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Abstract In this paper, we introduce a new adap-
tive controller design scheme for nonlinear telero-
botic systems with varying time delays where the
delays and their variation rates are unknown. The
designed controller has the ability to synchronize
the state behaviors of the local and the remote
robots. In this paper, asymptotic stability in the
presence of varying time delays is of interest.
Using the proposed controller, asymptotic sta-
bility of the bilateral telerobotic system subject
to any bounded yet unknown varying delay with
a bounded yet unknown rate of change can be
guaranteed. Besides the varying time delay, the
proposed adaptive controller has the ability to
adapt to the parameter variations in the local
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and the remote robots’ dynamics. It is shown that
position and velocity errors between the local and
the remote manipulators converge to the zero
asymptotically, thus ensuring teleoperation trans-
parency. Experimental and simulation results with
a pair of PHANToM haptic devices and a pair
of planar manipulators under varying time delays
in the communication channel demonstrate the
effectiveness of the proposed scheme.

Keywords Teleoperation ·
State synchronization · Varying time delay ·
Lyapunov–Krasovskii function · Adaptive control

1 Introduction

Using a telerobotic system, a human operator can
carry out tasks in a remote environment. Different
applications of telerobotic systems vary from tele-
surgery to space manipulation. Teleoperation per-
formance is greatly enhanced if haptic feedback
about interaction occurring between the remote
robot and the remote environment is provided to
the human operator through the local robot [1].
Such systems are called bilateral as information
flows in two directions between the operator and
the remote environment [2]. On the other hand, in
telerobotic applications with a distance between
the local and the remote robots, there will be
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a time delay in the communication channel of
the system [3–5]; this time delay in the closed-
loop system can destabilize the telerobotic system
[5–7].

Control schemes have been developed to com-
pensate for the time delay, most of which are
based on the passivity theory. Passivity based
control schemes [12–15] are inspired from energy
interaction between interconnected systems [16].
Anderson and Spong [8] proposed scattering
schemes based on the passivity theory. A simi-
lar passivity-based scheme is the wave variable
formulation for two port networks proposed by
Niemeyer and Slotine [9, 10]. These passivity
based approaches can guarantee the passivity of
bilateral teleoperation systems only for constant
time delays [17].

In most passivity based bilateral teleoperation
architectures, only velocity and force information
is transmitted between the local and the remote
sides [18]. This means that only force and veloc-
ity tracking can be ensured in such architectures,
leaving the possibility that any initial position mis-
match between the local and the remote robots
would lead to a position drift between the robots.
To solve this problem, one can transmit position
information along with the velocity information
through the communication channel [19–21].

The scattering and the wave variable ap-
proaches are the best known methods in the pas-
sivity based control framework, and have been the
subject of recent studies concerning teleoperation
under varying delays. An extension of the scatter-
ing approach to the case of varying time delays is
reported in [11], in which a small positive gain is
added in the communication channel to dissipate
the extra energy generated due to the istorted
scattered signals caused by varying time delay.
The gain should be less than 1 − Ṫ, where T is
the instantaneous value of the varying time delay,
such that communication channel remains passive.
Also, an extended version of the wave variable
approach with varying time delay was reported in
[22], in which besides the wave variables, extra
variables are transmitted in the communication
channel to preserve passivity.

Important schemes in passivity based control of
manipulators in the presence of variable time de-
lays include damping injection controllers usually

referred to as P+d and PD+d [23]. The physical
interpretation of damping injection controllers is
that the interconnection between the remote and
the local manipulators includes virtual dampers
and springs. In damping injection controllers, a
control gain affecting the velocity signals should

have the exact value of
√

1 − Ṫ. Although the-
ses controllers guarantee asymptotic stability of
velocities and position errors and are robust to
time varying delays, their stability condition is not
delay-independent and they are sensitive to rapid
changes in delays. This is due to the variable gain√

1 − Ṫ, which depends on the time derivative of
the delay [23].

Another interesting and recent topic in
passivity-based analysis of telerobotic systems is
the synchronization-based approach [24–26]. In
synchronization-based schemes which its appli-
cations on bilateral teleoperation were studied in
[24], all states including positions and velocities of
local and the remote robots act synchronously.

In this paper, a new controller is proposed
to guarantee asymptotic stability of the bilateral
teleoperation system. The delay-independent pro-
posed controller is an extension of the controller
in [26] to the case of time varying delays and is
able to synchronize the behavior of the local and
the remote robots in the presence of unknown
varying time delays in communication channel.
In this paper, synchronization means asymptotic
state (joint angle) tracking between the local and
the remote robots. The proposed adaptive con-
troller is able to guarantee state synchronization
between the local and the remote robots in the
presence of unknown varying time delays with
unknown rates of variation. To use this controller,
there is no need to know the robots parameters
exactly; only estimations of the robots parameters
are used in the controller. The controller parame-
ters will change adaptively to guarantee the zero
convergence of the tracking errors under robot
parameter variations.

This paper is organized as follows. Section 2
concerns that tele-manipulator dynamic model
while the controller design is presented in
Section 3. In Sections 4 and 5, simulation and
experimental results demonstrate the efficiency of
the proposed controller followed by the conclu-
sions presented in Section 6.
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2 Tele-Manipulator Dynamic Model

The local and the remote manipulators can be
modeled by the following nonlinear equations:

Ml (ql) q̈l + Cl (ql, q̇l) q̇l + Gl (ql) = τh − τl

Mr (qr) q̈r + Cr (qr, q̇r) q̇r + Gr (qr) = τr − τe (1)

where qi, q̇i and q̈i for iε{r, l} are the joint po-
sitions, velocities and accelerations of the local
and the remote robots, respectively. Also, Mi(qi),
Ci (qi, q̇i) and Gi(qi) are the inertia matrix, the
Coriolis and centrifugal term and the gravitational
force respectively, τ l and τ r are control torques for
the local and the remote robots, andτ h and τ e are
applied torques from the human operator and the
environment sides respectively.

Some important properties of the above non-
linear dynamic model are [27, 28]:

1. For a manipulator with revolute joints, the
inertia matrix Mi(qi) is symmetric positive
definite and has the following upper and lower
bounds:

0 < λmin (Mi) I ≤ Mi (qi) ≤ λMax (Mi) I ≤ ∞
where I stands for identity matrix

2. For a manipulator, the relation between the
Coriolis/centrifugal and the inertia matrices is
as follows:

Ṁi (qi) = Ci (qi, q̇i) + CT
i (qi, q̇i)

3. For a manipulator with revolute joints, there
exists a positive number η bounding the
Coriolis/centrifugal termas follows:

|Ci (qi, q̇i) q̇i| ≤ ηq̇2
i

4. The nonlinear manipulator dynamics could be
linearly parameterized as follows [28]:

Mi (qi) q̈i + Ci (qi, q̇i) q̇i + Gi (qi)

= Yi (qi, q̇i, q̈i) θi

where Yi is a matrix of known functions of
the generalized coordinates and their higher
derivatives and θ i is a vector of the manipula-
tor dynamic parameters.

3 Control Design

In this part, the proposed controller to cope with
varying time delays in a telerobotic system is pre-
sented. Since the model and consequently the dy-
namic equation of the system is uncertain. So, the
estimates of the robots’ dynamics are employed in
the controllers τ l and τ r.

The controllers τ l and τ r in Eq. 1, are defined
as follows

τl = −M̂l (ql) ėpl −Ĉl (ql, q̇l) epl −Ĝl (ql) + τ l

τr = M̂r (qr) ėpr+Ĉr (qr, q̇r) epr+Ĝl (ql)−τ r (2)

where ˆ represents estimates of the remote and
the local manipulators parameters and τ i for
iε{l, r} are the new control signals. Also, epl and
epr, which are position errors in local and remote
sides, are defined as

epl � qr (t − T2 (t)) − ql(t)

epr � ql (t − T1 (t)) − qr(t) (3)

where T1(t) is the delay in the feedforward path
and T2(t) is the delay in the feedback path. The
overall scheme of teleoperation with varying time
delay is shown in Fig. 1.

We proposed to define the new control signals,
i.e., τ l and τ r, as follows:

τ l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Klεl − 1

2
ėpl − 1

2
evl

− eT
vl

(
epl + ėpl − evl

)

2 ‖εl‖2
2

εl, ‖εl‖2 �= 0

0, ‖εl‖2 = 0

τ r =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Krεr − 1

2
ėpr − 1

2
evr

− eT
vr

(
epr + ėpr − evr

)

2 ‖εr‖2
2

εr, ‖εr‖2 �= 0

0, ‖εr‖2 = 0

(4)

where Ki for iε{l, r} is a positive definite matrix
and ‖ . ‖2 denotes Euclidean norm. Also, ėpi is
the time derivative of position error epi, and evi
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Fig. 1 The closed-loop
teleoperation system
under varying time delays
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(velocity error) and εi for iε{l, r} are defined as
follows:

εi � q̇i − epi iε {l, r}
evl � q̇r (t − T2 (t)) − q̇l

evr � q̇l (t − T1 (t)) − q̇r (5)

Note that because of the variation of time delays,
the velocity error evi and the derivative of the
position error ėpi are not the same.

Combining Eqs. 2 and 1, the closed-loop system
equations are found:

Ml (ql) ε̇l + Cl (ql, q̇l) εl

= −M̃l (ql) ėpl −C̃l (ql, q̇l) epl −G̃l (ql)−τ l +τh

Mr (qr) ε̇r + Cr (qr, q̇r) εr

= −M̃r (qr) ėpr−C̃r (qr, q̇r) epr−G̃r (qr)−τ r−τe

(6)

where ∼ represents the estimation error in the ma-
nipulator parameters, e.g., M̃i = Mi − M̂i, C̃i =
Ci − Ĉi, and G̃i = Gi − Ĝi for iε{l, r}.

Using the fact that the equations of robot mo-
tions are linear in their parameters (Property IV),
let us define the regressor matrix Yi and the
parameter vector θ such that the nominal robot
dynamics can be written as

M (q) ė + C (q, q̇) e + G (q)=−Y (q, q̇, e, ė) θ (7)

Equation 7 can be achieved from Property IV via
replacing q̈ with ė and the exterior q̇ in C (q, q̇) q̇
with e and then negating Y.

Using the above linearity property, we have

Yi
(
qi, q̇i, epi, ėpi

)
θ̃i

= −M̃i (qi) ėpi−C̃i (qi, q̇i) epi−G̃i (qi) , iε{l, r}
(8)
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where θ̃i = θi − θ̂i and the regressor Yi(qi, q̇i,

epi, ėpi) is a matrix whose elements are known
functions of the generalized coordinates, deriva-
tives of generalized coordinates, position errors
and velocity errors. It is possible to find the fol-
lowing closed-loop dynamical equations from the
above.

Ml (ql) ε̇l + Cl (ql, q̇l) εl

= Yl
(
ql, q̇l, epl, ėpl

)
θ̃l − τ l + τh

Mr (qr) ε̇r + Cr (qr, q̇r) εr

= Yr
(
qr, q̇r, epr, q̇pr

)
θ̃r − τ r − τe (9)

Now, we introduce the following adaptive update
low for manipulators parameter estimation to be
used in conjunction with the controllers (2):

˙̂
θi = �YT

i εi iε {l, r} (10)

In the following, we analyze the stability of the
system in the sense of Lyapunov.

Theory I In free motion (τ h = τ e = 0), the bi-
lateral tele-manipulator (1) with the controller
(2)–(5) is asymptotically stable in the sense of
Lyapunov. Also, qi converges to a constant value,
and the position error epi and the velocity error
evi converge to zero for any bounded varying
time delay with a bounded time derivative. Here,
iε{l, r}.

Proof To study the asymptotic stability in the
sense of Lyapunov under varying time delays in
the communication channel, we use the following
Lyapunov–Krasovskii functional:

V = 1

2

∫ t

t−T1(t)
q̇T

l q̇ldt + 1

2

∫ t

t−T2(t)
q̇T

r q̇rdt

+ 1

2

∑

iε{r,l}

[
εT

i Miεi + θ̃T
i �−1θ̃i + 1

2
eT

piepi

]
(11)

where � is a positive definite matrix. The time
derivative of V is

V̇ =
∑

iε{r,l}

[
1

2
εT

i Ṁεi + εT
i Mε̇i + θ̃T

i �−1 ˙̃θ i + 1

2
eT

piėpi

]

+ 1

2
q̇l (t)T q̇l (t) − 1

2

(
1 − Ṫ1

)
q̇l (t − T1 (t))T q̇l

× (t − T1 (t)) + 1

2
q̇r (t)T q̇r (t)

−1

2

(
1−Ṫ2

)
q̇r (t−T2(t))T q̇r (t − T2(t)) (12)

Using Eq. 9, we can simplify V̇ as

V̇ =
∑

iε{r,l}

[
1

2
εT

i Ṁεi + εT
i

{−Ciεi + Yiθ̃i − τ i
}

+ θ̃T
i �−1 ˙̃θ i + 1

2
eT

piėpi

]
+ 1

2
q̇l (t)T q̇l (t)

− 1

2

(
1 − Ṫ1

)
q̇l (t − T1 (t))T q̇l (t − T1 (t))

+ 1

2
q̇r (t)T q̇r (t) − 1

2

(
1 − Ṫ2

)
q̇r (t − T2 (t))T

× q̇r (t − T2(t)) (13)

Using the following skew-symmetry property,
which is equivalent to the property II,

xT (
Ṁi (qi) − 2Ci (qi, q̇i)

)
x = 0 ∀ x ∈ Rn (14)

and after some simplifications, we get:

1

2
εT

i Ṁεi + εT
i

{−Ciεi + Yiθ̃i − τ i
} + θ̃T

i �−1 ˙̃θ i

= θ̃T
i

{
YT

i εi + �−1 ˙̃θ i

}
− εT

i τ i (15)

To simplify the right-hand side of Eq. 15, we
introduce the following adaptive rule

˙̃θ i = −�YT
i εi (16)

With the assumption that the variation of un-
known parameters θ is slow, we get ˙̃θ = −˙̂θ , and
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the above adaptive rule for parameter updates
becomes

˙̂θ i = �YT
i εi (17)

which is same as Eq. 10.
Using the above, it is possible to simplify ăV̇, as

follows:

V̇ =
∑

iε{r,l}

[
−εT

i τ i + 1

2
eT

piėpi

]
+ 1

2
q̇l (t)T q̇l (t)

− 1

2

(
1 − Ṫ1

)
q̇l (t − T1 (t))T q̇l (t − T1 (t))

+ 1

2
q̇r (t)T q̇r (t) − 1

2

(
1 − Ṫ2

)

× q̇r (t − T2(t))T q̇r (t − T2(t)) (18)

Using the definition of τ i in Eq. 4 and after some
manipulations, we get

V̇ =
∑

iε{r,l}

[
−εT

i Kiεi + 1

2
εT

i ėpi + 1

2
εT

i evi

+ 1

2
eT
vi

(
epi + ėpi − evi

) + 1

2
eT

piėpi

]

+ 1

2
q̇l (t)T q̇l (t) − 1

2

(
1 − Ṫ1

)
q̇l (t − T1 (t))T

× q̇l (t − T1 (t)) + 1

2
q̇r (t)T q̇r (t)

− 1

2

(
1−Ṫ2

)
q̇r (t−T2(t))T q̇r (t−T2(t)) (19)

Applying the following relationships

1

2
q̇l (t)T q̇l (t) − 1

2
q̇r (t − T2(t))T q̇r (t − T2(t))

= −1

2
eT
vlevl − q̇l (t)T evl (20)

1

2
q̇r (t)T q̇r (t) − 1

2
q̇l (t − T1(t))T q̇l (t − T1(t))

= −1

2
eT
vrevr − q̇r (t)T evr (21)

it is found that

V̇ =
∑

iε{r,l}

[
−εT

i Kiεi + 1

2
εT

i ėpi + 1

2
εT

i evi

+ 1

2
eT
vi

(
epi + ėpi − evi

) + 1

2
eT

piėpi

]

− 1

2
eT
vlevl − q̇l (t)T evl

+ 1

2
Ṫ1q̇l (t − T1 (t))T q̇l (t − T1 (t))

− 1

2
eT
vrevr − q̇r (t)T evr

+ 1

2
Ṫ2q̇r (t − T2 (t))T q̇r (t − T2 (t)) (22)

Considering the time derivatives of the position
errors, ėpl and ėpr, as follows

d(epr)

dt
= d

dt
(ql (t − T1 (t)) − qr (t))

=
(

1 − d
dt

(T1 (t))
)

q̇l (t − T1 (t)) − q̇r (t)

= q̇l (t − T1 (t)) − q̇r (t)

− d
dt

(T1 (t)) q̇l (t − T1 (t))

= evr − Ṫ1q̇l (t − T1 (t))

d(epl)

dt
= d

dt
(qr (t − T2 (t)) − ql (t))

=
(

1 − d
dt

(T2 (t))
)

q̇r (t − T2 (t)) − q̇l (t)

= q̇r (t − T2 (t)) − q̇l (t)

− d
dt

(T2 (t)) q̇r (t − T2 (t))

= evl − Ṫ2q̇r (t − T2 (t)) (23)

we get the following relationships between ėpi

and evi

ėpl = evl − Ṫ2q̇r (t − T2 (t)) (24)

ėpr = evr − Ṫ1q̇l (t − T1 (t)) (25)
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Applying Eqs. 24 and 25 to Eq. 22, V̇ could be
simplified as becomes

V̇ =
∑

iε{r,l}

[
−εT

i Kiεi + 1

2
εT

i ėpi + 1

2
εT

i evi

+ 1

2
eT
vi

(
epi + ėpi − evi

) + 1

2
eT

piėpi

− 1

2
eT
vievi − q̇i (t)T evi

]

+ 1

2
q̇l (t − T1(t))T (

evr − ėpr
)

+ 1

2
q̇r (t − T2(t))T (

evl − ėpl
)

(26)

Considering that

q̇l (t − T1 (t)) = evr + q̇r (27)

q̇r (t − T2 (t)) = evl + q̇l (28)

V̇ is further simplified to

V̇ =
∑

iε{r,l}

[
−εT

i Kiεi + 1

2
εT

i ėpi + 1

2
εT

i evi

+ 1

2
eT
vi

(
epi + ėpi − evi

) + 1

2
eT

piėpi

− 1

2
eT
vievi − q̇i (t)T evi

+ 1

2
(evi + q̇i)

T (
evi − ėpi

)]
(29)

More simplification gives

V̇ =
∑

iε{r,l}

[
−εT

i Kiεi − 1

2
eT
vievi

+ 1

2

{
εi − q̇i (t) + epi

}T
ėpi

+ 1

2

{
εi − q̇i (t) + epi

}T
evi

]
(30)

Using the definition of εi in Eq. 5, negative semi-
definiteness of V̇ is seen as

V̇ = −
∑

iε{r,l}

[
εT

i Kiεi + 1

2
eT
vievi

]
(31)

Integrating Eq. 31, it is easy to see that V (t) −
V (0) =

t∫

o
V̇ = −

( t∫

o

(
εT

i Kiεi + 1
2 eT

vievi
)) ≤ 0, i.e.,

V (t) ≤ V (0). Using the fact that V(t) ≥ 0, V (t) ≤
V (0) and V̇ (t) ≤ 0, it is possible to say that V(t)
is positive bounded decreasing function. Thus, it is
concluded that all terms in V(t) are bounded.

Now let us proceed to the analysis of trans-
parency of the system by proving limt→∞ evi(t) =
limt→∞ epi(t) = 0. We will also show that
limt→∞ qi(t) is bounded to establish closed-loop
stability.

Previously, it is shown that V(t) is bounded,
so all terms in V(t) including εi, q̇i, ei and
θ̃iεL∞. Using V(t)≥0 and integrating Eq. 31,
t∫

o

(
εT

i Kiεi
) + 1

2

t∫

o

(
eT
vievi

) = V (0) − V (t) ≤ V (0), it

follows that εi, eviεL2. It is easy to see from
Eq. 5 that, since q̇iεL∞, we have eviεL∞. Com-
bining these with Eqs. 24 and 25 and the as-
sumption that Ṫi is bounded, it is seen that
ėpiεL∞. All these bounded signals result in the
boundedness of the regressor matrix Yi, i.e.,
YiεL∞. Using the boundedness of εi, θ̃i, τ i

and Yi and Properties I and III in Eq. 9, it is
seen that ε̇iεL∞. Using Barbalat’s lemma (see
Appendix), given that εiεL2 and ε̇iεL∞, it is
concluded that limt→∞ εi = 0. Using ε̇i = q̈i − ėpi,
it is determined that q̈εL∞. Invoking the time
derivative of evi, e.g., ėvl = (

1 − Ṫ2
)

q̈r (t − T2) −
q̈l, it is concluded that ėviεL∞. Therefore, us-
ing Barbalat’s lemma again, since eviεL2 and
ėviεL∞, it is resulted that limt→∞evi = 0. Re-
placing epl = qr (t − T2 (t)) − ql(t) in εl = q̇l − epl

and using the fact that εl →0, stability of the
system q̇l (t) + ql(t) = qr (t − T2 (t)) can be ana-
lyzed with calculating the response of ql(t) to
the qr (t − T2(t)). Homogenous response of stable
differential equation q̇l (t) + ql (t) = qr(t − T2(t))
is ql(t) = e−t

∫
etqr(t − T2(t)). Similar result could

be achieved for qr(t) as qr (t) = e−t
∫

etql(t−T1(t)).
If

∫
etqr(t − T2(t)) is bounded then ql → 0,

which implies that qr → 0, epr and epl → 0. If
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∫
etqr(t − T2(t)) be unbounded then ql(t) would

be indeterminate which could be evaluated using

Hopital’s rule as limt→∞ qr (t) = d
dt (

∫
etql(t−T1(t)))

d
dt (e

t)
=

ql (t − T1 (t)), epr → 0. Similar results could be
achieved for epl → 0. Using the definition of εi

in Eq. 5 and using the fact that limt→∞ εi (t)=0
and limt→∞ epi (t) = 0, it is easy to see from
Eq. 5 that limt→∞ q̇i (t) = 0 and, in other words,
limt→∞ qi (t) = Constant.

Thus, it was proved that

limt→∞qi (t) = Constant and limt→∞evi

= limt→∞epi = 0 i ∈ {l, r} (32)

��

Thus, in free motion of the bilateral telema-
nipulation system (1), state synchronization is sat-
isfied under time varying communication delays.
Also, the closed-loop telemanipulator is input-
to-state stable from the human and environment
input forces to the local and remote manipulator
states.

4 Simulation Results

To verify the theoretical results of this paper, the
local and remote manipulators are considered to
be a pair of two-degree-of-freedom serial robots
with revolute joints. The local and remote ma-
nipulator dynamics (1) have the following ele-
ments of inertia, Coriolis/centrifugal and gravity
matrices:

Mi (qi) =
[

Mi11 Mi12

Mi21 Mi22

]
, Ci (qi, q̇i)

=
[

Ci11 Ci12

Ci21 Ci22

]
and Gi (qi) =

[
Gi1
Gi2

]

where for iε {l, r}, Mi11 = l2
i2 mi2 + l2

i1(mi1 + mi2)+
2li1li2 mi2 cos(qi2),Mi12= Mi21= l2

i2mi2 +li1li2mi2 cos(qi2),
Mi22 = l2

i2 mi2 , Ci11 = −2li1li2 mi2 sin(qi2)q̇i2 , Ci12 =
−li1li2 mi2 sin(qi2)q̇i2 ,Ci21 = li1li2 mi2 sin(qi2)q̇i1,Ci22 =0,
Gi1 = gli2 mi2 cos(qi1 + qi2) + li1(mi1 + mi2) cos(qi1),
Gi2 = gli2 mi2 cos(qi1 + qi2). Here, qi1 and qi2 are
the positions of the first and the second revolute
joints, li1 and li2 are the link lengths and mi1 and

mi2 are the masses of the first and the second links
for each robot. For both manipulators, we used
the same linear parameterization (see Property
IV) as in [26]:

Yi
(
qi, q̇i, epi, ėpi

) =
[

Yi11 Yi12
Yi13 Yi14 Yi15

Yi21 Yi22 Yi23 Yi24 Yi25

]

,

θ̂i = [
θ̂i1 θ̂i2 θ̂i3 θ̂i4 θ̂i5

]

where, Yi11=−ėpi1,Yi12=−2ėpi1cos(qi2)−ėpi2cos(qi2)+
q̇i2 epi2 sin(qi2) + 2epi1 q̇i2 sin(qi2), Yi13 = −ėpi2 ,Yi14 =
−g cos(qi1 +qi2), Yi15 =−g cos(qi1), Yi21 =0, Yi22 =
−ėpi1 cos(qi2) − q̇i1 epi1 sin(qi2), Yi23 = −ėpi1 − ėpi2 ,
Yi24 =−g cos(qi1 +qi2), Yi25 =0 and θ̂i1 = l̂2

i2 m̂i2 +
l̂2
i1(m̂i1 + m̂i2), θ̂i2 = l̂i1̂li2 m̂i2 , θ̂i3 = l̂2

i2 m̂i2 , θ̂i4 = l̂i2 m̂i2 ,
θ̂i5 = l̂i1(m̂i1 + m̂i2), iε{l, r}.

Using the above definitions for the elements of
the matrix θ̂i, it is possible to estimate matrices Mi,
Ci and Gi based on the elements of θ̂i that will be
estimated online.

In simulations, the physical parameters of the
manipulators are set to ml1 = 4 kg, ml2 = 0.5 kg,
ll1 = 50 cm, ll2 = 50 cm, mr1 = 3.4 kg, mr2 =
0.25 kg, lr1 = 50 cm, lr2 = 50 cm and the controller
gain Ki is set to 3I. In the following, three simu-
lation scenarios are considered involving constant
time delays, random time delays and sinusoidal
time delays (scenarios A, B and C, respectively).
A human torque, which is shown in Fig. 2, is
applied to the local manipulator and the tracking
performance of the first and the second joints of
the local and remote manipulators are considered.

4.1 Simulation with Constant Time Delays

In Fig. 3, simulation results for a constant time
delay similar to that used in [26], T1 = 0.4 and
T2 = 0.4 seconds, in terms of joint positions of the
remote manipulator and delayed joint positions
of the local manipulator in the presences of the
exerted human torque are shown. Comparing the
results, it can be seen that the results of the pro-
posed scheme is exactly the same as that of [26].
This similarity is because of the fact that in this
simulation time delays are constant.
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Fig. 2 Exerted human
torque

4.2 Simulation with Random Time Delays

In this part, simulation results of the proposed
controller compared with [26] for random time
delays with Gaussian distribution with mean
0.48 second and standard deviation of 0.022, are
shown. In this simulation, again the positions of
the first and the second joints of the remote ma-
nipulator compared with delayed joint positions
of the local manipulator in the presences of ex-
erted human torque are shown. As it can be seen

from Fig. 4, the proposed scheme has better track-
ing performance and less fluctuations and settling
time than the controller [26].

4.3 Simulation with Sinusoidal Time Delays

Let us verify the telemanipulator’s free mo-
tion tracking performance under sinusoidal time
varying delays. The feedforward and feedback de-
lays in the communication channel are assumed to

Fig. 3 a Positions of the
first joints of the local and
remote manipulator in
telemanipulation with
constant time delay.
b Positions of the second
joints of the local
andremote manipulator
in telemanipulation with
constant time delay



J Intell Robot Syst

Fig. 4 a Positions of the
first joints of the local and
remote manipulators in
telemanipulation with
random time delay.
b Positions of the second
joints of the local and
remote manipulators in
telemanipulation with
random time delay

be changing as sinusoids with a mean of 1 second
and frequencies of 0.5027 and 0.4714 rad/sec – see
Fig. 5.

Joint positions of the local and the remote ma-
nipulators in the presences of the exerted human
torque of Fig. 2 are shown in Fig. 6. It is remark-
able that state synchronization of the bilateral
teleoperation system is satisfied in the presence of
the fast varying communication delays. In Fig. 7,
tracking errors in the first and the second joints

of the local and remote manipulators are shown,
which are asymptotically converging to zero as
predicted by the theory.

As shown in Figs. 3, 4 and 6, after a command
is being applied to the local robot, a couple of
seconds of settling time is needed to achieve syn-
chronization between the local and the remote
robots. This settling time depends on the values of
the constant time delay (Fig. 3) or the varying time
delay (Figs. 4 and 6). Considering these figures,

Fig. 5 Time varying
delays in communication
channel



J Intell Robot Syst

Fig. 6 a Positions of the
first joints of the local and
remote manipulators in
telemanipulation with
sinusidal time varying
delay. b Positions of the
second joints of the local
and remote manipulators
in telemanipulation with
sinusidal time varying
delay

the proposed adaptive controller is able to han-
dle time varying delays and guarantee asymptotic
synchronization between the local and the remote
robots as opposed to prior art [26], which is only
meant for constant time delays.

If we apply the controller in [26] to the same
local and remote robots with the same sinusoidal
delays in the communication channel, instability
happens in the local and the remote manipulators
as shown in Fig. 8.

5 Experimental Results

To verify the theoretical results of this paper, the
local and the remote manipulators are considered
to be two PHANToM Omni robots (Sensable
Technologies, Inc., Wilmington, MA) as shown
in Fig. 9. The utilized PHANToM robots are
three degree of freedom robots that map the
generalized joint angles of the robot (q1, q2 and
q3) to the Cartesian position (X, Y and Z) of

Fig. 7 Tracking errors of
the positions of the first
and second joints
between the local and the
remote manipulators
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Fig. 8 a Positions of the
first joints of the local and
remote manipulators with
controller in [26] with
sinusidal time varying
delay. b Positions of the
second joints of the local
and remote manipulators
with controller in [26]
with sinusidal time
varying delay

the gimbal. These local and remote robots are
connected to the computer using 1394 ports. As
the human operator moves the local robot, the

Fig. 9 Teleoperation system with two PHANToM Haptic
devices

remote robot which is in free motion follows the
state of the local robot. Controllers for the local
and the remote robots are implemented based on
Eqs. 2–5. To artificially create varying time delays
between the local and the remote robots, a first-
input, first-output circular buffer is used for each
robot – changing the length of these buffers create
time-varying time delays in the communication
channel.

The schematics of PHANToM robot with its
corresponding joint angles are shown in Fig. 10.

The local and remote PHANToM dynamics (1)
have the following elements of inertia, Coriolis/
centrifugal and gravity matrixes:

Mi (qi) =
⎡

⎢
⎣

Mi11 Mi12 Mi13

Mi21 Mi22 Mi23

Mi31 Mi32 Mi33

⎤

⎥
⎦ ,

Ci (qi, q̇i) =
⎡

⎢
⎣

Ci11 Ci12 Ci13

Ci21 Ci22 Ci23

Ci31 Ci32 Ci33

⎤

⎥
⎦ and Gi (qi) =

⎡

⎢
⎣

Gi1

Gi2

Gi3

⎤

⎥
⎦
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Fig. 10 Schematics of PHANToM robot with its corre-
sponding joint angles

where for iε {l, r}, Mi(qi), Ci (qi, q̇i) and Gi(qi)

defined in terms of kinematic and inertial prop-
erties of the PHANToM [29].

The linear parameterization of the PHANToM
(see Property IV) is reported in [30]. We use a
similar parameterization, Eq. 7, as:

Yi
(
qi, q̇i, epi, ėpi

)

=
⎡

⎣
Yi11 Yi12 Yi13 Yi14 Yi15 Yi16 Yi17 Yi18

Yi21 Yi22 Yi23 Yi24 Yi25 Yi26 Yi27 Yi28

Yi31 Yi32 Yi33 Yi34 Yi35 Yi36 Yi37 Yi38

⎤

⎦

π̂i = [
π̂i1 π̂i2 π̂i3 π̂i4 π̂i5 π̂i6 π̂i7 π̂i8

]

where, Yi11 = ėpi1 , Yi12 = ėpi1 ci2.2 − 2epi1 q̇i2 si2 ci2 −
q̇i1 epi2 si2.2 , Yi13 = ėpi1 ci2.3 − 2epi1 q̇i3 si3 ci3 − q̇i1 epi3 si2.3 ,
Yi14 = ėpi1 ci2 si3 − 1

2 (epi1 q̇i2 +q̇i1 epi2)si2 si3 + 1
2 (epi1 q̇i3 +

q̇i1 epi3)ci2 ci3 ,Yi15 =0,Yi16 =0,Yi17 =0,Yi18 =0,Yi21 =0,
Yi22= q̇i1epi1 si2.2 ,Yi23=0,Yi24=− 1

2 ėpi3 si23+ 1
2 q̇i1epi1 si2 si3+

1
2 q̇i3 epi3 ci23 , Yi25 = ėpi2 , Yi26 = 0, Yi27 = ci2 , Yi28 = 0,
Yi31 =0, Yi32 =0, Yi33 = q̇i1 epi1 si2.3 , Yi34 =− 1

2 ėpi2 si23 −
1
2 q̇i1 epi1 ci2 ci3 + 1

2 q̇i2 epi2 ci23 ,Yi35 =0, Yi36 = ėpi3 , Yi37 =0,
Yi38 = si3 and π̂i is same as reported in [30]. In the
elements of matrix Yi, sim , cim , simn , cimn , si2,m and
ci2,m , m, n = 1, 2, 3, stands for sin(qim), cos(qim),
sin(qim − qin), cos(qim − qin), sin(2qim), cos(2qim)

respectively.
Let us verify the PHANToM’s free motion

tracking performance under sinusoidal time vary-
ing delays. The feedforward and feedback delays

in the communication channel are assumed to be
changing as sinusoids with a mean of 0.2 s. Joint
positions of the local and the remote PHANToM
robots are shown in Fig. 11. It is remarkable that
state synchronization of the bilateral teleopera-
tion system is satisfied in the presence of the
varying communication delays.

To compare the experimental tracking perfor-
mance of the proposed controller with the con-
troller in [26], experimental results corresponding
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Fig. 11 a Positions of the first joints of the local and
remote PHANToM robots in telemanipulation with sinu-
soidal time varying delay. b Positions of the second joints
of the local and remote PHANToM robots in telemanipu-
lation with sinusoidal time varying delay. c Positions of the
third joints of the local and remote PHANToM robots in
telemanipulation with sinusoidal time varying delay
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to the controller in [26] being used with the same
two PHANToM robots in the presence of varying
time delays are demonstrated in Fig. 12. It is
evident from Fig. 12 that instability happens in
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Fig. 12 a First joint position tracking between the local
and the remote robots during teleoperation using the con-
troller in [26]. b Second joint position tracking between
the local and remote robots during teleoperation using the
controller in [26]. c Third joint position tracking between
the local and remote robots during teleoperation using the
controller in [26]

the teleoperation in the presence of time varying
delay when the controller in [26] is used.

6 Conclusion and Future Work

In this paper, a new state synchronizing controller
for bilateral teleoperation systems with varying
time delays in the communication channel is pro-
posed. Lyapunov stability of the closed-loop sys-
tem in the presence of time varying delays is
established. Besides, it is proved and also shown
via simulations that using the proposed controller,
asymptotic synchronization between the local and
the remote robots occurs. The proposed controller
entails adaptive tuning rules in the local and the
remote sides to estimate the unknown/uncertain
dynamic parameters of the manipulators. Thus,
only the estimated values of the robots’ parame-
ters are needed in the controller when providing
for the asymptotic state synchronization between
the local and the remote robots under varying
time delays. As future work, state synchroniza-
tion under varying time delays during contact-
motion telemanipulation with consideration for
force tracking to obtain full transparency will be
studied.

Appendix

1. If f (t) ∈ L2, then there exist a positive con-
stant M such that

∫ | f (t)|2 dt < M. This im-
plies that f is Riemann integrable.

2. If ḟ (t) ∈ L∞, then f is uniformly continuous.

Barbalat’s lemma says that if function f : R+ →
R+ is uniformly continuous and be Riemann inte-
grable, then limt→∞ f (t) = 0.
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