
Abstract— Lower-limb exoskeletons utilize fixed control 

strategies and are not adaptable to user’s intention. To this end, 

the goal of this study was to investigate the potential of using 

temporal-difference learning and general value functions for 

predicting the next possible walking mode that will be selected 

by users wearing exoskeletons in order to reduce the effort and 

cognitive load while switching between different modes of 

walking. Experiments were performed with a user wearing the 

Indego exoskeleton and given the authority to switch between 

five walking modes that were different in terms of speed and 

turn direction. The user’s switching preferences were learned 

and predicted from device-centric and room-centric 

measurements by considering similarities in the movements 

being performed. A switching list was updated to show the most 

probable future next modes to be selected by the user. In contrast 

to other approaches that either can only predict a single time-

step or require intensive offline training, this work used a 

computationally inexpensive method for learning and has the 

potential of providing temporally extended sets of predictions in 

real-time. Comparing the number of required manual switches 

between the machine-learned switching list and the best possible 

static lists showed an average decrease of 42.44% in the required 

switches for the machine-learned adaptive strategy. These 

promising results will facilitate the path for real-time application 

of this technique.     

I. INTRODUCTION

Powered lower-limb exoskeletons provide assistance to 
their users and have different active joints that can be 
controlled by the users, depending on the implemented control 
strategy for the device [1], [2]. What makes these exoskeletons 
beneficial for rehabilitation and gait restoration research is 
their capability of tracking the desired motions presented to 
them with high accuracy, collecting data of different joint 
motions with their built-in sensors that can be used as 
feedback, and providing different levels of assistance to users 
with a variety of conditions such as people with complete 

*Research supported by the Canadian Institutes of Health Research,

Canada Foundation for Innovation, Alberta Ministry of Advanced 

Education, the grant of the Alberta Ministry of Jobs, Economy and 
Innovation to the Centre for Autonomous Systems in Strengthening Future 

Communities. 

P. Faridi is with the Neuroscience and Mental Health Institute,
University of Alberta, Edmonton, Alberta, Canada (corresponding author; 

e-mail: Pfaridi@ualberta.ca) 

J. K. Mehr is with the Department of Electrical and Computer 
Engineering and Department of Medicine, University of Alberta, 

Edmonton, Alberta, Canada (e-mail: Khodaeim@ualberta.ca) 

D. Wilson is with the Department of Medicine, University of Alberta,
Edmonton, Alberta, Canada (email: don4@ualberta.ca) 

M. Sharifi is with the Department of Mechanical Engineering, San Jose 

State University, San Jose, California 95192-0087 (e-mail: 
sharifi3@ualberta.ca) 

spinal cord injury (SCI) (no motor function) and incomplete 
SCI (limited motor function) [3].  

The ultimate goals of many research avenues in this 
domain are: 1) taking into account users’ intention 2) reducing 
the effort needed to perform tasks and 3) making the orthosis 
adaptive to the users’ need in a safe manner. To this end, many 
control strategies have been designed and tested 
experimentally. Generally, there are three main areas of focus 
for designing control strategies for exoskeletons: high-level, 
mid-level and low-level control [4], [5]. The main focus of this 
work is on high-level control and as a result, the remainder of 
this introduction is allocated to the high-level control concept. 

A high-level controller can be seen as a perception and 
motion planning layer [6] that characterizes the overall status 
or behavior of the robotic device. Both knowledge of the 
environment and user-dependent measurements (such as 
ground reaction forces, joint torques, joint angles, etc.) can be 
used as the inputs to the high level controller, while the output 
is expected to be a specific mode of walking [5]. The modes 
available on a control system are predefined modes. These 
modes are designed based on the needs of the users. They can 
contain different speeds and lengths of walking [7], various 
tasks such as stair ascending/descending [7]–[9], sit-to-stand 
and stand-to-sit transitions [7], [10] and also different states of 
over-ground walking [11]. In this regard, selecting the user’s 
intended next mode can be seen as the major concern of high-
level controllers, especially when a variety of modes are 
present. 

In a recent review [5], high-level controllers were divided 
into 4 main categories as: brain-computer interfaces, 
movement recognitions, terrain detections and manual user 
inputs. The first category, which mostly uses 
electroencephalography (EEG) recordings from the brain 
[12]–[15], faces many practical issues. Artifact removal, 
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requirement of high concentration by the user, the lengthy 
procedure of preparing the EEG electrodes, and losing 
accuracy over time are among those issues [5], [16]. 

Another group of strategies (movement recognitions) aims 
to determine the desired mode of walking by relying on the 
user’s body movements and forces. Examples are studies 
focused on threshold crossing techniques [17], [18], and 
machine learning algorithms, mostly supervised learning, to 
classify sensor values for specific modes [20], [21]. These 
systems either require a precise threshold setting or a high 
amount of recorded data for their training sets [22].  

The third category, using sensors or cameras such as 
infrared distance sensors [23], [24], head-mounted cameras 
[25], and chest-mounted RGB camera systems [26], has shown 
promising results. Nonetheless, if implemented independently 
of other high level control categories, its usage is limited to 
modes that are only environment-dependent.  

The last category (manual user input) works directly 
through user commands, either with switch buttons or voice-
control [5], [7], [27]. Using switch buttons is the most 
commonly used method of high-level control [5] because of 
the simplicity of its implementation, capacity for adding more 
modes and less susceptibility to errors. Despite the benefits of 
push-button systems, they have several drawbacks. Using a 
single switch requires high transition times to toggle between 
modes and also a high number of required switching actions 
for a switching instance. Using a panel of switches for each 
mode also limits the capacity of adding many modes. 
Therefore, both of these push-button strategies make the user 
feel uncomfortable, reduce the speed of tasks, and require a 
high degree of mental concentration, thus increasing the 
chance of errors [5]. 

Considering all the aforementioned control approaches, 
this work aimed to 1) reduce the switching-related problems in 
high-level control of lower-limb exoskeletons while using the 
switch-button method, and 2) increase the users’ confidence in 
the device by employing reinforcement learning techniques 
and predicting users’ intention. The goal was to design an 
adaptive switching controller that updates the order of modes 
in a pre-designed switching list at each time-step based on the 
user’s previous activity and locational information. This 
information was used to predict the most probable next mode 
that the user would select, and suggest that mode as the first 
mode in the switching list. If successful, this will make the 
switching actions easier and faster, and improve the use of 
exoskeletons for upright mobility. 

II. METHODS 

A. Robotic Platform 

The powered orthosis used in this study was the Indego 
lower-limb exoskeleton (Parker Hannifin Corporation, 
Cleveland, Oh, USA) with powered hip and knee joints (by 
brushless DC motors) [28].  Joints were also equipped with a 
potentiometer to provide the actual angles at each time-step. 
The performance of the exoskeleton was controlled by on-
board components, connected to a laptop with an Intel Core i7 
CPU via USB. The control strategy was designed in Real-time 
Desktop Simulink environment of MATLAB (The 
MathWorks, Inc., Natick, MA, USA) and communicated with 

the exoskeleton system through the CAN interface (Vector 
VN1610).  

A walker was equipped with additional components. A 5-
button switch panel was designed and mounted on the right 
side of the walker for switching purposes on the part of the 
user. To acquire locational information, 3 GARMIN LIDAR-
Lite v4 LiDAR (Light Detection and Ranging) sensors were 
installed on 3 sides of the walker to provide distance to objects 
around. The system received the external signals and operated 
at 50Hz. The platform setup can be seen in Fig. 1. 

B. Experimental Procedures 

The experiments were performed in 2 different scenarios. 
For each scenario, the user (neurologically-intact, male, 24 
years old and experienced in working with the exoskeleton) 
had the authority to switch between 5 available walking modes 
as: 3 different speeds (slow, normal and fast) and 2 turning 
directions (left and right) using the switch button panel. For 
the purposes of this study, a switching panel consisting of 5 
buttons was designed and used to assess the core capabilities 
of the machine learning algorithm on predicting the next 

 
 

Figure 1.     A study investigator wearing the exoskeleton with a walker 

equipped with a switch button panel and distance measurement sensors. 
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TABLE I.  CHARACTERSITCS OF DESIGNED WALKING MODES  

Walking mode 
Walking characteristics 

Speed (m/s) Stride length (m) 

Slow speed 0.23 0.875 

Normal speed 0.31 1.050 

Fast speed 0.39 1.125 

Turning left/right 0.15 0.725 

 



  

walking mode, and avoid the delays upon mode switching 
while collecting experimental data for the machine learning 
algorithm. However, using a separate button for each mode is 
not a scalable solution when there is a larger number of modes 
to switch to. 

After a mode was selected by the user, the desired 
trajectory of that mode was implemented by the designed 
controller using central pattern generator (CPG) concepts [18], 
[29] in which specific pre-defined frequency and amplitude of 
each mode were passed through the differential equations of 
motion, and a reference trajectory was updated for each joint 
to allow a smooth transition between walking modes. The 
built-in proportional-derivative (PD) tracking system of the 
Indego exoskeleton with modified gains [30] was used to track 
the desired trajectories. The characteristics of the designed 
walking modes are shown in Table I. These were chosen based 
on the mean gait speed of people with SCI walking with the 
Indego exoskeleton [31]. 

In the first experimental scenario, the user walked through 
a rectangular path (4.5m * 5m) 6 times (rounds), using the 
walking modes as shown in Fig. 2. This scenario was designed 
to test the core machine learning capabilities in prediction and 
learning. In the second scenario, the user had the authority to 
select between two different paths, separated by an obstacle, at 
each round when he reached the starting position (Fig. 2). A 
total of 11 rounds (from starting position, back to the starting 
position) were walked by the user, with an arbitrary order of 
choosing between the two available paths. This scenario was 
designed with the goal of testing the capability of the designed 
machine learning strategy in differentiating between different 
paths and providing reasonable mode suggestions upon 
approaching an obstacle.  

C. Machine Learning Strategy 

The machine learning strategy implemented in this work 
was based on a technique from reinforcement learning called 
general value functions (GVFs) [32]. GVFs are value 
functions with the ability of representing temporally extended 
predictions of arbitrary signals [33]–[34] and have been 
implemented to design adaptive and autonomous controllers in 
myoelectric prostheses [35]–[38]. In this study, GVFs were 
used to provide anticipatory knowledge on the next possible 
walking mode to be selected by the user from a switching list 
in order to minimize the number of manual switches needed to 

be performed by the user. The proposed machine learning 
strategy was implemented on all of the collected data, in an 
offline setup, for the purpose of preliminary verifications. 

Position and distance information was used to anticipate 
the levels of mode activities. Signals from the 3 LiDAR 
sensors in addition to the position of the user in the 2D x-y 
plane (computed mathematically by considering a reference 
coordinate system and the time spent in each mode along with 
the speed of that mode) formed the state-space (s) of the 
system (Fig. 3). LiDAR signals were able to provide 
information on reaching to an obstacle.  These five signals 
were then passed through a function approximation method 
called Selective Kanerva coding (SKC) [39] to provide a 
binary vector. The resultant binary vector, called feature vector 
(x), contained 15000 elements in which the 650 closest 
elements to each state were active at all times. For algorithm 
details and parameters’ selection please refer to Dalrymple et 
al. [40]. 

An activation level (c) was also defined for each mode. The 
walking mode selected by the user at each time-step was 
considered the active mode, given a value of cj=1 while all 
other modes received a value of cj=0 (j ≡ number of modes). 
One GVF weight vector wj was also initialized at the beginning 
of each experiment for each mode that was updated at each 
learning time-step (Algorithm 1). The inner product of the 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental design scenarios. In the first scenario (left image) a rectangular path was walked by the user, using different walking modes in 

the directions specified on the image. This pattern was repeated for six times. In the second scenario, the user had the authority to select between two 

available paths (A,B) for each round of walking. A total of 11 rounds were walked by the user in the order of: A,A,B,A,B,B,B,A,A,B,B. A fix coordinate 

system was used at the bottom left of the experimental areas to calculate the position of the user at each time-step based on the speed of walking and the 
time spent in a specific mode and specific direction. The red star indicates the starting position for each scenario.  

 Colored arrows are indicative of the modes being used as: Slow speed, Normal speed, Fast speed, Left turn, Right turn 
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Algorithm 1    GVF prediction and learning with TD(λ) 

Initialize w,
 
e, s, x  

Repeat every time step:  
Observe next state s  

x' ← SKC(s)  
For all modes j do: 

Observe mode activity signal cj  
     δ ← cj + γ wj

T
 x'– wj

T x  
ej ← min(λej+x,1)  
wj ← wj + αδej    

pj ← wj
T

 x'  

x ← x'  
Rank the modes in the switching list    

 



  

weight vector and the feature vector (from SKC) was 
introduced as the GVF prediction value (pj) for each mode. 
These GVF predictions were then ranked in the switching list 
based on their relative magnitude in a descending order, with 
the current active mode being ranked last, regardless of its 
prediction value.  

GVF predictions (pj) and their weight vectors were then 
updated at each time-step using the temporal-difference 

learning method (TD()) presented in Algorithm 1, in which a 

TD error signal () was formed as the difference between the 
discounted future prediction and the prediction for the current 
state, plus the current mode activation signal (cj). Replacing 

eligibility traces (ej) were then used [41] with TD error () to 
update the weight vectors. For more information on TD 
learning please see [36], [42]. 

The discounting factor used in updating the TD error () 

was set to for all modes and was used for 
weight vector updates as the step-size parameter, based on a 
comprehensive trial and error. The bootstrapping parameter in 

the replacing eligibility traces update was set to as is 
often standard [40].  

III. RESULTS 

A comparison of the number of instances in which the next 
selected mode by the user was ranked first, second, third and 
fourth in the switching list for both experimental scenarios 
under adaptive and best possible non-adaptive control is 
shown in Fig. 4a. The comparison is based on the use of a 
single switch button to transition to the desired mode.  In the 
adaptive controller strategy, the system was able to quickly 
adjust the switching list based on the user preferences and with 
regards to locational and positional information provided to 
the system. In the first experimental scenario (Fig. 4a, left), it 
can be seen that the system was able to predict correctly the 
next mode at the times of mode switching by the user and rank 
it as the first in the switching list for 82.98% (39 out of 47) of 
times, while all other switches that were not ranked first were 
limited to the first and second rounds of walking along the 
rectangular path. However, using the best non-adaptive 
strategy, as computed separately for each experimental 
scenario, showed that in only 18 out of 47 switching instances 
(38.3% of times) one switching action was required from user 
and the remaining selections required two or more switching 
actions. Switching numbers for the second experimental 
scenario (Fig. 4a, right), which was more complicated and had 
two different paths, showed that in 76.52% of instances (101 
out of total 132 switching instances) the next selected mode 
was ranked first, while this number for the fixed-list strategy 
was 34.1% lower (42.42% of instances, 56 out of 132).  

The total number of required switches to perform the tasks 
under each strategy is shown in Fig. 4b. For the first 
experimental scenario, the total number of required switches 
decreased by 46.55% for the adaptive strategy in comparison 

  

  
Figure 3.  Signals used in the state-space of the system for a sample 

of recorded data during the second experimental scenario (path B). The 
selected modes by the user are specified with dashed lines at the 

switching instances for both images. (a) The signals from the LiDAR 

sensors. These 3 signals were used to monitor the distance of the user 
from obstacles. (b) The absolute position of the user in the 2D space, 

computed mathematically at each time-step (0.02 sec), using a reference 

fixed coordinate system and related mathematical relationships. The 
signals from the LiDAR sensors and the computed absolute space were 

used for identifying similarities in the modes being selected at specific 

positions. The horizontal axis for (a) and (b) represents the specific time 

these signals were taken during walking.      

(a) 

(b) 

 
Figure. 4     Number of switches required using a single switch button 

under the adaptive and the best possible non-adaptive strategy, computed 
post-hoc. (a) The percentage of times where 1,2,3 or 4 switches were 

needed to reach to the user’s desired mode at each switching instance for 

the first (left) and second (right) experimental scenarios. (b) Total number 
of required switches using the two strategies under the two experimental 

scenarios. 

(b) 

(a) 



  

to the best computed non-adaptive case. Also, the second 
experimental scenario showed a 38.33% decrease in the 
number of total switches upon using the adaptive strategy 
relative to the best non-adaptive strategy which was also task-
specific. These advantages are also expected to be more 
appreciated upon increasing the number of available modes in 
the switching list. 

An example of the GVFs predictions as an indication of the 
expected mode activation levels for a subset of collected data 
from the second experimental scenario is depicted in Fig. 5 
after four rounds of walking through paths A,A,B and A (Fig. 
2b). Solid lines present the normalized prediction values for 
each mode while the dashed lines indicate the user switches 
and transitions from one mode to the next. It can be seen that 
upon transitions, the next intended mode had the higher 
prediction value than other modes, except for the current active 
mode, and that the trend of that prediction was ascending a few 
time-steps before the switching action, with some fluctuations. 

IV. CONCLUSIONS AND DISCUSSION 

This study demonstrated, for the first time, a proof of 
concept of GVF learning and prediction in lower-limb 
exoskeletons. Specifically, we demonstrated the application of 
a machine learning approach to reduce the burden on the users 
for manually switching between different available walking 
modes. Considering the two experimental scenarios in this 
work, an average decrease of 42.44% was seen in the total 
number of required switches, using the adaptive strategy in 
comparison to the best possible non-adaptive strategy. The 
techniques implemented in this work demonstrate a great 
potential for continuous real-time implementation of adaptive 
switching algorithms in lower-limb exoskeletons. The results 
showed that the purposed method was able to reduce the 
required switching actions noticeably in comparison to the best 
possible fixed switching list for each task, while using a single 
switch button. Using the adaptive switching approach, the 
target population can not only contain people with SCI (either 
complete or incomplete), but also be beneficial for people with 
other conditions such as stroke, multiple sclerosis or other 
groups who need assistance during walking. Moreover, the 

core machine learning technology has also the capability and 
potential to be applied to other domains were generalities and 
similarities in the movements being performed are present. 

There were some limitations in this study. The experiments 
were limited to the lab environment so the LiDAR sensors 
received noiseless signals. Also, the method used for 
determining the location of the user (although was only used 
offline and for verification purposes) cannot be applied to the 
real world, and high precision GPS systems are needed. 
Moreover, although limited walking modes were designed due 
to the restrictions of the lab environment, the system has the 
ability of predicting unlimited number of GVFs and re-
ordering their respective walking modes in the switching list.  

Future goals and next steps involve assessing the online 
capabilities of the machine learning system, designing less 
predictable experimental scenarios, utilizing more users and 
the addition of autonomous features to the system.   

ACKNOWLEDGMENT 

The authors thank Michel Gauthier and Adam Parker for 
their technical assistance and experiment-design consultation, 
respectively. 

REFERENCES 

[1] W.-Z. Li, G.-Z. Cao, and A.-B. Zhu, “Review on Control Strategies 

for Lower Limb Rehabilitation Exoskeletons,” IEEE Access, vol. 9, 
pp. 123040–123060, 2021, doi: 10.1109/ACCESS.2021.3110595. 

[2] J. de la Tejera, R. Bustamante-Bello, R. A. Ramirez-Mendoza, and J. 

Izquierdo-Reyes, “Systematic Review of Exoskeletons towards a 
General Categorization Model Proposal,” Appl. Sci., vol. 11, pp. 1–25, 

Dec. 2020, doi: 10.3390/app11010076. 

[3] L. Zhou, W. Chen, J. Wang, S. Bai, H. Yu, and Y. Zhang, “A Novel 

Precision Measuring Parallel Mechanism for the Closed-Loop Control 

of a Biologically Inspired Lower Limb Exoskeleton,” IEEEASME 

Trans. Mechatron., vol. 23, no. 6, pp. 2693–2703, Dec. 2018, doi: 
10.1109/TMECH.2018.2872011. 

[4] M. R. Tucker et al., “Control strategies for active lower extremity 

prosthetics and orthotics: a review,” J. NeuroEngineering Rehabil., 
vol. 12, no. 1, p. 1, 2015, doi: 10.1186/1743-0003-12-1. 

[5] R. Baud, A. R. Manzoori, A. Ijspeert, and M. Bouri, “Review of 

control strategies for lower-limb exoskeletons to assist gait,” J. 
NeuroEngineering Rehabil., vol. 18, no. 1, p. 119, Dec. 2021, doi: 

10.1186/s12984-021-00906-3. 

[6] S. Qiu, W. Guo, D. Caldwell, and F. Chen, “Exoskeleton Online 
Learning and Estimation of Human Walking Intention Based on 

Dynamical Movement Primitives,” IEEE Trans. Cogn. Dev. Syst., vol. 

13, no. 1, pp. 67–79, Mar. 2021, doi: 10.1109/TCDS.2020.2968845. 
[7] T. Vouga, R. Baud, J. Fasola, M. Bouri, and H. Bleuler, “TWIICE — 

A lightweight lower-limb exoskeleton for complete paraplegics,” in 
2017 International Conference on Rehabilitation Robotics (ICORR), 

London, Jul. 2017, pp. 1639–1645. doi: 

10.1109/ICORR.2017.8009483. 
[8] X. Liu and Q. Wang, “Real-Time Locomotion Mode Recognition and 

Assistive Torque Control for Unilateral Knee Exoskeleton on 

Different Terrains,” IEEEASME Trans. Mechatron., vol. 25, no. 6, pp. 
2722–2732, Dec. 2020, doi: 10.1109/TMECH.2020.2990668. 

[9] F. Xu, X. Lin, H. Cheng, R. Huang, and Q. Chen, “Adaptive stair-

ascending and stair-descending strategies for powered lower limb 
exoskeleton,” in 2017 IEEE International Conference on 

Mechatronics and Automation (ICMA), Takamatsu, Japan, Aug. 2017, 

pp. 1579–1584. doi: 10.1109/ICMA.2017.8016052. 
[10] H. A. Varol, F. Sup, and M. Goldfarb, “Powered sit-to-stand and 

assistive stand-to-sit framework for a powered transfemoral 

prosthesis,” in 2009 IEEE International Conference on Rehabilitation 
Robotics, Kyoto, Jun. 2009, pp. 645–651. doi: 

10.1109/ICORR.2009.5209582. 

 
Figure. 5     Normalized GVF prediction values for a sample of recorded 

data during the second experimental scenario (path B) after 4 rounds of 
walking in the order of A, A, B and A. Solid lines show the predictions 

for each mode activation level and dashed lines represent the user’s 

switching actions from the previous active mode (left side of the dashed 

lines) to the next intended mode (right side of the dashed lines). Modes in 

the switching list were ranked at each time-step (0.02 sec) based on their 

GVF prediction value in descending order, except for the active mode that 
always was ranked least, regardless of its GVF value. 

 



  

[11]  X. Tan, B. Zhang, G. Liu, X. Zhao, and Y. Zhao, “Cadence-Insensitive 

Soft Exoskeleton Design With Adaptive Gait State Detection and 

Iterative Force Control,” IEEE Trans. Autom. Sci. Eng., pp. 1–14, 

2021, doi: 10.1109/TASE.2021.3066403. 

[12] A. J. McDaid, Song Xing, and S. Q. Xie, “Brain controlled robotic 
exoskeleton for neurorehabilitation,” in 2013 IEEE/ASME 

International Conference on Advanced Intelligent Mechatronics, 

Wollongong, NSW, Jul. 2013, pp. 1039–1044. doi: 
10.1109/AIM.2013.6584231. 

[13] J. Choi, K.-T. Kim, J. Lee, S. J. Lee, and H. Kim, “Robust Semi-

synchronous BCI Controller for Brain-Actuated Exoskeleton System,” 
in 2020 8th International Winter Conference on Brain-Computer 

Interface (BCI), Gangwon, Korea (South), Feb. 2020, pp. 1–3. doi: 

10.1109/BCI48061.2020.9061658. 
[14] A. Kilicarslan, S. Prasad, R. G. Grossman, and J. L. Contreras-Vidal, 

“High accuracy decoding of user intentions using EEG to control a 

lower-body exoskeleton,” in 2013 35th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), Osaka, Jul. 2013, pp. 5606–5609. doi: 

10.1109/EMBC.2013.6610821. 
[15] J. Choi and H. Kim, “Real-time Decoding of EEG Gait Intention for 

Controlling a Lower-limb Exoskeleton System,” in 2019 7th 

International Winter Conference on Brain-Computer Interface (BCI), 
Gangwon, Korea (South), Feb. 2019, pp. 1–3. doi: 10.1109/IWW-

BCI.2019.8737311. 

[16] Y. He, D. Eguren, J. M. Azorín, R. G. Grossman, T. P. Luu, and J. L. 
Contreras-Vidal, “Brain–machine interfaces for controlling lower-

limb powered robotic systems,” J. Neural Eng., vol. 15, no. 2, p. 
021004, Apr. 2018, doi: 10.1088/1741-2552/aaa8c0. 

[17] W. Svensson and U. Holmberg, “Ankle-Foot-Orthosis Control in 

Inclinations and Stairs,” in 2008 IEEE Conference on Robotics, 
Automation and Mechatronics, Chengdu, China, Sep. 2008, pp. 301–

306. doi: 10.1109/RAMECH.2008.4681479. 

[18] M. Sharifi, J. K. Mehr, V. K. Mushahwar, and M. Tavakoli, “Adaptive 
CPG-Based Gait Planning With Learning-Based Torque Estimation 

and Control for Exoskeletons,” IEEE Robot. Autom. Lett., vol. 6, no. 

4, pp. 8261–8268, Oct. 2021, doi: 10.1109/LRA.2021.3105996. 
[19] S. C. Kirshblum et al., “International standards for neurological 

classification of spinal cord injury (Revised 2011),” J. Spinal Cord 

Med., vol. 34, no. 6, pp. 535–546, Nov. 2011, doi: 
10.1179/204577211X13207446293695. 

[20] A. C. Villa-Parra et al., “Control of a robotic knee exoskeleton for 

assistance and rehabilitation based on motion intention from sEMG,” 
Res. Biomed. Eng., vol. 34, no. 3, pp. 198–210, Jul. 2018, doi: 

10.1590/2446-4740.07417. 

[21] P. T. Chinimilli, S. C. Subramanian, S. Redkar, and T. Sugar, “Human 
Locomotion Assistance using Two-Dimensional Features Based 

Adaptive Oscillator,” in 2019 Wearable Robotics Association 

Conference (WearRAcon), Scottsdale, AZ, USA, Mar. 2019, pp. 92–
98. doi: 10.1109/WEARRACON.2019.8719628. 

[22] F. Cordella et al., “Literature Review on Needs of Upper Limb 

Prosthesis Users,” Front. Neurosci., vol. 10, May 2016, doi: 
10.3389/fnins.2016.00209. 

[23] M. Liu, D. Wang, and H. Huang, “Development of an Environment-

Aware Locomotion Mode Recognition System for Powered Lower 
Limb Prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, 

no. 4, pp. 434–443, Apr. 2016, doi: 10.1109/TNSRE.2015.2420539. 

[24] S. Carvalho, J. Figueiredo, and C. P. Santos, “Environment-Aware 
Locomotion Mode Transition Prediction System,” in 2019 IEEE 

International Conference on Autonomous Robot Systems and 

Competitions (ICARSC), Porto, Portugal, Apr. 2019, pp. 1–6. doi: 
10.1109/ICARSC.2019.8733658. 

[25] N. E. Krausz and L. J. Hargrove, “Recognition of ascending stairs 

from 2D images for control of powered lower limb prostheses,” in 
2015 7th International IEEE/EMBS Conference on Neural 

Engineering (NER), Montpellier, France, Apr. 2015, pp. 615–618. doi: 

10.1109/NER.2015.7146698. 
[26] B. Laschowski, W. McNally, A. Wong, and J. McPhee, “Preliminary 

Design of an Environment Recognition System for Controlling 

Robotic Lower-Limb Prostheses and Exoskeletons,” in 2019 IEEE 
16th International Conference on Rehabilitation Robotics (ICORR), 

Toronto, ON, Canada, Jun. 2019, pp. 868–873. doi: 

10.1109/ICORR.2019.8779540. 

[27] R. J. Farris, H. A. Quintero, and M. Goldfarb, “Preliminary Evaluation 

of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic 

Individuals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 6, 

pp. 652–659, Dec. 2011, doi: 10.1109/TNSRE.2011.2163083. 

[28] H. A. Quintero, R. J. Farris, C. Hartigan, I. Clesson, and M. Goldfarb, 
“A Powered Lower Limb Orthosis for Providing Legged Mobility in 

Paraplegic Individuals,” Top. Spinal Cord Inj. Rehabil., vol. 17, no. 1, 

pp. 25–33, 2011, doi: 10.1310/sci1701-25. 
[29]    M. Sharifi, J. K. Mehr, V. K. Mushahwar, and M. Tavakoli, 

“Autonomous locomotion trajectory shaping and nonlinear control for 

lower-limb exoskeletons,” IEEEASME Trans. on Mechatron, 
Published online, 2022. 

[30] J. K. Mehr, M. Sharifi, V. K. Mushahwar, and M. Tavakoli, 

“Intelligent Locomotion Planning With Enhanced Postural Stability 
for Lower-Limb Exoskeletons,” IEEE Robot. Autom. Lett., vol. 6, no. 

4, pp. 7588–7595, Oct. 2021, doi: 10.1109/LRA.2021.3098915. 

[31] D. R. Louie, J. J. Eng and T. Lam, "Gait speed using powered robotic 
exoskeletons after spinal cord injury: a systematic review and 

correlational study," J. Neural Eng, 2015, doi: 10.1186/s12984-015-

0074-9 
[32]  S. Richard et al., “Horde : A Scalable Real-time Architecture for 

Learning Knowledge from Unsupervised Sensorimotor Interaction,” 

Proc. 10th Int. Conf. Auton. Agents Multiagent Syst., pp. 761–768, 
2011. 

[33] A. White, “Developing a Predictive Approach to Knowledge,” 2015, 

doi: 10.7939/R3FF3M75H. 
[34] J. Modayil, A. White, and R. S. Sutton, “Multi-timescale Nexting in a 

Reinforcement Learning Robot,” ArXiv11121133 Cs, Jun. 2012, 
Accessed: Feb. 15, 2022. [Online]. Available: 

http://arxiv.org/abs/1112.1133 

[35] P. M. Pilarski et al., “Adaptive artificial limbs: a real-time approach to 
prediction and anticipation,” IEEE Robot. Autom. Mag., vol. 20, no. 1, 

pp. 53–64, Mar. 2013, doi: 10.1109/MRA.2012.2229948. 

[36] P. M. Pilarski, M. R. Dawson, T. Degris, J. P. Carey, and R. S. Sutton, 
“Dynamic switching and real-time machine learning for improved 

human control of assistive biomedical robots,” in 2012 4th IEEE RAS 

& EMBS International Conference on Biomedical Robotics and 
Biomechatronics (BioRob), Rome, Italy, Jun. 2012, pp. 296–302. doi: 

10.1109/BioRob.2012.6290309. 

[37] A. L. Edwards et al., “Application of real-time machine learning to 
myoelectric prosthesis control: A case series in adaptive switching,” 

Prosthet. Orthot. Int., vol. 40, no. 5, pp. 573–581, Oct. 2016, doi: 

10.1177/0309364615605373. 
[38] A. L. Edwards, J. S. Hebert, and P. M. Pilarski, “Machine learning 

and unlearning to autonomously switch between the functions of a 

myoelectric arm,” in 2016 6th IEEE International Conference on 
Biomedical Robotics and Biomechatronics (BioRob), Singapore, 

Singapore, Jun. 2016, pp. 514–521. doi: 

10.1109/BIOROB.2016.7523678. 
[39] J. B. Travnik and P. M. Pilarski, “Representing high-dimensional data 

to intelligent prostheses and other wearable assistive robots: A first 

comparison of tile coding and selective Kanerva coding,” in 2017 
International Conference on Rehabilitation Robotics (ICORR), 

London, Jul. 2017, pp. 1443–1450. doi: 

10.1109/ICORR.2017.8009451. 
[40] A. N. Dalrymple, D. A. Roszko, R. S. Sutton, and V. K. Mushahwar, 

“Pavlovian control of intraspinal microstimulation to produce over-

ground walking,” J. Neural Eng., vol. 17, no. 3, p. 036002, Jun. 2020, 
doi: 10.1088/1741-2552/ab8e8e. 

[41] S. P. Singh and R. S. Sutton, “Reinforcement Learning with Replacing 

Eligibility Traces,” Mach. Learn., vol. 22, no. 1/2/3, pp. 123–158, 
1996, doi: 10.1023/A:1018012322525. 

[42] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: 

An Introduction. MIT Press, 2018. 

 

 


