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 

Abstract—This paper presents a comparison of 3D 

segmentations of the prostate, based on 2D manually-segmented 

contours, obtained using ultrasound (US) and magnetic 

resonance (MR) imaging data collected from 40 patients 

diagnosed with localized prostate cancer and scheduled to receive 

brachytherapy treatment. The approach we propose here for 3D 

prostate segmentation first uses radial basis function 

interpolation to construct a 3D point distribution model for each 

prostate. Next, a modified principal axis transformation is 

utilized for rigid registration of the US and MR images of the 

same prostate in preparation for the following shape comparison. 

Then, statistical shape models are used to capture the segmented 

3D prostate geometries for the subsequent cross-modality 

comparison. Our study includes not only cross-modality 

geometric comparisons in terms of prostate volumes and 

dimensions, but also an investigation of interchangeability of the 

two imaging modalities in terms of automatic contour 

segmentation at the pre-implant planning stage of prostate 

brachytherapy treatment. By developing a new scheme to 

compare the two imaging modalities in terms of the segmented 

3D shapes, we have taken a first step necessary for building 

coupled US-MR segmentation strategies for prostate 

brachytherapy pre-implant planning, which at present is 

predominantly informed by ultrasound images only. 

 
Index Terms—Prostate brachytherapy, radial basis function, 

rigid registration, segmentation, statistic shape model 

I. INTRODUCTION 

ROSTATE cancer has been identified as the most 

common non-dermal cancer in North American men [1], 

[2]. Amongst various treatment options including surgery, 

external beam radiotherapy and hormone therapy, 

brachytherapy has emerged as a popular minimally invasive 

approach with excellent long-term results. Consensus 
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guidelines developed by the American Brachytherapy Society 

suggest using biplanar transrectal ultrasonography (TRUS) for 

pre-operative planning and intra-operative stages, with 

computed tomography (CT) or magnetic resonance (MR) 

imaging utilized for post-operative dosimetry [3]. While 

ultrasound (US) imaging is predominantly the imaging 

modality of choice in pre-implant planning, magnetic 

resonance (MR) imaging presents certain advantages over it 

such as improved tissue contrast. An important question is, 

can MR imaging replace or complement US imaging in 

prostate brachytherapy pre-implant planning? A few studies 

have been carried out to investigate the feasibility of replacing 

US imaging with MR in pre-implant planning [4] and 

intraoperative stages [5]-[7]. 

Given that traditional manual segmentation of the prostate, 

which is a prerequisite for pre-implant planning, is time-

consuming and tedious for clinicians and vulnerable to inter- 

and intra-observer variability, automatic or semi-automatic 

prostate segmentation techniques have been developed in 2D 

and 3D for alleviating clinicians‟ workload and reducing 

contour segmentation times. Such techniques include edge and 

texture based segmentation [8]-[10], deformable model based 

segmentation [11], [12], and ellipsoid fitting [13], [14]. 

Among these techniques, one method that has seen increasing 

success in medical image segmentation and that we will use is 

the statistical shape model (SSM) based segmentation [15], 

lately applied to prostate segmentation [8], [9], [16]. It uses 

prior statistical information to create a model for the spatial 

shapes of prostate boundaries.  

Recently, dual modality segmentation methods based on 

SSM have been developed. For instance, in [17], a cardiac left 

ventricle SSM model was built based on MR images with 

superior tissue definition and then used for contour 

segmentation in CT images without the need to re-train the 

model with CT datasets. In [18], a scheme for concurrent 

segmentation of the prostate using MR and CT images via 

linked SSM was proposed, again leveraging the superior soft 

tissue definition of MR over CT to improve the performance 

of CT-based segmentation in prostate radiotherapy planning.  

Similar to these efforts concerning dual-modality 

segmentation in various medical applications, in prostate 

brachytherapy, coupled strategies involving both US and MR 

imaging can be devised for pre-implant planning where TRUS 

is predominantly the modality of choice at present.  
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Since the segmentation of prostate in clinical images 

provides the very foundation of brachytherapy pre-implant 

planning, the choice of imaging modality (e.g. US vs. MR) 

changes the perception of the prostate in terms of volume and 

shape and may have implications to current practices [4], [19]. 

Studies have been carried out to compare the prostate shapes 

obtained by different imaging modalities. In [4], MR-based 

and TRUS-based preplanning in prostate brachytherapy were 

compared using dosimetric results, and prostate volume 

measured in MR and TRUS were also compared. In [20], 

prostate shapes obtained from post-implant 3DTRUS, MR and 

CT images were compared in terms of volume and contouring 

variability. Both intra- and inter-modality variation was 

analyzed in 3D. In [19], pre-implant TRUS and MR images 

were used for cross-modality shape and contouring variability 

comparison. Pre-implant images are not subject to post-

implant edema. Specific attention was given to the effect of 

the TRUS probe induced deformations in this study. 

Therefore, replacing or complementing US with MR imaging 

needs to be done only after careful studies. To address this 

need, in this paper we will compare US and MR based 

prostate segmentation in 3D from a new perspective that 

utilizes models built from statistical shape analysis. Our 

approach will not only allow for a statistical geometric 

comparison between the two imaging modalities in terms of 

segmented 3D shapes, but also provide insight into the 

influences and intrinsic differences of the two imaging 

modalities (including the effect of the transrectal ultrasound 

probe) on the SSM-based analysis results. As elaborated later, 

our analyses help to correlate different modes of the SSM to 

aspects of the prostate shape that are interesting clinically. 

To be more specific about the steps taken in the paper, after 

first using manually delineated contour points in US and MR 

images of each prostate in a 40-patient database, radial basis 

function (RBF) is used to convert each set of 2D contours into 

a 3D surface model; RBFs have previously been successful in 

generating 3D models for prostate [21] and other organs from 

point clouds [22]-[24]. While in [21] a fan-shaped TRUS 

sweeping was used to obtain non-parallel prostate contours, 

our study acquired parallel prostate contours in both TRUS 

and MR under the conditions of prostate brachytherapy. 

While, to the best of the authors‟ knowledge, using parallel 

prostate contours for RBF interpolation was without 

precedence in the literature, the success of RBF interpolation 

in similar contexts in the literature made it a promising choice 

for prostate modeling in our application. 

Next, the paper investigates the differences between pre-

implant US and pre-implant MR prostate contours via an 

analysis of SSM models built from both data groups; few 

studies have been conducted to directly compare US and MR 

imaging modalities in terms of prostate shape delineation and 

even fewer have used pre-implant images, which are 

particularly pertinent to our brachytherapy treatment planning. 

On the other hand, before working towards the 

establishment of coupled US-MR pre-implant planning 

strategies, the SSMs built from the two individual modalities 

need to be examined for their interchangeability. To our 

knowledge, such comparisons based on SSMs built from pre-

implant US and MR prostate contours do not exist in the 

literature and constitute one of the contributions of this paper; 

our approach provides a new method for image modality 

comparison and constitutes a first step towards a US-MR 

coupled prostate segmentation scheme. The proposed 

comparison method is completely open-source and 

reproducible as it does not rely on any commercial software 

particular to prostate brachytherapy.  

This paper is organized as follows. Section II presents the 

methods and materials used for data collection (II.A), 3D 

prostate model development (II.B), and SSM implementation 

(II.C). The paper will continue to discuss the results of the 

comparison between models built from US and MR imaging 

modalities in Section III, including average shape comparisons 

(III.A), SSM principal component analysis (III.B) and 

interchangeability investigation (III.C and III.D). In Section 

IV, our results are compared to previous studies both from a 

geometric point of view (IV.A) and an SSM point of view 

(IV.B). Finally, concluding remarks are provided in Section V. 

II. METHODS AND MATERIALS 

A. Imaging and Contouring 

The study used imaging data from 40 consenting patients 

diagnosed with localized prostate cancer, who were scheduled 

to receive 
125

I brachytherapy treatment. Prior to the implant 

procedure, each patient received a pre-treatment planning scan 

using a Sonoline Adara TRUS scanner with an Endo PII probe 

(Siemens Medical Solutions USA, Inc., Malvern, PA), 

yielding a set of parallel axial images spaced at 5 mm intervals 

from the base to the apex of the prostate. Four to six weeks 

after the US scan and still prior to the implant procedure, an 

MR scan was performed using a 1.5 T Gyroscan Intera Imager 

(Philips Healthcare, Andover, MA) with a 5-channel cardiac 

coil. The acquired MR image slices were spaced with spatial 

depth increments of 3-4 mm; the prostate boundaries were 

made clearly visible by applying a T2-weighted spin echo 

pulse sequence [25] and the consistency in pelvic orientation 

was assured by the use of an under-knee rest.  A recapitulation 

of the patient group information is shown in Table I. In Table I 

PSA is the abbreviation for „prostate specific 

antigen‟.  Gleason score is the score a pathologist gives to a 

prostate cancer based on its microscopic features at diagnosis 

that help characterize the aggressiveness of the 

cancer.  Clinical stage refers to the extent of disease within the 

prostate that is palpated by a physician during a digital rectal 

examination, with severity increasing from T1 to T4. 

The 40 image volumes for each imaging modality were then 

imported into folders on VariSeed system (Varian Medical 

Systems, Inc., Palo Alto, CA) for contouring. All volumes 

were anonymized and randomized to minimize contouring 

bias associated with expectation of a given patient‟s prostate 

shape. Then, three experienced oncologists performed 

contouring on all images. The contours, consisting of discrete 

points in parallel planes, were exported from the VariSeed 

planning system into MATLAB; see Fig. 1(a). In the 

orthonormal coordinate system shown, X and Y axes specified 

the image plane while the Z axis lied in the probe direction 

and oriented from the base to the apex of each prostate. 
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After importing these 2D contours into MATLAB, they 

were first interpolated in their own plane (i.e., XY plane) to 

decrease the spatial inter-sample gap; as a result, the total 

number of points per slice was increased to 60 (from on 

average approximately 22 points per slice) with the 

interpolated points being at equal angular distances from each 

other with respect to the center of mass (CoM) of each 2D 

contour. To do this, we used spline interpolation as it has been 

found well capable of representing prostate shapes [11]. Then, 

a cubic smoothing spline was applied to the interpolated 

contour in order to give it a smooth shape. The original 

(manually delineated) and the resampled contours of a typical 

slice are shown in Fig. 1. 

 
TABLE I 

PATIENT POPULATION CHARACTERISTICS 

Number of patients 40  

Median age (yrs) 64 (range: 51 – 79) 

Median pretreatment PSA (ng/mL) 6.3 (range: 2.0 – 14.0) 

Gleason score:   
≤ 5 2 (5 %) 

6 36 (90 %) 

7 2 (5 %) 
Clinical stage:   

T1c 24 (60 %) 

T2a 9 (22 %) 
T2b 7 (18 %) 

Risk group:   

Low risk 26 (65 %) 
Intermediate risk 14 (35 %) 

 

 

Fig. 1.  (a) Prostate gland image from TRUS. Manually-delineated contour 

points are in yellow squares. (b) Resampled points in white circles are 

superimposed on the original manually-delineated contour points. 

B. Radial Basis Function (RBF) Interpolation 

Noting that the outcome of contouring in Section II.A is a 

set of discrete contour points in parallel planes in the axial 

direction of the prostate and that our aim is to compare the 

prostate shapes obtained from US and MR imaging modalities 

in 3D, it is necessary to first fit a 3D surface to the 2D contour 

points for each prostate. The method applied here is the RBF 

interpolation, which is capable of effectively interpolating 

point data generated from a non-standard grid possibly with 

large data-free gaps [23]. In fact, since the gaps between our 

image slices range from 3 mm to 5 mm, RBF is ideal in our 

application for interpolating the sparse collection of contours 

obtained from TRUS and MR scans. We begin by briefly 

discussing the RBF interpolation method.  

 

1) Radial Basis Function (RBF) Interpolation 

The RBF interpolation approach, first used for medical 3D 

modeling by Carr et al. [22], [26], approximates an input 

function of unknown form with three variables        by 

an interpolation function        given the values * (  ) 
           +. Here, *            +, where     

(        ), is a set of distinct input points in the 3D space    

called nodes of interpolation or radial centers. Also, an 

evaluation point   (     ) represents a point at which the 

function f is to be approximated. The following form of the 

interpolation function is considered:  

 

 ( )    ( )  ∑    (‖    ‖)     
   

            (1) 

 

where    is a first order polynomial,  ( )    for bi-harmonic 

splines, and ‖ ‖ refers to the Euclidean norm.  Let   
  

represent the space of all first-order polynomials with three 

variables. The coefficients    in (1) are determined by 

satisfying the interpolation conditions (2) and the side 

conditions (3): 

 

 (  )   (  )                                    (2) 

∑    (  )    
 
    for all     

                      (3) 

 

Equations (2) and (3) can be put into the following matrix 

form for algorithm implementation [26]:  

.
  
   

/ .
 
 
/  .

 
 
/                               (4) 

where  

  (    )  . (‖     ‖)/ 

 ‖     ‖                                 (5) 

 

  [

   
   

    
    

  
   

  
    

]                              (6) 

 

  (          )
                              (7) 

  (           )
                              (8) 

  ( )                                       (9) 

Solving (4) yields values of    for each radial center and 

coefficients (           ) for   . In this way, the value of f at 

the evaluation point   can be estimated from (1). When 

applied to the surface interpolation problem,  (  ), which 

represent the input function values at the provided points, are 

assigned to two groups of points: on-surface points and off-

surface points. On-surface points (existing data points) are 

assigned the value 0 while off-surface points, which are 

artificially introduced along the surface normal in order to 

avoid the trivial solution     everywhere, are assigned non-

               (a)                                             (b) 
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zero values. Typically, as suggested in [21], [26], [27], two 

layers of off-surface points, one on each side of the surface, 

are added. These points are given a positive value if on the 

outer surface and a negative value if on the inner surface. If at 

an evaluation point  , s( ) is evaluated to be 0 then this point 

belongs to the surface. 

Directly solving the linear system (4) is not practical as the 

matrix becomes very ill-conditioned as the number of 

interpolation nodes increases. Therefore, the RBF algorithm is 

combined with the partition of unity algorithm [27]-[29]. The 

idea is that RBF can be applied to interpolation problems 

involving a large number of data points by breaking down the 

large-scale interpolation problem to several small-scale 

interpolation problems. After solving (4) with the partition of 

unity algorithm, a mesh will be created in the entire volume 

where the interpolation is planned and, at these evaluation 

points, the interpolation function  ( ) is evaluated according 

to (1). Finally, MATLAB‟s isosurface algorithm is called and 

the surface, which is defined by all points carrying a value of 

0, is rendered in 3D. 

 

2) Radial Basis Function (RBF) Interpolation 

Given that the purpose of this study is to investigate the 

differences in shape that the two imaging modalities introduce, 

a rigid-body registration accompanied the RBF interpolation.  

Shape is defined as a property that is invariant to similarity 

transformations [15] including translation, rotation, and 

scaling. In this case, the same prostate was not represented in 

the same coordinate system in the two imaging modalities; the 

TRUS probe and MR machine have their own coordinate 

systems. Thus, translations and rotations introduced during 

imaging must be eliminated in order for us to be able to 

compare pure shapes. Sometimes, the scaling is of interest in 

shape comparison [30], as is in our case since we want to 

investigate the difference in prostate volume introduced by 

different imaging modalities. Therefore, the scaling factor was 

not eliminated at this stage. On the next step, after obtaining 

the resampled prostate contour points in Section II.A, the CoM 

of each 3D volume was determined. Then, each 3D volume 

was translated so that its CoM was placed at the position (0, 0, 

0), eliminating the translation component. As for the rotation 

component, based on a modified version of the principal axis 

transformation [31] as described next, each prostate was 

rotated such that the cranial-caudal axes of all prostates were 

aligned to the same line in a uniform coordinate system. To 

this end, first a moment of inertia tensor was calculated for 

each prostate assuming the mass of each slice was 

concentrated at its CoM. The principal axis calculated from 

the inertia tensor pointed along the longitudinal direction of 

the prostate, thus defining the cranial-caudal axis. Then, all 2D 

contours of each prostate were pivoted as the same solid 

around the corresponding prostate CoM so that the cranial-

caudal axis of the prostate coincided with the Z axis of the 

uniform coordinate system (Fig. 2). After this step, the 

orientation of the axial plane (perpendicular to the cranial-

caudal axis) of the prostate is not yet the same across all 

prostates. To give every prostate model the same orientation in 

the axial plane, another principal axis analysis was carried out 

on the central three slices of each prostate, which best 

represent the orientation of the axial plane of the prostate. The 

second component of this analysis was aligned with the Y axis 

of the new uniform coordinate system (Fig. 3). This rotation 

sets the prostate “straight” on the X-Y plane. Note that 

although in Fig 2 and Fig. 3 the surface was fitted to the 

resampled contour points to better demonstrate these 

transformations, we only have the resampled points at this 

stage. 

 
 
Fig. 2.  (a) Prostate shape in the original imaging coordinate system (sagittal 

view). (b) Prostate shape aligned with its cranial-caudal axis (sagittal view). 

 

 
 
Fig. 3.  (a) Prostate shape before rotation around the cranial-caudal axis (axial 

plane). (b) Prostate shape after rotation around the cranial-caudal axis (axial 

plane). 
 

 
Fig. 4.  (a) Resampled and aligned contour points from each slice are stacked 
together in the same coordinate system (b) Off-surface points are added: 

original surface points are in blue, inside points are in green and two outside 

layers are in red and pink. (c) Interpolated prostate surface is in red. 

 

Subsequently the resampled and aligned contour points 

were stacked by using the same X-Y-Z coordinate system. In 

this way, a structured cloud of points was constructed (Fig. 

4(a)). Next, off-surface points were added (Fig. 4(b)). Then, 

the RBF surface fitting algorithm was applied (Fig. 4(c)). 

                             (a)                                                     (b)                                                    

Z axis 
Cranial-caudal axis Cranial-caudal 

axis and Z axis 

                     (a)                                                           (b)                                                    

2nd eigen 

component Y axis 

2nd eigen component 

and Y axis  

           (a)                                       (b)                                       (c) 
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At the end of RBF interpolation aided with rigid-body 

registration, each prostate was represented by 30 evenly 

spaced slices with each slice containing points resampled at 6 

degree intervals placed radially with respect to the CoM of 

each slice. Therefore, a total of 1,800 points were placed on 

each prostate model from either imaging modality.  

The above-discussed interpolation process is crucial to 

building a statistical shape model and to the statistical shape 

analysis in the next subsection as it allows for representing 

each prostate with a point distribution model (PDM); this 

process has now allocated an equal number of points evenly 

distributed in the z direction and across each x-y plane to each 

prostate in each imaging modality. Thus, we did not perform 

the RBF interpolation aided with rigid-body registration for 

mere visualization purposes; rather, it has been used to 

generate methodically-placed and consistent contour points 

for each prostate in spite of the differences in orientation and 

slice gaps of the original manually-placed contour points. This 

processing greatly increases the data density along the z axis, 

making the subsequent 3D shape analysis feasible. 

C. Implementation of Statistical Shape Models (SSM) 

The SSM is a multivariate statistical approach to model 

data with a point distribution model (PDM) and analyze their 

variations with principal component analysis (PCA) [32]. It is 

often combined with image search algorithms to perform 

image segmentation [9], [16]. The details of implementation 

are given below. 

In the Section II.B, a PDM was constructed for each 

prostate of both imaging modalities by using the RBF 

interpolation with rigid-body registration. The 1,800 points 

allocated to each prostate are regarded as corresponding 

landmarks. Normally, landmarks include points marking parts 

of the object with particular application-dependent 

significance such as the center of urethra in a prostate US 

scan, or points marking application-independent items such as 

the highest point of a prostate model, or other points that can 

be interpolated from points of the previous two types [32]. In 

medical applications, landmarks may be segmented manually 

by clinical experts but this procedure can be tedious and time 

consuming. Thus, in our work, the geometric correspondence 

between landmarks was decided automatically:  points at the 

same radial position (in the XY plane) of 2D slices on the 

same length proportion (Z axis) of each prostate were 

considered to correspond to each other.  A similar approach 

can be found in [20], in which the so-called solid angles were 

used to locate corresponding landmarks; points on the same 

solid angle from the center of prostate were assumed to 

correspond to each other. However, in our application, due to 

the lack of sample points at the base and at the apex of the 

prostate caused by the 2D nature of our imaging modalities, 

the prostate could not be put in such a spherical coordinate 

system. Instead, we adopted a cylindrical coordinate system 

and determined the correspondence of the landmarks through 

a similar parameterization. The scaling, directly associated 

with volume, was preserved at this stage because, as explained 

in Section II.B prostate volume provides an interesting 

parameter to compare between US and MR imaging 

modalities. 

After placing corresponding landmarks and aligning, we 

obtained the mean shape of all k prostates (with k =40) for 

each imaging modality by  

 

 ̅  
 

 
∑  

 

   

                              (10) 

 

with    (                   )
 , which is the shape vector of 

each prostate shape, constructed from coordinates of the j = 

1,800 landmark points. 

Next, an eigen decomposition on the corresponding 

covariance matrix delivered 3j, principal modes of variation 

   (eigenvectors) and their respective variances    

(eigenvalues). Then, it was possible to approximate every 

valid shape by a weighted linear combination of the first c 

modes:  

 

           ̅                                (11) 

 

with P= ,          - being the matrix composed of the 

first c eigenvectors and b=[  ,   ,…,   -
  being the weight 

vector. The value of c was chosen so that the accumulated 

variance ∑   
 
    reached a certain ratio   of the total 

variance ∑   
  
   . Commonly used values for   are between 

0.9 and 0.98.  

III. RESULTS 

A. Average Shape Comparison 

After performing RBF interpolation coupled with rigid-

body transformation and by applying (10) on the 40 groups of 

contour data from each imaging modality, the average shapes 

for both US and MR were obtained. The resulting PDMs 

obtained from MR and US data are displayed together in Fig. 

5; both models were translated so that their CoM were located 

at (0, 0, 0) in the same coordinate system. Four geometrical 

features were compared: average volume, average length, 

average height, and average width. For each feature, the ratio 

of the value corresponding to the US data to the value 

corresponding to the MR data was calculated as well. Length, 

height and width refer to the longest possible distance between 

any two points in the Z, Y, and X directions, respectively. The 

same coordinate system as defined in Section II.A was used 

for model construction. The paired Student‟s t-test was applied 

to test for statistical significance of the four measures. The 

tests were two sided by default and the p-value threshold was 

set to be 0.05. The results are displayed in Table II. 

It can be observed that the volume of the average US shape 

model is smaller than that of the MR average model by 1.4 ml. 

However, the difference in average volumes is not statistically 

significant. On the other hand, the US average model is longer 

than that of the MR average model by 2.1 mm, whereas in 

terms of width and height, the MR average model appears to 

be bigger than the US average model by 1.5 mm and 0.97 mm, 
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respectively.  Although the differences in width, height and 

length are not statistically significant, the p value for length is 

considerably smaller than for the other two, implying a greater 

difference in length between US and MR average models than 

in width and in height. This appears to be logical as the ends 

of prostates in both imaging modalities are particularly 

difficult to determine, thus introducing a greater error. The 

US/MR average volume ratio is 0.96.  

 
TABLE II 

GEOMETRY COMPARISON BETWEEN AVERAGE US AND MR SHAPE MODELS 

 Average 
Volume 

Average 
Length 

Average 
Height 

Average 
Width 

US 36.5 ml 38.40 mm 33.53 mm 46.13 mm  

MR 37.9 ml 36.28 mm 34.50 mm 47.64 mm  

p value 0.55 0.06 0.24 0.26 

US/MR ratio 0.96 1.06 0.97 0.97 

 
Fig. 5.  (a) Superimposition of MR prostate average shape (in blue) and US 

prostate average shape (in red) in sagittal view. (b) Superimposition of MR 

prostate average shape (in blue) and US prostate average shape (in red) in 

axial view. Length, width and height are indicated by “L”, “W” and “H”. 

 

The two average shape models were then compared by 

using a color map to illustrate shape differences at more local 

levels; Fig. 6 shows apex-anterior, base-anterior, and posterior 

views. The Euclidean distances from each landmark to its 

model CoM, which is located at (0,0,0) for both imaging 

modalities, were first calculated. Then, for each pair of 

corresponding landmarks, the distances calculated were 

compared and the differences were mapped onto the color 

map.  The comparison was carried out with the MR model as 

the reference. Therefore, red, which represents positive values, 

indicates areas where the US model is larger compared to the 

MR model. Blue, which represents negative values, indicates 

areas where the US model is smaller compared to the MR 

model.  

From the apex-anterior view, it can be concluded that the 

US average shape is longer and flatter than the MR average 

shape. From the apex-anterior view and the base-anterior 

view, it can be observed that near the base and the apex of the 

prostate, US contours are generally larger than MR contours 

particularly on the anterior side, reaching a maximum 

difference of 2 mm. In the posterior areas, however, MR and 

US average models do not show significant differences. 

 

 
Fig. 6.  Differences in Euclidean distance (mm) to the CoM of the average 

shape models between US and MR.  Positive values indicate larger US 

distances. 

 

B. Principal Component Analysis (PCA) of Shape Vectors 

By continuing to apply the analysis procedure presented in 

Section II.C, a PCA decomposition was performed on the two 

sets of shape vectors. The first 15 eigen modes of each model 

were retained. While for the US shape model the first 15 

modes represented 97.2% of its variance, for the MR shape 

model the first 15 modes represented 95.1% of its variance. 

The first five modes of each model are visualized in Fig. 7 

in order to provide a more direct impression of what these 

modes represent. In order to visualize the influence of each 

mode on the shape model, the following operation was 

performed [16], [32]: 

 

   ̅   √                                     (12) 

 

In (12),    is the variance for each mode i and     is the i
th

 

eigenvector. The original average shape is plotted in blue, 

    ̅   √       is plotted in red, and    ̅   √       is 

plotted in yellow. 

In the US model (Fig. 7), the first mode represents 

variations in the diameter of the prostate shape in the XY 

plane, while the second mode represents the variations in the 

length along the X axis of the prostate. Modes 3, 4, and 5 

appear to represent more localized effects on the shape: mode 

3 and mode 5 introduce variations at the base and the apex of 

the prostate while mode 4 acts directly on the posterior surface 

of the prostate. It is interesting to note that with mode 4, the 

prostate model is able to exhibit different degrees of drooping; 

the presumed effect of insertion of the ultrasound probe into 

the rectum is well captured by mode 4. 

L 

H 

W 

                 (a)                                          (b)                                                    
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Fig. 7.  Visualization of the first 5 modes in the US statistical shape model. 

Modes 1, 2, 3, 5 are shown in the sagittal view and mode 4 is shown in the 

axial view. The unit used is mm. Blue: average shape  ̅; red:    ̅  

 √      ; yellow:    ̅   √      . 

 

In the MR model (Fig. 8) the first two modes appear to be 

less decoupled than those in the US model. Mode 1 appears to 

represent a combination of variations in length along the Z 

axis and a rotation around the X axis. Mode 2 seems to 

represent a combination of variations in diameter in the XY 

plane and also a rotation around the X axis. Modes 3, 4, and 5 

show greater similarities with the results from the US model: 

modes 3 and 5 represent local variations close to the base and 

the apex of the prostate, while mode 4 once again corresponds 

to the different degrees of drooping. Since in MR imaging no 

probe was inserted in the rectum, the results in Fig. 8 imply 

that prostates naturally have different degrees of drooping 

 

 
Fig. 8.  Visualization of the first 5 modes in the MR statistical shape model. 
Modes 1, 2, 3, 5 are shown in the sagittal view and mode 4 is shown in the 

axial view. The unit used is mm.  Blue: average shape  ̅; red:    ̅  

 √      ; green:    ̅   √      . 

 

C. In-group and Cross-group SSM Comparison Using the 

Generalization Measure 

In the next two sections, the US SSM and the MR SSM are 

compared and evaluated using two measures, the 

generalization measure and the specificity measure, to 

examine their interchangeability. In order to take into account 

the inter-observer variability, a total of three oncologists were 

involved in the segmentation process on the same set of 

US/MR images. By doing this, we will see what happens if we 

use data from one imaging modality to build a SSM and then 

use it to recreate the shapes from another imaging modality. 

Therefore, four cases are considered: (1) use US contour data 

for SSM construction and approximate the shapes obtained 

from US imaging modality; (2) use MR contour data for SSM 

construction and approximate the shapes obtained from MR 

imaging modality; (3) use US contour data for SSM 

construction and approximate the shapes obtained from MR 

imaging modality; (4) use MR contour data for SSM 

construction and approximate the shapes obtained from US 

imaging modality.  

In order to quantify and compare the performance of the 

two SSMs in question in their respective scenarios, we used 

the previously-mentioned two measures, which were first 

introduced in [33] as metrics to compare shape models 

obtained from different registration and alignment methods. 

Here, we use them to see how predictive and pertinent the 

shape models obtained from US and MR imaging modalities 

are, both within their own population group and within the 

other population group. First, the generalization measure was 

used, which measures the ability of a SSM model to provide a 

good fit under unseen circumstances. It follows a „leave-one-

out‟ approach where s-1 samples of a total of s samples are 

used to produce a SSM while the remaining sample is used as 

a test sample. From (11), we have 

 

    (   ̅)                                 (13) 

 

as   is orthonormal [16]. The estimate of the left-out shape is 

calculated with (11), while the vector   is calculated in (13) 

and  ̅ and   are calculated from the s-1 samples. The vector   
in (13) represents the shape vector of the left-out sample. The 

average error between the estimate of the left-out shape and 

the true left-out shape over the entire set of trials is quantified 

by the measure   as 

 

  
 

 
∑    

   
                                  (14) 

and 

   
  |      |

                              (15) 

 

where   is the total number of shapes (40 in this study),    the 

left-out training shape, and     is its estimate by the SSM built 

from the rest of the population, and    
  represents the sum-of-

squares of approximation errors. An SSM that has a lower   

value is better in terms of approximating unseen shapes 

whereas an SSM that has a higher   value implies less 

capability of taking on unseen shapes [33]. 
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Therefore, if we regard the entire 40 prostate samples as one 

population, the s-1 samples can come from either the US 

modality or the MR modality, and the same is true for the left-

out sample. As a result, the aforementioned four scenarios 

were produced in order to see how the SSM of US and MR 

shapes were validated both in-group and cross-group. The 

measure   results from the three oncologists‟ data are given in 

Table III, in which Model Imaging Modality denotes the 

imaging modality from which the s-1 samples were taken and 

Test Imaging Modality denotes the imaging modality from 

which the test sample (the left-out sample) was taken. The first 

15 modes of each model were used.  

 
TABLE III 

 RESULTS FROM THE GENERALIZATION MEASURE APPLIED TO IN-GROUP AND 

CROSS-GROUP APPROXIMATIONS. ALL G MEASURES HAVE THE UNIT OF 

       

Case Model 

Imaging 
Modality 

Test 

Imaging 
Modality 

G measure 

Observer 1 

G measure 

Observer 2 

G measure 

Observer 3 

1 US US 1.7 2.3 2.7 

2 MR MR 2.1 2.9 3.6 

3 US MR 2.5 3.6 4.2 

4 MR US 2.2 3.5 3.7 

 

The results show that US models (Case 1) perform better than 

MR models (Case 2) in-group, with a smaller average G value 

across all three observers. This is not surprising as we showed 

in Section III.B that the first two US modes are much more 

decoupled than the first two MR modes. When it comes to 

cross-group approximation, MR models perform slightly 

better than US models. The MR-US (Case 4) averages are 

inferior to that of the US-MR (Case 3) consistently across all 

three observers. 

Next, the squared errors    
  in (15) for each prostate are 

broken down in Fig. 9, Fig 10 and Fig. 11 for all four 

combinations. For brevity, we are only showing data from one 

of the observers, which is representative. The X axis 

represents the prostate number and the Y axis represents the 

corresponding    
  values. 

As displayed in Fig. 9 the MR prostate shapes have several 

samples that are associated with much higher    
  values. The 

samples that present the highest    
  values include prostates 

number 4, 17, 24 and 39. Although suspected to be outliers at 

first, we reperformed the segmentation of the prostate samples 

in question and the results were unchanged. Therefore in the 

MR imaging modality there exists shapes that are harder to be 

modeled by the obtained MR SSM. In the case of testing US 

samples with both US and MR models, the US and MR SSM 

perform similarly (Fig. 10). They both have difficulties 

estimating a certain number of shapes. In the case of testing 

MR shapes with both US and MR models, interesting 

similarities can be found (Fig. 11). The    
   values of these 

two scenarios follow each other much more closely across 

prostates than the previous case where the US shapes were 

tested as samples. Overall, while the US SSM model performs 

better than MR in-group, they have comparable results in 

cross-group modeling. Cross-group results also appear to be 

reasonable when compared with in-group results for both 

modalities (Case 1 compared to Case 4 and Case 2 compared 

to Case 3 respectively in Table III).  

D. In-group and Cross-group SSM Comparison Using the 

Specificity Measure 

The specificity measure quantifies the ability of a SSM to 

generate only valid shapes [33]. The specificity value is 

evaluated by generating a test set comprised of a large number 

of random shapes by applying (11) while restricting each 

parameter    of the vector   to follow a normal distribution 

with zero mean and    standard deviation. The squared error 

   
  between each generated shape and the closest match of the 

training set is then calculated according to  

 

   
  |      |

 
                                  (16) 

 

And the specific value S is the average of all squared errors:  

 

  
 

 
∑    

   
                                     (17) 

 

In (16) and (17),     is the random shape and    its closest 

shape in the training set. N, the number of random shapes 

generated, is set to 10,000 in this study. 

As with the generalization measure, four scenarios were 

taken into account for both in-group and cross-group 

approximation: US training set and US test set; MR training 

set and MR test set; US training set and MR test set; and MR 

training set and US test set. With 15 modes, all combinations 

showed stabilized S measures and the corresponding results 

are shown in Table IV.  
TABLE IV 

 IN-GROUP AND CROSS-GROUP SPECIFICITY MEASURES WITH 15 MODES FROM 

THREE OBSERVERS. ALL S MEASURES HAVE THE UNIT OF        

Training 
Imaging 
Modality 

Test 
Imaging 
Modality 

S Measure 
Observer 1  

S Measure 
Observer 2  

S Measure  
Observer 3 

US US 2.5 3.6 4.2 

MR MR 3.5 6.4 5.5 

US MR 4.5 8.8 6.4 

MR US 3.0 7.3 7.0 
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Fig. 9.  In-group error comparison. The    

  between MR-based models and MR test samples are plotted in red whereas the errors between US-based models and 

US test samples are plotted in blue. 

 
Fig. 10.  Cross-group error comparison. The    

  between MR-based models and US samples are plotted in red whereas the errors between US-based models and 

US samples are plotted in blue. 

 
Fig. 11.  Cross-group error comparison. The    

  between US-based models and MR samples are plotted in red whereas the errors between MR-based models and 

MR samples are plotted in blue. 

 

 

As can be observed from Table IV, US SSM shows a better 

ability to generate valid shapes within group, as the S values 

in the first row are consistently smaller than those in the 

second row. This may be due to the MR SSM‟s less decoupled 

modes as shown in Section III.B. In comparison to the obvious 

superiority of US in-group S measure over that of MR, two 

out of three observers show smaller differences in cross-group 

comparisons: differences between US and MR for observer 2 

and 3 are -2.8        and -1.3        respectively in 

in-group performance, while the cross-group differences are 

1.5        and -0.6        respectively. This shows 

that the cross-group performance between the two modalities 

is more comparable.  

IV. DISCUSSION 

A. Prostate Volume and Shape 

The volume ratio and geometric characteristics observed in 

this study are comparable to the results found in the literature. 

Whether in [34], [35], where pre-implant US and post-implant 

MR contours were compared, or in [20], where post-implant 

US and post-implant MR contours were compared, the 

US/MR ratio was reported to be relatively stable, varying from 

0.90 to 0.95, and is comparable to the ratio of 0.96 found in 

this study. In the aforementioned studies, however, degraded 

imaging conditions for both US and MR were reported due to 

implanted seeds [20], which did not exist in our study. As we 

only used pre-implant images for contouring, prostate edema, 

which could have influenced the results reported in studies 

involving post-implant images, did not have any influence.  

In terms of the prostate shape, similar results were obtained 

in this study as were found in [20] by Smith et al. In their 

study, by comparing post-implant US contours obtained from 

a 3D TRUS device and post-implant MR contours, the US 

contours were reported to be longer and flatter than the MR 

contours by 1.1 mm and 2 mm, respectively. In our study, the 

US average model exceeded the MR average model in length 

and height by 2.1 mm and 1 mm, respectively. In both studies, 

the US contours were found to be larger than the MR contours 

near the base on the sides and the anterior surface of the gland. 

The relative flatness and increase in length of the US contours 

can be explained by the insertion of the TRUS probe, which 

presses against the rectum and the prostate. The difference in 
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shape can also be attributed to the different imaging 

requirements of US and MR, since standard MR bore could 

not accommodate a patient in the lithotomy position, which is 

required for TRUS imaging. This introduces therefore 

different patient positioning, and thus difference in prostate 

orientation and shape [19]. Although there is a three-week gap 

between US and MR scan, we expect the influence of rectal 

and bladder filling difference to be minimal, as all patients 

were instructed to have a comfortably full bladder and empty 

rectum before each scan session. 

As far as the indentation is concerned, Smith et al. found 

very prominent deformation of the inferior half of the prostate 

in the US contours compared to the MR contours, which was 

not observed in our study. This difference is most likely 

associated with differences in insertion angle and y-axis 

positioning of the US probe in the rectum. Also, Smith et al. 

showed that the undeformed prostate imaged by MR was 

convex. This convex shape can be observed in our Fig. 5 and, 

more importantly, the natural drooping effect was made 

evident in our PCA analysis on MR shape vectors in Fig. 8, 

where different degrees of indentation were created with the 

fourth mode.  

B. US and MR Statistical Shape Models 

In this study, a new method was used for landmark 

placement (RBF interpolation combined with rigid-body 

registration) in order to go from 2D slices to 3D shapes. RBF 

were used especially to overcome several obstacles 

encountered in SSM building: insufficient sampling along the 

z-axis, different inter-slice distances between the US and MR 

modalities, and different number of points representing each 

prostate shape. Hodge et al. [16] used a 3D TRUS imaging 

system to directly obtain volumetric images based on which 

contouring was performed. In this way, contours that are 

consistently and equally distributed in space were obtained. 

When it comes to the correspondence of points located on 

corresponding slices, Hodge et al. tested several labeling 

methods. In our study, one of the tested methods (equally 

spaced rotational samples) was applied, which had been 

shown to provide accurate results and easy implementation. 

Instead of breaking 3D shapes or image volumes into 

corresponding slices and then into corresponding points for 

labeling as was done in [16] and the present study, other 

approaches include the Iterative Closest Point (ICP) algorithm 

introduced by Besl and McKay [36] and the Softassign 

Procrustes introduced by Rangarajan et al. [37], which operate 

directly in 3D space and do not require equal numbers of 

points between two models. The method used in this study 

takes into consideration the physical meaning behind 

numerical models by aligning cranial-caudal axis of each 

prostate to the same axis in a uniform coordinate system and 

adjusting the orientation of the axial plane. For the purpose of 

the current study, it was found sufficient to apply the same 

correspondence and labeling procedure to both imaging 

modality groups, despite the numerical errors (assumed to be 

identical for both imaging modalities) that may be introduced 

during this processing. Nonetheless, other correspondence 

methods can be applied in future studies [33] to see whether 

the results in the current study exhibit a dependence on 

correspondence and labeling methods. 

By the application of the generalization measure and the 

specificity measure on both SSMs, we found that the US SSM 

performed better than the MR SSM in both measures, 

particularly in-group and slightly cross-group. However the 

cross-group performance is comparable between the two 

modalities and remain reasonable when compared to in-group 

G and S measures, indicating interchangeability between the 

two imaging modalities. The prostate SSM has traditionally 

been created from the US imaging modality [9], [16]; 

therefore there does not exist, to the authors‟ knowledge, MR 

prostate SSM in the literature with which we could compare 

our results. However, MR images have been used for SSM 

building for brain structures [38], [39] and cardiac structures 

[17], [23] where they have proven effective. The inferior 

model quality of the MR SSM could be due to the fact that the 

oncologists participating in this study have more experience 

dealing with US images. This may result in the findings in 

[19], where the intra-observer variability is found to be lower 

for US modality in mid-gland slices as well as the prostate 

volume, the better consistency of which can give the US SSM 

a more robust performance. Also the difference in imaging 

resolution (0.18 mm for US images and 0.44 mm for MR 

images in both x and y directions) is advantageous for the US 

imaging modality. Finally, it could also be due to the 

correspondence/labeling method applied. As shown in [16], 

different labeling methods do influence the G and S values of 

one particular SSM, but since we fixed the labeling method for 

both imaging modalities, the next step of research can be to 

study whether they are equally influenced by different 

correspondence and labeling methods. Another improvement 

that can be made in future studies is to use contouring results 

obtained from the same oncologists involved in this study but 

over a certain number of repetitions, in order to take into 

account intra-observer effects. 

C. SSM Methodology and Independent Component Analysis 

(ICA) 

The SSM was chosen to represent prostate shapes and as a 

tool for shape comparison partly because of its popularity and 

success to be combined with image search algorithms for 

contour segmentations. Since the objective of our study is to 

provide insight into the feasibility of coupled US-MR 

segmentation methods based on SSM, it makes sense to 

compare the SSM shape models constructed from the data 

pertaining to these two modalities. Also, as can be seen from 

the previous analysis, the SSM can not only be used to 

compare prostate shapes across different imaging modalities, 

but also to visualize how the shapes vary within the same 

imaging modality through PCA eigenvectors. The RBF 

interpolation preceding the SSM modeling is a necessary step. 

More than a simple visualization tool, it brings all prostate 

shapes to a unified 1800 data point representation and 

increases the data sample density. However, this approach is 

not without its limitations. The PCA associated with 
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conventional SSM building is designed to address linear (or 

slightly non-linear) data and assumes a Gaussian distribution 

of the data points. Therefore in this study, we also assume the 

data points obtained from both imaging modalities are 

normally distributed. Another limitation is that PCA returns 

eigenvectors that represent global deformations [40]. Since 

more localized deformations would be likely to be included in 

eigenshapes describing less variance, they are likely to be 

ignored by PCA. However, PCA is able to rank the order of 

dominant eigenshape components, which is relevant for our 

analysis as they show the most dominant deformations that 

exist in both US and MR prostate shapes. 

On the other hand, ICA, originally developed to separate 

mixed audio signals into independent sources, is getting more 

and more popular in areas such as feature extraction, signal 

processing and image processing [41]. It has the potential to 

be combined with SSM [40] and provide an alternative 

method to obtain deformation components. It does not need 

the assumption of Gaussian distribution of data, and it is able 

to exploit higher-order moments of the statistical distributions. 

If used in shape analysis, ICA is able to capture better local 

deformations compared with PCA, as it maximizes the 

independence between the non-Gaussian component vectors 

[40]. However, the standard ICA algorithm does not sort the 

components in the order of variance. An appropriate ordering 

scheme has to be carefully investigated before ICA can be 

applied to shape models for dimension reduction, which is not 

in the scope of this current study. However, ICA and PCA can 

be potentially combined to provide both global and local 

deformation information. It is an option we will try to explore 

to improve our MR SSM results in future studies. Since 

compared with US PCA results, the MR PCA results show 

less decoupled principal modes, we have a reason to suspect 

that the MR shape in this study might not follow a Gaussian 

distribution. Therefore, our next step will include applying 

ICA to the MR data set to see if better decoupled components 

can be obtained.  

V. CONCLUSIONS 

In this study, TRUS and MR pre-implant prostate scans for 

40 patients were segmented by three experienced oncologists.  

The 2D contours from both imaging modalities were 

interpolated into 3D shapes by combining radial basis function 

interpolation and principal axis rigid registration. The 

placement of corresponding landmarks was accomplished by 

geometric registration. By comparing the mean shapes of the 

resultant US and MR statistical shape models, geometric 

characteristics consistent with those reported in prostate 

implant literature were found. The effect of the ultrasound 

probe on prostate drooping was not readily apparent from 

inspecting the mean shape. While we expected the prostate 

drooping to be solely due to the ultrasound probe insertion, the 

principal component analysis on the MR data suggests that 

prostates naturally possess varying degrees of drooping. 

Therefore the drooping demonstrated in US shapes is a 

combined effect of ultrasound probe insertion and prostate‟s 

natural drooping. Statistical models based on MR and US 

contours were tested using the generalization and specificity 

measures. It was found that, in this group of contours, US 

SSM models perform in general better than MR SSM models. 

However, we believe that there is relatively good 

compatibility between US and MR imaging modalities in 

terms of statistical shape modeling, due to the comparable 

generalization measure (G) and specificity measure (S) during 

cross-group analysis. Another reason is since drooping 

naturally exists in prostates, it can be taken into account by the 

MR SSM. In future studies, different correspondence / 

labeling methods can be used and oncologists with more MR 

image segmentation experience can be recruited in order to 

further investigate why the US model and MR model had 

different performances regarding the used metrics in this 

study. The possibility of incorporating ICA into the shape 

analysis together with PCA for better SSM construction will 

also be explored. 
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