

The trilateral absolute stability of the teleoperation system was also guaranteed 

for the first time by adjusting the desired impedance parameters in the presence of 

communication delays, without assuming any reduction to a two-port network. A trade-

off between the absolute stability and transparency of the three-port system subjected 

to time delays should be applied using the proposed TMRAIC scheme. The experimental 
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studies employing multi-DOF nonlinear masters and slave robots, demonstrated that 

the position and force tracking performances and the teleoperation system’s stability 

were achieved with and without communication delays. 
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Fig. 1 
The schematic diagram of the proposed trilateral teleoperated haptic 

system with communication delays. 

Fig. 2 
The block diagram of the proposed nonlinear trilateral model reference 

adaptive impedance controller. 

Fig. 3 Experimental system: (a) two Phantom Premium robots as the masters 

and (b) one Quanser robot as the slave. 

Fig. 4 (a) The position trajectories of the masters (
1mx , 

2mx ) and slave ( sx ) with 

their desired reference impedance models’ responses (
mimpx , imps

x ), and 

(b) the position tracking errors for each robot (
1mxɶ , 

2mxɶ , sxɶ ) and 

between the masters and slave ( s −x
1x x( mη α +x

2x(1 ) )mα− x ), in x  

direction. 

Fig. 5 (a) The operators forces 
1humf , 

2humf , sum of their scaled forces 
1f humα +f  

2f(1 ) humα− f   and the scaled environment force f envη f , and (b) the force 

reflection error (
1f humα +f

2f(1 ) humα− f f envη− f ), in x  direction when 

f x 0.5α α= = . 

Fig. 6 (a) The masters and slave position trajectories (
1mx , 

2mx , sx ) with their 

desired reference impedance models’ responses (
mimpx , imps

x ), and (b) 

the operators forces 
1humf , 

2humf , sum of their scaled forces 
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1f humα +f
2f(1 ) humα− f   and the scaled environment force f envη f , when 

fα = x 0.8α =  for y  direction. 

Fig. 7 Positiveness of the absolute stability index 
5β  employing the modified 

impedance parameters for delayed teleoperation system. 

Fig. 8 (a) The operators forces 
1humf , 

2humf , sum of their scaled forces 
1f humα +f  

2f(1 ) humα− f   and the scaled environment force f envη f , and (b) the force 

reflection error (
1f humα +f

2f(1 ) humα− f f envη− f ), in x  direction when 

f x 0.5α α= =  and the upper bounds of communication delays are 

1 70 secT m=  and 2 70 secT m= . 

Fig. 9 (a) The position trajectories of the masters (
1mx , 

2mx ) and slave ( sx ) with 

their desired reference impedance models’ responses (
mimpx , imps

x ), and 

(b) the position tracking errors for each robot (
1mxɶ , 

2mxɶ , sxɶ ) and 

between the masters and slave ( s −x
1x x( mη α +x

2x(1 ) )mα− x ), in the 

presence of time delays ( 1 70 secT m=  and 2 70 secT m= ). 

Fig. 10 (a) The scaled operators 
1f humα f , 

2f(1 ) humα− f and environment 

f envη f interaction forces, and (b) the masters and slave position 

trajectories (
1mx , 

2mx , sx ) with their desired reference impedance 

models’ responses (
mimpx , imps

x ) in y  direction, when fα = x 0.8α =  and 

the upper bounds of communication delays are 1 70 secT m=  and 

2 70 secT m= . 
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Fig. 1  The schematic diagram of the proposed trilateral teleoperated haptic system with 

communication delays. 
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Fig. 2  The block diagram of the proposed nonlinear trilateral model reference adaptive 

impedance controller. 
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Fig. 3  Experimental system: (a) two Phantom Premium robots as the masters and (b) 

one Quanser robot as the slave. 
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Fig. 4  (a) The position trajectories of the masters (
1mx , 

2mx ) and slave ( sx ) with their 

desired reference impedance models’ responses (
mimpx , imps

x ), and (b) the position 

tracking errors for each robot (
1mxɶ , 

2mxɶ , sxɶ ) and between the masters and slave 

( s −x
1x x( mη α +x

2x(1 ) )mα− x ), in x  direction. 
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Fig. 5  (a) The operators forces 
1humf , 

2humf , sum of their scaled forces 
1f humα +f  

2f(1 ) humα− f   and the scaled environment force f envη f , and (b) the force reflection error 

(
1f humα +f

2f(1 ) humα− f f envη− f ), in x  direction when f x 0.5α α= = . 
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Fig. 6  (a) The masters and slave position trajectories (
1mx , 

2mx , sx ) with their desired 

reference impedance models’ responses (
mimpx , imps

x ), and (b) the operators forces 

1humf , 
2humf , sum of their scaled forces 

1f humα +f
2f(1 ) humα− f   and the scaled environment 

force f envη f , when fα = x 0.8α =  for y  direction. 
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Fig. 7  Positiveness of the absolute stability index 
5β  employing the modified 

impedance parameters for delayed teleoperation system. 
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Fig. 8  (a) The operators forces 
1humf , 

2humf , sum of their scaled forces 
1f humα +f  

2f(1 ) humα− f   and the scaled environment force f envη f , and (b) the force reflection error 

(
1f humα +f

2f(1 ) humα− f f envη− f ), in x  direction when f x 0.5α α= =  and the upper bounds 

of communication delays are 1 70 secT m=  and 2 70 secT m= . 
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Fig. 9  (a) The position trajectories of the masters (
1mx , 

2mx ) and slave ( sx ) with their 

desired reference impedance models’ responses (
mimpx , imps

x ), and (b) the position 

tracking errors for each robot (
1mxɶ , 

2mxɶ , sxɶ ) and between the masters and slave 

( s −x
1x x( mη α +x

2x(1 ) )mα− x ), in the presence of time delays ( 1 70 secT m=  and 2 70 secT m= ). 
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Fig. 10  (a) The scaled operators 
1f humα f , 

2f(1 ) humα− f and environment f envη f interaction 

forces, and (b) the masters and slave position trajectories (
1mx , 

2mx , sx ) with their 

desired reference impedance models’ responses (
mimpx , imps

x ) in y  direction, when 

fα = x 0.8α =  and the upper bounds of communication delays are 1 70 secT m=  and 

2 70 secT m= . 

Operator 1 

Applies Force  

Operator 2 

Applies Force  

Operators 1 & 2 Apply 

Forces Cooperatively 

Operator 1 

Applies Force  

Operator 2 

Applies Force  

Operators 1 & 2 Apply 

Forces Cooperatively 



Journal of Dynamic Systems, Measurement, and Control 

53 

 

 

 

 

 

 

 

 

 

Table 1  Frequency intervals in which the decrease of each impedance parameter will 

increase the value of 5 ( )β ω  ( 5( ) 0pβ ω∂ ∂ < ) 

Impedance Parameter p  Frequency Interval
†
 

impm
b  No frequency  

imps
k  0,[ ]

snω ω∈  

imps
b  ( ) ( )2 21 1,

s ss s n s s nζ ζ ζ ζω ω ω
 

− + + + + 
 

∈  

imps
m  ,[ ]

snω ω ∞∈  

 

† 
The frequency intervals are introduced in terms of 

imp imps s sn k mω =  and 

2imp imp imps s ss b m kζ = . 
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Table 2  Parameters of control and adaptation laws used in experiments 

Control Laws’ parameters Adaptation Laws’ parameters 

12, 1mλ = , 
12, 1mλ = , 

13, 14mλ = , 
23, 14mλ = ,         

3, 115sλ = , 4, 1.6sλ =  

1
3.2m I=H ,  

2
3.2m I=H , 

24s I=H  
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Table 3  Parameters of impedance models (7) and (8) for the delay-free communication 

channels 1 2 0T T= =  

Master impedance 

parameters 

Slave impedance 

parameters 

Force and position 

authority factors 

kg0.25
mimpm =  kg1.2imps

m =  
Case 1:    f x 0.5α α= =  

N.s/m1
mimpb =  N.s/m98imps

b =  

f 1 2η =  N/m4000imps
k =  

Case 2:    f x 0.8α α= =  

 x 1η =  
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Table 4  Modified impedance parameters for the absolute stability in the presence of 

communication delays (with the upper bounds of 1 70 secT m=  and 2 70 secT m= ) 

Master impedance 

parameters 

Slave impedance 

parameters 

Force and position 

authority factors 

kg0.25
mimpm =  kg0.001imps

m =  
Case 1:    f x 0.5α α= =  

N.s/m18
mimpb =  N.s/m22imps

b =  

f 1 2η =  N/m350imps
k =  

Case 2:    f x 0.8α α= =  

 x 1η =  

 


