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    Abstract—The number of people with physical 

disabilities and impaired motion control is increasing. 

Consequently, there is a growing demand for intelligent 

assistive robotic systems to cooperate with people with 

disability and help them carry out different tasks. To this 

end, our group has pioneered the use of robot learning 

from demonstration (RLfD) techniques, which eliminate 

the need for task-specific robot programming, in robotic 

rehabilitation and assistive technologies settings. First, in 

the demonstration phase, the therapist (or in general, a 

helper) provides an intervention (typically assistance) and 

cooperatively performs a task with a patient several times. 

The demonstrated motion is modelled by a statistical 

RLfD algorithm, which will later be used in the robot 

controllers to reproduce a similar intervention 

robotically. In this paper, by proposing a Tangential-

Normal Varying-Impedance Controller (TNVIC), the 

robotic manipulator not only follows the therapist’s 

demonstrated motion, but also mimics his/her interaction 

impedance during the therapeutic/assistive intervention. 

The feasibility and efficacy of the proposed framework 

are evaluated by conducting an experiment involving a 

healthy adult with cerebral palsy symptoms being induced 

using transcutaneous electrical nerve stimulation. 

 

I. INTRODUCTION 

    Loss of motor function, reduced mobility, restricted range 

of motion, muscle stiffness and inability to control the body 

movements are symptoms associated with a wide range of 

disorders including  cerebral palsy (CP) and stroke, which are 

the most prevalent sources of severe disabilities in children 

and adults, respectively [1, 2]. In the upcoming years, 

population aging will further increase the number of affected 

people [3]. In the USA alone, there are 6.6 million stroke 

survivors,  which  is  estimated  to  represent  a  burden  of  33  

 

    This research was supported by the Canada Foundation for Innovation 

(CFI) under grant LOF 28241, the Alberta Innovation and Advanced 

Education Ministry under Small Equipment Grant RCP-12-021, the Natural 
Sciences and Engineering Research Council (NSERC) of Canada under a 

Collaborative Health Research Projects (CHRP) Grant, Canadian Institutes 

of Health Research (CIHR), and the Quanser, Inc.  
    M. Najafi and M. Tavakoli are with the Departments of Electrical and 

Computer Engineering in University of Alberta, Edmonton, AB, Canada. (e-
mail: najafi@ualberta.ca, mahdi.tavakoli@ualberta.ca). 

    K. Adams is with Faculty of Rehabilitation Medicine in University of 

Alberta, and Glenrose Rehabilitation Hospital, Edmonton, AB, Canada. 
(e-mail: kdadams@ualberta.ca). 

 
    

billion dollars on the national health care system [4]. Also, 

more than 500,000 children under the age of 18 have  at least  

one CP symptom that can interrupt their normal physical and 

social interaction  [5, 6]. This sometimes results in incomplete 

cognitive and linguistic developments and imposes a heavy 

burden on economy, taking into consideration the long life 

expectancy for the affected children [7]. Due to the cost and 

labor intensity of conventional hand-over-hand rehabilitative 

and assistive practices, there has been a growing interest in 

robotic systems to take over some labor. Robotic system are 

consistent, untiring and robust  in repetitive task executions. 

Also, with the sensory data and cutting-edge artificial 

intelligent (AI), these systems can evaluate the patient’s 

motor performance and accordingly provide the required 

assistance. In the near future, with the developments in AI and 

machine learning, assistive and rehabilitative robotic systems 

can become fully autonomous, making therapist’s role of a 

supervisory nature. However, AI needs more development to 

be reliable for fully autonomous assistive robotic systems 

considering the complexity of certain tasks and the required 

safety guarantees in interaction with patients. Therefore, 

semi-autonomous Robot Learning from Demonstration 

(RLfD), which has originally been developed for service 

robotics and factory automation applications [8], is the 

focused in this paper. In this framework, only a short duration 

of the therapist’s interaction with the patient (through a 

robotic medium) is enough to learn the task-specific 

assistance provided by the therapist to the patient and 

subsequently administer the same assistance to the patient 

robotically in the therapist’s absence.  

    The RLfD is an intuitive technique for robot programming 

by physically demonstrating the intended task to a robotic 

manipulator. Assistive and rehabilitative systems are mainly 

used in therapeutic settings such as clinics and patients’ 

homes, where computer and robot programming skills are not 

necessarily widely available. Recently in [9, 10], our group 

has suggested RLfD as an alternative for robot programming 

of assist-as-needed (AAN) rehabilitation systems. First, a 

therapist demonstrates the task to be done by the patient to the 

robotic manipulator for several times. Then, a Gaussian 

mixture model (GMM) models the demonstrated trajectories. 

Finally, in the reproduction phase, Gaussian mixture 

regression (GMR) produces a statistically desired trajectory 

from GMM, and a proportional-integral-derivative (PID) 

controller assists the patient, in the therapist’s absence, to 

follow this desired trajectory.  
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    In our previous work, we utilized impedance controllers to 

assist the patient around the desired trajectory learnt by the 

RLfD [11]. Two unvarying virtual impedance models 

attracted the patient’s hand (which is holding the robot 

manipulator) to the desired trajectory, tangent and normal to 

the desired trajectory, providing him/her with an adjustable 

level of freedom in each direction. The more the patient 

deviates from the desired trajectory, the higher the attracting 

force towards the desired trajectory. This provided the patient 

with the experience of going through a virtual tunnel, with the 

patient having freedom along a tangential direction (along the 

tunnel) and a normal direction (sideways inside the tunnel). 

Since the width of the virtual tunnel was selected based on the 

narrowest section of the demonstrated trajectory, excessive 

assistance was provided in the rest of the path. To address this 

problem, in this paper, we propose a Tangential-Normal 

Varying Impedance Controller (TNVIC). Using the TNVIC, 

the level of assistance  provided to the patient (related to the 

impedances imposed about the desired trajectory) changes in 

inverse proportion to the trial-to-trial variation in the 

demonstrated trajectories . Thus, the lower the variability in 

demonstrations at a given time, the more assistance is 

required to be provided to the patient, thus the higher the 

impedance parameters (spring-damper) to restrict deviation 

from the desired trajectory. This approach for impedance 

learning in the RLfD was proposed in [12] and also applied in 

[13] to learn human interaction impedance. 

    In this paper, the therapist and the patient cooperatively 

perform a given task for a few number of times, using a 

robotic manipulator. The therapist provides assistance such 

that the patient can complete the task, considering that more 

variability will result in less assistance to the patient (i.e., 

more freedom for the patient to deviate from the desired 

trajectory) in the reproduction phase. Then, using the GMM, 

the joint time-position data of demonstrated trajectories is 

captured statistically. Finally, in the therapist’s absence, the 

GMR will extract the demonstrated average trajectory and 

also its trial-to-trial variability at each time from the GMM. 

The proposed TNVIC assists the patient to follow the average 

trajectory while imitating the therapist time-varying 

assistance based on the acquired variability (via impedance 

control) in tangential and normal directions (Fig. 1). Other 

features and novelties of this paper are:  
 

 Unlike the previous RLfD frameworks for AAN [9, 10], 

where a varying PID controller was used to represent the 

variability observed in the demonstrations of the task, in 

the proposed TNVIC we use impedance controllers that 

have been widely utilized in human-robot interaction to 

regulate the interaction between the patient and the 

robotic manipulator. 

 In TNVIC, the impedance models vary inversely 

proportional to the demonstrated trial-to-trial variability 

with consideration of the maximum interaction force (by 

the patient) to accurately assist the patient to remain in 

the demonstrated range of variability. However in [12, 

13], linear and sigmoid functions were used to app- 

roximate the inverse relation of impedance parameters 

and variability. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. In the demonstration phase, the therapist and the patient cooperatively 

perform the task for a number of trials. Then, using robot learning from 
demonstration, the task is modelled as an average trajectory (centroid of 

virtual tunnel) and variations in trajectory (width of the virtual tunnel). The 

proposed TNVIC assists the patient by two varying impedance models 
(spring-damper) to follow the demonstrated trajectory and remain in the 

demonstrated range of variability. This figure shows the TNVIC in two time 

instances (𝑡1, 𝑡2). The less the variability, the higher (the more stiff) the 
impedance models in tangential and normal directions to allow lower 

deviations by the patient about the average trajectory.    
 

II. COOPERATIVE TASK DEMONSTRATION   

    Reaching motions are routinely part of rehabilitation 

exercises. For simplicity, the task is constrained to a 2-

dimensional Cartesian space. It is assumed that the patient is 

unable to complete a given task, if unassisted. Therefore, the 

therapist also interacts with the robotic manipulator held by 

the patient in order to assist the patient to carry out the task, 

considering the patient’s constraints and range of motion. A 

few cooperative task trials is sufficient to demonstrate to the 

robotic manipulator the required assistance.    
 

A.  Data sampling and arrangement  
 
    During the demonstration phase, the 2-dimensional  

position signal in the Cartesian coordinates (𝜉𝑃 ∈ 𝑅2) and the 

time variable (𝜉𝑡 ∈ 𝑅) are sampled and jointly denoted as 𝜉. 

Having 𝑀 task demonstrations (i.e., trials), respectively 

consisting of {𝑁𝑗 , j =  1, … , M} samples, the entire 

demonstrated data can be organized as  
 

𝐷 = {{𝜉𝑖,𝑗}𝑖=1
𝑁𝑗

}
𝑗=1

𝑀

,   ∀ 𝜉𝑖,𝑗 =  [
𝜉𝑃

𝑖,𝑗

𝜉𝑡
𝑖,𝑗

] ∈ 𝑅3,                            (1) 

 
where 𝜉𝑖,𝑗 represents the 𝑖𝑡ℎ sample of the 𝑗𝑡ℎ demonstrati- 

on. The data (𝐷) consists of ∑ 𝑁𝑗𝑀
𝑗=1  discrete samples.  

 

B.  Gaussian Mixture Model (GMM)  
         
    The GMM statistically models the demonstrated data by a 

sum of weighted Gaussians [8]. A Gaussian probability 

density function (PDF), also known as the normal 

distribution, has been widely used to model physical 

phenomenon such as human movements. A single Gaussian 

PDF is unable to capture inevitable nonlinearities in the 

complex trajectory-following tasks. Hence, the GMM uses a 

mixture of  𝐾 individual  Gaussians  as  shown  in  Fig. 2.  The  
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Fig. 2. An example scenario where a GMM with its 5 clusters (Blue 

ellipsoids) captures the nonlinearities in demonstrated trajectories, as 
compared to a Single Gaussian PDF (Red ellipsoid). Note that this figure 

displays the reflection of the 3-dimensional trajectories and GMM over the 

2-dimensional spatial axes.  

 

GMM as a PDF operator (𝑓) that models the demonstrated 

data (𝐷) with its variable 𝜉 is expressed as 
 

𝑓(𝜉|𝜃𝑖) = ∑ 𝜋𝑖𝒩3(𝜉|𝜇𝑖 , Σ𝑖),𝐾
𝑖=1                                               (2)                                                                                    

∀ 0 < 𝜋𝑖 < 1 & ∑ 𝜋𝑖𝐾
𝑖=1 = 1 & Σ𝑖 = [

Σ𝑝
𝑖 Σ𝑝,𝑡

𝑖

Σ𝑡,𝑝
𝑖 Σ𝑡

𝑖 ] > 0,    

 

where 𝜃𝑖 = {𝜋𝑖 ∈ 𝑅3, 𝜇𝑖 ∈ 𝑅3, Σ𝑖 ∈ 𝑅3×3}𝑖=1
𝐾  are made up of  

parameters of the GMM, i.e., the prior weight, the mean and 

the covariance matrix for each of the 𝐾 Gaussian  

components, respectively. 𝒩𝑛  denotes the n-dimensional 

Normal PDF (Appendix I). The optimum number of 

components (𝐾) is chosen, using Bayesian Information 

Criterion, which penalize the complexity of the GMM model 

[14]. The GMM parameters ({𝜃𝑖}𝑖=1
𝐾 ) are learned, using 

Expectation Maximization algorithm [15].    

    Now, all the discrete ∑ 𝑁𝑗𝑀
𝑗=1  samples, each consisting of a 

position variable (𝜉𝑝 ∈  𝑅2) and a time variable (𝜉𝑡 ∈  𝑅), are 

modeled by the sum of 𝐾 weighted Gaussian PDFs which 

capture the demonstrated trajectories in terms of its average 

and its variations in the position-time space.  

 

III. ROBOTIC SEMI-AUTONOMOUS ASSISTANCE   

    In this section, the aim is to provide a framework to 
robotically reproduce the assistance provided by the therapist 
in order to assist the patient in completing the task in the 
therapist’s absence. For this purpose, at each time, the 
expected position captured by GMM is extracted via GMR. 
Then, using the proposed TNVIC, the user is assisted to reach 
this expected (desired) position, mimicking the therapist 
intervention by considering the demonstrated trial-to-trial 
variability in tangential and normal directions. 
 

A. Gaussian Mixture Regression (GMR)  
 
    Extracting data from the learned 3-dimensional GMM in 
Section II, and feeding it to the robot controller in real-time 
requires a regression technique to approximate the expected 
(desired) 2-dimensional position (𝜉𝑃) in a given time (𝜉𝑡 = 𝑡). 
In this paper, GMR is used as a probabilistic operator that 
approximates a single Gaussian PDF of the expected position 
(𝜉𝑃) by calculating a conditional probability on the learnt 

GMM [9], as (3), in which 𝜇𝑃,𝑡̂ ∈ 𝑅2 and Σ𝑃,𝑡̂ ∈ 𝑅2×2 

approximate the average and covariance matrices of the 
demonstrated position at a given time 𝜉𝑡 = 𝑡. (Fig. 3).  
 

𝑓(𝜉𝑃|𝜉𝑡 = 𝑡)  ≈ 𝒩2(𝜉𝑃|𝜇𝑃,𝑡̂ , Σ𝑃,𝑡̂),                                           (3) 

 

B. Tangential-Normal Varying Impedance Controller 

(TNVIC)  
 
    The TNVIC assists the patient to follow the average 

demonstrated trajectory (𝜇𝑃,𝑡̂) using two time-varying virtual 

spring-damper impedance models. In real-time, 𝜇𝑃,𝑡̂ acts as a 

target moving along the average demonstrated trajectory. The 

impedance models (spring-damper) virtually connect the 

robot end-effector (held by the patient) to the moving target 

(𝜇𝑃,𝑡̂), respectively in tangential and normal coordinate 

system (T-N), as  
 

𝑐𝑇,𝑡𝜉𝑃𝑇
̃̇  + 𝑘𝑇,𝑡𝜉𝑃𝑇

̃  = −𝐹𝑃𝑇
,                                                  (4) 

𝑐𝑁,𝑡𝜉𝑃𝑁
̃̇ + 𝑘𝑁,𝑡𝜉𝑃𝑁

̃ = −𝐹𝑃𝑁
,                                                  (5) 

 
 
where {𝑐𝑇,𝑡 ,  𝑘𝑇,𝑡}  ∈ 𝑅+ and {𝑐𝑁,𝑡 ,  𝑘𝑁,𝑡}  ∈ 𝑅+ denote the 

desired time-varying damping and stiffness in T-N. 𝜉𝑃𝑇
̃  and 

𝜉𝑃𝑁
̃  indicate the deviation with respect to 𝜇𝑃,𝑡̂ , resulting from 

the patient’s force exertions in tangential (𝐹𝑃𝑇
) and normal 

(𝐹𝑃𝑁
) directions.  

    The direction and magnitude of the two orthogonal 

impedance models vary based on the demonstrated average 

(𝜇𝑃,𝑡̂) and variability (Σ𝑃,𝑡̂) as follows.  

    Direction: The impedance controllers rotate to be 

tangent/normal to the average demonstrated trajectory. The T-

N at a given time (t) is centered on the desired trajectory 𝜇𝑃,𝑡̂ 

and rotated with respect to an inertial Cartesian coordinate 

system 𝑋1-𝑋2 with angle 
 

𝜃𝑅,𝑡 =

arctan ((𝜇𝑝𝑋2 ,𝑡̂ − 𝜇𝑝𝑋2 ,𝑡−𝑇̂ ) (𝜇𝑝𝑋1 ,𝑡̂ − 𝜇𝑝𝑋1 ,𝑡−𝑇̂ )⁄ )            (6)  

 

where 𝜇𝑝𝑋2 ,𝑡̂ and 𝜇𝑝𝑋1 ,𝑡̂ represent the projection of 𝜇𝑃,𝑡̂  on 𝑋1-

𝑋2. T denotes the sampling period. Therefore the rotation 

matrix from 𝑋1-𝑋2 to T-N is 
 

𝑅𝑅,𝑡 = [
𝑐𝑜𝑠 (𝜃𝑅,𝑡) 𝑠𝑖𝑛 (𝜃𝑅,𝑡)

−𝑠𝑖𝑛 (𝜃𝑅,𝑡) 𝑐𝑜𝑠 (𝜃𝑅,𝑡)
].                                        (7) 

 
    Magnitude: The impedance parameters are in inverse 

proportion relation to the variability of the demonstrated 

trajectories. Following Hooke’s law, with a constant force 

exerted by the patient on a spring that connects the robotic 

manipulator to the desired trajectory, the resulted deviation is 

inversely proportional to the spring magnitude (stiffness) as 

 𝜉𝑃̃ = 𝐹𝑎 / 𝑘 . Therefore, to mimic the therapist’s assistance 

(i.e., the therapist variable interaction stiffness), the spring 

magnitudes are selected inversely proportional to the 

demonstrated variability (as shown in Fig. 4) in each of 

tangential and normal direction so that the patient can not 

deviate more than the demonstrated range of variability     

 

{𝑘𝜍,𝑡 =  𝐹𝑃,𝑚𝑎𝑥 3𝜎𝜍,𝑡⁄ ;                                                         (8) 

𝑖𝑓 (𝑘𝜍,𝑡 >  𝑘𝑚𝑎𝑥) →  𝑘𝜍,𝑡 = 𝑘𝑚𝑎𝑥},                                       
 
where 𝜍 = {𝑇, 𝑁}, should be substituted with T or N syntaxes 
to represent the equation for variable spring value in tangent- 

𝑮𝑴𝑴 
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Fig. 3. The calculation of standard deviation in tangential and normal 

directions, using (9) and (10).   
 

 

 
 

 

 
 

 

 
 

Fig. 4. The inverse proportional relationship between stiffness and standard 

deviation in tangential direction when 𝑘𝑇,𝑚𝑎𝑥 (𝑘𝑇,𝑡 when 𝜎𝑇,𝑡 = 𝜎𝑇,𝑚𝑖𝑛) is 

larger than 𝑘𝑚𝑎𝑥. 
 
ial or normal directions, respectively. 𝑘𝑚𝑎𝑥 is the maximum 
stiffness determined by the user for hardware restriction. 𝜎𝜍,𝑡 
denotes the demonstrated standard deviation along tangential 
(𝜎𝑇,𝑡) or normal (𝜎𝑁,𝑡) axis, which are extracted from rotated 
covariance matrix (Σ𝑃𝑇−𝑁,𝑡

̂ ) at each time, calculated from (9) 
and (10). 3𝜎𝜍,𝑡 is the distance to the average in Gaussian PDF 

that contains 99% of demonstrated trajectories. 𝐹𝑃,𝑚𝑎𝑥 , is the 
patient’s maximum force, measured (or tuned) before robotic 
assistance. 
 

Σ𝑃𝑇−𝑁,𝑡
̂ = [

𝜎𝑇′,𝑡
2 𝜌𝑡𝜎𝑇′,𝑡𝜎𝑁′,𝑡

𝜌𝑡𝜎𝑇′,𝑡𝜎𝑁′,𝑡 𝜎𝑁′,𝑡
2 ] =  𝑅𝑅,𝑡 Σ𝑃,𝑡

̂  𝑅𝑅,𝑡
𝑇,       (9)   

 

𝜎𝜍,𝑡 =   √1 − 𝜌
𝑡
2. 𝜎𝜍′,𝑡   , with  𝜍 = {𝑇, 𝑁},                          (10)  

              
 𝑐𝜍,𝑡 = 𝜏𝜍  𝑘𝜍,𝑡  , 𝜍 = {𝑇, 𝑁}.                                                          (11)   

 

    In (9) and (10), 𝜎𝑁′,𝑡 and 𝜎𝑇′,𝑡 represent the reflected 

standard deviation in T-N axes as shown in Fig. 3, 𝜌𝑡 is the 

correlation factor, which  is  a constant value between zero  

and one. To adjust the transient response of the second-order 

impedance model, the damping  ratio  (𝜏𝜍) is set to a constant 

value by calculating the damper parameter as (11). Finally, 

having the variable impedance models, and interaction force 

of patient (𝐹𝑃𝑎𝑇
, 𝐹𝑃𝑎𝑁

), the resulting deviation (𝜉𝑃𝑇
̃ , 𝜉𝑃𝑁

̃ ), can 

be calculated from (4) and (5). The desired position (𝜉𝑃,𝑑𝑒𝑠) 

of the robotic manipulator followed by the PID position 

controller is the sum of the average demonstrated trajectory 

and patient deviation which are rotated back from T-N to 𝑋1-

𝑋2 as: 

 

[
𝜉𝑃𝑋1 ,𝑑𝑒𝑠

𝜉𝑃𝑋2 ,𝑑𝑒𝑠
] =  [

𝜇𝑃𝑋1 ,𝑡̂

𝜇𝑃𝑋2 ,𝑡̂
] + (𝑅𝑅,𝑡)−1 [

𝜉𝑃𝑇
̃

𝜉𝑃𝑁
̃

].                               (12)   

  
The proposed TNVIC have been rigorously analyzed in Fig. 

5 and Algorithm I.        
 
 

 
 (a) 

 

 

 

 

 

 

 
  (b) 

Fig. 5. (a) The demonstrated trajectories (black lines) are modeled by a 3-

dimensional GMM (ellipsoids) in joint position-time space (Section II. B). 
The planes normal to the time axis (t), represent the Gaussian Mixture 

Regression. The expected demonstrated position in a given time is calculated 

by approximating a single 2-dimensional Gaussian PDF from the intersected 
mixture models (Section III.A). The times t = 4 and t = 6 are selected 

randomly to provide an example of the proposed robotic assist-as-needed 

framework. (b) Shows the proposed controller in (t = 4, t = 6). 
 

 
Algorithm I: Tangential-Normal Varying Impedance Controller (TNVIC) 

 
Initial Inputs: GMM model {𝜃𝑖}𝑖=1

𝐾 .  Patient’s maximum force (𝐹𝑝,𝑚𝑎𝑥).   

Transient damping ratio (𝜏𝜍), maximum stiffness (𝐾max ), and t = 0.  

For t = t + T & t < max (demonstrated 𝜉𝑡) 

 Inputs: {𝐹𝑃𝑋1
, 𝐹𝑃𝑋2

}, the patient’s interaction force from force sensor 

 1: Extract the demonstrated  average  and  variability  in  𝑋1-𝑋2 {𝜇𝑃,𝑡̂ , Σ𝑃,𝑡̂}    

     ,from the GMM, using the GMR by (3).    

 2: Calculate the TNVIC direction (𝜃𝑅,𝑡) from 𝜇𝑃,𝑡̂ by (6) 

 3: Form the rotation matrix (𝑅𝑅,𝑡) from 𝜃𝑅,𝑡 by (7) 

 4: Find the  standard  deviation  in  tangential  and normal directions {𝜎𝜍,𝑡}    

     from Σ𝑃,𝑡̂, using 𝑅𝑅,𝑡 by (9) and (10).  

 5: Map force sensor signal from 𝑋1-𝑋2 to T-N using 𝑅𝑅,𝑡. 

 6: Calculate the variable spring parameters (𝑘𝜍,𝑡), which is inversely prop-           

     ortional to 𝜎𝜍|𝑡 by (8). 

 7: Determine the variable damper parameters (𝑐𝜍,𝑡), from {𝑘𝜍,𝑡 ,  𝜏𝜍} by (11).   

 8: Find the  deviation  (𝜉𝑃𝑇
̃ , 𝜉𝑃𝑁

̃ ),   by   solving   the   variable  impedance   

     controller,  having the {𝑐𝜍,𝑡, 𝑘𝜍,𝑡 , 𝐹𝑃} by (4) and (5).  

 9: Calculate  the  desired  position  in  𝑋1-𝑋2 (𝜉𝑃,𝑑𝑒𝑠)  to  be followed by     

     the robotic manipulator, having the {𝜇𝑃,𝑡̂, 𝜉𝑃𝑇
̃ , 𝜉𝑃𝑁

̃ , 𝑅𝑅,𝑡}.  

 Outputs: {𝜉𝑃𝑋1 ,𝑑𝑒𝑠, 𝜉𝑃𝑋2 ,𝑑𝑒𝑠}, the desired position for robot end effector  

 

IV. EXPERIMENTAL VALIDATION AND DISCUSSION 

    The proposed framework is experimentally evaluated using 
a Quanser rehabilitation robot and implemented in QUARC 
real-time software (Quanser Consulting Inc., Markham, 
Canada) with a sampling frequency of 1 kHz. Without loss of 
generality, an application for assisting children with CP has 
been considered in  this paper. Playing is vital for children’s 
physical and mental cognitive development [5]. Nowadays, 
one of the common activities of children is using apps on 
smartphones, tablets  and  touchscreens. In order to help 
children with CP to also have the same experience, the 
proposed framework can be used to assist them in tasks, which 
can be represented by point-to-point motion primitives. 
     

𝝁𝑷|𝒕=𝟒̂  

𝒕 = 𝟔 𝒕 = 𝟒 

𝝁𝑷|𝒕=𝟔̂  

𝑘𝑁|𝑡=6 

𝒌𝑻|𝒕=𝟔 

𝑭𝑼 

𝒌𝑻|𝒕=𝟒 

𝜃𝑅,𝑡  

𝜇𝑃,𝑡̂  

𝒌𝑻,𝒕 =  
𝑭𝑷𝒂,𝒎𝒂𝒙

𝟑𝝈𝑻,𝒕
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Fig. 6. This figure shows the experiment setup in both demonstration (Left) 
and robotic assistance (right) phases. Two pairs of transcutaneous electrical 
nerve stimulation pads were used for simulation of CP symptoms (Section.IV).  
 

Table I.  The selected system parameters  

   

 

 

 

 

 

 

(a)  

 

 

 

 

 

(b) 
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Fig. 7. (a) The patient trajectories in 3 consecutive trials. Point 𝐵′ is projected 
on the LCD monitor instead of the actual destination (point B) to simulate poor 
coordination in patients with CP (b) The cooperative demonstration of 
therapist and patient for 5 trials. The therapist intentionally demonstrated more 
variability in sections where less assistance (accuracy) were required. Also, as 
the patient has difficulty to coordinate his movements from gap D to point B, 
the therapist provided less variability in this section. (c) This graphic displays 
the 3-dimensional GMM with its seven Gaussian mixtures (colored ellipsoids) 
that modeled the position-time joint trajectories of the therapist demonstration 
(black lines) with its average and variability.  

    A designed 2-dimensional virtual game was projected on an 

LCD screen placed under the robotic end effector as shown in 

Fig. 6. The user is expected to move the robotic end-effector 

(in contact with the LCD) from point A to point B, through 

two gaps with different directions and widths, as Fig. 7. 
 

A. Simulation of cerebral palsy (CP) symptoms in healthy 

adults    

    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) This figure demonstrates the expected position probability density 
function (PDF) approximated by GMR from the GMM (Fig. 7(c)) at all time 
samples in the robotic assistance. Note that in Fig. 5(b), the GMR results have 
been shown just in two time instances. The dark blue dots and blue area display 
the average and variability for 2-dimensional Gaussians PDFs in all time 
samples, respectively. (b) At each time, the standard deviation in tangential 
(T) direction (Blue plot) is extracted from the 2 dimensional PDF 
approximated by GMR. The tangential variable spring value (Stiffness) 
changes with inverse correlation to the standard deviation (8) to assist the 
patient to remain in the demonstrated range of variability (3×standard 
deviation) in each time sample. (c) Same as (b), but in normal (N) direction.  

     

    The main symptoms of CP are stiffness of muscles, limited 

range of motion, poor coordination, difficulties performing a 

voluntary movement, weakness and tremor [5]. In this paper, 

to induce some of these symptoms in an adult without 

disability, transcutaneous electrical nerve stimulation (TENS) 

was employed. Low frequency stimulation of upper arm 

muscles (biceps) and wrist muscles (Flexor carpi, Palmaris 

lunges, etc.), was chosen to provide the maximum correlation 

with the behavior observed in an actual CP patient [16]. Also, 

in order to make the situation more challenging for the 

system, point 𝐵′ was projected on the LCD instead of the 

actual destination (point B) to represent the poor coordination 

(inability to accurately reach the destination) in patients with 

CP. The adult user in the presence of stimulation (called 

patient) was asked to perform the designed task and move 

from point A to point B,  while passing through the Gap C  

and  D without hitting them. As it is shown in Fig. 7(a), the 

user was unable to correctly accomplish this task without 

therapist assistance.  

B.   Demonstration   
 
    During the demonstration, a therapist intervene the task and 
provides the minimum required assistance. Considering the 
inverse correlation of the TNVIC assistance with the 
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(a) 

(b) 

(c) 

variability in the demonstrated trajectories, the therapist 
intentionally produce more variability between trials in 
regions where less assistance is required and vice versa (Fig. 
8(b)). The cooperative task trajectories (5 trials) are then 
captured by the GMM to statistically model the task with its 
features (average and variability)  as shown in Fig. 8(c).  
 

C.   Robotic semi-autonomous assistance 
 

    Using the proposed TNVIC, and system parameters in Table 

I, the robotic system imitates the therapist’s time-varying 

intervention in the demonstration phase and assists the patient 

to complete the task successfully (Fig. 6). The desired position 

data calculated via GMR from GMM, and varying tangential 

and normal stiffness (spring parameter magnitude) are shown 

in Fig. 8. In this figure, 𝑡𝐶 and 𝑡𝐷 are associated with time 

instances that the average trajectory is in Gap C and Gap D, 

respectively. The patient is connected to the average trajectory 

with two virtual impedance models that regulate the level of 

assistance (stiffness) in each of tangential and normal 

directions. In Gap C and Gap D, due to the required accuracy, 

the therapist demonstrated low variability across trials. 

Therefore, it is expected to have high level of assistance 

accordingly. As observed in Fig. 8(b), at 𝑡𝐶 and 𝑡𝐷, the 

variability (standard deviation) in tangential direction is lower 

from the adjacent time, therefore the variable tangential spring 

is stiffer to provide more assistance. This is due to the fact that 

in demonstration, therapist intuitively moved slower through 

sections where more accuracy was required. Same 

characteristic can be observed in Normal direction as 

displayed in Fig. 8(c). In gap C and gap D, the width of the 

path is narrower, thus more assistance is required in normal 

direction, accordingly. As Gap D is narrower than gap C, the 

therapist demonstrated  less variability in Gap D. Therefore the 

normal stiffness (assistance) is higher in 𝑡𝐷 than in 𝑡𝐶.   

    Using TNVIC, with its time-varying impedance models, the 

patient was assisted to perform the demonstrated task in 

contact with the robotic manipulator. Again, the point 𝐵′, was 

projected on the LCD as the destination phase, to test if the 

system can assist the patient to reach the actual destination 

(point B). Fig. 9(a), displays that the patient successfully 

completed the task and moved from point A to point B, 

through gaps without hitting them. Fig. 9(b), shows the 

interaction force of the patient in normal direction. After Gap 

D, towards the destination (Point B), the patient exerted his 

maximum force to reach point 𝐵′ (which he thinks is the 

destination). The controller successfully restricted the patient 

movement and dragged (assisted) his hand to the actual 

destination (point B). Between 𝑡𝑝,𝐶 and 𝑡𝑝,𝐷 (𝑡𝑝,𝐶 and 𝑡𝑝,𝐷  are 

associate with approximate time instances that the patient 

passed gap C and gap D, respectively), the stiffness parameters 

were lowest in both tangential and normal directions (Fig. 8). 

Therefore, there was higher freedom for the patient to deviate. 

This extra freedom gave the patient the motivation to 

participate in the task and increase his force exertion which 

resulted in increased velocity variations (Fig. 9(c)). That is the 

cause for larger variations observed between 𝑡𝑝,𝐶 and 𝑡𝑝,𝐷, 

compared to t < 𝑡𝑝,𝐶. The advantage of the proposed 

framework is to provide maximum possible freedom to the pa- 

 

 

 

 

 

 
 
  
 

 

 

 

 
  

   
 
 

 

 

 

 

 

 

 

 

 

Fig. 9.  (a) Displays the patient’s trajectories in three consecutive task trials, 

being assisted by the robotic manipulator. The proposed TNVIC effectively 

assisted the patient to complete the task successfully.(The red plot is the 
average demonstrated trajectory) (b) Shows the patients interaction force 

with the robotic manipulator in normal direction. (c) Demonstrates the patient 

velocity in normal direction. 

 

 

 

 

 

 

 

 
 

Fig. 10. The  performance of system when the user’s maximum force (10 N) 

is exerted on the system in 4 directions. {(𝐹𝑃𝑎𝑇
, 𝐹𝑃𝑎𝑁

)} = {( 7.14, 7.14), (7.14, 

-7.14), ( -7.14, 7.14), ( -7.14, -7.14); all in Newton (N) }. Note that as 

tangential normal directions are orthogonal, the projection of 10 N on each 

axis through Pythagorean law is 7.14 N. 
 

tient (assist-as-needed) to motivate him/her for participation 

in task execution.   
    In TNVIC, the variable impedance parameters were 
adjusted to restrict the patient from deviating out of the 
expected position along tangential and normal directions, even 
if they exert their maximum interaction force. Therefore, any 
force exertion less than the measured (or tuned) maximum 
force, will end up in successful task completion, regardless of 
its direction and frequency. In Fig. 10, the robotic system was 
introduced with the patient’s maximum force in 4 different 
directions (this values are assigned in the real-time controller) 
to observe the performance under some worst-case scenarios. 
As it is observed, just in one of the trials (𝐹𝑃𝑎𝑇

= 7.14 N, 𝐹𝑃𝑎𝑁
=

 −7.14 N) there was a collision with Gap D. The possible source 
of this error are : 1) The robot position controller (PID). 2) The 
sudden increase in impedance parameters, before entering the 
Gap D (Fig. 8(c)). The impedance model is a dynamic system 
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with tunable transient damping ratio (𝜏𝜍), so it cannot keep up 

accurately with sudden changes in the desired trajectory. 
These constraints can be considered by possibly adding a 
penalty factor to (8). In this experiments, a single trajectory-
following task was successfully tested, however, the proposed 
framework is able to model complex trajectories as it uses 
GMM/GMR technique to model and reproduce tasks through 
time-indexing. Also, sequential tasks can be learnt and 
reproduced by several point-to-point motion primitives, 
discussed in this paper. Furthermore, using GMM/GMR, only 
few demonstrations are required to capture the trajectory 
smoothly and effectively as opposed to simply averaging the 
demonstrated trajectories. Also, the GMM captures the 
variability of trials and statistical correlation of task variables 
which are utilized in this paper to learn the therapist intended 
interaction impedance. The interaction impedance is actively  
controlled  in  robotic  assistance  phase,  inversely proportion- 
al to the variability across trials in the demonstration phase to 
reproduce the intended time-varying impedance of the 
therapist.  
    All in all, the proposed framework has merits in 

rehabilitation and assistive technologies to replicate the 

therapist short intervention (usually assistance) in  trajectory-

following tasks that have to be repeated several times. In the 

future, the main focus of our work will be to: 1) extend the 

proposed framework to generalize the therapist demonstrated 

assistance for tasks with varying parameters (e.g. the location, 

direction, or width of the gaps in this paper). Currently, the 

proposed framework is task-specific and requires new 

demonstrations by the therapist if any of the parameters 

change. 2) Add an adaptive law to the proposed controller to 

adapt to the performance of the patient during the robotic 

assistance phase. The proposed TNVIC is non-adaptive, in the 

sense that the controller provide same assistance (as-

demonstrated), even if the patient behaves different from the 

demonstration phase (e.g. gets tired or enhances his 

performance by repetition).   

V. CONCLUSION 

While, the proposed semi-autonomous robotic assistance 

framework can have a plethora of applications in cooperative 

human-robot task execution, without the loss of generality, a 

potential application in assist-as-needed rehabilitation for 

tasks with trajectory-following characteristic was discussed in 

this paper. The framework, with its robot learning from 

demonstration (RLfD) framework and tangential-normal 

varying-impedance controller (TNVIC) were developed 

precisely in this paper. The efficacy and performance of the 

system was evaluated in demonstration, RLfD, and semi-

autonomous robotic assistance phases, with an healthy adult 

induced with CP symptoms, using Transcutaneous electrical 

nerve stimulation. Also, the limitations of the proposed 

framework, and future focus for finding the possible solutions 

have been discussed.     

APPENDIX I 

The n-dimensional normal probability density function with 

its average 𝜇 and covariance matrix Σ  is: 

𝒩𝑛(𝜉|𝜇, Σ) =  
1

√(2𝜋)𝑛|Σ|
 𝑒−

1
2

((𝜉−𝜇)𝑇Σ−1((𝜉−𝜇)));  

∀ 𝜇, 𝜉 ∈  𝑅𝑛, Σ ∈ 𝑅𝑛×𝑛 
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