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Abstract

This paper proposes some methods for estimating the order of nonlinear systems having non-integer order. First, the stability of

time-varying order systems is studied. Afterward, the multivariable systems with time-varying incommensurate order are studied and

an estimation scheme is proposed to approximate the order. In the next step, considering the pseudo-states of a system to be unknown,

an order/pseudo-state estimator is designed for a category of nonlinear systems. It is shown that the method is extendible to form

order/pseudo-state estimators for other classes of nonlinear systems using other traditional nonlinear observers. One of the advantages

of the proposed methods is that a compact time interval is enough to guarantee bounded estimation error.
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1. Introduction

Considering the order of derivation and integration beyond the limit of integers, calculus is generalized to the case with non-integer

order [1]. Non-integer order dynamical systems have wide applications in physics and engineering [1, 1]. The main notability of these

systems is the order. The order is a unique attribute in making the non-integer order systems more powerful, more flexible, and more

general compared to the traditional ones. The order is not necessarily a constant number. It may vary with respect to time or the5

systems pseudo-states. Such generalization leads to the variable-order calculus, introduced in [2]. The concept has been investigated

from different aspects [1]. The operators are redefined in [3] to be able to handle discontinuous order and form the switching order

derivative [4]. Several papers studied the response of the variable order differential equations to introduce the conditions for which the

response exists and is unique [5, 6]. Optimality conditions are studied from different sights of view [7, 8] and optimal control methods

are developed [9]. Several variable order models are introduced to interpret the order of derivation as some physical quantities e.g.10

the memory in electronic devices [10], the memory index in human’s emotion [11, 12, 13], the effect of strain in viscoelastic materials

[14] and soft tissue [15, 16, 17], diffusion and sub-diffusion [18, 19], etc.

In studying traditional integer order systems, there is no such thing as order. However, as soon as we deal with non-integer order,

a method should also be provided for estimating it. The response of a system is highly correlated with its order. Minor changes in

order may fundamentally change the behavior of the system. A stable system may become unstable with a slight increase in order [1].15

Accordingly, detecting the order is the first step is in control and estimation [9, 20]. As mentioned, the order sometimes indicates a

physical quantity (e.g. the impact of memory, the amount of viscoelasticity, etc.). In such cases, accurate modeling is tightly tied to

the identification of the order, otherwise, one of the quantities involved in the problem is not yet modeled. After suggesting a gray box
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model, it is required to estimate the parameters, and the most important parameter is the order. It is after estimating the order that we

can report whether a system is definitely of non-integer order or not. Either it is constant or variable. Therefore, providing a method20

for estimating the order is a step that must be taken immediately after non-integer order modeling. It complements the definitions,

properties, and capabilities provided by non-integer order systems, unless, non-integer order modeling has no practical value and is

just some calculations on the paper.

Several methods are proposed focusing on estimation and identification of non-integer order systems, among which, some have

considered the order a constant parameter and used an offline or numerical approach to estimate it [21, 22]. Kalman filter is used in25

[23] to estimate the constant order using a discrete method. In [24] a heuristic method is used to obtain a non-integer order transfer

function describing voltammetry electronic tongue. The method is then verified using the experimental data. A signal similarity-based

approach is proposed in [25] using a regression kernel method with occupation to approximate non-integer order dynamics as a linear

combination of occupation kernels. A parameter estimation method is used in [26] to estimate the parameters of available order

describing a class of batteries.30

The main advantage of the approach suggested in this paper is the online estimation. In fact, instead of requiring a batch set of

data, the method provides the estimation in a real-time manner. Such an approach is firstly used in [27] for estimating the order,

where, a derivation operator is suggested which is similar to the variable order derivation operator. It provides an auxiliary system,

performing along with the main system, which is a linear SISO system with commensurate order. The order is constant and the

system is interpreted by a transfer function. Using the auxiliary system, an error signal is calculated established on which the order35

estimator is developed. Using the transfer function indicates that the direct input-output relationship is given. Therefore, the pseudo-

state estimation problem is not stated. A similar system described by the input-output relationship is studied in [17]. However, the

order is considered time-varying and the parameter vector is unknown, as well. A two-stage approach is developed to estimate the

order and the parameters. The parameter estimation method is inspired from the recursive least squares famous method. However,

an in-between auxiliary system is used to connect twofold of the estimation process. For the first time, real experimental data are40

used to verify the non-integer order modeling, along with the proposed identification process. The paper includes an experimental

study, where, a non-integer order model is fitted on a set of data describing soft tissue deformation. The dynamical behavior of a

battery is modeled in[28] when the order is considered non-integer. Afterward, a method is used to estimate the order of the system

and its parameters, using real data. The issue of simultaneous estimating of the order and pseudo-states is firstly proposed in [29].

The system is time-varying order described in state-space, with unknown pseudo-states and order. Several basic theories about the45

stability of variable order systems are proven to develop the estimator. The proposed estimator guarantees bounded error for both the

order and the pseudo-states as long as the system is linear with commensurate order. A framework for estimating the parameters of

a wide variety of linear time-invariant systems (not necessarily representable in pseudo-state form) is suggested in [30]. One of the

studied systems is the non-integer order system with unknown constant order. A method is proposed which basically rearranges the

estimation to an optimization problem. It then uses the gradient method to solve the problem with an adaptive scheme. The issue of50

parameter identification for a class of systems is studied in [31]. The order is considered commensurate. Two filtering algorithms are

proposed to estimate the parameters. Afterward, the order adaptation law is given. Adaptive parameter identification is also studied in

[32]. In the recent paper, the main idea is to use an extended version of the iterative least squares method to estimate the parameters of

non-integer order systems. Indeed, to handle the measurement noise, a bias compensated RLS algorithm is developed. Although some

of the above papers have studied the estimation of the non-integer order systems, however, they mainly deal with constant order, linear,55

and commensurate order systems, where, the main purpose of the current paper is suggesting some effective methods for nonlinear
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variable order systems. In-line with [27, 29, 17] an adaptive estimation approach is considered here. In [27] the non-integer order

system is SISO. A transfer function is used to model it, and the order is constant. The system studied in [29] is linear commensurate

order and [17] studies a scalar time-varying integrator. However, the present paper deals with

1. The order estimation of the general multivariable nonlinear incommensurate time-varying order system with known pseudo-states,60

and,

2. Estimating the order of the multivariable nonlinear time-varying order (with commensurate order) systems with unknown pseudo-

states, while the pseudo-states are estimated simultaneously.

Consequently, the main difference of the methods proposed in this paper in comparison to the similar ones is basically the fact that

the theorems suggested here are capable of handling nonlinear systems with possibly unknown pseudo-states. Also, the incommen-65

surate order case is considered here, where the former methods mainly deal with commensurate linear systems. The following table

provides a comparison between this work and the formers. It shows that whether the methods suggested for estimating the order can

be applied on systems with nonlinear dynamics/Incommensurate order/Variable order/Unknown pseudo-states.

Table 1: Comparing methods presented for adaptive order estimation

Paper Nonlinear Incommensurate Multivariable Variable order Unknown pseudo-states
[27] No No No No No
[17] No No No Yes No
[29] No No Yes Yes Yes
[30] No No Yes No No
Present work Yes Yes Yes Yes Yes

The methods proposed here lead to a bounded order estimation error in a compact temporal interval. Consequently, they are useful

for control goals, when the order is required to be known to design the control input, by adjusting the estimation time scale smaller70

than the control time scale.

Accordingly, the paper is organized as follows:

In the second section some fundamental definitions as well as some lemmas are mentioned. Then, in Section 3, first, the nonlinear

incommensurate case is studied, then, considering the pseudo-states to be unknown, a proof is given to show the effectiveness of the

traditional nonlinear state observers to be used alongside an order estimator and eventually, the discussion is addressed in Section 4.75

2. Preliminaries

Definition 1. In this paper the Caputo derivation is used [33]:

C
0 D

α(t)
t x(t) = 1

Γ
(

1−α(t)
) ∫ t

0
(t− τ)−α(t) dx(τ)

dτ dτ + Ψx
c (t), 0 < α(t) < 1,∀t ≥ 0 (1)

where, Γ(β) =
∫∞

0
θβ−1e−θdθ.

Ψx
c (t) = 1

Γ
(

1−α(t)
) ∫ 0

−c

(
t− τ

)−α(t) dx(τ)
dτ dτ is the initializing function. To avoid discontinuity, mainly in the time-delay systems,

it reflects the values of x in [−c 0] before the starting time of the derivation operator, t = 0 [34, 35]. Since the systems studied here

are all considered at rest in 0 < t, the initializing function Ψx
c (t) is equal to zero and ignored in the rest of the paper. Therefore, (1)
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is reduced to (2).

C
0 D

α(t)
t x(t) =

1

Γ
(
1− α(t)

) ∫ t

0

(t− τ)−α(t) dx(τ)

dτ
dτ (2)

Definition 2. The definition of the integration of the function x with the variable order α(t) is [33]

0I
α(t)
t x(t) = 1

Γ(α(t))

∫ t
0
(t− τ)α(t)−1x(τ)dτ

0 < α(t) < 1,∀t ≥ 0
(3)

Considering the operators defined in (1) and (2);
C
0 D

α(t)
t I

α(t)
t f = f (4)

Definition 3. A dynamical system with non-integer order may be defined as a series of coupled differential equations possibly with

different orders of derivation[36, 1]. Here, the following definition is used:


C
0 D

α1(t)
t x1(t) = f1

(
x1(t), . . . , xn(t), U(t))

...

C
0 D

αn(t)
t xn(t) = fn

(
x1(t), . . . , xn(t), U(t)

)
y(t) = g

(
x1(t), . . . , xn(t), U(t)

)
(5)

where, 0 < αi < 1, i = 1, 2, . . . , n are the orders, X = [x1 . . . xn]
T is the state vector, or to be more precise, the pseudo-state

vector, U = [u1 . . . up]
T is the input, and y = [y1(t) . . . yq(t)]

T is the output. Each equation of (5) is equal to the following Volterra

integral equation: [37]:

xi(t) = xi(0) +
1

Γ(αi(t))

∫ t

0

(t− τ)αi(t)−1fi(x(τ), u(τ))dτ, i = 1, 2, . . . , n (6)

A shorter notation for system (5) is

C
0 D

ᾱ(t)X = F (X,U), y = g(X,U) (7)

where F (X,U) = [f1(X,U) . . . fn(X,U)]T , and ᾱ(t) = [α1(t) . . . αn(t)]
T is the order vector. A commensurate order system is a

system in which all the entries of the order vector are equal. Furthermore, when F (., .) and g(., .) are two linear functions of x, u the

system (7) is linear. Using constant matrices A, B, C and D with appropriate dimensions, the linear system is interpreted as:

C
0 D

ᾱ(t)x = Ax+Bu

y = Cx+Du
(8)

It is noteworthy to mention that although the argument (t) may be omitted for the sake of convenience, however, the order is time-

varying all along this paper.

Lemma 1. The inequality C
0 D

γ(t)(xTPx) ≤ 2xTPC0 D
γ(t)x holds as long as the non-integer order derivative C

0 D
γ(t)x exists and80

the matrix P is Hermitian and positive definite.
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Proof. The lemma is shortly proven in [29], however, a more precise proof is provided here.

Decompose P into P = P
1
2P

1
2 and define w = P

1
2x. Obviously, P

1
2 is positive definite matrix. It is also Hermitian.

Therefore;

2wT (t)C0 D
γ(t)w(t)− C

0 D
γ(t)
(
wT (t)w(t)

)
≥ 0 (9)

Using (2) and then using the integration by parts approach, the left-hand side of (9) is simplified to:

2wT (t)C0 D
γ(t)w(t)− C

0 D
γ(t)
(
wT (t)w(t)

)
=

2wT (t)

Γ(1− γ(t))

∫ t

0

(t− τ)−γ(t) d

dτ
w(τ)dτ − 1

Γ(1− γ(t))

∫ t

0

(t− τ)−γ(t) d

dτ

(
wT (τ)w(τ)

)
dτ

=
1

Γ(1− γ(t))

∫ t

0

(t− τ)−γ(t) d

dτ

(
2wT (t)w(τ)− wT (τ)w(τ)

)
dτ

=
1

Γ(1− γ(t))

∫ t

0

(t− τ)−γ(t)2
(
wT (t)− wT (τ)

) d
dτ
w(τ)dτ

=
−1

Γ(1− γ(t))

((
w(t)− w(τ)

)T (
w(t)− w(τ)

)
(t− τ)γ(t)

)
|
τ=t

τ=0
+

γ(t)

Γ(1− γ(t))

∫ t

0

(
w(t)− w(τ)

)T (
w(t)− w(τ)

)
(t− τ)γ(t)+1

dτ

(10)

1. Since Γ(1 − γ(t)) and (t − τ)γ(t)+1 are non-negative for 0 < γ(t) < 1 and τ ≤ t, and
(
w(t) − w(τ)

)T (
w(t) − w(τ)

)
≥ 0

therefore γ(t)
Γ(1−γ(t))

∫ t
0

(
w(t)−w(τ)

)T(
w(t)−w(τ)

)
(t−τ)γ(t)+1 dτ ≥ 0.

2. Define Y (t, τ) = −1
Γ(1−γ(t))

((
w(t)−w(τ)

)T(
w(t)−w(τ)

)
(t−τ)γ(t)

)
. Then,

Y (t, 0) =
−1

Γ(1− γ(t))

((
w(t)− w(0)

)T (
w(t)− w(0)

)
tγ(t)

)
≤ 0 (11)

To Calculate Y (t, τ) at τ = t the H’opital formula is used:

Y (t, t) = lim
τ→t

Y (t, τ) = lim
τ→t

(
d
dτ

(
w(t)− w(τ)

)T (
w(t)− w(τ)

)
d
dτ (t− τ)γ(t)

)

=

(
−2
(
w(t)− w(τ)

)T dw(τ)
dτ

−γ(t)(t− τ)γ(t)−1

)∣∣∣∣∣
τ=t

=

(
2

γ(t)

(
w(t)− w(τ)

)T dw(τ)

dτ
(t− τ)1−γ(t)

)∣∣∣∣∣
τ=t

= 0

(12)

Accordingly,

−1

Γ(1− γ(t))

((
w(t)− w(τ)

)T (
w(t)− w(τ)

)
(t− τ)γ(t)

)∣∣∣∣∣τ=t

τ=0
= Y (t, t)− Y (t, 0)

= 0− Y (t, 0) ≥ 0

(13)

Considering (11) to (13), (10) is non-negative. Hence, 2wT C0 D
γ(t)w − C

0 D
γ(t)(wTw) ≥ 0 and the proof is completed.85

Theorem 1. For the variable order system C
0 D

β(t)x = f(x), x(0) = x0, 0 < β(t) < 1,∀t. Consider V ≥ 0 such that V (x) =

0 ⇐⇒ x = 0 and V (x) > 0, x 6= 0. In such conditions Lyapunov stability of the equilibrium point x = 0 holds if C0 D
β(t)(V ) ≤ 0

in neighborhood ∆ ⊂ Rn around x = 0. Furthermore, asymptotically stability holds when C
0 D

β(t)(V ) < 0, x 6= 0.
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Proof. The theorem provides an extension for the second Lyapunov theorem of stability to the variable order systems. Proof is given

in [29].90

Corollary 1. For the system C
0 D

α(t)x = f(x), f(0) = 0 the origin is Lyapunov stable providing that it is stable in the integer order

equivalent of the main system, i.e., the system ẋ = f(x) with a Lyapunov function of the form V = 1
2x

TPx, where P > 0.

Proof. With the Lyapunov function V = 1
2x

TPx, stability of the integer order system implies that V̇ = ∂V
∂x ẋ = xTPf(x) ≤ 0.

According to Lemma 1, C0 D
α(t)V ≤ xTP C

0 D
α(t)x = xTPf(x) ≤ 0.

Corollary 2. As long as A is Hurwitz, the linear system C
0 D

β(t)x = Ax is stable. Also, asymptotically stability necessarily hold in95

such conditions, i.e. x→ 0 as t→∞.

Proof. Proof is given in [29].

Considering Equations (5) and (6), define zφ(t, β) as the following integral equation:

zφ(t, β) =
1

Γ(β(t))

∫ t

0

(t− τ)β(t)−1φ(τ)dτ (14)

Differentiating (14), with respect to β yields

∂zφ(t, β)

∂β
= −ψ(β(t))

Γ(β(t))

∫ t

0

(t− τ)β(t)−1φ(τ)dτ +
1

Γ(β(t))

∫ t

0

ln(t− τ)(t− τ)β(t)−1φ(τ)dτ (15)

where ψ(β) = d
dβ ln(Γ(β)) = Γ′(β)

Γ(β) . Based on (14) and (15), as long as the history of φ(τ), τ ∈ [0 t] and β(t) are available,

zφ(t, β),
∂zφ(t,β)
∂β is computable.

Lemma 2. Define

x(t) = x(0) +

∫ t

0

(t− τ)α(t)−1φ(τ)

Γ(α(t))
dτ

x̂(t) = x̂(0) +

∫ t

0

(t− τ)α̂(t)−1φ(τ)

Γ(α̂(t))
dτ

(16)

Define e(t) = x(t)− x̂(t). Based on (16) and considering the definition of zφ in (14), it is calculated as:

e(t) = e(0) +
∂zφ(t, β)

∂β

∣∣
β=α̂

(α(t)− α̂(t)) +K(t)
(
α(t)− α̂(t)

)2
(17)

where K(t) =
∫ t

0
∂2H(τ,t,β)

∂β2

∣∣
β=α0

φ(τ)dτ, α0(t) ∈
[
min

(
α̂(t), α(t)

)
max

(
α̂(t), α(t)

)]
.100

Proof. Consider the continuous function H
(
t, τ, β

)
= (t−τ)β−1

Γ(β) . As long as 0 < τ < t and 0 < β < 1, H(., ., .) is analytical with re-

spect to its third argument, β. Accordingly, using the Taylor Series Expansion Theorem, ∃α0(t) ∈
[
min

(
α̂(t), α(t)

)
max

(
α̂(t), α(t)

)]

e(t) =e(0) +

∫ t

0

( (t− τ)α(t)−1

Γ(α(t))
− (t− τ)α̂(t)−1

Γ(α̂(t))

)
φ(τ)dτ

=e(0) +

∫ t

0

(∂H(τ, t, β)

∂β
|
β=α̂

(α(t)− α̂(t)) +
∂2H(τ, t, β)

∂β2
|
β=α0

(α(t)− α̂(t))2
)
φ(τ)dτ

(18)
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α and α̂ are independent on τ , therefore, (18) can be rewritten as:

e(t) = e(0) + (α(t)− α̂(t))

∫ t

0

∂H(τ, t, β)

∂β
|
β=α̂

φ(τ)dτ + (α(t)− α̂(t))2

∫ t

0

∂2H(τ, t, β)

∂β2
|
β=α0

φ(τ)dτ (19)

Based on (14),
∫ t

0
∂H(τ,t,β)

∂β |
β=α̂

φ(τ)dτ =
∂zφ(t,β)
∂β |

β=α̂
. Consequently,(19) is reduced to the shorter form (20) and the proof is

completed.

e(t) =
∂zφ(t, β)

∂β
|
β=α̂

(α(t)− α̂(t)) +K(t)(α(t)− α̂(t))2 (20)

Lemma 3. For continuous function φ, K in (17) is bounded with the bound |K| < MKT
3 for some MK > 0 as long as t ∈

[0 T ], T > 1.

Proof. See Appendix.

Lemma 4. The inequality aθ3 + bθ2 + cθ < −dθ, θ > 0, a > 0 holds when −b−
√

∆
2a < θ < −b+

√
∆

2a providing that ∆ = b2 − 4a(c+105

d) > 0.

Proof. Defining Π(θ) = θ3 + bθ2 + (c + d)θ, the proof is straightforward after factorizing Π(θ) as Π(θ) = θ(θ − −b−
√

∆
2a )(θ −

−b+
√

∆
2a ).

Lemma 5. Consider βL = γη−
√

∆
2γ|K| , βU = γη+

√
∆

2γ|K| with ∆ = γ2η2 − 4γ|K|(m + M) and non-negative values of γ, η, |K|,M,m,

when ∃K0, |K| < K0,∃η0, η > η0, and γ > 4(m+M)K0

η0
. Then,110

∂βL
∂η ≤ 0, ∂βL∂|K| ≥ 0, ∂βU∂η ≥ 0, ∂βU∂|K| ≤ 0

Proof. See Appendix.

3. Main Results

In this Section, several theorems are proposed suggesting some methods for estimating the order of nonlinear systems in the

most general case, i.e., multivariable nonlinear incommensurate time-varying order systems, with known pseudo-states and nonlinear115

commensurate time-varying order systems, with unknown pseudo-states.

Theorem 2. Consider x as the measurable response of the system C
0 D

α(t)x = f
(
x, u

)
with the initial condition x(0) = x0 and the

estimated signal x̂(t) = x0 +
∫ t

0
(t−τ)α̂(t)−1

Γ(α̂(t)) f(x(τ), u(τ))dτ . The order is differentiable, i.e., ∃M > 0, ‖α̇‖ ≤ M . The adaptation

rule ˙̂α = λ(x− x̂) makes the error α− α̂ get bounded within a finite time, where, λ = γsgn
(
∂zφ(t,β)
∂β |

β=α̂

)T
, φ(τ) = f(x(τ), u(τ)),

γ is a positive real design parameter, and sgn(.) is the sign function and sgn([a1 . . . an] = [sgn(a1) . . . sgn(an)]).120

Proof. Define η(t) =
∣∣∣∂zφ̂(t,β)

∂β |
β=α̂

∣∣∣. Obviously η(t) is non-negative for all t. Consider the Lyapunov function V = 1
2 (α − α̂)2.

According to Eq. 17 (with e(0) = 0, since x(0) = x̂(0));

V̇ = α̇(α− α̂)− λ(x− x̂)(α− α̂)

≤ |K||λ|‖α− α̂‖3 − λ∂zφ(t, β)

∂β
|
β=α̂
‖α− α̂‖2 +M‖α− α̂‖

= γ|K|‖α− α̂‖3 − γη‖α− α̂‖2 +M‖α− α̂‖

(21)
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After adding −d‖α − α̂‖ to both sides of (21), according to Lemma 4, V̇ < −d‖α − α̂‖ when βL = γη−
√

∆
2γ|K| < ‖α − α̂‖ <

γη+
√

∆
2γ|K| = βU , ∆ = γ2η2 − 4γ|K|(M + d). Supposing η > 0, there exists η0 > 0 such that η > η0. Also, |K| < MKT

3(= K0 in

Lemma 5). Therefore, defining ∆0 = γ2η2
0 − 4γMKT

3(M + d), based on Lemma 5, setting m = d, βL is ascending with respect to

|K| and descending with respect to η, hence βL ≤ γη0−
√

∆0

2γMKT 3 = BL. Furthermore, βU is ascending with respect to η and descending

with respect to |K|. Therefore, BU = γη0+
√

∆0

2γMKT 3 ≤ βU . Consequently, BL < ‖α − α̂‖ < BU → βL < ‖α − α̂‖ < βU ⇒ V̇ <125

−d‖α− α̂‖ = −d
√

2V
1
2 .

Obviously, BL, BU are constant and BU − BL =
√

∆0

γMKT 3 . Accordingly, large γ (i.e. γ > 4(M+d)MKT
3

η2
0

) ensures that BL < BU

certifying that the aforementioned interval exists.

It means that the set Sα̂ = {α̂, BL < ‖α − α̂‖ < BU} (which is never empty) is an invariant set for t ∈ [0 T ]. Hence, there

is a non-empty neighborhood around the actual order, α, where the trajectory would not leave this neighborhood in t ∈ [0 T ], also,130

since V̇ < −d
√

2V
1
2 the error ‖α − α̂‖ gets smaller and tends to its lower bound, BL. Also, since V̇ < −d

√
2V

1
2 < 0 in the above

interval, as soon as the trajectory escapes the interval ‖α − α̂‖ ≤ BL, it is pulled back inside. Accordingly, BL < ‖α0 − α̂(0)‖,

where, α0 − α̂(0) is the initial estimation error. Furthermost, the convergence time is finite, because;

V̇ < −d
√

2V
1
2 → V −

1
2 dV < −d

√
2dt→

∫ 1
2BL

2

1
2‖α0−α̂(0)‖2 V

− 1
2 dV < −d

√
2
∫ T1

0
dt→ T1 <

‖α0−α̂(0)‖2−B2
L

d

T1 is finite and its upper bound is positive. This means that the finite-time convergence of error to the bound ‖α − α̂‖ ≤ BL is135

guaranteed when T (and therefore γ) is set large enough in a way that T > T1.

Remark 1. γ > 4(M+d)MKT
3

η2
0

→ γ > 4(M+d)|K|
η2 , hence, ∆ is positive, βL, βU are real and βL < βU .

Remark 2. For the case η = 0 (which based on (15) may occur for some values of t satisfying ψ(β(t)) =
∫ t
0
ln(t−τ)(t−τ)β(t)−1φ(τ)dτ∫ t

0
(t−τ)β(t)−1φ(τ)dτ

)

it should be noted that the trajectory leaves the set {α̂ : η(t) = 0} because is not an invariant set (i.e. it does not satisfy ˙̂α = 0,∀t),

therefore it does not violate the convergence.140

Remark 3. γ is a very important design parameter. In fact, the boundedness of K requires temporal compactness, i.e. the results are

valid for T < ∞. Since the invariant set Sα̂ would be never empty, however, it requires γ to be set sufficiently large. Increasing T

(and, increasing γ after it) gives the error α− α̂ enough time to get its lower bound BL.

Also, limγ→∞BL = limγ→∞
γη0−

√
∆0

2γMKT 3η0
= limγ→∞

γη0−(γη0−2MK(M+d)T 3)
2γMKT 3η0

= limγ→∞
M+d
γη0

= 0. Hence, larger γ leads to

smaller estimation error.145

Theorem 2 proposes an adaptation rule for order estimation of nonlinear non-integer order systems whose pseudo-states are

available. In Theorem 3, the results are extended to the incommensurate multivariable case.

Theorem 3. (Order Estimation in Multivariable Incommensurate Order Case) For the system described in Eq. (5) with ‖ ˙̄α(t)‖ ≤M ,

the adaptation rules ˙̂αi = λi(xi − x̂i), i = 1, ..., n, with the following definitions lead to a finite-time bounded error for all the

estimated orders.

φi(τ) = fi(x1(τ), ..., xn(τ), u(τ))

λi = γisgn
(∂zφi(t, β)

∂β
|
β=α̂i

)
, γi > 0

x̂i = xi(0) +
1

Γ(α̂i(t))

∫ t

0

(t− τ)α̂i(t)−1φi(τ)dτ

(22)
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Figure 1: The actual and estimated order and state for the integer order system (23)

Proof. Changing the Lyapunov function to V = 1
2

n∑
i=1

Vi, Vi = (αi − α̂i)2, the proof would be similar to the proof of the former

theorem.

Therefore, an adaptive order estimator is designed. As discussed before, the proposed method is somehow able to verify if a

system is of non-integer order. Figure 1 indicates the convergence of the estimated order to 1, albeit with a bounded error, when the

case study is the integer order system ẋ = −x3 + u with zero initial condition, x(0) = x̂(0) = 0 and, u = sin(0.5t), α̂(0) = 0.5.

As mentioned, the order is a function of time all over the paper. In fact, in this example it is considered as 1(t). In general, the above

theorem provides an approach for estimating the order of nonlinear multivariable incommensurate order systems. Figures 2 and 3

show the simulation results considering the following case study:

C
0 D

ᾱ(t)x = F
(
x, u

)
, ᾱ(t) =

(
0.7−0.2e−0.02tsin(0.3t)

0.45e−0.1t+0.2

)
x(0) = x̂(0) =

(
0.1
−0.2

)
, α̂(0) = ( 0.2

0.2 )

u(t) = 1− e−0.1t + sin(t)

F (x, u) =
(

−x1+u
−x1cos(x2)−0.2u

)
(23)

Figure 2 shows that the order estimator (22) efficiently works and leads to bounded error and Figure 3 shows the convergence of150

x̂→ x.

As long as the pseudo-states are available, the method presented in Theorem 3 works for all systems. However, when the pseudo-

states are not available, in addition to the order adaptation rule, a pseudo-state observer is needed, as well. In this case, the stability

proof should be given for the coupled order/pseudo-state observer. Based on Corollary 1, stability of an integer order system with

Lyapunov function of the form 1
2x

TPx, P > 0 leads to stability of its non-integer order equivalent. In this regard, as long as the order155
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Figure 2: The original and estimated orders for system (23). top: α1, bottom: α2
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Figure 3: The actual and estimated pseudo-states for system (23). top: x1 vs. x̂1, bottom: x2 vs. x̂2

is known, most of the traditional state observers work in the non-integer order world. However, what it would be with unknown order?

The stability must be proven when the order estimator is also included. The following lemmas and theorems prove that the traditional

observers can be extended to order/pseudo-state estimators for the non-integer order case with an appropriate order adaptation rule.

After proving some lemmas, the high gain observer is studied, as an important nonlinear observer.

Lemma 6. Consider the systems C0 D
β(t)e1 = Ae1 + δ(e1) + v and C

0 D
β(t)e2 = Ae2 + v. A is Hurwitz and ‖δ(e1)‖ < c‖e1‖ for160

small enough c > 0. If v is bounded; 1. e2 is bounded. 2. ‖e1 − e2‖ is bounded.

Proof. Since A is Hurwitz, the positive definite Q exists such that A+ AT = −Q. Consider the Lyapunov function W = 1
2e
T
2 e2 for

the second system. Then,

C
0 D

β(t)W ≤ eT2 C0 Dβ(t)e2 ≤ −eT2 Qe2 + ‖e2‖‖v‖ = −‖e2‖2‖Q‖+ ‖e2‖‖v‖ (24)

Therefore, as ‖e2‖ escapes the bound ‖v‖‖Q‖ right hand side of (24) would be negative and the trajectory would be pulled back. Hence,

e2 is bounded in the bound ‖e2‖ < ‖v‖
‖Q‖ . Since v is bounded, ∃M ; ‖v‖ < M , so, ‖e2‖ < M

‖Q‖ and this proves part 1.

Now, define ζ = e1 − e2. Hence, C0 D
β(t)ζ = Aζ + δ(e1). Consider the Lyapunov function V = 1

2ζ
T ζ. Consequently;

C
0 D

β(t)V ≤ ζT C0 Dβ(t)ζ

= −ζTQζ + ζT δ(ζ + e2) ≤ −ζTQζ + ζT c‖ζ + e2‖

≤ −‖ζ‖2‖Q‖+ c‖ζ‖2 + c‖ζ‖‖e2‖

≤ −‖ζ‖2(‖Q‖ − c) + c
M

‖Q‖
‖ζ‖

(25)

11



Consequently, for c < ‖Q‖, outside the bound ‖ζ‖ > cM
‖Q‖(‖Q‖−c) the last term in (25) is negative. Therefore, ζ would remain in the

bound ζ < cM
‖Q‖(‖Q‖−c) . It can be concluded that the error bound can be small enough by increasing ‖Q‖, which is in turn, in direct

relation with the absolute value of the eigenvalues of A.

Lemma 7. When A is Hurwitz,165

1. The system C
0 D

β(t)e = Ae+ v, e(0) = e0 as t→∞ is equivalent to C
0 D

β(t)e = v, e(0) = 0.

2. The signal e defined as e = e0 + 0I
β(t)
t (Ae) + w,w(0) = 0. tends to w as t tends to∞.

Proof. 1. In the first system, e is the summation of the responses of C0 D
β(t)e = Ae, e(0) = e0 and C0 D

β(t)e = v, e(0) = 0. According

to Corollary 2, the first part tends to 0 as t→∞, therefore, the main response tends to the second part.

2. Based on the Volterra equivalent integral (equation (6)) and considering (4), after applying the operator C0 D
β(t) on both sides of170

the integral equation mentioned in part 2, we have C0 D
β(t)e = Ae + v, e(0) = e0, where v = C

0 D
β(t)w. Now, part 1 implies that as

t→∞ the system is equivalent to C
0 D

β(t)e = v, e(0) = 0. We have also w(0) = 0 leading to C
0 D

β(t)(e−w) = 0, e(0)−w(0) = 0,

which results to e− w = 0, t→∞.

Corollary 3. If e = 0I
β(t)
t (Ae+ δ) +w,w(0) = 0 with ‖δ‖ < c‖e‖, as t→∞, ∃µ, ‖e−w‖ < µ and µ is related to the eigenvalues

of A.175

Proof. The above relationship is equivalent to the system C
0 D

β(t)e = Ae + δ + C
0 D

β(t)w. Comparing with the system C
0 D

β(t)e′ =

Ae′ + C
0 D

β(t)w as t → ∞; e′ → w, also, ∃µ : ‖e − e′‖ < µ, therefore, ‖e − w‖ < µ. Additionally, based on Lemma 6, while the

eigenvalues of A are far enough from the imaginary axis µ can be adjusted small enough.

Theorem 4. (High Gain Order/Pseudo-State Estimator) Consider the following system for t ∈ [0 T ], suppose that ∃M, ‖α̇‖ < M .


C
0 D

α(t)
t x1 = x2

C
0 D

α(t)
t x2(t) = f(x, u)

y(t) = x1

(26)

f(., .) is Lipschitz with respect to its first argument, i.e. ∃c, ‖f(x, u) − f(x̂, u)‖ < c‖x − x̂‖. The following equations with high

enough gains h1, h2 lead to a bounded estimation error for both pseudo-states and order within a finite time.


C
0 D

α̂(t)
t x̂1 = x̂2 + h1(x1 − x̂1)

C
0 D

α̂(t)
t x̂2(t) = f(x̂, u) + h2(x1 − x̂1)

˙̂α = γ sgn
(∂zφ̂1

(t, β)

∂β
|
β=α̂

)
(x1 − x̂1), γ > 0

φ̂1(τ) = x̂2 + h1(x1 − x̂1)

(27)
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Proof. Using 26;

x1 = x1(0) +
1

Γ(α(t))

∫ t

0

(t− τ)α(t)−1x2(τ)dτ

x2 = x2(0) +
1

Γ(α(t))

∫ t

0

(t− τ)α(t)−1f
(
x(τ), u(τ)

)
dτ

x̂1 = x̂1(0) +
1

Γ(α̂(t))

∫ t

0

(t− τ)α̂(t)−1
(

(x̂2(τ) + h1(x1 − x̂1)
)
dτ

x̂2 = x̂2(0) +
1

Γ(α̂(t))

∫ t

0

(t− τ)α̂(t)−1
(
f
(
x̂(τ), u(τ)

)
+ h2(x1 − x̂1)

)
dτ

(28)

Now, define e = [ε1 ε2]T , ε1 = x1 − x̂1, ε2 = x2 − x̂2. Hence, (28) is rewritten as

ε1 = ε1(0) + 0I
α(t)
t x2 − 0I

α̂(t)
t

(
x̂2 − h1(x1 − x̂1)

)
ε2 = ε2(0) + 0I

α(t)
t f(x, u)− 0I

α̂(t)
t

(
f(x̂, u)− h2(x1 − x̂1)

) (29)

Adding and subtracting 0I
α(t)
t

(
x̂2 − h1(x1 − x̂1)

)
and 0I

α(t)
t

(
f(x̂, u)− h2(x1 − x̂1)

)
to the above equalities, respectively, defining

φ̂2 = f(x̂, u+ h2(x1 − x̂1)), and considering Lemma 2, (29) yields

ε1 = ε1(0) + 0I
α(t)
t

(
− h1ε1

)
+ 0I

α(t)
t ε2 + (α− α̂)

∂zφ̂1(t,β)

∂β

∣∣
β=α̂

+K1(t)(α− α̂)2

ε2 = ε2(0) + 0I
α(t)
t

(
f(x, u)− h2ε2 − f(x̂, u)

)
+ (α− α̂)

∂zφ̂2
(t, β)

∂β

∣∣
β=α̂

+K2(t)(α− α̂)2

(30)

By defining

A =

−h1 1

0 −h2

 , δ =

0

1

(f(x, u)− f(x̂, u)
)
, w =

w1

w2


w1 = (α− α̂)

∂zφ̂1(t,β)

∂β

∣∣
β=α̂

+ (α− α̂)2K1(t)

w2 = (α− α̂)
∂zφ̂2

(t, β)

∂β

∣∣
β=α̂

+ (α− α̂)2K1(t)

(31)

equation (30) can be rearranged to

e = e(0) + 0I
α(t)
t (Ae+ δ) + w (32)

where, in (31) and (32), ‖δ‖ < c‖e‖ and the eigenvalues of A can be arbitrarily set by adjusting the design parameters h1, h2.

According to Corollary 3, e → w (and ε1 → w1) with a bounded error. Both the error bound and the convergence rate can be set

small by setting the eigenvalues of A far enough from the imaginary axis, i.e., for arbitrarily chosen ε0 > 0 there exists T0 such that

‖ε1 −w1‖ < ε0 for t > T0. If the design parameters h1, h2 are adjusted high enough ensuring T0 << T , then ‖ε1 −w1‖ ≈ 0 almost

everywhere on t ∈ (0 T ].
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Now, define V (α̂) = 1
2 (α− α̂)2 and η(t) =

∣∣∣∂zφ̂1
(t,β)

∂β |
β=α̂

∣∣∣. Therefore, considering (27)

V̇ (α̂) = α̇(α− α̂)− γsgn
(∂zφ̂1

(t, β)

∂β
|
β=α̂

)
ε1

≤

(
γε0 +M

)
‖α− α̂‖ − γη(α− α̂)2 + γ‖K1(t)‖‖α− α̂‖3

(33)

According to Lemma 3, ∃M1, ‖K1‖ < M1T
3. Also, suppose that η > η0. Considering ∆0 = γ2η2

0 − 4γM1T
3(M + d + γε0),

∆ = γ2η2 − 4γ|K1|(M + d+ γε0), consequently, V̇ < −dV 1
2 in the interval

βL =
γη −

√
∆

2γ|K1|
< ‖α− α̂‖ < γη +

√
∆

2γ|K1|
= βU (34)

Based on Lemma 5 with m = γε0 + d, βL ≤ γη0−
√

∆0

2γM1T 3 = BL and BU = γη0+
√

∆0

2γM1T 3 ≤ βU . Therefore, {α̂, BL < ‖α− α̂‖ < BU} is

an invariant set when γ > 4M1T
3(M+γε0+d)
η2

0
⇒ γ > 4M1T

3(M+d)
η2

0−4M1T 3ε0
. Hence, within a finite time T1 <

‖α0−α̂(0)‖2−B2
L

d , ‖α − α̂‖ tends180

to 2(M+d)
γη0

+ 2ε0
η0

for γ > max{0, 4M1T
3(M+d)

η2
0−4M1T 3ε0

}.

Remark 4. Consider (27). Obviously, in developing the dynamic of x̂ the variables x̂1, x̂2 are involved, with the order α̂, which

are all available estimated values. In the third equation, which estimates the order, the variable x1 is the output of the main system

(y = x1) and measurable. Based on (14), in calculating
∂zφ̂1

(t,β)

∂β |
β=α̂

, as the term is evaluated at β = α̂, only φ1 and α̂ are required,

where, α̂ is available and, according to the fourth equation. Finally, φ1 can be calculated using x̂ and y = x1.185

Remark 5. γ, ε0 are design parameters. Setting γ large and ε0 small guarantees the invariant set in (34) to be non-empty, also,

results in small order estimation error.

Remark 6. This method can be directly extended to the case in which x1, x2 are both vectors.

Remark 7. Here, the high gain observer is extended to high gain order/pseudo-state estimator as an example for nonlinear observers.

The key to design the order/pseudo-state estimator is equation (32) leading to e1 ≈ (α − α̂)
∂zφ̂1(t,β)

∂β

∣∣∣
β=α̂

+ (α − α̂)2K1(t). In this190

regard, traditional observers whose error can be interpreted in similar way have the potential to be extended to an order/pseudo-state

estimator for the non-integer order equivalent system with an appropriate definition for φ1 in (27).

Figure 4 depicts the proposed simultaneous order and pseudo-states estimator in a block diagram. When the pseudo-states are

available, the estimation system is reduced to the block diagram shown in Figure 5.

Comparing two methods, as long as the pseudo-states are available, the method efficiently works for any system, including linear195

or nonlinear, scalar or multivariable, constant or variable order. However, when the pseudo-states are unknown, the proposed method

can estimate order and pseudo-states simultaneously, however, the system must be of commensurate order. Also, there must be an

observer with Lyapunov function of the form 1
2x

TPx, P > 0 which is able to estimate the states of the traditional integer-order

equivalent of the system.

The proposed method is utilized to estimate the order and the pseudo-states of system (35). There is also an additive measurement200
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white Gaussian noise on the output.


C
0 D

α(t)
t x1 = x2

C
0 D

α(t)
t x2(t) = −x1sin(x2) + 2u

α(t) = 0.35e−0.1t(cos(0.3t) + 0.7)

y(t) = x1 + n,

n ∼ N(0, 10−2)

u = 1− e−0.1tsin(0.6t)

x(0) = ( 0.5
0.5 ) , x̂(0) = ( 0.1

0.1 ) , α̂(0) = 0.85

(35)

The design parameters are considered as h1 = 20 and h2 = 200 and γ = 0.5.

Figure 6 shows that the method effectively estimates the order and pseudo-states with an acceptable error, even with noisy mea-

surement. Although theory warns to set γ very large, however, simulations work even with γ = 0.5, implying that theory may be too

conservative.205

4. Conclusion

The paper proposes some methods for estimating the order, mainly focusing on the most general case, i.e. the system with time-

varying order. After proving some lemmas and theorems, the main results are presented step by step. First, the scalar case with the

available pseudo-states was solved. Then, the method was extended to the multivariable case and some simulation studies verified

the effectiveness of the order estimator. Afterward, the pseudo-states were considered unknown. It was claimed that the traditional210

observers can be extended in appropriate ways to estimate the pseudo-states of a non-integer order system with unknown order and

pseudo-states to build a pseudo-state/order estimator. The idea was proven for the high gain observer as a prevalent case study. It

was also claimed that all other integer order state observers whose convergence is proven using a Lyapunov function of the form
1
2x

TPx, P > 0 can be used instead of the high gain observer by making some minor changes in the order adaptation rule.

As a possible future work, the proposed order estimation methods can be improved by considering the incommensurate order case215

with unknown pseudo-states. Also, to decrease the effect of the initial estimation value and reaching to global stability, the methods

may be enhanced by enlarging the domain of attraction. The method may be generalized to be capable of estimating the order, the

pseudo-states, and the parameters of the incommensurate variable order systems, as the most general case of dynamical systems. Also,

the methods are useful for a vast variety of systems e.g. viscoelastic behavior, soft tissue deformation, etc. to determine if they are of

integer or non-integer order and to estimate their order and pseudo-states.220

5. Appendix

Proof of Lemma 3:

Due to continuity of φ and |φ|, it certainly has a bound (Mφ) in [0 T ]. The functions Γ(.), ψ(.), and ψ′(.) = dψ(β)
dβ are bounded

for 0 < β < 1 and H ≥ 0. Also, ∃κ0 > 0⇒ |tlnt| ≤ κ0t
2, because − 1

e ≤ tlnt ≤ t2, also, ∃κ1 > 0, |tln2t| < t3. Furthermore, the

integrals
∫ t

0
|H|dτ ,

∫ t
0
|ln(t− τ)H|dτ and

∫ t
0
|ln2(t− τ)H|dτ all exist and225
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Figure 6: The actual and estimated order, output and pseudo-states using order/pseudo-state estimator for the noisy system (35). top left: α vs. α̂, top right: y vs. ŷ,
bottom: x vs. x̂
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∫ t

0

|H|dτ =

∫ t

0

Hdτ =
tβ(t)

β(t)Γ
(
β(t)

) ⇒ ∃A0 > 0,

∫ t

0

|H|dτ ≤ A0t

∫ t

0

|ln(t− τ)H|dτ =


tβ(t)(1−β(t)ln(t))

β2(t)Γ
(
β(t)
) , t ≤ 1

tβ(t)(β(t)ln(t)−1)+2

β2(t)Γ
(
β(t)
) , t > 1

⇒ ∃B0, C0, D0 > 0,

∫ t

0

|ln(t− τ)H|dτ ≤ B0 + C0t+D0t
2

∫ t

0

|ln2(t− τ)H|dτ =
tβ(t)

(
1 + β2(t)ln2(t)− 2β(t)ln(t)

)
β3(t)Γ(β(t))

⇒ ∃E0, F0, G0 > 0,

∫ t

0

|ln2(t− τ)H|dτ ≤ E0t+ F0t
2 +G0t

3

Note that K(t) =
∫ t

0
∂2H(τ,t,β)

∂β2 |
β=α0

φ(τ)dτ , and,

∂2H
∂β2 = −ψ′(β)H + ψ2(β)H − 2ψ(β)ln(t− τ)H + ln2(t− τ)H

Therefore,230

|K(t)| ≤
∫ t

0

∣∣∂2H(τ,t,β)
∂β2 |

β=α0
|φ(τ)|dτ ≤Mφ

(
(|ψ|+ ψ2)A0t+ 2|ψ|(B0 + C0t

2) +D0 + E0t
2 + t3

)
Accordingly, for t ≤ T , ∃MH > 0 such that |K| ≤MφMHt

3 < MφMHT
3 ≡MKT

3 proving the lemma.

Proof of Lemma 5:

First, it should be noted that γ > 4K0(m+M)
η2

0
→ γ > 4|K|(m+M)

η2 → ∆ > 0. Also, ∆η = ∂∆
∂η = 2γ2η, ∆|K| = ∂∆

∂|K| =

−4γ(m+M).235

The first partial derivation is ∂βL
∂η =

(γ− ∆η

2
√

∆
)

2γ|K| , and,

∆ ≤ γ2η2 →
√

∆ ≤ γη → γη√
∆
≥ 1→ 1− γη√

∆
≤ 0→ γ − 2γ2η

2
√

∆
→ γ − ∆η

2
√

∆
→ ∂βL

∂η
≤ 0.

The second term is positive because:240
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∂βL
∂|K|

=

−∆|K|

2
√

∆
(2γ|K|)− 2γ(γη −

√
∆)

4γ2|K|2η2
=

−∆|K|√
∆
|K| − 2γη + 2

√
∆

4γ|K|2η2

4(m+M)2|K|2

η2
≥ 0

→ γ2η2 − 4γ|K|(m+M) ≤ γ2η2 − 4γ|K|(m+M) + 4(m+M)2|K|2

→ ∆ ≤ (γη − 2(m+M)|K|
η

)2 (I)

γη >
4(m+M)|K|

η
≥ 2(m+M)|K|

η
→ (γη − 2(m+M)|K|

η
) > 0 (II)

(I), (II)→
√

∆ ≤ γη − 2|K|(m+M)→ −
√

∆ + γη − 2|K|(m+M)

η
≥ 0

→ −2γη
√

∆ + 2γ2η2 − 4|K|(m+M)γ ≥ 0

→ 4γ(m+M)|K| − 2γη
√

∆ + 2(γ2η2 − 4|K|(m+M)γ) ≥ 0

→ 4γ(m+M)|K| − 2γη
√

∆ + 2∆ ≥ 0

→ 4γ(m+M)|K|√
∆

− 2γη + 2
√

∆ ≥ 0→
−∆|K|√

∆
− 2γη + 2

√
∆ ≥ 0

→ ∂βL
∂|K|

≥ 0

∂βU
∂η =

γ+ γ2η√
∆

2γ|K| which is obviously positive. Also, ∂βU∂|K| =

∆|K|√
∆
|K|−2γη−2

√
∆

4γ|K|2 , and

− 4γ(m+M)|K| − 2γη
√

∆− 2∆ ≤ 0

→ −4γ(m+M)|K|√
∆

− 2γη − 2
√

∆ ≤ 0

→
∆|K||K|√

∆
− 2γη − 2

√
∆ ≤ 0→ ∂βL

∂|K|
≤ 0
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