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Abstract—Teleoperated surgical robots can significantly im-
prove the performance of minimally invasive surgeries. The per-
formance of a master-slave robotic system depends significantly
on the capability of its master device to appropriately interface
the user with the slave robot. However, master robots currently
used in the clinic present several drawbacks such as the mismatch
between the slave and master workspaces and the inability to
intuitively transfer the slave robot’s dexterity and joint limits to
the user. In this paper, the “teleoperation manipulability index
(TMI)” is introduced as a quantifiable measure of the combined
master-slave system manipulability. We also demonstrate the
application of the TMI in the design of master-slave robotic
systems. By employing the proposed manipulability index, we
are able to modify the design of a commercially available master
robot that 1) enhances surgeon’s control over force/velocity of
a surgical robot, 2) minimizes the master robot’s footprint, 3)
optimizes the surgeons’ control effort, and 4) avoids singularities
and joint limits of the master and slave robots. A simulation
study is performed to validate the performance of the modified
master-slave robotic system.

I. INTRODUCTION

Surgical procedures are being transformed by robots en-
tering the operating rooms. Robots are enhancing surgical
techniques and expanding surgeons’ capabilities. Master-slave
teleoperation is a common and effective mean of providing
an intuitive user interface for controlling surgical robots. The
slave robot, in the context of surgery, is the manipulator that
performs the surgery within the patient’s body while the master
is a user interface that allows the surgeons to control the
slave. This approach allows the surgeon to benefit from robotic
advantages such as motion scaling and tremor reduction while
retaining direct control over the robot motions to ensure the
safety of the procedure.

Teleoperated surgical systems such as the da
Vinci®(Intuitive Surgical, Sunnyvale, CA, USA), neuroArm®
[1], and Raven Surgical Robot [2] have successfully solved
many of the problems encountered in minimally invasive
surgeries, such as loss of dexterity [3]. The enhanced dexterity
offered by teleoperated surgical robots can significantly
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improve the performance of minimally invasive surgeries [4].
However, master robots currently used in the clinic present
several drawbacks such as the mismatch between slave and
master workspaces and the inability to intuitively transfer the
slave robot’s dexterity and joint limits to the user.

The first step in improving the kinematic dissimilarity and
workspace mismatch in a teleoperated robotic systems is to
define and estimate a measure that quantifies the teleoperation
system’s manipulability. In this paper, we propose the teleoper-
ation manipulability index (TMI) as a quantifiable measure of
kinematic similarity between the master and slave robot. Such
a quantifiable measure of dexterity can be used for analysis
and comparison of designs of master-slave robotic systems.
Also, this allows for considering dexterity in motion planning
and control of complex surgical tasks such as suturing or
navigation in the presence of anatomical obstacles.

Manipulability of robots was first introduced in [5], [6].
Manipulability describes how a manipulator can freely apply
forces and torques or move in arbitrary directions, and quan-
tifies the ability to perform an action quickly and skilfully
[7]. Manipulability analysis consists of describing directions
in the task or joint space of a robot with the best ratio between
some measure of effort in joint space (e.g., joint torque) and a
measure of performance in task space (e.g., position accuracy).
Yoshikawa introduced the manipulability index [6] as a quality
index for a single manipulator, which describes the characteris-
tics of feasible motions in the Cartesian space corresponding
to unit joint velocity vectors. He defined a quality measure
based on analysis of the manipulability ellipsoid (ME). ME
is a volume/surface in the Cartesian velocity space, which is
mapped from the unit sphere in the joint velocity space by a
Jacobian transformation [6].

Manipulability analysis has been widely used for analysis
of motion of multiple cooperating robots [8]–[11]. Lee [8]
defined a dual-arm ME as the maximum volume ellipsoid de-
termined by the intersection between the two single-arm MEs.
This is because the required cooperation between the two arms
imposes additional kinematic constraints to the manipulability
of individual arms. Chiacchio et al. [9] extended the concept
of ME to the multi-arm case independent of the number of
arms involved in the cooperation by regarding the system
of multiple arms as a closed-chain system. Chiacchio et al.
also introduced the concept of force manipulability for fully
actuated robotic chains by a duality argument, considering
the principal directions for force and velocity MEs are the
same while the lengths of axes are inversely proportional to
each other [9]. Bicchi et al. [10] extended the kinematic ME
problem to general cooperating arms, with arbitrary number978-1-5386-2512-5/18/$31.00 ©2018 IEEE



of joints per arm. Melchiorri [11] applied similar tools to
address force manipulability in cooperative robots with active
and passive joints [12].

Researchers have studied the application of manipulability
index in design and control of surgical robots. Konietschke
et al. [13] and Li et al. [14] used the manipulability index
to optimize the design of single robots. Maddahi et al. [15]
showed the correlation between manipulability of a master
robot and the performance of a teleoperated surgical system
emulating a micro-neurosurgical task defined in terms of
actuators efforts and distances travelled by the slave end-
effector.

Most studies of manipulability of teleoperated systems only
consider the manipulability of one robot (master or slave)
[13]–[16]. By using the manipulability index of one robot as
the design criterion, the solution to the design space search
would result in a robot with very large links, such that joints
angle deviate as little as possible from the isotropic pose
while still reaching the target in the workspace. However,
long links reduce the flexural stiffness of the manipulator and
increase inertia and the robot’s footprint. The robots used in
the operation room work in a limited workspace and must have
a small footprint with maximum rigidity and stability.

The aim of this research is to develop a manipulability index
for quantifying the dexterity of surgical master-slave systems.
We also demonstrate the application of manipulability in the
design of master-slave robotic systems. We demonstrate that
by modifying a commercially available master robot using
the proposed manipulability index, we are able to enhance
the surgeon’s control over force/velocity of the surgical robot,
minimizes the master robot’s footprint, optimizes the surgeons’
control effort, and avoid singularities of the master and slave
robots.

The rest of the paper is organized as follows: In Section II,
an overview of manipulability index for a single robot is pre-
sented. In Section III, manipulability of teleoperated systems
is discussed. Application of the TMI in the design of master-
slave robotic systems and simulation results to validate the
performance of such designs are presented in Section IV.
Concluding remarks appear in Section V.

II. MANIPULABILITY FOR A SINGLE ROBOT

For a robotic manipulator, the Jacobian matrix provides
a transformation from the velocity of the end-effector in
Cartesian space to the actuated joint velocities as the

ẋ = Jq̇ (1)

where q̇ is an n-dimensional vector that represents a set of
actuated joint rates, ẋ is an m-dimensional output velocity
vector of the end-effector, and J is the m×n Jacobian matrix.
The Jacobian J defines the mapping from Rn to Rm. The unit
sphere in Rn can be mapped into an ellipsoid in Rm through
J as shown bellow:

‖q̇‖2 = q̇T q̇ = ẋT (J†)T (J†)ẋ

= ẋT (JJT )−1ẋ
(2)

here the superscript ”†” indicates the pseudo-inverse of a
matrix, J† = JT (JJT )−1. The ellipsoid in Rm is called
the manipulability ellipsoid (ME), and describes the versility
of moving in the task space. The ME is a surface/volume
that helps to visualize the feasible directions of velocity at
the end-effector of a robot. This ellipsoid can be spanned
using the singular values of the Jacobian matrix, which can be
calculated using the singular value decomposition (SVD) [17].
As J is m × n, there exist orthogonal matrices U ∈ Rm×m
and V ∈ Rn×n such that

J = UΣV T (3)

where U = [u1 · · ·um] is an m × m unitary matrix, Σ is
an m × n rectangular diagonal matrix in which the diagonal
entries (σi, i = 1 · · ·m) are known as the singular values of J
with σ1 ≥ σ2 ≥ · · · ≥ σm, and V = [vT1 · · · vTn ] is an n × n
unitary matrix

Now, the manipulability index can be defined based on the
ME. Proportional to the volume of the ME spanned by singular
values of J , the manipulability index can be defined as [6]

µ =
√
det(JJT ) = σ1σ2 · · ·σm. (4)

µ is the manipulability index at one point in the robot’s
workspace. To define a global manipulability index, one can
use

GM =

∫
W
µdW∫

W
dW

(5)

where W is the workspace of the robot.
In addition to the manipulability index, the isotropy of the

robotic arm is also important [5]. It is a measure of how well
the mechanism can move in all directions, i.e., directional
uniformity. Assuming that the surgical motion demands are
uniform with respect to the robot in the surgical site, a good
isotropy score would indicate that the load on the motors of
each joint would be similar. The isotropy index has been
introduced as the inverse of the condition number of the
Jacobian, i.e., relation of the smallest to the largest singular
value

1

κ
=

1

‖J‖‖J−1‖
=
σm
σ1
. (6)

Using (6) the global isotropy index or commonly called global
conditioning index GC can be defined as

GC =

∫
W

( 1
κ )dW∫

W
dW

(7)

III. MANIPULABILITY OF TELEOPERATED SURGICAL
SYSTEMS

In this section, we modify the manipulability index to extend
the definition of manipulability to teleoperated master-slave
surgical systems. In teleoperation, we want the user to feel as
if he/she is directly interacting with the slave’s environment.
This requires matching of the positions and forces on both
the slave and the master side. It is assumed that the master
robot and the slave robot follow each other position perfectly.
Thus, it can be assumed that the end-effector of the master and
the end-effector of the slave are physically attached together,



similar to two cooperative robots manipulating a mass-less
point object with tight grasps. This prompts the observation
that the teleoperation manipulability is the volume of the
intersection between the MEs for the individual arms, where
the intersection of the two MEs is subject to the constraints
imposed by the teleoperation system.

A. Teleoperation manipulability ellipsoid

Let us assume that the teleoperation task is defined in the
slave robot workspace and the ME of the master robot is
transformed to the task frame, i.e., slave robot frame. Using
(2), the MEs for the master robot and the slave robot can be
found as

ẋT (HJMJ
T
MH

T )−1ẋ = 1 (8a)

ẋT (JSJ
T
S )−1ẋ = 1 (8b)

where JM is the Jacobian of the master robot, JS is the
Jacobian of the slave robot, and H is the transformation matrix
which transforms the Jacobian of the master robot to the
task frame. Following the approach first presented in [8], the
combined ME of two arms is the largest ellipsoid that can
be fitted into the intersection of the ME of the master robot
defined in (8a) and the ME of the slave robot given in (8b).
To find the largest ME in the intersection of the two given
MEs in (8a) and (8b), we first assume that the principal axes
of the intersecting ellipsoid coincide with the principal axes of
the master ME. Knowing the intersection points of master and
slave MEs we find the intersecting ME. Next, it is assumed
that the principal axes of the intersecting ellipsoid coincide
with those of the slave robot ME and the intersecting ME is
calculated again. Finally, the ME that has the largest volume
between the two calculated MEs is selected as the TME. This
strategy is discussed in the following.

An ellipsoid can be specified by a set of principal axes
σiui where ui, i = 1, . . . ,m denote the orthonormal vectors
specifying the orientation of the principal axes, and σi, i =
1, . . . ,m represent the length of the corresponding principal
axes. The principal axes of the intersecting ellipsoid σIi u

I
i can

be obtained assuming they coincide with the principal axes of
the master ME as

1σ
I
i 1ui

I =

{
η1i ui

M , if η1i < σMi
σMi ui

M , if η1i ≥ σMi
(9)

where σMi u
M
i , i = 1, . . . ,m are the set of principal axes of

the master robot ME, and η1i ui
M , i = 1, . . . ,m represents the

intersecting points between the principal axes of master robot
ME in (8a) and the boundary of slave robot ME in (8b). η1i , i =
1, . . . ,m can be obtained using equation (8b). Considering
η1i ui

1 lies on the slave robot ellipsoid, we have

(η1i ui
M )T (JSJ

T
S )−1(η1i ui

M ) = 1 (10)

and thus

η1i = [(ui
M )T (JSJ

T
S )−1ui

M ]−1/2 (11)

Now, we assume that the principal axes of the intersecting
ellipsoid coincide with those of slave robot ME. This results
in a different representation for the intersecting ellipsoid:

2σ
I
i 2ui

I =

{
η2i ui

S , if η2i < σSi
σSi ui

S , if η2i ≥ σSi
(12)

here, η2i ui
S represents the intersecting point between the

principal axes of slave robot ME and the boundary of master
robot ME. Following the same method used in the derivation
of η1i , η2i can be obtained by

η2i = [(ui
S)T (HJMJ

T
MH

T )−1ui
S ]−1/2. (13)

B. Teleoperation manipulability index
The TMI (λ) is the largest ME between ellipsoids defined

in (9) and (12).

λ = max{
m∏
i=1

1σ
I
i 1ui

I ,

m∏
i=1

2σ
I
i 2ui

I} (14)

Now we can define the global teleoperation manipulability
index (GMT ) to determine the overall conditioning of the
manipulability index of the teleoperation system across the
slave workspace W rather than at each point therein:

GMT =

∫
W
λdW∫

W
dW

. (15)

Larger values of GMT correspond to better manipulability of
the teleoperation system.

We note that beside the singular values and manipulability
index, joint limits have a major impact on the end-effector’s
dexterity in the workspace. In order to consider the effects
of mechanical constraints of the manipulator, we deployed
the joint-limit constrained Jacobian Jq [16]. The constrained
Jacobian Jq is formed by penalizing the columns of Jacobian
individually using

Jqi = P qi Ji (16)

where Ji is the ith column of the robot Jacobian. P qi is the
joint-wise penalization function given by

P qi =
1− exp(−4kq(qi−qi,min)(qi,max−qi)

(qi,max−qi,min)2
)

1− exp(−kq)
(17)

where the coefficient “4” and the denominator “1−exp(−kq)”
in equation (17) are needed to normalize the penalization
term such that P qi spans the interval [0, 1]. At the joint-
limits, P qi becomes zero. In the neutral position, qi,max+qi,min

2 ,
P qi becomes one. The scaling coefficient kq specifies the
functional shape in between these points. Using this penalty
function, the individual columns of J are penalized when the
ith joint value qi approaches the limits qi,min or qi,max.

Penalization of the Jacobian for calculating the manipula-
bility index was first addressed by Tsai et al. [9]. However,
unlike the global penalization approach used in [18], the
individual columns of J are penalized. Now, by substituting
the constrained Jacobian Jq in (4), (6), (11), and (13) for J ,
we can calculate the manipulability and isotropy indices for
a single robot and the TMI considering the robot mechanical
constraints.



Considering conservation of energy and neglecting the po-
tential terms, a measure of master and slave robots’ joints
kinetic energy, ‖q̇‖2, can be directly related to the human
users effort while manipulating the robot, and the effort needed
to move the slave’s joints. Assuming the master robot is
manipulated to move the slave robot’s end-effector in its task
space at a velocity ẋ, ‖q̇‖2 can be calculated as follows

‖q̇‖2 = q̇T q̇ = ẋT (J†T )T (J†T )ẋ

= ẋT (JTJ
T
T )−1ẋ

(18)

where
(JTJ

T
T ) = UTΛTU

−1
T (19)

in which UT = [uI1, · · · , uIm] and ΛT = diag(σI1 , · · · , σIm)
are set of principal axes of the teleoperation system’s ME.

In the next section, we will use GMT as a design criterion
to modify the master robot of a teleoperated system. Sim-
ulations are performed to demonstrate the benefits of using
the TMI such as reducing the surgeon’s control effort while
manipulating the slave robot’s end-effector.

IV. MANIPULABILITY AS A DESIGN CRITERION

A slave robot will not perform according to its full potential
if paired with a master robot with lower dexterity and manip-
ulability. There are several commercial master manipulators
designed and developed to operate in conjunction with slave
robots, offering advantages in terms of generality and ease of
use. However, their lack of kinematic similarity to a given
slave robot presents several disadvantages such as reduced
overall manipulability and dexterity as discussed below.

The control of a master-slave system can be based on
force control, position control or a combination of both. To
improve the control accuracy for teleoperated robotic systems
in all these cases, one must improve the manipulability of the
system. There are two ways to do this.

Most studies consider only the global manipulability index,
GMM , and global conditioning index, GCM , of the master
robot [13]–[16]. Following this approach, the optimal design
for the master robot can be obtained by

maximize
D

{C1 := K1GCM +K2GMM} (20)

where D is the set of parameters to be optimized, and K1

and K2 are appropriate scaling factors. By using (20), the
kinematics of the master robot is optimized by maximizing
the master robot manipulability and isotropy. In this optimiza-
tion, the kinematic performance of the teleoperated system is
enhanced by enlarging the master robot’s links length which
obviously faces practical limitation. In fact, such a solution
would result in a robot with large links, small flexural stiffness,
and big footprint. The robots used in the operating room work
in a limited workspace and must have a small footprint with
maximum rigidity and stability.

Instead of the above, we propose an approach that considers
the global condition index GCM of the master robot and the
global manipulability index GMT of the teleoperated system
as design criteria. This way, in addition to maximizing GCM
for the master robot, which enhances surgeon’s control over
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Fig. 1. (Left) Top view of Rehabilitation Robot. (Right) Side view of
PHANToM 1.5A.

force/velocities, kinematic compatibility between the master
and slave robot is also considered. The goal is to design a
master robot for a given slave robot with maximum possible
manipulability while maintaining a small footprint. By con-
sidering the kinematics of the slave robot, the optimal design
for the master robot can be obtained by

maximize
D

{C2 := K1GCM +K2GMT }. (21)

By using (21), the kinematics of the master robot is optimized
for the best kinematic similarity to the slave robot.

As a case study, the PHANToM 1.5A robot (Geomagic Inc.,
Morrisville, NC, USA), which provides position measurement
and force feedback at its end point in three translational DOFs
is used as the master robot, and a 2-DOF planar upper-limb
rehabilitation robot and haptic device (Quanser Inc., Markham,
ON, Canada) is used as the slave robot. The schematic diagram
of rehabilitation robot and PHANToM robot are shown in
Fig. 1. We propose to use C2 as a quantitative measure for
optimal selection of the PHANToM robot’s placement and
other kinematic parameters.

The Jacobians of the rehabilitation and the PHANToM
robots in their base frames are

JRE =

[
−d1s1, d2c2
d1c1, d2s2

]
(22a)

JPH =

−s1(l1c2 + l2s3), −l1c1s2, l2c1c3
c1(l1c2 + l2s3), −l1s1s2, l2c3s1

0, l1c2, l2s3

 (22b)

where si = sin(θi), ci = cos(θi), i = 1, 2, 3.
The Jacobian of the Master robot needs to be transformed

to the slave coordinate frame. The transformed Jacobian of the
master robot is

J2D
M =

[
cz −sz 0
sz cz 0

]
JPH (23)

where sz = sin(θz), cz = cos(θz), and θz is the orientation
of the master robot with respect to the center of the workspace
of the slave robot. θz is shown in Fig. 2.

For the master robot, there are three parameters to be
optimized, i.e. the last link’s length (l2), the orientation of
the master robot (θz), and the level, ZPH , of the plane in
which the master robot works as a 2D robot. This means
D = {l2, θz, Zph}.

In our simulations, first, the master robot parameters are
optimized without considering the slave robot kinematic. The



Fig. 2. Orientation of the PHANToM robot with respect to the rehabilitation
robot, θz

TABLE I
OPTIMIZATION RESULTS, D = {l2, θz , Zph}

C1 as the cost function C2 as the cost function

l2 (m) 0.365 0.269
ZPH (m) -0.2162 -0.065
θz (deg) -63.5 0

GMT 0.0549 0.0590
GCM 0.7785 0.7315
GMM 0.1023 0.0728

cost function for this optimization is C1 given in (20). The
constraints for the optimization are

0.165 < l2 < 0.365,−π
2
< θz <

π

2
. (24)

Next, the cost function is selected such that the kinematics
of the slave robot is also considered. For this optimization,
the cost function is C2 given in (21). The same constraints
given in (24) are used. In the first round of simulations,
it is assumed that the master orientation, θz , is the only
optimization variable. The teleoperation system manipulability
can be optimized by rotation of the Master robot around the
center of the slave workspace. For this case, l2 = 0.165m
and ZPH = 0.0539m are constants. θz equals to 89◦ and θz
equals to 2◦ are obtained from maximizing the C1 and C2 cost
functions, respectively. The optimization result shows that if
the orientation of the master robot changes from 89◦ to 2◦,
the GMT varies from 0.0378 to 0.0437 while GMM for the
phantom robot changes from 0.0433 to 0.0428. The MEs at
six points of the workspace for the master robot, slave robot,
and the teleoperated system are depicted in Fig. 3.

In the second round of optimization, l2, θz , and ZPH are all
considered as optimization variables. The optimized variables
are summarized in Table I. As it can be seen, the optimization
for C1 cost function results in a bigger link length l2. It can
also be noticed that the global manipulability index GMM and
the global conditioning index GCM of the master robot are
higher for C1 optimization. However, the global manipulability
index of the teleoperated system, GMT , decreases for the C1

optimization.
Fig. 4 shows the MEs at six points of the workspace for the

master robot, slave robot, and the teleoperated system. The ME
of the master robot for C2 optimization is smaller than that
from C1 optimization. However, the principal axes of the ME
of the master robot are aligned with principal axes of the ME
of the slave robot, which results in an overall large ME for the

0.25 0.35 0.45
x (m)

-0.07

0

0.07

y 
(m

)

Slave Robot
Master Robot
Teleoperation System

0.25 0.35 0.45
x (m)

-0.07

0

0.07

y 
(m

)

Slave Robot
Master Robot
Teleoperation System

Fig. 3. (Top) θz = 89◦, as a result of maximizing the C1 cost function.
(Bottom) θz = 2◦, as a result of maximizing the C2 cost function. D = {θz}
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Fig. 4. (Top) Results of C1 optimization. (Bottom) Results of C2 optimiza-
tion. D = {l2, θz , Zph}

teleoperation system. The calculated TMI from optimization
using C1 and C2 is depicted in Fig. 5

From the ellipsoid obtained in the simulations, one can
calculate a measure of master and slave robots’ joints kinetic
energy, defined as ‖q̇‖2 by using (18). Fig. 6 shows the
teleoperation system’s joint energy for various simulation
scenarios discussed above in a task of moving an object from
point A (0.424 m,-0.1 m) to point B (0.424 m, 0.1 m) at a
constant speed of ẏ = 0.01m/s in the slave robot frame.



Fig. 5. (Left) The TMI as a result of maximizing the C1 cost function. (Right) The TMI as a result of maximizing the C2 cost function. D = {l2, θz , Zph}

Fig. 6. A comparison of user’s effort for different optimization approaches.

It can be seen in Fig. 6 that the teleoperation system’s
joint energy and consequently the user’s input energy for
performing a task in the slave robot’s task space for cases
where C2 is optimized is much smaller.

V. CONCLUDING REMARKS

In this paper, the manipulability for a surgical master-slave
robotic system is defined. We demonstrate the application of
manipulability in the design of master-slave robotic systems.
It is shown that by modifying the design of a commercially
available master robot using the proposed manipulability cri-
terion, we are able to enhance the surgeon’s control over
force/velocity of the surgical robot by increasing the con-
ditioning index, minimizing the master robot’s footprint via
minimizing its link length, optimizing the surgeons control
effort via minimizing the required input energy for moving the
slave’s end-effector, and avoiding singularities of the master
and slave robots. In the future, we will perform experiments
to validate the proposed manipulability criterion and its appli-
cation in designing master-slave robotic systems. Here, the
manipulability index of the teleoperation system was only
used to modify the design of the master robot. In the future,
we will employ the same index to modify the design of the
slave robot. We will also use the manipulability criterion in
motion planning of surgical tasks to find optimal trajectories
that enhances manipulability and minimizes surgeon’s control
effort.
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