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Abstract—This paper proposes the novel concepts of high order
discrete-time control barrier function and adaptive discrete-time
control barrier function. The high order discrete-time control
barrier function is used to guarantee forward invariance of a
safe set for discrete-time systems of high relative degree. An
optimization problem is then established unifying high order
discrete-time control barrier functions with discrete-time control
Lyapunov functions to yield a safe controller. To improve the
feasibility of such optimization problems, the adaptive discrete-
time control barrier function is designed, which can relax
constraints on system control input through time-varying penalty
functions. The effectiveness of the proposed methods in dealing
with high relative degree constraints and improving feasibility is
verified on the discrete-time system of a three-link manipulator.

Index Terms—Control barrier functions, discrete-time systems,
optimization problem.

I. INTRODUCTION

SAFETY is often important for dynamical systems in ad-
dition to achieving control objectives, which is explained

in terms that “bad” things do not happen [1], for example,
protecting humans from harm in human–robot interaction
[2]. It is known that Lyapunov functions and control Lya-
punov functions (CLFs) are commonly used for stabilizing
the closed-loop dynamics of dynamical systems [3]. For
example, exponentially stabilizing control Lyapunov function
can exponentially stabilize the periodic orbits of hybrid zero
dynamics [4]. Therefore, the control objectives can be achieved
by making use of control Lyapunov functions. Motivated by
barrier certificates [5] for safety verification and the idea of
control Lyapunov functions, the concept of control barrier
functions (CBFs) is proposed by [6] to ensure safety through
feedback design. The recent formulation of CBFs is given in
[7] to satisfy safety conditions specified as forward invariance
of a safe set, introducing the reciprocal control barrier func-
tions and zeroing control barrier functions. In this case, CBFs
and CLFs are unified together to form quadratic programs
to mediate the possible conflict between safety and control
objectives for safety-critical systems. In particular, a nominal
controller can be added to the quadratic programs to achieve
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the performance objectives [8], which can be specified as any
well-behaved controller such as [9].

Control barrier functions have gained great attention in
recent years and have been applied in many fields, such as
adaptive cruise control [10], robotic systems [11], [12], etc.
However, the CBFs proposed in [7] can only be applied to
dynamical systems of relative degree one. [11] introduced a
backstepping method to address constraints of high relative
degree and applied it to the case of relative degree two. [13]
and [14] specially modified zeroing control barrier functions to
ensure constraint satisfaction for Euler-Lagrange systems and
mechanical systems of relative degree two, respectively. Based
on the pole placement control method in linear control theory,
[15] designed exponential control barrier functions to handle
arbitrary high relative degree constraints. A more general
barrier function for high relative degree systems, namely high
order control barrier function, is introduced in [16], [17],
which does not limit the types of class K functions compared
with exponential control barrier functions. Moreover, another
concept of high-order (zeroing) control barrier function is
proposed in [18], where extended class K functions are incor-
porated and the general definition of relative degree is relaxed.
Considering the optimization problem unifying CBFs and
CLFs, [19] shows how adaptive control barrier function can
adapt to time-varying control bounds and noise in dynamical
systems. The two types of adaptive CBF, i.e., parameter-
adaptive CBF and relaxation-adaptive CBF, can address the
feasibility problem of quadratic programs.

Noting that, all the above-mentioned concepts about CBF
are designed for continuous-time systems. Given that most
controllers in practices are implemented in a digital way, the
discrete-time CBF has also achieved more and more attention.
[20] first introduced the notion of discrete-time control barrier
functions and discrete-time exponential control barrier func-
tions based on their continuous-time counterparts, and unified
discrete-time CBFs with discrete-time CLFs [21] to form non-
linear programming problems. [22] also combined discrete-
time CBFs with model predictive control into an optimization
problem. Based on discrete-time exponential CBFs, Gaussian
process regression was used to identify the disturbance model
in the presence of stochastic disturbances, so as to establish
robust discrete-time CBFs [23]. [24] derived the discrete-time
(zeroing) barrier function from zeroing barrier function of
continuous-time systems, so that the solution of discrete-time
systems can be studied even if it is outside the invariant
set. In correspondence with the concept of relative degree
in continuous-time systems, there is also a similar definition
in discrete-time systems [25], [26]. However, the existing
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discrete-time CBF methods are unable to deal with high
relative degree constraints of discrete-time systems.

In this paper, we generalize the concept of discrete-time
(zeroing) barrier function [24] to high order discrete-time
control barrier function for systems with high relative degree.
The necessity and ability of high order discrete-time CBF
to handle high relative degree constraints are illustrated by
a simple numerical example of a linear system with relative
degree two. Then, the optimization problem unifying high
order discrete-time CBF and discrete-time CLF is formulated.
Considering that the input is often bounded when designing
a controller [27], control input bounds are added in the opti-
mization problem. However, as the environment changes over
time, control bounds may tighten and conflict with the CBF
constraints, making the optimization problem infeasible. To
improve the feasibility of the algorithm, the adaptive discrete-
time control barrier function is proposed. Time-varying penalty
functions are designed in discrete-time auxiliary systems and
applied to class K functions to provide the “adaptivity”. These
concepts are validated on the discrete-time model of a three-
link manipulator by handling the joint constraints of relative
degree two and changing the control input bounds.

The main contributions of this paper are as follows:
• High order discrete-time CBF is proposed, which guaran-

tees constraint satisfaction of discrete-time systems with
high relative degree. The high order discrete-time CBF
is combined with discrete-time CLF into an optimization
problem to yield a safe controller.

• The adaptive discrete-time CBF is constructed to improve
the feasibility of the above-mentioned optimization prob-
lem when external environment of the system changes.

• Based on the two novel concepts, the optimization-based
control design is verified through simulations on the
discrete-time model of a three-link manipulator to deal
with constraints on joint angles.

The rest of the paper is organized as follows. Section II
briefly reviews the concepts of control Lyapunov functions
and control barrier functions for discrete-time systems. Section
III introduces the notion of high order discrete-time control
barrier function for arbitrary high relative degree systems and
combines high order discrete-time CBF with discrete-time
CLF to form an optimization problem. Section IV proposes
the adaptive discrete-time control barrier function to improve
the optimization problem feasibility. Section V summarizes
the optimization-based control design and shows the numerical
simulation verifications of proposed methods on a three-link
manipulator. Finally, a conclusion is drawn in Section VI.

II. PRELIMINARIES

In this section, the concepts of discrete-time control Lya-
punov functions (CLFs) and discrete-time control barrier func-
tions (CBFs) are revisited.

Consider the discrete-time system in the form of

x(k + 1) = f(x(k), u(k)), (1)

where x(k) ∈ D ⊂ Rn is the state of the system at time step
k ∈ N , f : D → D ⊂ Rn is a continuous function, and the
control input u(k) ∈ U is applied to the system.

A. Control Lyapunov functions for discrete-time systems

The use of Lyapunov stability theory in nonlinear control
design has been applied to discrete-time domain, which leads
to the notion of discrete-time control Lyapunov function.

Definition 1: (Discrete-Time Exponentially stabilizing Con-
trol Lyapunov Function [20]) For the control system (1),
V : D → Rn is a discrete-time Exponential Control Lyapunov
Function if there exist positive constants c1, c2 and c3 such
that

c1‖x(k)‖2 ≤ V (x(k)) ≤ c2‖x(k)‖2, (2)

∆V (x(k), u(k)) + c3‖x(k)‖2 ≤ 0, (3)

for all x(k) ∈ D, where ∆V (x(k), u(k)) = V (x(k + 1)) −
V (x(k)).

The existence of a discrete-time Exponential Control Lya-
punov Function makes the system (1) exponentially stable, and
yields a set of controllers u(k) that are supposed to satisfy (3).

Inspired by the quadratic program introduced in [10], an
optimization problem is induced taking the discrete-time CLF
condtion (3) as a constraint. The min-norm controller u∗(k)
for the control system (1) is presented as following:

u∗(k) = argmin
u(k)∈U

1

2
‖u(k)‖2,

s.t. ∆V (x(k), u(k)) + c3‖x(k)‖2 ≤ 0.

(4)

B. Control barrier functions for discrete-time systems

In addition to stabilization of the dynamical system through
a discrete-time CLF, safety is also crucial. Therefore, in some
practical application scenarios, we want to drive the system
state x not to leave a safe region which is denoted as a set C,

C := {x(k) ∈ D | h(x(k)) ≥ 0}, (5)
Int(C) := {x(k) ∈ D | h(x(k)) > 0}, (6)

∂C := {x(k) ∈ D | h(x(k)) = 0}, (7)

where h : Rn → R is a continuous function.
Before introducing barrier functions to ensure safety, some

necessary concepts are stated as below.
Definition 2: The set C is forward invariant for system (1),

if x(k) ∈ C,∀k ∈ N for every x(0) ∈ C.
Definition 3: (Class K function [28]) A continuous function

α : [0, a)→ [0,∞) is said to belong to class K function if it
is strictly increasing and α(0) = 0.

In order to satisfy the safety conditions, i.e., forward in-
variance of the safe set C, formulations of barrier functions
for discrete-time systems are established. The following defi-
nition of discrete-time barrier function can be regarded as the
extension of zeroing barrier function [7] in continuous-time
systems.

Definition 4: (Discrete-Time Barrier Function [24]) Consid-
ering the following discrete-time system with no input

x(k + 1) = f(x(k)), (8)

let C ⊆ D ⊂ Rn be defined by (5)-(7) for a continuous
function h : Rn → R. h is a discrete-time barrier function
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if there exists class K function α satisfying α(r) < r for all
r > 0 such that

∆h(x(k)) ≥ −α(h(x(k))), ∀x(k) ∈ D, (9)

where ∆h(x(k)) = h(x(k + 1)) − h(x(k)) and r is the
argument of α.

Remark 1: From [24], the necessary and sufficient condition
for the invariance of the set (Theorem 1 in [24]) is obtained,
that is, C is forward invariant if and only if h is a discrete-
time barrier function. Then a controller can be designed
for discrete-time system (1) to ensure the set invariance by
directly extending discrete-time barrier functions to discrete-
time control barrier functions.

Definition 5: (Discrete-Time Control Barrier Function) For
the discrete-time system (1), let C ⊆ D ⊂ Rn be defined by
(5)-(7) for a continuous function h : Rn → R. h is a discrete-
time control barrier function if there exists class K function α
satisfying α(r) < r for all r > 0 such that

∆h(x(k), u(k)) ≥ −α(h(x(k))), ∀x(k) ∈ D, (10)

where ∆h(x(k), u(k)) = h(x(k + 1))− h(x(k)) and r is the
argument of α.

Lemma 1: Given a set C ⊆ D ⊂ Rn defined by (5)-(7)
for a continuous function h : Rn → R, if h is a discrete-time
control barrier function on D, any discrete-time controller u(k)
satisfying (10) will render the set C forward invariant.

Proof: The proof is similar to the proof of Theorem 1 in
[24].

Remark 2: Note that in (10), the class K function α can be
selected as a linear function with coefficient γ, 0 < γ < 1. In
this way, it can be derived that h(x(k)) ≥ (1 − γ)kh(x(0)),
∀k ∈ N . For 0 < γ ≤ 1, forward invariance of the set
is still guaranteed (this is obviously true when γ = 1), and
the discrete-time CBF turns into the discrete-time exponential
CBF [20].

C. Optimization problem unifying discrete-time CLF and
discrete-time CBF

Referring to (4), add the discrete-time CBF condition (10)
as well as the constraint on control input u(k) to form a new
optimization problem

u∗(k) =argmin
U(k)

1

2
‖u(k)‖2 + p · δ2,

U(k) =

[
u(k)
δ

]
s.t. ∆V (x(k), u(k)) + c3‖x(k)‖2 ≤ δ,

∆h(x(k), u(k)) + α(h(x(k))) ≥ 0,

umin ≤ u(k) ≤ umax,

(11)

where δ is a relaxation parameter on CLF constraint and umin
/ umax represent the lower/upper bound on control input u(k).
δ works when the discrete-time CLF constraints conflict with
the discrete-time CBF constraints.

Remark 3: (Feasibility analysis) The optimization problem
is always feasible without the constraint of the control input,
because the existence of the relaxation parameter δ makes the

safety constraint satisfied preferentially when CLF and CBF
constraints conflict. However, taking the control input con-
straint into account, the feasibility is not always guaranteed,
which remains a challenge we need to address in Section IV.

III. HIGH ORDER DISCRETE-TIME CONTROL BARRIER
FUNCTIONS

In this section, the definition of relative degree for discrete-
time systems is introduced and the notion of high order
discrete-time control barrier function is proposed to deal with
systems of high relative degree.

A. High relative degree systems

The concept of relative degree for discrete-time systems is
given below, followed by a simple example of system with
relative degree two.

Definition 6: (Relative degree [25] [26]) The output y(k) =
g(x(k)) of system (1) is said to have relative degree r iff

y(k + r) = gr(x(k), u(k)),

y(k + i) = gi(x(k)), ∀0 ≤ i < r,
(12)

which implies that r is the steps of delay in the output y(k)
in order for the control input u(k) to appear.

For systems of high relative degree, it means that the output
y(k) has relative degree r > 1. The constraint y(k) ≥ 0 is also
said to be of relative degree r in this paper.

Example 1: (Relative degree 2 system [25]) Let us consider
a second order discrete linear time-invariant (LTI) system

x(k + 1) = Ax(k) +Bu(k)

=

[
a11 a12
a21 a22

]
x(k) +

[
0
b

]
u(k),

y(k) = cx1(k) = Cx(k),

(13)

with the system state x(k) := [x1(k), x2(k)]T . Assuming
that CB = 0 and CAB 6= 0, the output y(k) only related
with x1(k) is of relative degree 2.

Suppose that the output y(k) should not exceed a specific
value M , i.e., y(k) needs to satisfy the constraint

M − y(k) ≥ 0. (14)

Now, we treat the set C = {x(k) | M − y(k) ≥ 0} as
a “safe set” and attempt to design a controller to make it
forward invariant utilizing the discrete-time CBF formulated
in Definition 5.

According to (10), we have

−c[a11x1(k)+a12x2(k)]+cx1(k) ≥ −α(M−cx1(k)). (15)

Obviously, the control input does not appear in the above
inequality, which indicates that controllers cannot be obtained
through discrete-time CBF in the face of high relative degree
constraints.
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B. High order discrete-time control barrier function

Next, the high order discrete-time control barrier function
is specially designed for high relative degree cases. For the
discrete-time system (1), a series of functions are defined
based on the original function h : Rn → R with relative
degree m:

ψ0(xk) :=h(xk),

ψ1(xk) :=∆ψ0(xk, uk) + α1(ψ0(xk)),

...
ψm(xk) :=∆ψm−1(xk, uk) + αm(ψm−1(xk)),

(16)

where x(k) and u(k) at time step k are replaced by the
simplified symbol xk and uk; ∆ψi(xk, uk) := ψi(xk+1) −
ψi(xk), i = 0, 1, ...,m − 1; class K functions αj(·) satisfy
αj(r) < r for j = 1, 2, ...,m.

These functions yield a series of sets Ci, i = 0, 1, ...,m− 1,
as

C0 :={xk ∈ D | ψ0(xk) ≥ 0},
C1 :={xk ∈ D | ψ1(xk) ≥ 0},

...
Cm−1 :={xk ∈ D | ψm−1(xk) ≥ 0}.

(17)

Definition 7: (High Order Discrete-Time Control Barrier
Function) For the discrete-time system (1), the continuous
function h : Rn → R is a high order discrete-time control
barrier function of relative degree m if there exist ψi(xk), i ∈
{0, 1, ...,m} defined by (16) and Ci, i ∈ {0, 1, ...,m − 1}
defined by (17) such that

ψm(xk) ≥ 0, (18)

for all xk ∈
⋂m−1
i=0 Ci.

Theorem 1: Given a series of sets Ci, i ∈ {0, 1, ...,m − 1}
defined by (17) and a continuous function h : Rn → R.
If h is a high order discrete-time control barrier function
of relative degree m defined on

⋂m−1
i=0 Ci, any discrete-time

controller u(k) ensuring (18) will render the set
⋂m−1
i=0 Ci

forward invariant.
Proof: If h is a high order discrete-time CBF, condition

(18) holds, that is,

ψm(xk) = ∆ψm−1(xk, uk) + αm(ψm−1(xk))

≥ 0, ∀k ∈ N.

According to Lemma 1, it is obvious that the corresponding
set Cm−1 is forward invariant, i.e., xk ∈ Cm−1,∀k ∈ N if
x0 ∈ Cm−1. It implies that

ψm−1(xk) = ∆ψm−2(xk, uk) + αm−1(ψm−2(xk))

≥ 0, ∀k ∈ N,

which verifies the forward invariance of set Cm−2 through
Lemma 1 again.

By iterative induction, it can be proved that if x0 ∈ Ci, then
xk ∈ Ci,∀k ∈ N, ∀i ∈ {0, 1, ...,m − 1}. Therefore, the set⋂m−1
i=0 Ci is forward invariant.
Remark 4: In a sense, the above concept can be seen as

a generalization of high order CBF from continuous-time

systems [16] to discrete-time systems. It should be noted
that, due to the characteristics of discrete-time CBF, the class
K functions αj(·) are especially required to meet certain
conditions (αj(r) < r, j = 1, 2, ...,m) compared with the
continuous-time case.

C. Optimization problem unifying discrete-time CLF and high
order discrete-time CBF

Similar to Section II-C, an optimization problem can be
formed unifying discrete-time CLF and high order discrete-
time CBF. In this optimization problem framework, the con-
troller is designed in a minimally invasive way based on an
existing nominal controller unorm [1]. The discrete-time CBF
works as a “safety filter” [12] for it modifies the system
behavior when the desired action resulted from unorm conflicts
with the safety constraints.

u∗k =argmin
Uk

1

2
‖uk − unormk

‖2 + p · δ2,

Uk =

[
uk
δ

]
s.t. ∆V (xk, uk) + c3‖xk‖2 ≤ δ,

ψm(xk) ≥ 0,

umin ≤ uk ≤ umax.

(19)

Remark 5: Compared with continuous-time cases, the above
optimization problem is not necessarily quadratic for general
nonlinear discrete-time systems. However, if the discrete-
time exponential CBF [20] is applied, i.e., class K functions
are linear functions with positive coefficients, the nonlinear
program (19) turns into a quadratically constrained quadratic
program for a linear system or nonlinear control affine system
with Linear and/or Quadratic Lyapunov and Barrier functions.

IV. ADAPTIVE DISCRETE-TIME CONTROL BARRIER
FUNCTIONS

On the basis of high order discrete-time control barrier
function, the feasibility of corresponding optimization problem
is further studied in this section. Motivated by the adaptive idea
of continuous-time systems in [19], the process of constructing
adaptive discrete-time control barrier functions is presented.

A. Example of relative degree 2 system revisited
Considering the Example 1 again, high order discrete-time

CBF is utilized to satisfy the system safety constraint M −
cx1k ≥ 0. For simplicity, let us set c = 1 and select the class
K functions to be linear functions. A series of functions are
derived as

ψ0(xk) =M − x1k ,
ψ1(xk) =∆ψ0(xk, uk) + γ1ψ0(xk),

ψ2(xk) =∆ψ1(xk, uk) + γ2ψ1(xk),

(20)

where γ1, γ2 ∈ (0, 1) are constants. According to the system
state equations and condition (18), it can be easily obtained
that
ba12uk ≤ [(a11 − 1)x1k + a12x2k ](1− a11 − γ1 − γ2)+

(M − x1k)γ1γ2 − a12[a21x1k + (a22 − 1)x2k ].
(21)
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Suppose inequality (21) is a discrete-time CBF constraint
in the optimization problem (19), then it corresponds to an
upper (lower) bound constraint on control input uk if ba12 > 0
(ba12 < 0), which may contradict with the predefined bound
[umin, umax]. Consequently, we need to tune the parameters
γ1, γ2 carefully to ensure feasibility of the optimization prob-
lem at each time step k. However, the environment and safety
region of the system are likely to change over time in the
real world modifying constraint (21) on uk or affecting the
capability of actuator, in which case the optimization problem
may become infeasible for fixed γ1, γ2.

B. Adaptive discrete-time control barrier function

To improve the feasibility of the optimization problem
when external environment changes, the definition of adaptive
discrete-time control barrier function is formulated.

For discrete-time systems with safety constraints of relative
degree m, just as the safety region may change over time,
γi, i = 1, 2, ...,m are set to be time-varying as well. These
parameters work as penalty functions applied to class K
functions and (m − 1) auxiliary systems are respectively
constructed for γi, i = 1, 2, ...,m−1. The i-th auxiliary system
is in the form of

γi,1(k + 1) :=γi,1(k) + γi,2(k),

γi,2(k + 1) :=γi,2(k) + γi,3(k),

...
γi,m−i(k + 1) :=γi,m−i(k) + vi(k),

(22)

for i = 1, 2, ...,m − 1, where (γi,1(k), γi,2(k), ..., γi,m−i(k))
are the auxiliary state variables and vi(k) is the virtual control
input. Among these state variables, γi,1(k) := γi(k) is the
required penalty term, while other variables have no special
meaning.

Remark 6: Note that the auxiliary systems are only con-
structed for the first (m − 1) penalty functions, while γm is
determined as a decision variable in the optimization problem.
Besides, it doesn’t matter what form the system is as long as
γi, i = 1, 2, ...,m − 1 is of relative degree m − i for the i-th
system. The linear form shown in (22) is just for simplicity.

With these time-varying penalty functions, (16) is modified
as

ψ0(xk) :=h(xk),

ψ1(xk,Γk) :=∆ψ0(xk, uk) + γikα1(ψ0(xk)),

...
ψm(xk,Γk) :=∆ψm−1(xk,Γk, uk) + γmk

αm(ψm−1(xk,Γk)),
(23)

where γik represents γi(k), i = 1, 2, ...,m at time step k,
Γk := (γ1k , γ2k , ..., γmk

) and the other symbols inherit the
previous definitions. The relevant sets are redefined as

C0 :={xk ∈ D | ψ0(xk) ≥ 0},
Ci :={xk ∈ D | ψi(xk,Γk) ≥ 0},

(24)

for i = 1, 2, ...,m− 1.

Definition 8: (Adaptive Discrete-Time Control Barrier
Function) For the discrete-time systems (1) and (22) with
ψi(xk,Γk), i ∈ {1, 2, ...,m} defined by (23) and Ci, i ∈
{0, 1, ...,m − 1} defined by (24), the continuous function
h : Rn → R is an adaptive discrete-time control barrier
function of relative degree m, if γi,∀i ∈ {1, 2, ...,m − 1} is
a high order discrete-time control barrier function of relative
degree m− i satisfying 0 < γik < 1 such that

ψm(xk,Γk) ≥ 0, (25)

for all xk ∈
⋂m−1
i=0 Ci and γmk

∈ (0, 1).
Theorem 2: Given a series of sets Ci, i ∈ {0, 1, ...,m − 1}

defined by (24) and a continuous function h : Rn → R.
If h is an adaptive discrete-time control barrier function of
relative degree m defined on

⋂m−1
i=0 Ci, any discrete-time

controller u(k) ensuring (25) will render the set
⋂m−1
i=0 Ci

forward invariant.
Proof: If h is an adaptive discrete-time CBF, condition

(25) holds, that is,

ψm(xk,Γk) =∆ψm−1(xk,Γk, uk)

+ γmk
αm(ψm−1(xk,Γk)) ≥ 0,

for all k ∈ N . According to Theorem 1, it is obvious that the
corresponding set Cm−1 is forward invariant for γmk

∈ (0, 1),
which implies that if x0 ∈ Cm−1,

ψm−1(xk,Γk) =∆ψm−2(xk,Γk, uk)

+ γm−1kαm−1(ψm−2(xk,Γk)) ≥ 0,

for all k ∈ N . Since γm−1k ∈ (0, 1), the forward invariance
of set Cm−2 is proved by Theorem 1 again.

Under the condition of γik ∈ (0, 1), i ∈ {1, 2, ...,m}, it can
be iteratively proved that if x0 ∈ Ci, then xk ∈ Ci,∀k ∈
N, ∀i ∈ {0, 1, ...,m − 1}. Therefore, the set

⋂m−1
i=0 Ci is

forward invariant.
Remark 7: The conflict between the CBF constraint on

control input u and the predefined control bounds can be
avoided by adaptively adjusting γi, i = 1, 2, ...,m, where
the variation of γi, i = 1, 2, ...,m − 1 is caused by the
virtual control input v := (v1, v2, ..., vm−1). Therefore, the
“adaptivity” of discrete-time control barrier functions comes
from the input v of auxiliary systems.

However, constraints are imposed on the virtual input v
because the state variables γi, i = 1, 2, ...,m − 1 in auxiliary
systems should be limited to the interval (0,1), which may
have some impact on the adaptive effect. If the parameters of
the auxiliary system are properly chosen, this impact can be
ignored.

V. APPLICATION TO THREE-LINK MANIPULATOR CONTROL

In this section, the proposed high order discrete-time CBF
and adaptive discrete-time CBF are applied to the control of
a three-link manipulator.

A. Optimization-based control design

The control design of the proposed novel concepts on
discrete-time systems is elaborated before introducing the
application to the manipulator.
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Generally, for the high order discrete-time CBF, the optimal
control framework (19) is employed to achieve safety-critical
control. In (19), the CBF constraint can guarantee forward
invariance of a safe set, i.e., ensure system safety, the CLF
constraint can be used if convergence to a state is desired
(performance/stability objectives), and the existing nominal
controller unorm performs predetermined control tasks. For the
discrete-time system (1), the optimization problem is solved
at each time step and the resulting optimal control input
is applied at the current step. Then, update the state with
dynamics (1) and repeat the process.

As for the adaptive case, replace the high order discrete-
time CBF constraint (18) with the adaptive discrete-time CBF
condition (25) and add the constraints on penalty functions
γi, i = 1, 2, ...,m in the optimization problem (19), which
leads to improved feasibility.

According to the above analysis, the control design is
summarized as below:

1) Given a discrete-time control system (1), specify its
control tasks and safety conditions.

2) Find a suitable nominal controller unorm or utilize the
discrete-time CLF to implement the control tasks.

3) Define the safe sets according to safety conditions,
and then derive the corresponding (high order/adaptive)
discrete-time CBF constraints.

4) Combining the unorm, CLF constraints, and CBF con-
straints, construct the optimal control problem based on
(19) to yield a safe controller.

It is worth noting that both the nominal controller and
the discrete-time CLF can be used for achieving control
tasks, and how they are used depends on the actual situation.
Next, the safety-critical control of the discrete-time three-link
manipulator is analyzed.

B. Discrete-time model of an n-link manipulator

The discrete-time dynamical model of an n-link manipulator
can be obtained by applying numerical discretization technique
to the minimization of the Lagrange action functional [29], and
an implicit form is shown in [30]:

B(qk+1)q̇k+1 −B(qk)q̇k − f(qk, q̇k)T = Tuk, (26)

where qk, q̇k ∈ Rn are the vectors of generalized joint
angle and velocity at time step k respectively, B(qk) is the
inertia matrix, f(qk, q̇k) represents centrifugal, Coriolis and
gravitational torques, uk denotes the control input vector and
T denotes the sampling time.

Then, the explicit form is derived as

qk+1 =qk + akT q̇k,

q̇k+1 =B−1(qk + akT q̇k)[B(qk)q̇k + f(qk, q̇k)T ]+

B−1(qk + akT q̇k)Tuk,

(27)

where we approximate that q̇k+1 = akq̇k, and ak represents the
change of the slope of the robot joint trajectories at time step
k, which is estimated by the actual trajectory to be followed.

The resulting model is in state space form of

x1(k + 1) =x1(k) + akTx2(k),

x2(k + 1) =B−1(x1(k) + akTx2(k))·
[B(x1(k))x2(k) + f(x1(k), x2(k))T ]+

B−1(x1(k) + akTx2(k))Tu(k),

(28)

where x1(k) = qk, x2(k) = q̇k and u(k) = uk.

C. Problem setup

Given the discrete-time model of a three-link manipulator
in the Appendix of [29], the sampling time is T = 0.01s.
The aim is to drive the joint angle q = [q1, q2, q3]T to track
specific sinusoidal trajectory r = [ 2π3 sin(tk), π2 sin(0.65tk) +
π
3 ,

π
2 cos(1.5tk)]T rad. This is easy to implement with a nom-

inal PD controller unorm in ideal conditions. In practice,
suppose that the joint angles should be constrained for safe
operation: q1max = 3π

5 rad, q1min = −πrad, q2max = 3π
4 rad,

q2min
= −π8 rad, q3max

= πrad, q3min
= − 5π

12 rad, and
the system has limited control input: u1max

= 800Nm,
u1min

= −1000Nm, u2max
= 1400Nm, u2min

= −1600Nm,
u3max

= 1000Nm, u3min
= −800Nm. The desired trajectory

r apparently violates the joint constraints.

D. Simulation results with high order discrete-time CBF

In order to keep the actual trajectory within the safety
boundary, constraints on the joint angle can be converted into
hi = qimax

− qi ≥ 0 and bi = qi − qimin
≥ 0 for i = 1, 2, 3,

which are of relative degree two for the discrete-time model
in (28). Considering the desired trajectory, we only set

h1 = q1max
− q1,

h2 = q2max − q2,
b2 = q2 − q2min ,

b3 = q3 − q3min .

(29)

Safe sets are defined on the basis of the above safety condi-
tions, such as S1 := {q1k ∈ R3 | q1max

− q1k ≥ 0} for the
upper bound q1max

on joint q1.
According to the concept of high order discrete-time CBF,

all the class K functions are chosen to be linear functions with
positive coefficients set as γh11 = 0.9, γh12 = 0.1, γh21 =
0.9, γh22 = 0.1, γb21 = 0.2, γb22 = 0.8, γb31 = 0.2, γb32 = 0.8.
For example, define

ψh10
(xk) =q1max

− q1k ,
ψh11

(xk) =∆ψ0(xk, uk) + γh11
ψ0(xk),

ψh12
(xk) =∆ψ1(xk, uk) + γh12

ψ1(xk),

(30)

where ψh12(xk) ≥ 0 is the corresponding CBF condition for
h1.

Then, an optimization problem can be constructed as pre-
sented in (19). The nominal PD controller with KP =
diag(5000, 6000, 4000), KD = diag(300, 500, 100) allows
the system to track the desired trajectory but may not be safe.
Only high order discrete-time CBF constraints and control
input constraints are added, and the discrete-time CLF con-
straint is ignored. The optimization problem is solved using
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the solver “fmincon” in MATLAB R2019a. In fact, it is a
quadratic programming problem.

The simulation results are shown in Fig. 1 and Fig. 2. Figure
1 depicts the joint angle trajectory. The black dashed line
and the black dash-dotted line represent the upper and lower
constraints on joint angle, respectively. It can be clearly seen
that the joint angles are constrained within the safety boundary
while tracking the desired trajectory.

In Fig. 2, the control input uk is within the control boundary
for each time step k. For an upper (lower) constraint on qk,
the related high order discrete-time CBF constraint results in
an upper (lower) bound on uk most of the time, so that as the
CBF constraint works, uk is limited to a smaller (larger) value
compared with unorm. However, when the desired trajectory
is near the sinusoidal peak (trough), the corresponding control
will appear an overshooting, that is, uk tends to approach the
nominal control unorm again. This is due to the fact that ak
changes from a positive number to a negative number at this
specific moment, which affects the constraints on uk imposed
by high order discrete-time CBF.
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Fig. 1. Joint angle trajectory in simulation with high order discrete-time CBF.
The blue solid line represents the actual trajectory for each joint while the red
dashed line represents the desired trajectory. The black dashed line and the
black dash-dotted line indicate the upper and lower bound on the joint angle
respectively.

E. Simulation results with adaptive discrete-time CBF

Next, this section will demonstrate how to improve the
feasibility utilizing adaptive discrete-time CBFs. Let us modify
the settings for previous problem in Section V-C slightly.
Just take the upper bound constraint on joint q1 into account
and remove the constraints on the other two joints. It is
assumed that the change of environment causes fluctuation
of output capacity of the actuator. During the simulation,
the control input u1 is restricted with a fixed upper bound
u1max = 400Nm, while the lower bound u1min is tightened to
verify the proposed method.
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Fig. 2. Control input u in simulation with high order discrete-time CBF. The
blue solid line represents the actual control input for each joint while the red
dashed line represents the nominal control. The black dashed line and the
black dash-dotted line indicate the upper and lower bound on control input
respectively.

An optimization problem similar to (19) is constructed
based on adaptive discrete-time CBF and discrete-time CLF
as below:

u∗k =argmin
Uk

P1‖uk − unormk
‖2 + P2v

2
k (31a)

+ P3δ
2 + P4(γ2k − γ∗2)2,

Uk =


uk
vk
δ
γ2k

 ∈ R6

s.t. ψ2(xk,Γk) ≥ 0, (31b)
∆H1,2(γ1k , vk) + β1,2 ·H1,2(γ1k) ≥ 0, (31c)

∆V (γ1k , vk) + c3‖γ1k‖2 ≤ δ, (31d)
0 < γ2k < 1, (31e)
umin ≤ uk ≤ umax. (31f)

(31b) represents the adaptive discrete-time CBF condition
for h1 = q1max − q1 = 3π

5 − q1, where class K functions
are linear functions with positive coefficients γ1k , γ2k . The
auxiliary system is chosen as

γ1k+1
= γ1k + vk.

(31c) guarantees 0 < γ1k < 1 by constructing discrete-time
CBFs

H1 = γ1 − γ1min ,

H2 = γ1max − γ1,

where γ1min
and γ1max

are selected as close as possible to
0 and 1 respectively, along with β1 = 0.2, β2 = 0.5. (31d)
is the discrete-time CLF condition for V = (γ1k − γ∗1 )2,
stabilizing γ1k to desired value γ∗1 = 0.8 with c3 = 1 and
a relaxation parameter δ. The cost function (31a) contains
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the term (γ2k − γ∗2)2 that stabilizes γ2k to desired value
γ∗2 = 0.05 in the process of optimization. The weights are set
as P1 = e−8, P2 = P3 = P4 = 1. This nonlinear programming
is solved using “fmincon” in MATLAB R2019a.

As shown by the cyan line in Fig. 3, if the high order
discrete-time CBF is used to deal with such a problem with
fixed γ1 = 0.8 and γ2 = 0.05 for u1min = −400Nm, the
optimization problem becomes infeasible at some step k. It
is because the high order discrete-time CBF constraint on uk
conflicts with the lower bound u1min

. Adaptive discrete-time
CBF can significantly improve the feasibility. Figure 3 shows
that the optimization problem (31) is always feasible when the
lower bound u1min is tightened at (−400,−300,−200)Nm in
turn. Figure 4 plots γ1, γ2 and v at each time step k. After the
CBF constraint becomes active, these parameters vary with
time, providing relaxation on u and thus avoiding conflicts
between constraints.
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Fig. 3. Joint angle and control input for q1 in simulation with adaptive
discrete-time CBF. For lower control bound u1min with different values,
solid lines depict the actual joint trajectory and control input; red dashed
lines represent the desired trajectory and nominal control; black dashed lines
and black dash-dotted lines represent the limits on joint angle and control
input. The cyan solid lines indicate the infeasibility of non-adaptive case.

VI. CONCLUSION

In this paper, high order discrete-time control barrier func-
tion and adaptive discrete-time control barrier function are
formulated to achieve set invariance. We generalize high order
discrete-time CBF for high relative degree systems and com-
bine it with discrete-time CLF into an optimization problem.
The adaptive discrete-time control barrier function is proposed
to improve the feasibility of optimization problems. Finally,
numerical simulation on the three-link manipulator is carried
out to verify the effectiveness of the proposed methods by
applying constraints on joint angles. In future work, we will
consider the robustness of high order discrete-time CBF to
external disturbances.
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