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Abstract— We propose a method to estimate the entire shape
of a long flexible needle, suitable for a needle insertion assistant
robot. This method bases its prediction on only a small segment
of a needle, imaged via ultrasound, after insertion. An algorithm
is developed that can segment a needle observed partially in
ultrasound images and fully in camera images, returning a
polynomial representation of the needle shape after RANSAC
processing. The polynomial corresponding to the partial needle
observation in ultrasound images is used as the input to a
needle-tissue interaction model that predicts the entire needle
shape. The needle shape predicted by the model is compared to
the segmented needle shape based on camera images to validate
the proposed approach. The results show that the entire needle
shape can be accurately predicted in tissues of varying stiffness
based on observation of parts of the needle in an ultrasound
image.

I. INTRODUCTION

Prostate brachytherapy is a procedure whereby long flex-
ible needles containing radioactive seeds are inserted under
ultrasound guidance into the prostate to treat cancerous
tissue. The success of this surgery depends on the accuracy
with which the seeds are placed within the prostate with
respect to pre-planned target locations [1]. During insertion,
however, each needle will bend away from its target location,
requiring continuous observation and correction of the needle
path.

A typical brachytherapy setup, diagrammed in Fig. 1,
includes an ultrasound probe registered to a guide template
that consists of a grid of holes. Each brachytherapy needle is
inserted through a grid hole that corresponds to a pre-planned
target location in the prostate. During needle insertion, an
ultrasound image at the specified target depth is acquired
to check the needle position. Only a small portion of the
needle can be imaged at any time as the field of view of
the ultrasound is very narrow . Thus, as the needle is sent
off course from its target, the surgeon is unable to see or
predict the needle’s total deflection. Needle shape prediction
has traditionally been done using mechanically based models
that require tissue parameters as an input [2], [3], [4].
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Fig. 1. Typical brachytherapy setup including ultrasound probe and perineal
template

Additionally some models depend upon knowledge of other
parameters, for instance the expended mechanical work to
insert the needle [2], the needle and tissue interaction force
profiles [2], [3], or complex finite element tissue deformation
models [4]. Instead of using tissue characterization and
complex mechanical interaction profiles, in this paper we
have developed a predictive algorithm that only requires data
gathered from partial needle observation in an ultrasound
image and the basic mechanical characteristics of the needle.

The first step in predicting the needle shape in our
method is to acquire ultrasound images of a portion of
the brachytherapy needle inserted into tissue (Section II).
Next, we introduce a novel technique for segmenting bent
needle images by combining edge detection and thresholding
techniques with RANdom SAmple Consensus (RANSAC)
filtering [5]. The segmentation algorithm outputs a second
order polynomial that fits to the portion of the needle seen in
the ultrasound image. This needle-tissue interaction model is
then used to predict the entire needle shape from the observed
portion of the needle seen in the ultrasound image (Section
III). The input polynomials are required to be converted by
an affine transformation into the real-world frame so that
they can be used by the needle-tissue interaction model and
to be in a common reference frame for validation (Section
IV). Finally, to validate this prediction we compare the shape
output from the model with the shape of the needle as seen in
the camera images (Section V), which represents the ground
truth. The overall flowchart of the algorithm is given in Fig.
2.

II. CAMERA AND ULTRASOUND IMAGE PROCESSING

Given that our primary goal is to predict the total needle
shape from the observation of a small portion of the needle,
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Fig. 2. Needle Prediction and Validation Algorithm

in this section we present a technique that is used to find
a curved needle in an ultrasound image. This technique for
segmenting a curved needle in an ultrasound is then extended
to a camera image. The needle segmentation algorithm
results in a second order polynomial equation that follows the
curvature of the needle in its respective frame of reference,
i.e. either the camera frame or the ultrasound image frame.

The experimental setup consists of a tissue phantom
imaged from overhead by a camera and from the side by an
ultrasound probe. The images show a needle that is inserted
into the tissue that deflected during insertion. Fig. 3 shows
a schematic representation of the experimental set up in
order to define the different coordinate frames that arise from
combining imaging modalities. Points in both the camera and
ultrasound images are throughout the paper defined in their
respective pixel domains. In the convention here, superscripts
and subscripts on the left side of a symbol refer to the frame
of reference for the coordinate system. The coordinate frame
for the ultrasound image is denoted by U ; a point U P in the
ultrasound image will have coordinates (U x, U y) defined with
respect to the lower left hand side of the ultrasound image,
as shown in Fig. 3. The coordinate frame for the camera
image is denoted by C; a point CP in the camera image will
have coordinates (Cx, Cy), defined with respect to the upper
left hand side of the camera image, as indicated in Fig. 3. A
third frame is defined not in a pixel domain but in physical
coordinates and referred to as the real-world frame, denoted
by R. A point RP in the real-world frame consists of (Rx, Ry)
measured in meters with respect to an origin located where
the needle exits the template (see Fig. 3).

A. Ultrasound Image Processing

Needle segmentation in 2D ultrasound images has pre-
viously been done via Gabor Filtering [6] and the Hough
Transform for straight needles [7] or curved needles [8].
Additionally, needles have been segmented in 3D ultrasound
images using projection methods [9], [10] or RANSAC [11].

Fig. 3. Brachytherapy procedure simulation setup including ultrasound
probe, phantom tissue, needle template, and needle. The setup is represented
from the field of view of the camera.

(a) Input Ultrasound Image

(b) Ultrasound Image After Image Processing

(c) Polynomial Curve Fit to Needle in Ultrasound Image

Fig. 4. Image Processing for Ultrasound

In this paper, we combine RANSAC filtering with Otsu’s
Algorithm [12].

Ultrasound images along the length of the needle are taken
near the needle’s entry point into tissue, as this represents
the most challenging scenario for prediction. The probe
used to capture the images is a linear transducer and as
such shows a limited field of view, in this case a linear
40 mm wide image that does not widen with depth. These
images are captured at arbitrary distances from 2 to 66 mm
away from the needle’s entry point into the tissue. When
the needle is imaged under ultrasound while in phantom
tissue, the needle is quite distinct from the background as
shown in Fig. 4(a). The routine for segmenting the needle
in an ultrasound image involves thresholding using Otsu’s
algorithm [12]. This converts the grayscale ultrasound image
into a segmented binary (black and white) image, as shown in
Fig. 4(b). The white values in the binary image are converted
into a list of points U P, which is the input for the RANSAC
algorithm. Image processing is implemented in Matlab using
the functions from the image processing toolbox.

2278



(a) Input Camera Image

(b) Camera Image After Image Processing

(c) Polynomial Curve Fit to Needle in Camera Image

Fig. 5. Image Processing for Camera Image

B. Camera Image Processing

Image processing is performed on the camera image which
will be used later for model validation. In contrast to the
ultrasound image, the needle in the camera image is not
readily segmentable based on a grayscale threshold as the
image suffers from variations in lighting intensity which
can be seen in Fig. 5(a). Therefore, segmenting the needle
from the camera image is performed using the Sobel edge
detection filter, a 3x3 gradient filter that approximates the
2D derivative of the image with respect to image intensity
[13]. From this, a threshold is applied to the filtered image
(i.e., the 2D derivative) and only those edges exceeding the
threshold are accepted, thus creating a binary image. The
output of the camera image processing is shown in Fig. 5(b).
After the Sobel filter is applied to the image, the white values
are converted to a list of points CP to be input to perform
RANSAC filtering on the image.

C. Processed Image Conversion to Polynomial via RANSAC

The next step in the algorithm is to convert a list of
segmented points from the binary images into polynomial
curves. RANSAC or RANdom SAmple Consensus [5] is the
algorithm that we will use to fit polynomials as it is robust to
noise. The input to the RANSAC algorithm is a collection
of points from either the camera CP or ultrasound U P, in
their respective frames, that represent possible points along
the needle. We want to convert the points from CP and U P
into second order polynomials

Cy = α2(
Cx)2 +α1(

Cx)+α0 (1)
U y = β2(

U x)2 +β1(
U x)+β0 (2)

where the α and β terms are the coefficients of the desired
polynomials that best describe the needle.

The RANSAC algorithm takes 3 random points from the
sets CP or U P and uses linear least squares to calculate the

tissue

Fig. 6. Needle-tissue interaction lumped model. The length of the needle
is represented by discrete weightless bars `

polynomial coefficients in (1) and (2) respectively. Outliers
are defined as points that are further than a given distance
from the curves (1) and (2). The ratio of inliers to outliers
is then calculated and if this ratio is greater than a threshold
the algorithm calculates the coefficients for polynomials (1)
and (2) considering the entire set of inlier points. If the ratio
is less than the threshold, then three different points from
CP or U P are chosen and the algorithm restarts. For our
implementation we use maximum distance values of 3 pixels
for the camera image and 7 pixels for ultrasound image.
For the inlier to outlier ratio we use 70% and 80% for
the camera image and ultrasound image respectively. After
the RANSAC routine has successfully been run on the two
sets of points CP and U P, the resulting polynomials follow
the curve of the needle in either image. The results after
RANSAC polynomial curve fitting are shown in Fig. 4(c)
and Fig. 5(c).

III. NEEDLE-TISSUE INTERACTION MODEL

In order to predict the curvature of the needle based on
observing only a portion of the needle we will use a physical
model that incorporates characteristics of both the needle and
the phantom tissue. This model is an extension of [14]. The
model is a non-linear needle deflection estimator using only
the portion of the needle imaged by ultrasound (converted
into the real-world coordinate frame, see Section IV), needle
insertion length, and the needle mechanical properties as its
inputs. The total inserted length of the needle L is discretized
into n non-deformable weightless bars of length ` such that
`= L/n, as shown in Fig. 6. Let us define θi as the relative
angle between a bar segment of the needle i− 1 and the
subsequent bar segment i. Two neighboring bar segments
i−1 and i are considered to be connected by helical springs,
all of which have the stiffness K, given by

K =
EI
L

n (3)

where E and I are the needle Young’s modulus of elasticity
and its second moment of inertia. As the needle is inserted
into the tissue, a force Q is applied to the tip of the needle
perpendicular to last segment, such that the needle bends. As
the needle bends during insertion it increasingly compresses
the tissue located under the needle, this in turn causes the
tissue to apply a reaction force back onto the needle. The
actions of these forces are modeled as helical springs of
stiffness Ti, which is added to the original spring stiffness
of K. Together, these two stiffnesses resist the deflection of
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the needle. This results in the helical springs inside the tissue
having a stiffness of K +Ti. The stiffness Ti is modeled as

Ti = k0[`(n− i+1)]k1 (4)

where k0 and k1 are variables that depend on tissue parame-
ters. Together k0, k1, and Q represent the model parameters
that will be found interactively using a pattern search algo-
rithm implemented in Matlab.

To obtain the needle deflection we consider the torque τi
generated on each joint i. The torque τi is a result of the effect
of the needle tip force Q, and its influence at each joint is τi =
QGi, where 1 ≤ i ≤ n and Gi is a Jacobian transformation.
The components Gi of the Jacobian matrix relating the force
Q to the relative angles τi as τi = GiFt are

Gi = `

(
1+

n

∑
p=i

cosθp − cosθi

)
cos

(
n

∑
p=i

θp −θi

)
(5)

Thus, the relative angular displacement for each of the
segments can be calculated as θi = τi/Ki. Finally, we can
calculate the Cartesian position of each helical spring in the
transverse (vi) and axial (ui) directions (with respect to the
unbent needle) as

vi = vi−1 + `sin

(
i

∑
p=1

θp

)
(6)

ui = ui−1 + `cos

(
i

∑
p=1

θp

)
(7)

Solving for the needle’s total deflection requires knowl-
edge of the needle tip force Q and the tissue reaction force as
modeled by k0 and k1, from (4). Since these equations cannot
be solved analytically, we need to use an iterative method to
find a solution. In order to do that the polynomial coefficients
of the needle from the ultrasound image are used to generate
a series of points in the real-world frame, originally from
CP, that represent a portion of the needle. The points in the
real-world frame will be known as RPU having coordinates
(RxU ,

RyU ) in the axial and transverse direction and are found
by taking points from the polynomial (2) and transforming
them through R

U T such that a new polynomial is created that
describes the deflection seen by the ultrasound probe in the
real frame, given by

RyU = γ2(
RxU )

2 + γ1(
RxU )+ γ0 (8)

where γ2, γ1, γ0 are fit to the transformed points by linear
least squares.

The values of Q, k0, and k1 are found through minimizing
the following cost function using a pattern search algorithm

C(Q,k0,k1) =
j2

∑
i= j1

∣∣vi(Q,k0,k1)− RyUi
∣∣ (9)

where RyUi are discrete sample points taken from (8), such
that RxUi = ui for every element i that is in the portion of

the needle simulation corresponding to the same portion of
the needle imaged under ultrasound; thus j1 ≤ i ≤ j2, with
j1 and j2 being the boundaries on the left and right side of
the needle portion respectively. vi(Q,k0,k1) is the simulated
needle deflection at the corresponding axial position ui for a
given set of Q, k0, and k1. The values of Q, k0, and k1 are
iteratively changed to minimize the cost function and thus
find the model parameters. With these parameters found, the
equations of the system can be used to predict the total needle
shape.

IV. CAMERA AND ULTRASOUND IMAGE
COREGISTRATION

In order validate the model, both polynomials (1) and
(2) will be referred to the same frame. Two transformation
matrices are needed for the camera image and ultrasound
image conversion. For the transformation matrix from the
ultrasound image’s pixel domain to the real-world frame, we
assume that a simple affine transformation matrix, R

U T , will
suffice as the linear transducer on the ultrasound machine
results in a rectangular image. Likewise for the camera, since
it is located above the center of the setup and is adjusted so
that its focal plane coincides with that of the experiment we
assume another affine transform matrix, denoted by R

CT , will
suffice.

A. Ultrasound Image Transformation Matrix

The matrix R
U T that transforms points from the ultrasound

frame to the real-world frame is of the form

R
U T =

 R
U Sx cosφ sinφ R

U tx
−sinφ R

U Sy cosφ R
U ty

0 0 1

 (10)

where R
U tx and R

U ty are the x and y offset, in meters, of the
leftmost point of the transducer element from the base of
the needle, φ is defined as the angle of the ultrasound probe
relative to the closest edge of the tissue, and R

U Sx is the pixel
domain width scaling factor and R

U Sy is the height scaling
factor, see Fig. 3. The scaling elements of the matrix are
constant in each tissue and can be found by measuring object
distances within the tissue. The translation elements can be
found through measuring the offset of the ultrasound probe.
In contrast we will discuss how we calculate the value of φ

in Section IV-C as this requires having the matrix R
CT .

B. Camera Image Transformation Matrix

The matrix R
CT that transforms points from the camera

frame to the real-world frame is given by

R
CT =

 R
CS0 0 R

Ctx
0 R

CS0
R
Cty

0 0 1

 (11)

where R
Ctx and R

Cty are the x and y offset, in meters, of the
upper leftmost point of the camera image to the base of the
needle and R

CS0 is the pixel domain scaling factor for both
the x and y axes as the experiment is centered in the camera’s
field of view. As with the ultrasound matrices, the camera
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Fig. 7. Brachytherapy procedure simulation setup including ultrasound
probe, phantom tissue, needle template, needle, and markers.

transformation matrices scaling and translation elements can
be found through measuring known points in the physical
and camera coordinate frames.

C. Solving for the Ultrasound Image Rotation

In order to use R
U T the value of φ is required. For this

experiment we will be solving for the angle φ using an
iterative technique. This angle is found by comparing the
results of applying the ultrasound transformation matrix R

U T
to the polynomial U P (found in Section II-C), using an initial
value of φ , to the results of the transformation matrix R

CT
applied to the polynomial CP (also found in Section II-C).
The value of φ is iterated in steps of 0.1◦ and the value that
results in the best fit between both curves is chosen. The
two matrices allow for the portion of the needle seen in the
ultrasound image to be converted to the real-world coordinate
frame and used as an input for the needle-tissue interaction
model. The average registration error was less than 0.05 mm
between the points measured in the camera frame and the
points in the ultrasound frame.

V. EXPERIMENTAL RESULTS

The setup for the experiment to simulate a prostate
brachytherapy procedure is shown in Fig. 7. An 18-gauge by
200 mm prostate seeding needle (Eckert & Zielger BEBIG
GmbH, Berlin, Germany) is inserted through a brachytherapy
template (Model D0240018BK, C. R. Bard, Inc., Covington,
USA) into a tissue phantom. The tissue phantom is a plastisol
gel from M-F Manufacturing Co, Fort Worth, USA. The
physical characteristics of the plastisol gel mimic human tis-
sue with the added benefit that the phantom tissue transmits
both visible light and ultrasound waves, allowing simulta-
neous capturing of images in both modalities. A portion of
the needle is imaged by a 4DL14-5/38 Linear 4D transducer
(different from the transrectal ultrasound probe shown in Fig.
1) which is connected to an SonixTouch ultrasound machine
(Ultrasonix, Richmond, Canada). For this experiment, we
only use the 2D functionality of the ultrasound probe. The
entire needle is imaged from above by a XCD-SX90CR
video camera (Sony Corporation of America, New York,
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Fig. 8. Needle Shape Prediction with Error

USA). The prostate seeding needle is inserted such that it
deflects in the plane imaged simultaneously by the camera
and the ultrasound probe. Due to the process by which
ultrasound and camera images are captured, the ultrasound
probe does not interfere with the camera’s field of view
even while they both image the same plane. Two different
tissue phantoms are used, so called Tissue 1 and Tissue 2,
where Tissue 2 is considerably stiffer than Tissue 1. Tissue
1 was created using a four to one ratio of liquid plastic
to softener while Tissue 2 was created using a five to one
ratio. With the needle inserted into the tissue phantom, at
an insertion depth of 140 mm, 5 images from the camera
and ultrasound are taken simultaneously. Between images.
the orientation of the ultrasound probe φ is changed. The
images are input into the aforementioned image processing
algorithms (Section II) in order to calculate the needle
shape polynomials. The ultrasound polynomial equation that
contains the partial observation of the needle is subsequently
inserted into the needle-tissue interaction model in order to
predict the entire needle shape. The predicted needle shape
is compared with the measured needle shape as found by
the camera in Fig. 8. Table I summarizes the needle shape
prediction results for each of the 5 trails in both tissue
phantoms by comparing needle tip deflection. Of note in
Table I is that neither the offset location of the ultrasound
probe nor the probe orientation affects the needle shape
prediction results. When one compares the average measured
deflection to the average deflection error both tissues have a
prediction error of 20%, validating that the model is tissue
independent.

VI. CONCLUSION

In this paper we have shown the feasibility of predicting
the shape of an entire needle when only a portion of
it has been imaged via ultrasound. Our method is based
on combining image processing, coregistration of different
image sources, and a needle-tissue interaction model. We
have developed a new method for ultrasound image segmen-
tation that combines thresholding, using Otsu’s algorithm,
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TABLE I
PHANTOM TISSUE RESULTS

Experiment Probe Distance Probe Measured Model-Prediction Absolute Deflection
Number from Guide Orientation Deflection Deflection Error

Tissue 1
1 40 mm 2.1◦ 9.6 mm 9.7 mm 0.1 mm
2 17 mm 1.4◦ 10.1 mm 11.4 mm 1.3 mm
3 28 mm 4.1◦ 10.0 mm 12.2 mm 2.2 mm
4 66 mm 1.5◦ 9.0 mm 13.4 mm 4.4 mm
5 66 mm 1.7◦ 8.7 mm 10.2 mm 1.5 mm

Avg 9.5 mm 11.4 mm 1.9 mm
Tissue 2

1 14 mm 1.8◦ 17.6 mm 12.5 mm 5.1 mm
2 19 mm 4.5◦ 17.3 mm 18.9 mm 1.6 mm
3 36 mm 0.3◦ 17.5 mm 23.0 mm 5.6 mm
4 15 mm -0.8◦ 17.3 mm 17.8 mm 0.5mm
5 2 mm 11.9◦ 17.2 mm 21.0 mm 3.8 mm

Avg 17.4 mm 18.5 mm 3.32 mm

and RANSAC. This combination allows for the ultrasound
imaged needle segment to be succinctly described as a
polynomial. In addition we have extended this technique to
be able to segment a needle inserted into semi-transparent
tissue imaged by a camera.

As a general tool to help validate a needle-tissue inter-
action model, we have devised a method for coregistering
ultrasound and camera images using affine transformations.
To the best of the authors’ knowledge, such a technique has
not been presented in the literature. Potential applications
of our method to medical robotics include needle pose
estimation and simultaneous camera and ultrasound visual
servoing.

The needle-tissue interaction model outlined here is used
to predict the entire shape of the needle based on partial
observation. This model only requires simple mechanical
characteristics of the needle and is independent of tissue
characteristics and needle-tissue force interactions. Further-
more, the input to this model can be provided by either
an ultrasound or camera image. The algorithm as outlined
by this paper has been validated in phantom tissue. The
experimental results have shown that the needle shape can be
estimated with an accuracy greater than 5.6 mm. In our future
work, we intend to integrate this routine into a brachytherapy
needle insertion assistant robot to allow for real-time needle
deflection estimation and correction.
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