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Abstract: A nonlinear robust adaptive bilateral impedance controller is proposed to provide the absolute stability of multi-
DOF teleoperation systems with communication delays, in addition to the force and position tracking performance. The 
proposed controller realizes two desired (or reference) impedance models for the master and slave robots using a new 
nonlinear robust version of the Model Reference Adaptive Control (MRAC) scheme. Using the absolute stability criterion, 
the robustness condition of the teleoperation system against communication delays is obtained, resulting in suitable 
adjustments of parameter values in the desired impedance models. In addition, using the Lyapunov stability theorem, the 
tracking performance of the master and slave robots and the robustness of the proposed controller against parametric and 
bounded unstructured modeling (non-parametric) uncertainties are proven. The performance of the proposed nonlinear 
bilateral controller is investigated by performing some experiments on nonlinear multi-DOF telerobots with and without 
communication delays. 
 

1. Introduction 

In recent years, teleoperation systems have been 

widely used in many applications such as minimally 

invasive telesurgery [1, 2], telerehabilitation [3, 4] and 

telesonography [5]. Different control methods have been 

suggested for (1-DOF) linear teleoperation systems [1, 6-10]. 

Among them, the 4-channel control architecture is one of 

the most successful that provides transparency [1]; however, 

this control strategy requires the exact mathematical models 

of the master and the slave robots.  

In practical settings, multi-DOF nonlinear robotic 

systems must be utilized instead of one-DOF linear ones. 

Accordingly, adaptive controllers [11, 12] have been 

developed for nonlinear master and slave dynamics 

assuming linear operator and environment dynamics. To 

synchronize the positions of robots with a communication 

delay, PD [13], adaptive [14, 15] and feedback linearization-

based [16] controllers have been proposed. 

To achieve both of the position and force tracking 

performances (transparency) in a multi-DOF system, Ryu 

and Kwon [17] have developed a nonlinear adaptive 

controller, which was modified by Liu and Tavakoli [18]. A 

disturbance observer-based bilateral control method  has 

been presented in [19], which could provide transparency 

condition in the presence of slow-varying disturbances. 

Moreover, Hashemzadeh et al. [20] have recently suggested 

a PD control law together with gravity compensation for 

multi-DOF teleoperation system subjected to time delays.  

Recently, some advanced robust/adaptive controllers 

have been developed for the position and force control of 

bilateral and multilateral teleoperation systems. For instance, 

a new wave-variable-based nonlinear adaptive control 

strategy with four channels has been designed in [21, 22] to 

improve the system transparency. The wave variables have 

been combined with neural networks in [23] to compensate 

for the effects of delays and system uncertainties. In order to 

have a finite-time position synchronization performance, the 

terminal sliding mode (TSM) control approach has been 

extended in [24] for bilateral teleoperation systems having 

constraints on the position error. In another work [25], a 

switching robust control method has been suggested to use 

multiple robust control laws scheduled based on estimation 

of the environment stiffness. Similarly, an adaptive robust 

multilateral controller has been presented in [26], where the 

interaction force of environment should be estimated. 

However, designing the controller structure based on an 

estimation from the environment dynamics may be 

challenging due to the fast variation and/or non-

deterministic behaviour of some environments.  

Using the impedance/admittance control theory [27-

30], some interactive tasks, which cannot be performed well 

by pure position or force control, can be executed by a 

single robot. The impedance control of linear 1-DOF 

bilateral teleoperation systems has been employed in [31-33]. 

In the present work, a new nonlinear Bilateral Model 

Reference Adaptive Impedance Controller (BMRAIC) is 

developed that has the following novel characteristics: 

1)  Instead of previous nonlinear bilateral controllers with 

position and force tracking control laws, the impedance 

(virtual dynamics) of the teleoperation system is controlled 

in this study by enforcing two reference impedance models 

for the master and slave robots. This strategy causes that one 

control objective (impedance adjustment) is pursued for 

each of master and slave robots. However, two objectives 

(position and force tracking) were followed simultaneously 

for each robot in previous works, which were hard to be 

achieved.  

2)  While the dynamics of multi-DOF teleoperation system 

and the structure of the proposed controller are nonlinear, 

the absolute stability of the two-port teleoperation system in 

the presence of bounded time delays is proven. Also, the 
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convergence of the master and slave trajectories to their 

desired impedance model responses is proven in a Lyapunov 

framework. Note that in the previous bilateral position and 

force tracking controllers [17, 18, 34] for nonlinear systems, 

only the tracking error convergence to zero was proven and 

the absolute stability was not guaranteed in the presence of 

communication delays. It should be mentioned that the 

absolute stability of a two-port network guarantees the 

stability of the coupled system connected to two passive 

terminations [35]. This stability criterion can show the 

instability of the whole teleoperation systems due to the 

bilateral communication delays between its two ports.  

3)  Some guidelines and admissible ranges are obtained for 

choosing the parameters of the two impedance models from 

the absolute stability analysis such that the closed-loop 

system stability becomes robust against time delays. 

4) The proposed bilateral controller is robust against 

parametric (structured) uncertainties of the system (via 

employing adaptation laws) and bounded non-parametric 

(unstructured) uncertainties (using robust terms).  

In the previous nonlinear bilateral adaptive 

controllers (such as those in [17, 18]), force tracking was 

achieved only when the estimation of nonlinear dynamic 

parameters converged to the real values (persistent 

excitation conditions). However, both of position and force 

tracking goals can be obtained simultaneously in this paper 

without any requirement on the system parameter 

identification. 

As a result of employing the proposed bilateral 

impedance controller, a trade-off between the absolute 

stability and transparency of the teleoperation system is 

obtained when communication channels have time delays. 

Accordingly, the performed experiments show that the 

appropriate transparency is achieved in the absence of time 

delays; however, this transparency is attenuated in the 

presence of delays due to the specific impedance adjustment 

required for the absolute stability. 

 

2. Nonlinear Dynamic Model of a Multi-DOF 
Teleoperation System  

 

The nonlinear model of an n-DOF teleoperation 

system (master and slave robots) with parametric (structured) 

and non-parametric (unstructured) uncertainties is expressed 

in the joint space as [36]: 
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where 
m

q  and 
1


n

s
q  are the joint positions, ,

( )
mmq

qM  

and ,
( )




s s

n n

q
qM  are the inertia matrices, ,

( , )
m mmq

q qC  and 

,
( , )




s ss

n n

q
q qC  represent the Coriolis and centrifugal 

terms, ,
( )

mmq
qG  and 

1

,
( )




s

n

sq
qG  are the gravity terms, 

,
( )

mmq
qF  and 

1

,
( )




s

n

sq
qF  are the friction torques, and m

τ  

and 
1


n

s
τ  are the vectors of the control torques for the 

master and the slave robots, respectively. Also, h
τ  and 

1


n

e
τ  are the external torques that the human operator 

applies to the master robot and the slave robot applies to the 

environment, respectively. The vectors of bounded (non-

parametric) unstructured modeling uncertainties and/or 

bounded exogenous disturbances in the system are denoted 

by ,mq
d  and ,sq

d  for the master and the slave, respectively. 

Then, the robots end-effectors’ equations of motion in the 

Cartesian space are expressed as 
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where m
x  and 

1


p

s
x  are the Cartesian coordinates of 

the master and slave robots’ end-effectors, respectively. 
h

f  

and 
1


p

e
f  are the external interaction forces that the 

operator applies to the master robot and the slave robot 

applies to the environment, respectively. 
,mx

d  and 
,sx

d  are 

also the bounded non-parametric modeling uncertainties 

and/or disturbances in the Cartesian space representation (3) 

and (4). Note that since the master and slave robots are 

considered to be non-redundant, the number of Cartesian 

coordinates (elements of 
1


p

i
x ) is the same as the 

number of the joint variables (elements of
1


n

i
q ), i.e.,

p n . Using the subscript i m  for the master and i s  

for the slave, the relations between the matrices of dynamic 

models in the joint space ((1) and (2)) and the Cartesian 

space ((3) and (4)) with non-singular Jacobian matrices 

( )
i i

J q  are: 
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with the following properties [34, 36, 37]: 

Property 1. ,
( )

iix
qM  is symmetric and positive definite. 

Property 2.  , ,
( ) ( , )2

i i ii i


x x
q q qM C  is skew symmetric. 

Property 3. The left side of (1) and (2) can be linearly 

parameterized as 
 

, , , , , ,

, , , ,

,( ) ( ) ( ) ( )

( , , , )

i i i i i

i i

i i i i i i

i i i i

  



q 1 q 2 q q

q 1 2 q

q q q q qM φ C φ G F

Y φ φ q q α
(6) 

 

where ,iq
α  is the vector of unknown parameters of the 

robot. The regressor matrix ,iq
Y  contains known functions 

[36] in terms of the vectors ,i1
φ  and ,i2

φ . 

The main problem considered in this work is 

nonlinear impedance control of master and slave robots 
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(modelled in Eqs. (3) and (4)) such that position 

synchronization and force reflection are achieved; however, 

one control objective is pursued for each robot. Moreover, 

the absolute stability of the whole teleoperation system is 

provided in the presence of communication delays by 

adjustment of the impedance models.  

 

3. Nonlinear Robust Adaptive Bilateral Impedance 
Control  

 

An overview of the teleoperation system including 

the communication channels with bounded delays of 1
T  and 

2
T  are illustrated in Fig. 1. The input and output signals of 

the communication channels are related as 
 

1 1

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

d d
m m m m

d d
h h e e

T T

T T

t t t t

t t t t

 

 

 

 

x x x x

f f f f
(7) 

 
 

 
 

Fig. 1.  The transmission of signals using delayed 

communication channels.  

 
 

3.1. Desired Reference Impedance Models of 
Master and Slave 

 

The reference impedance model of the master is 

defined as 
 

mod mod fm m

d

m m h em c k  x x f f  (8) 
 

where modm
x  is the response (position) of the master 

reference impedance model. The measured generalized 

interaction forces h
f  and 

d
ef  are the inputs of the master 

impedance model (8), and fk  is the force scaling factor. 

Also, m
m  and m

c  are the desired virtual mass and damping 

coefficients of the master reference (impedance) model, 

respectively. 

The reference impedance model of the slave is 

expressed as 
 

mod mod mods s ss s s em c k   x x x f  (9) 
 

where mod mod p
 

d

ms s
kx x x  is the error of the slave 

reference impedance model’s response with respect to the 

scaled master position and p
k  is the position scaling factor. 

s
m , s

c  and s
k  are the desired virtual mass, damping, and 

stiffness coefficients of the slave reference (impedance) 

model. It should be mentioned that using Eq. (9), the 

acceleration (
d

m
x ) of master robot is required to obtain the 

desired slave reference model acceleration ( mods
x ). Since 

the measurement of the master robot acceleration (
d

m
x ) is 

prone to noise, it is estimated from Eq. (8) considering 1
T  

as the time delay for all signals: 
 

 1 1

f mod
ˆ

m m m m

d d dd d

m h em k m c 
  x f f x  (10) 

 

where 
1 1 2

( ) ( ) ( )    
dd d

e e e
T T Tt t tf f f  has 1 2

T T  time delay. 

The proposed bilateral impedance control strategy 

can satisfy the position tracking and force reflection goals 

by an adjustment of the parameters in two reference 

impedance models (9) and (8), respectively. In the master 

reference model (8), the human operator can control 

smoothly the desired position, velocity and acceleration 

( modm
x , modm

x  and modm
x ) that are tracked by the master 

robot via applying his appropriate force h
f  on this robot. 

Since the generated master acceleration and velocity ( modm
x

and modm
x ) are not too large in common operations, the left 

side of (8) becomes small by choosing sufficiently small 

values for the impedance parameters m
m  and m

c . 

Accordingly, the right side of (8) should also be small 

( f
( ) 0 

d

h e
kf f ); thus, the force reflection performance is 

achieved. However, if the human operator or the 

environment applies sudden large forces ( h
f  or 

d

e
f ) that 

generate large desired acceleration and velocity ( modm
x and

modm
x ), the force tracking error f

( )
d

h e
kf f  at the right side 

of (8) increases. Since the slave-environment interaction 

force  e
f  at the right side of (9) is bounded, the left side of 

Eq. (9) is also bounded. Consequently, employing large 

values for the slave impedance parameters ( s
m , s

c and s
k ) 

in the left side of (9), the tracking error mods
x becomes small, 

and the position tracking performance ( mod p


d

ms
kx x ) is 

obtained. 
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3.2. Nonlinear Robust Adaptive Control Laws 

 

The architecture of the proposed nonlinear bilateral 

impedance controller is shown in Fig. 2. 
 

 
 

Fig. 2.  Architecture of the nonlinear bilateral impedance 

controller.  
 

The nonlinear robust adaptive control laws of the 

master and slave are developed according to the new 

nonlinear MRAIC scheme presented in [30] for one robot. 

The parameters of the master and slave reference impedance 

models (8) and (9) have the following properties: 
 

 1 0 m mm c  ,   1 0 s sm c  ,   1 0 s sm k  (11) 
 

In the MRAIC scheme, the controller benefits from 

the characteristics of the reference model [30]. Thus, 

according to the reference impedance models dynamics (8) 

and (9), and using their property (11), the sliding surfaces 

are designed as 
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where 
2,m
  is a positive constant parameter. 

mod
 

mm m
x x x  and 

mod
 

ss s
x x x  are the master and slave 

position errors with respect to the responses of their 

impedance models (8) and (9). The reference velocities are 

also expressed as 
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Such that ,
 

m m mr
s x x  and ,

 
s s sr

s x x . Now, the 

nonlinear Bilateral Model Reference Adaptive Impedance 

Control (BMRAIC) laws are defined in Cartesian space as 
 

 

  

1

2,

,
1

f 3,

, , , ,

( )

( , ) ( ) ( ) ( )

ˆ

ˆ ˆ ˆ sgn






    

  

  
 
 
 

m

m m m m m

m m m m m

m
d

m h e m m

m m m m h m

m

m c

m k







x

x r x x

q

q q q q s

x x
M

f f s

C x G F f

f
(14) 

  

  

  

p

1

p

1

, p

1

3,

, , , ,

( )

( , ) ( ) ( )

ˆ

ˆ

ˆ ˆ ˆ sgn( )









 

  

    





 
 
 
  
 

s

s s s s

d d

m s s s m

d

s s s s m

s e s s

s s s s e s s

s

k m c k

m k k

m 



x

x r x x

q

q q q q

x x x

M x x

f s

C x G F f s

f
 (15) 

 

Accent   denotes the estimated values of matrices, vectors 

and scalars. 3,m
 , 3,s

 , m
  and s

  are positive constants.  

The actual control inputs of the robots (applied in the joint 

space through motor torques) are obtained in terms of joint 

space matrices and vectors using (5) in (14) and (15) and 

Property 3: 
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3.3. Closed-loop Dynamics of the Teleoperation 
System 

 

By replacing the control laws (14) and (15) in the 

teleoperation system dynamics (3) and (4), one obtains: 
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where , , ,
ˆ 

m m mq q q
α α α  and , , ,

ˆ 
s s sq q q

α α α  are the error 

vectors of the master and slave parameter estimations, 

respectively. Replacing the time derivatives of sliding 

surfaces (12) in the left side of (19) and (20) yields the final 

closed-loop dynamics of the teleoperation system: 
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 p

, 3, , , , ,
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3.4. Tracking Convergence Proof and Adaptation 

Laws 
 

In order to prove the master and slave tracking 

convergence ( mod


mm
x x , mod


ss

x x ), a positive definite 

Lyapunov function candidate is proposed as 
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where m
Γ  and s

Γ  are symmetric positive definite matrices. 

The time derivative of V is found by employing the final 

closed-loop dynamics (21) and (22), as 
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



T T

m m m m s s s s

T T

m m m m s s s s

T T T

m m m m m m m m

T T T d d

s m s s s s m m

T T T

s s s s m m m s s s

tV

k

 





x x

x x x x

q q x

q q x

x q q q q

s M s s M s

s M C s s M C s

s J Y α s d s

s J Y α s M x x

s d s α Γ α α Γ α

 (24) 

 

Now, the parameter adaptation laws are defined as 
 

1

, ,
ˆ T T

m m m m m


 

q q
Γ Y J sα  ,  

1

, ,
ˆ T T

s s s s s


 

q q
Γ Y J sα  (25) 

 

Then, using the above-mentioned adaptation laws (25) and 

Property 2 of robot dynamics, Eq. (24) simplifies to 
 

 

  

3, , 3, ,

,

, p ,

( )

sgn( )

ˆ sgn( )

T T

m m m m s s s s

T

m m m m

T d d

s s m m s s s

tV

k

 





  



   



x x

x

x x

s M s s M s

s d s

s M x x d s

 (26) 

 

In order to have robustness against the bounded 

disturbances and/or modeling mismatches ( ,mx
d  and ,sx

d ) 

and the bounded estimation error of the master robot 

acceleration ( ˆ 
m m

x x ), the positive constant parameters m
  

and s
  in the control laws (14) and (15) should satisfy the 

following inequalities: 
 

,m m m
 




x
d  (27) 

 , p ,
ˆ d d

s s m m s s
k 


  

x x
M x x d  (28) 

 

where 
m

  and 
s

  are positive constants. Note that the 

bounded error of the acceleration estimation ( ˆ 
d d

m m
x x ) is 

unknown. However, 
s

  should be chosen as large (using a 

practical trial and error method) that the stability of the 

system against bounded acceleration estimation error is 

ensured; which means the inequality (28) is satisfied. Then, 

the time derivative of Lyapunov function (26) can be written 

as 
 

3, , 3, ,

1 1

( )
T T

m m m m s s s s

m m s s

tV  

 

  

 

x x
s M s s M s

s s
 (29) 

 

The ∞-norm ( .  ) and 1-norm ( 1. ) used in (27)-(29) are 

the vector norms obtained from the element values of each 

vector. 
 

Theorem 1. The asymptotic convergence to sliding 

surfaces 0
m

s  and 0
s

s  is ensured using the proposed 

strategy. 
 

Proof. Based on ( ) 0tV  and ( ) 0tV , the Lyapunov 

function (23) is bounded, and consequently m
s , s

s , 
,mq

α  

and 
,sq

α  are bounded. Then, the function ( ) tw

3, ,

T

m m m m


x
s M s  3, ,

T

s s s s


x
s M s 

1m m
 s

1
0 

s s
 s is 

considered whose time derivative is ( ) tw 3, ,
2

T

m m m m


x
s M s

3, ,
2

T

s s s s


x
s M s

3, ,


T

m m m m


x
s M s

3, ,


T

s s s s


x
s M s sgn( ).( )

m m m
 s s

sgn( ).( )
s s s

 s s . With bounded non-singular inertia matrices 

,mxM  and ,sxM , m
s  and s

s  are obtained as bounded vectors 

from Eqs. (21) and (22). Moreover, since the elements of 

,mxM  and ,sxM  are in terms of differentiable functions, 

their time derivatives ,mxM  and ,sxM  are bounded. Based 

on the above-mentioned boundedness of matrices and 

vectors, ( )tw  is bounded; thus, ( )tw  is uniformly 

continuous. Then, using (29), one can write: 
 

0
( )lim(0) ( )


    d

t

t
V V w    (30) 

 

Based on (29), ( ) ( ) 0 t d tV V dt  is negative, i.e., 

(0) ( ) 0  V V  is positive and finite. Thus, 
0

( )lim
 t

t
dw    in 

(30) exists and is finite and positive (due to the positiveness 

of ( )tw ). Therefore, according to the Barbalat’s lemma [36]: 
 

 3, , 3, , 1 1

( )lim

lim 0







   
m m m m m m

t

T T

s s s s s s
t

tw

   
x x

s M s s M s s s
(31) 

 

Since 3,m , 3,s , m
  and s

  are positive (nonzero) 

constants, ,
0

T

m m mx
s M s , ,

0
T

s s sx
s M s , 

1
0

m
s  and 

1
0

s
s , then Eq. (31) implies that the convergence to 

sliding surfaces 0
m

s  and 0
s

s  is achieved as t . 

Since the dynamics of the master and slave sliding 

surfaces 0
m

s  and 0
s

s  are stable (see Eq. (12)), the 

convergence of tracking errors to zero ( 0mx  and 0sx ) 

on the surfaces of 0
m

s  and 0
s

s  are proven.  
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4. Absolute Stability Proof 
 

4.1. Llewellyn’s Absolute Stability of the 
Teleoperation System 

 

The absolute stability of a two-port network 

guarantees the stability of the coupled system connected to 

two passive but otherwise arbitrary one-port network 

terminations [35]. The relation between interaction forces 

and robots velocities of the two-port teleoperation system, in 

each direction ( k ) of space, is defined in terms of the so-

called hybrid matrix ( k
H ) as 

 

11, 12,, ,

21, 22,, ,

( ) ( )

( ) ( )

k

k kh k m k

k ks k e k

s s

s s

h hF V

h hV F




    
    

    
H

 (32) 

 

Theorem 2. The Llewellyn’s stability criterion [38] 

introduces the sufficient conditions of the absolute stability 

as 

(a) 11,kh  and 22,kh  do not have any pole in the right half 

of the complex plane (RHP).  

(b) Any pole of 11,kh  and 22,kh   that is on the imaginary 

axis is simple with a real and positive residue. 

(c) For all real values of   (  js  ): 
 

11, 22,

11, 22, 12, 21, 12, 21,
( )

0, 0,

0

Re[ ] Re[ ]

2Re[ ]Re[ ] Re[ ] | |

k k

k k k k k k

h h

h h h h h h

 

   
(33) 

 

where   is called the stability margin value. Proof of this 

theorem is addressed in [35].  
 

 

4.2. Resulted Hybrid Matrix and Stability 
Conditions 

 

 Since the master and slave sliding surfaces ( ms  

and ss in (12)) are designed based on the impedance models 

(8) and (9), the closed-loop dynamics of robots are made 

asymptotically similar to the reference impedance models 

using the presented nonlinear BMRAIC scheme. Moreover, 

the initial positions of the master and slave robots as well as 

their initial velocities and accelerations are specified to be 

zero, the same as the master and slave reference impedance 

models’ responses (i.e., (0) 0ms  and (0) 0
s

s  at 0t ). 

Also, if there is any non-zero oscillations, the convergence 

to sliding surfaces 0ms  and 0ss  are ensured as 

t  (proof in Sec. 3.4), and tracking errors will converge 

to zero ( 0mx  and 0sx ). 

As a result, the nonlinear teleoperation system will 

behave asymptotically similar to the two linear desired 

impedance models. Therefore, the hybrid matrix of the 

proposed teleoperation system in each Cartesian coordinate 

k is obtained from the realized reference impedance models 

(8) and (9) for the master and slave as 
 

2

1

f
11, 12,

p21, 22, 2

.e

.e

m m
k k

k k

s s s

T s

T s

m s c k
h h

s
kh h

m s c s k










 

 
   
   
     

 (34) 

 

Based on the above hybrid matrix (34) for the 

proposed teleoperation system, (a) and (b) conditions of the 

absolute stability criterion (Theorem 2) together with the 

first two conditions (
11,

Re[ ] 0
k

h  and 
22,

Re[ ] 0
k

h ) in (c) are 

satisfied by choosing positive impedance parameters. Using 

Eq. (34), the third condition in (c) for the stability margin 

value   is obtained as 

   

  

2

2 22

p f 1 2

2

cos 1 0



 

     

m s

s s s

c c

k m c

k k T T



 




 (35) 

 

Therefore, if the positive impedance parameters of the 

master and slave robots satisfy the inequality (35) for the 

operating frequency range, the proposed teleoperation 

system is absolutely stable based on Theorem 2. 

 
 

4.3. Notes on Absolute, Lyapunov and Asymptotic 
Stability for Teleoperation Systems 

 

The Lyapunov stability for a controlled dynamic 

system means that the system response error (with respect to 

desired trajectory) can be kept arbitrarily close to zero by 

starting sufficiently close to it [36]. The asymptotic stability 

also means that the system trajectory error started close to 

zero actually converges to it as t   [36]. Similarly, for 

teleoperation systems, the Lyapunov stability is used for the 

boundedness of both master and slave trajectory errors, and 

the Lyapunov asymptotic stability is employed for the 

convergence of these errors to zero. However, the absolute 

stability corresponds to the bounded behavior of the whole 

two-port teleoperation system and includes the input-to-

output stability from each port to another port. As a result, 

the communication delays between master and slave robots 

affect the absolute stability conditions (as occurred in Sec. 

4.2, Eq. (35)). On the other hand, the asymptotic 

convergence of master and slave trajectories to the delayed 

signals can be proved independently of the values of time 

delays (as expressed in Sec. 3.4).  

Note that the master trajectory signal ( m
x  in Figs. 1 

and 2) is sent to the slave robot and the interaction force 

signal from the slave site ( e
f  in Figs. 1 and 2) is fed back to 

the master robot using the proposed bilateral controller. 

Accordingly, the behaviour of the slave robot may become 

undesirable due to the tracking of master signal 
d
mx  with 

bounded delay. This results in undesirable behaviour of the 

master robot due to the employment of delayed signal 
d
ef

from the slave robot in the master controller. Consequently, 

without the absolute stability, responses of both master and 

slave robots may become undesirable or unstable due to the 

communication delays; however, the convergence of 

tracking errors (Laypunov asymptotic stability) is proved in 

Sec. 3.4. Thus, the absolute stability is required to be 

analyzed for delayed two-port teleoperation systems as well 

as the Lyapunov asymptotic stability. In other words, the 

asymptotic stability only guarantees the convergence of 

master and slave tracking errors to zero, not the bounded 

behavior of the whole bilateral system. Therefore, the 

absolute stability is very essential in systems with multi 

ports that influence each other. 
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5. The Procedure of Choosing Impedance 
parameters 

 

5.1. Step 1. Position and Force Scaling Factors 
 

The position and force scaling factors ( pk  and fk  in 

(9) and (8)) may be chosen based on the workspace size 

ratio of the robots and the desired scaling of the 

environment force feedback provided to the human operator. 

 

5.2. Step 2. Impedance Parameters of Master 
 

Parameters m
m  and m

c  of the master reference 

impedance model (8) should be chosen sufficiently small 

such that the desired force tracking performance 

(
f


d

h e
kf f ) is approximately achieved (this was discussed 

in Sec. 3.1).  

 
 

5.3. Step 3. Impedance Parameters of Slave 
 

The reference impedance model (9) of the slave robot 

in each direction ( k ) of the Cartesian coordinates can be 

presented in the Laplace form as 
2 2

2 
s ss n n

s s   , where 


s

 2
s s s

c m k  and 
n s ss

k m  are the damping 

ratio and natural frequency of this model, respectively. In 

order to have a fast response (with respect to the 

dimensionless time 
sn
t ) and minimum overshoot value (in 

response to the step force), the damping ratio is chosen as 

0.7
s

 . The settling time, 3 ( )
s ss s n

t   , for 5% 

tolerance criterion can be adjusted.  The stiffness sk  of 

slave impedance model (9) is adjusted on a large value such 

that the slave robot has an acceptable small deviation 

( mods
x ), as discussed in Sec. 3.1. Using the specified values 

of s , 
ss

t  and  sk , the mass sm  and damping sc  

parameters are also determined.  

 
5.4. Step 4. Modification of Parameters for 

Absolute Stability 
 

In this step, the chosen parameters for the master and 

slave impedance models in previous steps are revised to 

guarantee the absolute stability (Theorem 2) in the presence 

of communication delays. This is done by satisfying 

inequality (35) in the range of working frequency. For this 

purpose, the partial derivatives of ( )  in (35) with respect 

to the parameters of the impedance models are determined. 

Then, the frequency intervals in which the decrease of each 

impedance parameter will increase ( )  (i.e. 0  
i

z ) 

and enhance the stability of the teleoperation system are 

obtained and presented in Table 1.   

This table will help the designer to increase the value 

of stability margin ( )  by decreasing and/or increasing the 

parameters ( pk , fk , m
c , s

c , s
m  and s

k ) until inequality 

(35) is satisfied in different frequency intervals. 

Note that the position and force tracking 

performances may be undermined by modification of the 

impedance parameters to guarantee the absolute stability. 

Accordingly, a trade-off between the transparency (position 

and force tracking) and the absolute stability is needed in the 

presence of time delays. 
 

Table 1 The frequency intervals in which ( ) 0  
i

z  
 

Parameter 
i

z  Frequency Interval  

p
k , f

k  All frequencies 

m
c  No frequency (

m
c  is positive for all frequencies) 

s
c  

2 2
4 4

2 2

   
 

s s s s s s s s

s s

c c k m c c k m

m m
  

s
m  

ss s n
k m    

s
k  0

ss s n
k m     

 

 
 

 

6. Experimental Results 
 

In this section, the proposed controller is evaluated 

by some experiments on a three-DOF Phantom Premium 

1.5A robot (Geomagic Inc., Wilmington, MA) and a two-

DOF Quanser planar robot (Quanser Consulting Inc., 

Markham, ON) shown in Fig. 3 as the master and slave 

robots with nonlinear dynamics, respectively. The Phantom 

Premium and Quanser robots are respectively equipped with 

a 6-axis JR3 50M31 force/torque sensor (JR3 Inc., 

Woodland, CA) and a 6-axis ATI Gamma force/torque 

sensor (ATI Industrial Automation, Apex, NC). Both of the 

master (Phantom) and the slave (Quanser) robots can move 

in the x y  plane as shown in Fig. 3. The third Cartesian 

DOF of the Phantom robot in z  (vertical) direction is 

controlled at zero position. The kinematics and dynamics of 

the Phantom and Quanser robots were presented in [39] and 

[40], respectively.  

 

    

 

Fig. 3.  The experimental setup: Phantom Premium robot 

(left) and Quanser robot (right) as the master and slave 

robots, respectively.  

 

 

6.1. Case 1:  Delay-Free Communication 
Channels 

 

In the case of delay-free communication channels, 

the values of impedance parameters and scaling factors are 

chosen based on Steps 1-3 of Sec. 5, as listed in Table 2.  
 



8 

 

Table 2 Master and slave impedance parameters, and scaling 

factors for delay free communication channels (
1 2

0 T T ) 
 

Master impedance 
parameters 

Slave impedance 
parameters 

Position and force 
scaling factors 

kg0.1
m

m   kg9.80
s

m   p 1k   

N.s/m0.3
m

c   N.s/m293.98
s

c   f 1 3k   

 N/m4500
s

k    

 

As it is observed in Fig. 4a, the interaction forces ( h
f  

and 
f e

k f ) are very close to one another, which is the result 

of choosing small master impedance parameters m
m  and 

m
c  (in Table 2). However, due to the sudden changes of 

hard (wooden) environment force e
f  at the beginning and 

the end of interaction, the force tracking error (
f


h e

kf f ) has 

some jumps (less than 0.6 N) at these moments as shown in 

Fig. 4b. 

Figure 5 demonstrates the position responses and 

errors of robots with respect to their reference impedance 

models. According to Fig. 5, the position tracking 

performance (between the master and slave) is achieved in 

the teleoperation system. This performance is the result of a) 

choosing large values for the slave impedance parameters 

(i.e. large 
s

m , 
s

c  and 
s

k  result in small 
mods

x ) as 

discussed in Sec. 3.1, and b) tracking error convergence of 

the master and slave trajectories ( 0mx  and 0sx ) using 

the proposed bilateral controller that was proven in Sec. 3.4. 

 
 

    
(a) 

  
       (b) 

Fig. 4.  (a) Interaction forces with (b) their difference in x  

direction.  

 
 

As the results show, in the absence of communication 

delays (
1 2

0 T T ), the transparency conditions (position 

and force tracking) are realized with small errors. 

 

 
    (a) 

 

 
     (b) 

Fig. 5.  (a) Positions of the master and slave robots together 

with their reference models responses, and (b) position 

tracking errors, in x  direction.  

 
 
 

6.2. Case 2:  Delayed Communication Channels  
 

In this section, the proposed bilateral controller is 

evaluated experimentally in the presence of constant time 

delays in the communication channels (
1

50 secT m  and 

2
50 secT m ). In this case, the arbitrary impedance 

parameters (listed in Table 2 for delay-free case) are 

modified based on Step 4 of Sec. 5 to guarantee the stability 

criterion (35). These modified values of impedance 

parameters are presented in Table 3. 

 
Table 3 The modified impedance parameters, and scaling 

factors for delayed communication channels ( 1
50 secT m  

and 2
50 secT m ) 

 

Master impedance 

parameters 

Slave impedance 

parameters 

Position and force 

scaling factors 

kg0.1
m

m   kg0.001
s

m   p 1k   

N.s/m10.8
m

c   N.s/m20.5
s

c   f 1 3k   

 N/m450
s

k    
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In this case, as illustrated in Fig. 6a, the position error 

of the slave with respect to the master is larger than the case 

of no delay. This is a consequence of the reduction to the 

slave impedance parameters ( s
k , s

c  and s
m ) due to the 

stability requirements (explained in Sec. 5.4). 

 
(a) 

      
         (b) 

Fig. 6.  (a) Position of master and slave robots with their 

reference models responses and (b) the interaction forces 

h
f  and 

f e
k f , in x  direction for delayed communication 

channels and using modified impedance parameters.  

 

Figure 6b shows that the interaction forces ( h
f and

f e
k f ) closely match each other during the interaction, when 

the robots’ velocities are near zero. However, before and 

after the interaction when the robots have non-zero 

velocities and accelerations and the slave robot moves in 

free space ( 0
e

f ), the applied human force h
f  is not near 

zero. This performance occurs as a result of the modification 

and increase of the master impedance parameter m
c  based 

on Step 4 of Sec. 5 to ensure the absolute stability in the 

presence of time delays. 

 
 

7. Concluding Remarks  

A new nonlinear Bilateral Model Reference Adaptive 

Impedance Controller (BMRAIC) was developed for 

nonlinear multi-DOF teleoperation systems. The controller 

employs the parameters of stable reference impedance 

models in its structure to make the closed-loop dynamics of 

the master and slave robots similar to their reference models. 

The proposed bilateral controller realizes the impedance 

models in the presence of parametric and bounded 

unstructured modeling (non-parametric) uncertainties as it 

was proven using the Lyapunov theorem.  

The absolute stability of the nonlinear multi-DOF 

teleoperation system is guaranteed in the presence of 

communication delays by adjusting the desired impedance 

parameters. As a result, using the presented bilateral 

impedance controller and the corresponding stability 

analysis, a trade-off between the stability and transparency 

of the teleoperation system is provided when 

communication channels have time delays. The presented 

experiments on multi-DOF nonlinear master and slave 

robots show the performance of the proposed bilateral 

controller and its stability in hard tissue interactions with 

and without communication delays. 
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