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Abstract: Dead-zone is one of the most common hard nonlinearities ubiquitous in master-slave

teleoperation systems, particularly in the slave robot joints. However, adaptive control techniques applied

in teleoperation systems usually deal with dynamic uncertainty but ignore the presence of dead-zone. Dead-

zone has the potential to remarkably deteriorate the transparency of a teleoperation system in the sense of

position and force tracking performance or even destabilizing the system if not compensated for in the

control scheme. In this paper, an adaptive bilateral control scheme is proposed for nonlinear teleoperation

systems in the presence of both uncertain dynamics and dead-zone. An adaptive controller is designed for

the master robot with dynamic uncertainties and another is developed for the slave robot with both dynamic

uncertainties and unknown dead-zone. The two controllers are incorporated into the 4-channel bilateral

teleoperation control framework to achieve transparency. The transparency and stability of the closed-loop

teleoperation system is studied via a Lyapunov function analysis. Comparisons with the conventional

adaptive control which merely deal with dynamic uncertainties in the simulations demonstrate the validity

of the proposed approach.
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1 INTRODUCTION

A general teleoperation system consists of a slave robot that can reach and

interact with its environment, and a master robot from which the human operator applies

his/her desired commands to the slave robot. If force feedback from the slave to the

master is presented through communication channel, then the teleoperation system is said

to be bilateral. Teleoperation systems have been widely applied to areas such as nuclear

waste handling, undersea and outer space explorations, remote-based rehabilitation,

minimally invasive surgery and so on [1].

Transparency is a critical requirement for a teleoperation system, requiring the slave to

accurately follow the position of the master while the operator faithfully feels the contact

force being applied from the slave to the environment. In practice, however, there are

uncertainties in teleoperation systems that degrade the system transparency and

undermine its stability. An effective way to deal with these difficulties is to apply

adaptive control schemes in which the controllers adjust to compensate for these

uncertainties. For this case, Zhu [2] developed an adaptive control approach for nonlinear

teleoperation systems with parameter uncertainties where the model of the human

operator and the environment were incorporated into the dynamics of the master and the

slave. Hung [3] designed an adaptive controller for nonlinear teleoperation systems where

the dynamic parameters of the master and the slave were not accurate. Chopra [4]

presented an adaptive control scheme for nonlinear teleoperators with uncertain physical

parameters as well as time-delay. Nuño [5] extended Chopra’s scheme and proposed an

improved adaptive controller to remove the limitation on gravity forces of the master and

the slave. A control scheme is proposed for bilateral teleoperation systems subject to
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saturation in actuators in [6]. Adaptive controllers were designed for bilateral

teleoperation systems with uncertain dynamics and kinematics, or linearly and

nonlinearly parameterized dynamic uncertainties by the authors in [7]. In recent years,

Islam [8] proposed a nonlinear adaptive scheme with local proportional and derivative

signals to cope with parametric dynamic uncertainty for teleoperation systems with

symmetrical and unsymmetrical time-varying delay. Zhai [9] developed an adaptive

control approach based on switched filter for teleoperation system with varying time-

varying delays and with actuator saturation. Franco [10] presented a discrete-time

adaptive-predictive control algorithm for a teleoperation system with force disturbance

and input delay. Wang [11] developed an adaptive neural control approach based on

radial basis functions neural networks for bilateral teleoperation systems with time delay

and backlash-like hysteresis. Abut [12] employed adaptive computed torque control for

teleoperation systems to cope with the kinematic and dynamic uncertainties and the

interaction forces between the operator and the environment. Li [13] proposed an

adaptive control framework for teleoperation systems with dynamic and kinematic

uncertainties and time-varying time delays to achieve master-slave synchronization in the

task space. Lu [14] proposed an adaptive fuzzy control strategy based on linear matrix

inequalities for bimanual teleoperation system to evaluate and suppress the contact forces

and dynamic uncertainties. Nevertheless, all of the above control schemes neglect dead-

zone in a teleoperation system.

Dead-zone is one of the most common hard nonlinearities in master-slave

teleoperation systems, particularly in the slave robot joints. The slave robot usually has

actuated revolute joints. The active joints of the slave robot are actuated by electric
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servomotors. Consequently, dead-zone is ubiquitous in the actuators of the slave robot.

Dead-zone is particularly harmful and it has the potential to cause oscillations and

inaccuracy, remarkably undermining the system transparency or even destabilizing the

system if not compensated for in the control scheme. It should be noted that for the

master robot it is typically designed with care to involve no or little dead-zone so that the

sensation of reflected forces by the human operator is realistic.

Outside the realm of teleoperation systems, adaptive control is also an important

research trust to mitigate the effect of dead-zone in nonlinear systems; this was pioneered

by Tao [15]. Roughly speaking, the main idea underlying this approach is to construct an

inverse model of the dead-zone and update it adaptively. However, as pointed in [16] “the

requirement on dead-zone inversion may cause amplification of additive measurement

disturbances resulting from the inversion”. In order to avoid introducing the dead-zone

inverse, Wang [17] proposed a robust adaptive control scheme for nonlinear dynamic

systems preceded by an unknown dead-zone. However, in [17] only motion control is

focused on for a class of SISO (Single-Input, Single-Output) nonlinear systems rather

than force control. It is worth noting that in a nonlinear bilateral teleoperation system

which is MIMO (Multi-Input, Multi-Output), force feedback is a requisite besides motion

control. So far, there has been no attempt at simultaneous motion and force control of a

master-slave bilateral teleoperation system with unknown dead-zone.

This paper presents an adaptive scheme able to deal with nonlinear bilateral

teleoperation systems in the presence of both dynamic uncertainties and dead-zone. A

controller is designed for the master with dynamic uncertainties and another is developed

for the slave with simultaneous intrinsic dynamic uncertainties and unknown dead-zone.
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Then, the two adaptive controllers are incorporated into the 4-channel bilateral

teleoperation control framework to achieve transparency in the sense of good position

and force tracking performance. The proposed adaptive control scheme not only achieves

transparency but also ensures stability of the system when exact knowledge of the

dynamics and dead-zone is unavailable.

The rest of this paper is organized as follows. In Section 2, the model of nonlinear

teleoperation systems with uncertain dynamics and dead-zone is presented. An adaptive

control scheme that can simultaneously deal with dynamic uncertainties and dead-zone is

designed in Section 3. In Section 4, the stability and transparency of the system is

mathematically proved. In Section 5, simulations are conducted to demonstrate the

validity of the proposed approach. The paper is concluded in Section 6.

2 MODEL OF NONLINEAR TELEOPERATION SYSTEMS WITH UNCERTAIN
DYNAMICS AND DEAD-ZONE

In this section the model of teleoperation system is given. Also, the uncertainties

in the dynamics and dead-zone are analyzed.

2.1 Dynamics of the Master and the Slave

The joint-space models of n-DOF master and the slave robots can be written as

[18]:

( ) ( , ) ( )m m m m m m m m m m h   M q q C q q q G q τ τ   (1)

( ) ( , ) ( )s s s s s s s s s s e   M q q C q q q G q τ τ   (2)

where mq and 1n
s

q are joint positions, ( )m mM q and ( ) n n
s s

M q are

symmetric positive-definite inertia matrices, ( , )m m mC q q and ( , ) n n
s s s

C q q correspond

to Coriolis and centrifugal terms, ( )m mG q and 1( ) n
s s

G q represent gravity terms, mτ
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and 1n
s

τ are control torque inputs for the master and the slave, respectively. Here,

1n
h

τ is the torque applied from the operator to the master and 1n
e

τ is the torque

applied from the slave to the environment. The subscripts m and s for the master and

the slave, respectively, are omitted in the following important properties.

Property 1 [3]. The terms in the left-hand sides of (1) and (2) can be expressed in a

linear form with respect a set of constant dynamic parameters as:

( ) ( , ) ( ) ( , , )  M q q C q q q G q Y q q q θ    

where ( , , ) n pY q q q  is called the dynamic regressor matrix and it is a known nonlinear

matrix function with respect to the joint variables, and 1pθ is a possibly unknown

vector which consists of constant dynamic parameters 1 2, ,..., p   , i.e., 1 2[ , ,..., ]Tp  θ .

Alternatively, Property 1 can also be described in another form as Property 1’ in

the following form.

Property 1’ [3]. Each term in the left-hand sides of (1) and (2) can be expressed in a

linear form with respect a set of constant dynamic parameters as:

0( ) ( , , )M q q Y q q q θ  

1( , ) ( , )C q q q Y q q θ  

2( ) ( )G q Y q θ

where 0 ( , , )Y q q q  , 1( , )Y q q , 2( ) n pY q are dynamic regressor matrices and

1 2 3 ( , , ) ( , ) ( ) = ( , , ) Y q q q Y q q Y q Y q q q     .

Property 2 [3]. The matrix ( ) 2 ( , )M q C q q  is skew-symmetric, i.e.,

1( ( ) 2 ( , )) 0, .T n   ζ M q C q q ξ ξ 

2.2 Analysis of the Dead-Zone
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Dead-zone is a static input-output relationship, which causes the output to be zero

for a range of input values. In a teleoperation system, the slave robot often suffers from

dead-zone imperfection. For instance, the dead-zone in the actuators of the slave joints

can create a position error between the master robot and the slave robot. A typically

graphical representation of the dead-zone at the input of the slave robot is shown in Fig. 1,

where i ( 1,2,...,i n ) denotes the i th joint of the slave robot, ( )iv t and ( ( ))i iDZ v t are the

input and output of the dead-zone, respectively,
irb and

ilb are break-points, and
irm and

ilm are slopes.

A well assessed dead-zone, capturing most of its characteristics, is described

using piecewise linear functions as [15]:

( ( ) ) ( )

( ( )) 0 ( )

( ( ) ) ( )

i i i

i

i i i

r i r i r

i i l i r

l i l i l

m v t b if v t b

DZ v t if b v t b

m v t b if v t b

  
  
  

(3)

Generally, the dead-zone model is uncertain and its parameters
irb ,

ilb ,
irm and

ilm are unknown. However, it is assumed in this paper that
irb ,

ilb ,
irm and

ilm are

bounded and their signs are usually known. This assumption has been successfully

adopted in [17]. Therefore, it is not unreasonable to let 0
irb  , 0

ilb  , 0
irm  , 0

ilm 

thereafter in this paper. Furthermore, it is assumed in this paper that
i ir lm m m  . Such an

assumption has been successfully adopted in the past [19].

Conventionally, the main idea of combating dead-zone is to construct an inverse

model. However, possible amplification of additive measurement disturbances may result

from the inverse model. In this paper, the dead-zone model (3) is redefined as follows to

avoid constructing the dead-zone inverse.
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( ( )) ( ) ( ( ))i i i i iDZ v t mv t dz v t  (4)

where

( )

( ( )) ( ) ( )

( )

i i

i i

i i

r i r

i i i l i r

l i l

mb if v t b

dz v t mv t if b v t b

mb if v t b

  
   
  

(5)

As aforementioned,
i ir lm m m  and the parameters

irb ,
ilb ,

irm and
ilm are

bounded, therefore, it is not difficult to get that ( ( ))i idz v t is also bounded, i.e.,

( ( ))i idz v t  , where 0  is the known upper-bound of ( ( ))i idz v t .

2.3 Analysis of the Dynamic Uncertainties

As for the master robot, we consider the dynamic parameters are uncertain, i.e.,

mθ is uncertain. Then, according to Property 1, the left side of the dynamics of the master

robot (1) can be rewritten as:

ˆ ˆ ˆˆ ( ) ( , ) ( ) ( , , )m m m m m m m m m m m m m m  M q q C q q q G q Y q q q θ     (6)

where ˆ
mθ is the estimate of the unknown dynamic parameter vector mθ and

( , , )m m m mY q q q  is the known dynamic regressor matrix of the master.

On the other hand, as for the slave robot, we consider the dynamic parameter

vector *sθ is uncertain. Moreover, the dead-zone in the slave robot is unknown, i.e., the

dead-zone parameter m is unknown. Then, according to Property 1, the left side of the

dynamics of the slave robot (2) can be rewritten as:

1 * 2 *
ˆ ˆ ˆ ˆˆ ˆ( ) ( , ) ( ) ( ) ( , ) ( )s s s s s s s s s s s s s s s s s s s    M q q C q q q G q M q q Y q q θ Y q θ     (7)Acc
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where *
ˆ
sθ is the estimate of the unknown dynamic parameter vector *sθ and 1( , )s s sY q q ,

2( )s sY q are the known dynamic regressor matrices of the slave. Thereafter,

( , , )m m m mY q q q  , 1( , )s s sY q q and 2( )s sY q will be denoted as mY , 1sY and 2sY for brevity.

3. DESIGN OF 4-CHANNEL ADAPTIVE TELEOPERATION CONTROLLERS

The main idea pursued in this paper is to synthesize adaptive controllers able to

account for the presence of the dynamic uncertainties in the master, and the simultaneous

dynamic uncertainties and unknown dead-zone in the slave. Then the two controllers are

incorporated into the 4-channel bilateral teleoperation control framework to achieve

transparency.

3.1 Architecture of the Proposed 4-Channel Adaptive Teleoperation Control

For achieving transparency in a bilateral teleoperation system, various control

architectures such as the PEB (Position Error Based), DFR (Direct Force Reflection) and

4-channel have been proposed. Among them, the 4-channel architecture is the most

general case (it can represent the PEB and DFR through appropriate selection of

controllers) and one that can achieve perfect transparency. More detailed proof of the

transparency of 4-channel architecture can be found in [20].

Considering the dynamic uncertainties in the master and the slave, and the

unknown dead-zone included in the slave, the architecture of the proposed control

scheme is shown in Fig. 2. As it can be seen, the fixed (i.e. non-adaptive) position

controller for the master (blocks LC and 4C ) in the original 4-channel [21] are replaced

by an adaptive position controller for the master to deal with dynamic uncertainties, and

the fixed position controller for the slave (blocks RC and 1C ) in the original 4-channel
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are replaced by another adaptive position controller for the slave to deal with both

dynamic uncertainties and unknown dead-zone. In the proposed approach blocks 2C and

3C are force feedback terms, and 5C and 6C are local force feedback. Besides, the

signals *
hτ and *

eτ denote the exogenous torques of the operator and the environment,

respectively.

3.2 Design of Control Laws and Adaptation Laws for the Master and the Slave

The adaptive controller for the master is designed to account for the dynamic

uncertainties in the nonlinear model of the robot. First, define a virtual velocity error

vector for the master:

m m m m m mr     s q Λ q q q   (8)

where m m s  q q q , mr s m m  q q Λ q  and n n
m

Λ is a diagonal positive-definite

constant matrix. From (8), we can get:

m m mr q s q  , m m mr q s q   (9)

Substituting (9) into (1) and using Property 1, the open-loop dynamics of the

master becomes:

( ) ( , ) ( , , , )m m m m m m m m h mr m m mr mr m   M q s C q q s τ τ Y q q q q θ     (10)

where ( , , , ) ( ) ( , ) ( )mr m m mr mr m m m mr m m m mr m m  Y q q q q θ M q q C q q q G q      .

Thus the control law and the adaptation law for the master can be designed as

follows.

● Control law for the master:

2
ˆ ( )m m m mr m h e hC     τ K s Y θ τ τ τ (11)
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where n n
m

K is a diagonal positive-definite constant matrix and 2C is a positive

constant.

● Dynamic adaptation law for the master:

ˆ
mr

T
m m m θ Γ Y s (12)

where p p
m

Γ is a diagonal positive-definite constant matrix and p is the number of

the elements that the dynamic parameter vector mθ includes as mentioned in Property 1.

The control law for the master (11) includes four terms. The first term is a

feedback law involving the velocity and position tracking errors between the master and

the slave, and the second term compensates for the dynamic uncertainties. These first two

terms together perform adaptive position control for the master (as shown in the upper

dashed box in Fig. 2). The third term implements force tracking between the master and

the slave, and the fourth term is the local force feedback at the master side which is fed to

the master controller. The estimate ˆ
mθ is updated by the dynamic adaptation law in (12).

Substituting the control law (11) into (10), the closed-loop equation for the master is

obtained as:

2( ) ( , ) ( )m m m m m m m m m mr m h eC      M q s C q q s K s Y θ τ τ  (13)

where ˆ
m m m  θ θ θ .

Another adaptive controller is developed for the slave with unknown dead-zone in

addition to the intrinsically uncertain dynamics. By choosing sq and sq as the states, we

obtain the state vector of the slave as 2 1[ ; ] n
s s s

 x q q . For the slave, the desired

position is the position trajectory of the master 2 1[ ; ] n
m m m

 x q q . Now define a virtual

sliding velocity error vector for the slave:
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s ts s s Λ x (14)

where s s m  x x x and 2n n
ts

Λ is a constant positive matrix.

Differentiating both sides of (14), we have:

s s s s m   s Λ x q q   (15)

where 2n n
s

Λ is a constant positive matrix satisfying ( )ts s s s s mt    Λ x Λ x q q  .

In order not to directly use the virtual sliding velocity error ss in the adaptation

law which may cause chattering, a new virtual velocity error variable s is introduced:

( )ss sat 


 
ss s (16)

where  is an arbitrary positive constant and (.)sat is the saturation function defined as:

1

( ) 1
i

i

i

i

i

s
s

s

s
s

if s
s

sat if s

s
if s






 



 
   

   

(17)

where 1,...,i n and
1 2

[ , ,..., ]
ns s s ss s ss . Here, it is not unreasonable to assume that

( )s s  M q s , where 0  is a constant.

Substituting (15) into (2) and using Property 1, the open-loop of the slave

becomes:

1 * 2 *( ) ( ) ( )s s s s s s s s s m s s s s

s e

    
 
M q s M q Λ x M q q Y θ Y θ
τ τ

 
(18)

Before introducing the control law for the slave, some definitions are needed:

1=
m

 ,
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1n
s m s s

   E q Λ x ,

1 2= n p
s s s

 Y Y Y ,

1
*

1 p
s sm

 θ θ .

We can now introduce the adaptive control law for the slave robot.

● Control law for the slave:

3( ) ( ( )) ( )s e h em t dz t C    τ v v τ τ τ (19)

*ˆ ˆ( ) ( )ss s s s s st sat


    
sv K s E Y θ K (20)

where 1 2( ) [ ( ), ( ),..., ( )]Tnt v t v t v tv , 1 1 2 2( ( )) [ ( ( )), ( ( )),..., ( ( ))]Tn ndz t dz v t dz v t dz v tv , and 3C is a

positive constant. Also, n n
s

K is a diagonal positive-definite constant matrix,

* n n
s

K is a positive-definite matrix which satisfies *
min ( )

2s seig
m m
    K K ,

where *
min ( )s seig  K K is the minimum eigenvalue of *

s s K K and , 0   have

been defined before. Besides, ̂ is the estimate of the dead-zone parameter  .

● Dynamic adaptation law for the slave:

ˆ T
s s s  θ Y s (21)

● Dead-zone adaptation law for the slave:

ˆ T
s    E s (22)

where p p
s

Γ is a diagonal positive-definite constant matrix and  is a positive

constant.

The control law for the slave (19) can be regarded as three composite parts. The

first part, i.e., ( ) ( ( ))m t dz tv v , is the output of the dead-zone. The second part, i.e., eτ ,
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is the local force feedback at the slave side which is fed to the slave controller, and the

third part, i.e., 3( )h eC τ τ , implements force tracking between the slave and the master.

Besides, in the first part ( )tv itself further includes four terms. The first term s sK s is a

feedback law involving the velocity and position tracking errors between the slave and

the master, the second term ˆ
sE compensates for the unknown dead-zone, the third term

ˆ
s sY θ compensates for the dynamic uncertainties. The forth term * ( )ss sat 

sK is added to

avoid using the sliding error vector ss in the adaptive laws in case of chattering and

compensate for the bounded function ( ( ))i idz v t  , where  is the upper-bound. These

four terms together perform adaptive position control for the slave ((as shown in the

lower dashed box in Fig. 2). The estimate ˆ
sθ is updated by the dynamic adaptation law

(21) and ̂ is undated by the dead-zone adaptation law in (22).

Substituting (19)-(20) into (18), we can obtain the closed-loop equation for the slave:

1 * 2 *

*
3

( ) ( ) ( ) ( )

ˆ ˆ[ ( )] ( ( )) ( )

s s s s s s s s s m s s s s

s
s s s s s s h e

t

m sat dz t C


    

       

M q s M q Λ x M q q Y θ Y θ
sK s E Y θ K v τ τ

 
(23)

Using the definition of sE , (23) can be rewritten as:

*
1 * 2 *

3

( )

ˆ ˆ( ) [ ( )]

( ( )) ( )

s s s

s
s s s s s s s s s s s s s

h e

m sat

dz t C




        

  

M q s
sM q E Y θ Y θ K s E Y θ K

v τ τ



(24)

Now, multiplying both sides of (13) by 3 2C C we have:

3 2 3 2 3[ ( ) ( , ) ] ( ) ( )m m m m m m m m m mr m h eC C C C C      M q s C q q s K s Y θ τ τ  (25)

Then, subtracting (25) from (24) gives a unified closed-loop equation for the

entire master-slave system as:
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3 2

1 * 2 *

*

3 2 3 2

( ) ( )
( )

ˆ ˆ[ ( )] ( ( ))

( ) ( , )

s s s m m m

s s s s s s s

s
s s s s s s

m m mr m m m m m

C C

m sat dz t

C C C C





   

     

    

M q s M q s
M q E Y θ Y θ

sK s E Y θ K v

K s Y θ C q q s

 



(26)

4. STABILITY AND TRANSPARENCY ANALYSIS

Theorem 1: Assume the nonlinear teleoperation system (1)-(2) has dynamic uncertainties

(6) in the master, and simultaneous dynamic uncertainties (7) and unknown dead-zone (3)

in the slave. If it is controlled by the control law for the master (11) using the dynamic

adaptation law (12) and by the control law for the slave (19)-(20) using the dynamic and

dead-zone adaptation laws (21)-(22), then the following three results can be obtained:

(ⅰ) The signals ms , s , mθ , sθ and  are all bounded.

(ⅱ) The position tracking error m m s  q q q converges to zero as t   .

(ⅲ) The force tracking error h e  τ τ τ remains bounded. ■

Proof: Consider the Lyapunov function candidate:

1
3 2

1 2

1 [ ( ) )]
2
1 1 1[ ( ) ]
2

T T
m m m m m m m

T T
s s s s s

V C C

m   






   

     

s M q s θ Γ θ

s M q s θ Γ θ
(27)

where ˆ
s s s  θ θ θ and ˆ     . Differentiating V and using the fact that

( ) ( )T T
s s s s s  s M q s s M q s  gives us:

1
3 2 3 2 3 2

1

1( ) ( )
2

1 1 1ˆ ˆ( )
2

T T T
m m m m m m m m m m mm

T T T
s s s s s s s

V C C C C C C

m m  






    

     

s M q s s M q s θ Γ θ

s M q s θ Γ θ s M s

 

  
(28)
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From (26), we could get the expressions of ( )m m mM q s and ( )s s sM q s , respectively.

Then substituting the expressions of ( )m m mM q s and ( )s s sM q s into (28) and using Property

2 and the definitions of sY , sθ and  gives us:

1
3 2 3 2

*

1

( )

ˆ ˆ[ ( )]

( ( ))( ( ) )

1 1ˆ ˆ ( )
2

T T T
m m m mr m m m m

T T s
s s s s s s

T T
s s s s s

T T
s s s s s

V C C C C

sat

dz t
m

m

 

 

 













    

   

   

   

θ Γ θ Y s s K s
s

s K s s E Y θ K

vs M q E Y θ s

θ Γ θ s M q s



  

(29)

Substituting the adaptive laws (12), (21) and (22) into (29), and using the definition of

EW , we have:

*
3 2

( ( )) 1( ) ( ) ( )
2

T T T T Ts
m m m s s s s s

dz tV C C t sat
m m    

     
s vs K s s K s s K s s M q s  (30)

Substituting (16) into (30) we can obtain:

3 2

*

*
3 2

*
3 2 min

( ) [ ( )]

( ( )) 1( ) ( )
2

( ) ( )

( ( )) 1 ( )
2

( ).

(

T T s
m m m s

T T Ts
s s s

T T T s
m m m s s s

T T
s s

T T
m m m s s s

T

V t C C sat

dz tsat
m m

C C sat

dz t
m m

C C eig
dz

 

   

  

  

  













   

  

    

 

    



s
s K s s K s

s vs K s s M q s

s
s K s s K s s K K

vs s M q s

s K s s K s K K s

s







*
3 2 min

*
3 2 min

( )) 1 ( )
2

[ ( )

( )( ( ))
].

2
[ ( )

].
2

T
s s

T T
m m m s s s

s s

T T
m m m s s s

t
m m

C C eig

dz t
m m

C C eig

m m

 

 




 






 



    

 

    

 

v s M q s

s K s s K s K K

M q sv
s

s K s s K s K K

s





(31)

As aforementioned *
min ( )

2s seig
m m
    K K , we have:
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3 2 0T T
m m m sV C C     s K s s K s (32)

From (27) and (32), we know that V is positive-definite and V is negative semi-

definite. Therefore, V is bounded. Hence, the signals ms , mθ , s , sθ and  are

bounded. This concludes the proof of (ⅰ) in Theorem 1.

In terms of position tracking, the definition m m m m   s q Λ q represents a stable

first-order system in mq with ms as an input, which has a pole at mΛ in the left-half of

the complex plane as mΛ is positive definite. Thus, the boundedness of ms amounts to the

boundedness of mq and mq , i.e. , ,m m L  q q . Moreover, from (32) we can obtain:

3 2 min min

3 2

( ) ( )T T
m m m s

T T
m m m s

C C eig eig

C C V
 

 



   

K s s K s s

s K s s K s 
(33)

where min ( )meig K and min ( )seig K denote the minimum eigenvalues of the matrices mK

and sK , respectively. Integrating both sides of (33), we get:

2 2
3 2 min min0 0

0

( ) ( )

(0) ( ) (0)

t t

m m s

t

C C eig dt eig dt

Vdt V V t V



      

 


K s K s


(34)

Hence, 2,m L s s , which is followed by 2,m m L  q q . Thus, according to

Barbalat’s Lemma [22], we have 0m m s   q q q as t   . This concludes the proof of

(ⅱ) in Theorem 1.

On the other hand, in terms of force tracking, we already have that ms , mθ , s ,

sθ and  are bounded. Since s is bounded, we can readily get that ss is bounded

from (16). Then, according to (14), we can obtain that sx is bounded. Moreover, it is

possible to assume that mq is bounded. Therefore, it can be seen that sE is bounded from
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its definition. Now, substituting (15) and the derivative of (8) into (26), (26) can be

written as:

3 2

1 * 2 *

*

3 2 3 2

( )( ) ( )( )
( )

ˆ ˆ[ ( )] ( ( ))

( ) ( , )

s s s s m m m m m m

s s s s s s s

s
s s s s s s

m m mr m m m m m

C C

m sat dz t

C C C C




      
   

     

    

M q Λ x q M q q Λ q
M q E Y θ Y θ

sK s E Y θ K v

K s Y θ C q q s

  



(35)

Because mθ , sθ and  are bounded, we can readily have ˆ
mθ , ˆ

sθ and ̂ are

bounded. In addition, *sθ is dynamic parameter vector which is a constant. Also, ( ( ))dz tv

is bounded as aforementioned in (5). Then it can be seen from (35) that mq is bounded,

which results in the boundedness of ms and ss according to (8) and (15), respectively.

Then according to (23) we can finally get that h e  τ τ τ is bounded as t . This

concludes the proof of (ⅲ) in Theorem 1. ■

5 SIMULATIONS

The simulations are performed with two 2-DOF planar rehabilitation robots where

dead-zone is added to the slave robot joints in order to accord with the situation in this

paper. The dynamics of the rehabilitation robots are as follows [23]:

1 2 1 2

2 1 2 3

1 sin( )
2( )

1 sin( )
2

q q

q q

 

 

   
  
  
  

M q ,

2 1 2 2

2 1 2 1

10 sin( )
2( , )

1 sin( ) 0
2

q q q

q q q





  
  
   

C q q




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where 1=0.06256 , 2=0.00289 and 3=0.04194 are constants, and 1q and 2q are the

positions of joint 1 and joint 2. Due to the planar configurations, gravity terms are

ignored. Moreover, the dead-zone added to the slave robot joints is taken as: =1m , =-15lb

and =15rb .

Then according to Property.1, the dynamic parameter vector of the master and the

slave can be found as * 1 2 3[ , , ]Tm s    θ θ . More details about the calculation of mθ ,

mY , mrY , *sθ , sθ and sY can be found in the Appendix.

In the simulations, the dynamic parameters have inaccurate initial values, i.e.,

* 1 2 3
ˆ ˆ ˆ ˆ ˆ(0) (0) [ (0), (0), (0)] [0.03128,0.001445,0.02097]T T
m s     θ θ , and the initial guess of the

dead-zone parameter is ˆ (0) 0.5m  . Besides, the initial positions of the master and the

slave are set randomly as (0) [0.5,1.5] , (0) [1,1]T T
m s q q .

The operator and the environment are considered to be second-order LTI models

[6, 7]. The mass, damping, and stiffness parameters of the operator’s hand (i.e., , ,h h hm b k )

and the environment (i.e., , ,e e em b k ) are shown in Table 1.

Besides, for a realistic simulation, let *
hτ rise from a non-zero value,

* [sin(0.1 ),sin(0.1 )]Th t tτ . Also, take * [0,0]Te τ .

The parameters of the controllers for the master and the slave are shown in

Table.2 where I is the identity matrix with proper dimension. In addition, we

set
1 1 1 0
1 1 0 1ts
 

  
 

Λ and
0 0 1 1
0 0 1 1s
 

  
 

Λ . The simulations results in contact

motion are shown in Fig.3-Fig.6.
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Fig.3 and Fig.4 illustrate the comparison of the position tracking performance. In

Fig.3, when the conventional adaptive control which merely deals with dynamic

uncertainties is employed, there exists obvious position tracking error both in joint 1 and

joint 2, especially when the zero position is crossed. In comparison, in Fig.4, when the

proposed adaptive control which deals with both dynamic uncertainties and dead-zone is

applied, as expected, the slave can well track the position of the master well both in joint

1 and joint 2. The tracking performance is satisfying even when the zero position is

crossed.

Fig.5 and Fig.6 show the force tracking performance. As it can be seen in Fig.5

the force tracking neither in joint 1 nor in joint 2 is far from ideal case—the force

tracking error is quite undesirable at the time about 3s, 6s, 9s, 12s, 15s, 18s when the zero

force is crossed. On the contrary, the slave can track the force of the master in a

satisfying way in Fig.6 where the proposed adaptive control which deals with both

dynamic uncertainties and dead-zone is applied. The reason for the results above is that

the conventional adaptive control cannot compensate for the unknown dead-zone in  ,

while the proposed adaptive control can compensate for both the dynamic uncertainties in

mθ and sθ , and the unknown dead-zone in  .

Remark 1: It is worth noting that in adaptive control, the tracking error should converge

regardless of whether the input is persistently exciting or not, i.e., model parameter

convergence should not be a prerequisite for tracking error convergence. As can be seen

from the proof of Theorem 1, position tracking error converges to zero as t   , and the

force tracking error can remain bounded regardless of the convergence of model

parameters mθ , sθ and  .
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In the adaptive control law (11) and (19) hτ and eτ are communicated from the

master and the slave to each other and can be measured by sensors. From the unified

closed-loop equation (26) and the proof of Therom 1 it can be seen that using the

proposed adaptive controller position and force tracking can be obtained without

requiring any dynamic model of the human operator or the environment. This is

especially beneficial since in real teleoperation systems where the dynamic parameters of

the human operator and the environment are uncertain and it is difficult to their exact

dynamic models. However, as we know it is unavoidable that there is noise in sensor

measurement. Thus, in order to see how the proposed controller will work under noise in

sensor measurement, we introduce Gaussian distributed noise in the force measurements

in the simulation. The corresponding results are shown in Fig. 7-Fig.10.

Fig.7 and Fig.8 illustrate the position tracking with measurement noise.

Comparing Fig.7 with Fig.8, we can see that with the conventional adaptive control the

position tracking error is obviously much bigger especially at the time about 3s, 5s, 9s,

16s and 18s due to noise in the signals, while the position trajectories of the master and

the slave are very close to one another.

Fig.9 and Fig.10 compare the force tracking performance of the conventional

adaptive control and the proposed adaptive control. The measurement noise greatly

decreased the force tracking performance in Fig.9, while it does not have obvious

influence in Fig.10.

Furthermore, in order to analyze the position and force tracking errors with

measurement noise quantitatively, the mathematical index MSE (Mean Square Error) is
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utilized and the calculation result is shown in Table 3, where the MSE is calculated with

the following equations:

1 1 11

1 ( )N
q m sj

MSE q q
N 

  ,
2 2 21

1 ( )N
q m sj

MSE q q
N 

  (36)

1 1 11

1 ( )N
h ej

MSE
N  


  ,

2 2 21

1 ( )N
h ej

MSE
N  


  (37)

where qMSE and MSE are the MSEs of the position and force tracking, respectively. N

is the sampling number. The subscripts 1 and 2 denote the first and the second joints,

respectively.

As shown in Table 3, when there is measurement noise the position tracking error of

the conventional adaptive control is obviously bigger and the force tracking performance

significantly losses. Compared to the conventional scheme, both the position and force

tracking errors are greatly improved even with measurement noise when the proposed

scheme is employed.

6. CONCLUSIONS

This paper addresses the design of an adaptive control for intrinsically nonlinear

teleoperation systems to simultaneously deal with dynamic uncertainties and unknown

dead-zone. Two adaptive controllers are designed for the master and the slave,

respectively, and then incorporated into the 4-channel teleoperation architecture. The

proposed scheme has improved the position and force tracking performance compared to

the conventional adaptive scheme when the dead-zone and the dynamics of the robots are
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uncertain. The extension of the presented techniques to deal with communication delay

[24] remains as future work.
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APPENDIX: CALCULATION OF mθ , mY , mrY , *sθ , sθ AND sY

The dynamics of the rehabilitation robots are as follows [17]:

( ) ( , ) M q q C q q q τ  

where ( )M q and ( , )C q q take the following forms:

1 2 1 2

2 1 2 3

1 sin( )
2( )

1 sin( )
2

q q

q q

 

 

   
  
  
  

M q ,

2 1 2 2

2 1 2 1

10 sin( )
2( , )

1 sin( ) 0
2

q q q

q q q





  
  
   

C q q



 .

Then we can get:Acc
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2
1 1 2 1 2 2 2

2
3 2 2 1 2 1 1

1 sin( )( )
2( ) ( , )
1 sin( )( )
2

q q q q q

q q q q q

 

 

    
   

     

M q q C q q q
  

  
   .

Applying Property 1, we can obtain：

1

2

3

m





 
   
  

θ ,

2
1 1 2 2 2

2
1 2 1 1 2

1 sin( )( ) 0
2
10 sin( )( )
2

m

q q q q q

q q q q q

    
  
     

Y
  

  
.

Since we have got mθ and the following equation from (10):

( , , , ) ( ) ( , ) ( )mr m m mr mr m m m mr m m m mr m m  Y q q q q θ M q q C q q q G q      ,

we can obtain that :

=mrY
1 2 2

1 1 2

1 2 2

1 2 1

1 sin( )( ) 0
2
10 sin( )( )
2

mr mr mr

mr mr mr

q q q q q q

q q q q q q

   
 
    

   

   

where
1mrq and

2mrq are the two elements of
1 2

[ , ]Tmr mr mrq qq .

As we can calculate that

2
2 1 2 2

2
2 1 2 1

1 sin( )
2( , )
1 sin( )
2

q q q

q q q





  
  
   

C q q q


 
 , then applying Property 1’

we can also obtain:

1

s* 2

3





 
   
  
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2
1 2 2

s1
2

1 2 1

10 sin( ) 0
2
10 sin( ) 0
2

q q q

q q q

  
  
   

Y



.

Therefore, according to the definitions 1 2s s s Y Y Y and *
1=s sm

θ θ , we can

finally get:

1

s s* 2

3

1 1
m m





 
    
  

θ θ ,

2
1 2 2

s 1
2

1 2 1

10 sin( ) 0
2
10 sin( ) 0
2

s

q q q

q q q

  
   

   

Y Y



.
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Figure Caption List

Fig. 1 Dead-zone at the input of the slave robot

Fig. 2 Architecture of the proposed 4-channel adaptive teleoperation control

Fig.3 Positions and position errors for the conventional adaptive control. (a) Position of

joint 1. (b) Position of joint 2. (c) Position error of joint 1. (d) Position error of joint 2.

Fig.4 Positions and position errors for the proposed adaptive control. (a) Position of joint

1. (b) Position of joint 2. (c) Position error of joint 1. (d) Position error of joint 2.

Fig. 5 Torques and torque errors for the conventional adaptive control. (a) Torque of joint

1. (b) Torque of joint 2. (c) Torque error of joint 1. (d) Torque error of joint 2.

Fig. 6 Torques and torque errors for the proposed adaptive control. (a) Torque of joint 1.

(b) Torque of joint 2. (c) Torque error of joint 1. (d) Torque error of joint 2.

Fig.7 Positions for the conventional adaptive control with measurement noise. (a)

Position of joint 1. (b) Position of joint 2.

Fig.8 Positions for the proposed adaptive control with measurement noise. (a) Position of

joint 1. (b) Position of joint 2.

Fig.9 Torques for the conventional adaptive control with measurement noise. (a) Torque

of joint 1. (b) Torque of joint 2.

Fig.10 Torques for the proposed adaptive control with measurement noise. (a) Torque of

joint 1. (b) Torque of joint 2.
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Table Caption List

Table 1. Parameters of the operator and the environment

Table 2. Parameters of the controllers

Table3. Quantitative comparison of position and force tracking (with measurement noise)
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Table 1. Parameters of the operator and the environment

hm hb hk em eb ek

0.2(kg) 50(Nsm-1) 1000(Nm-1) 0.1(kg) 20(Nsm-1) 1000(Nm-1)
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Table 2. Parameters of the controllers

mK mΓ mΛ 2C sK *
sK sΓ 3C  

0.01I 0.1I I 1 10I 10I 10I 1 5 0.1
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Table3. Quantitative comparison of position and force tracking (with measurement noise)

Method

Index(MSE)

Conventional

adaptive control

Proposed

adaptive control

1q
MSE 0.2373 0.1286

2q
MSE 0.2779 0.2016

1
MSE 0.4963 0.2135

2
MSE 0.6713 0.2355
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Fig. 1 Dead-zone at the input of the slave robot

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Dynamic Systems, Measurement and Control. Received February 18, 2016; 
Accepted manuscript posted June 28, 2018. doi:10.1115/1.4040666 
Copyright (c) 2018 by ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 07/03/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



35

Fig. 2 Architecture of the proposed 4-channel adaptive teleoperation control
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Fig.3 Positions and position errors for the conventional adaptive control. (a) Position of

joint 1. (b) Position of joint 2. (c) Position error of joint 1. (d) Position error of joint 2.
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Fig.4 Positions and position errors for the proposed adaptive control. (a) Position of joint

1. (b) Position of joint 2. (c) Position error of joint 1. (d) Position error of joint 2.
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Fig. 5 Torques and torque errors for the conventional adaptive control. (a) Torque of joint

1. (b) Torque of joint 2. (c) Torque error of joint 1. (d) Torque error of joint 2.
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Fig. 6 Torques and torque errors for the proposed adaptive control. (a) Torque of joint 1.

(b) Torque of joint 2. (c) Torque error of joint 1. (d) Torque error of joint 2.
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(b)

Fig.7 Positions for the conventional adaptive control with measurement noise. (a)

Position of joint 1. (b) Position of joint 2.
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(b)

Fig.8 Positions for the proposed adaptive control with measurement noise. (a) Position of

joint 1. (b) Position of joint 2.
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(b)

Fig.9 Torques for the conventional adaptive control with measurement noise. (a) Torque

of joint 1. (b) Torque of joint 2.
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(b)

Fig.10 Torques for the proposed adaptive control with measurement noise. (a) Torque of

joint 1. (b) Torque of joint 2.
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